Pt. 135, App. G

14 CFR Ch. I (1-1-08 Edition)

Parameters	Range	Accuracy (sensor input)	Seconds per sampling interval	Resolution	Remarks
 All cockpit flight control input forces (control wheel, control column, rudder pedal). 	Full Range Con- trol Wheel ±70 lbs Control Column ±85 lb Rudder pedal ±165 lbs.	±5%	1	0.3% of full range.	For fly-by-wire flight control systems, where control surface position is a func- tion of the displacement of the control input device only, it is not necessary to record this parameter. For airplanes that have a flight control break away capa- bility that allows either pilot to operate the control inde- pendently, record both control force inputs. The control force inputs may be sampled alternately once per 2 seconds to produce the sampling interval of 1.

The recorded values must meet the designated range, resolution, and accuracy requirements during dynamic and static conditions. All data recorded must be correlated in time to within one second.

¹ For A300 B2/B4 airplanes, resolution = 6 seconds.

² For A330/A340 series airplanes, resolution = 0.703°. ³ For A318/A319/A320/A321 series airplanes, resolution = 0.275% (0.088°>0.064°). For A330/A340 series airplanes, resolution

³ For A318/A319/A320/A321 series airplanes, resolution = 0.275% (0.088°>0.064°). For A330/A340 series airplanes, resolution = 2.20% (0.0703°>0.064°).
 ⁴ For A318/A319/A320/A321 series airplanes, resolution = 0.22% (0.088°>0.080°). For A330/A340 series airplanes, resolution = 1.76% (0.703°>0.080°).
 ⁶ For A330/A340 series airplanes, resolution = 1.18% (0.703°>0.120°).
 ⁶ For A330/A340 series airplanes, resolution = 0.704% (0.352°>0.090°).
 ⁷ For A330/A340 series airplanes, alleron resolution = 0.704% (0.352°>0.100°). For A330/A340 series airplanes, spoiler resolution = 1.67% (0.76°>0.12°).
 ⁸ For A330/A340 series airplanes, resolution = 0.30% (0.176°>0.12°). For A330/A340 series airplanes, seconds per sampling interval = 1.78% (0.703°>0.100°).

^b For A330/A340 series airplanes, resolution = 0.057c (....)
 ^a For B-717 series airplanes, resolution = .005g. For Dassault F900C/F900EX airplanes, resolution = .007g.
 ^{ab} For A330/A340 series airplanes, resolution = 1.05% (0.250°>0.120°).
 ¹¹ For A330/A340 series airplanes, resolution = 1.05% (0.250°>0.120°). For A300 B2/B4 series airplanes, resolution = 0.92% (2.000°, 0.126°).

¹¹ For A330/A340 series airplanes, resolution = 1.05% (0.250°>0.120°). For A300 B2/B4 series airplanes, resolution = 0.92% (0.230°>0.125°).
 ¹² For A330/A340 series airplanes, spoiler resolution = 1.406% (0.703°>0.100°).
 ¹³ For A330/A340 series airplanes, resolution = 0.5 °C.
 ¹⁴ For Dassault F900C/F900EX airplanes, Radio Altitude resolution = 1.25 ft.
 ¹⁵ For A330/A340 series airplanes, resolution = 0.352 degrees.
 ¹⁶ For A330/A340 series airplanes, resolution = 4.32%. For A330/A340 series airplanes, resolution is 3.27% of full range for throttle lever angle (TLA); for reverse thrust, reverse throttle lever angle (RLA) resolution is nonlinear over the active reverse thrust range, vi) for the full range to vib of 96.14 degrees.
 ¹⁷ For A318/A319/A320/A321 series airplanes, with IAE engines, resolution = 2.58%.

[Doc. No. 28109, 62 FR 38398, July 17, 1997; 62 FR 48135, Sept. 12, 1997; Amdt. 135-85, 67 FR 54323, Aug. 21, 2002; Amdt. 135-89, 68 FR 42939, July 18, 2003; 68 FR 50069, Aug. 20, 2003]

APPENDIX G TO PART 135-EXTENDED **OPERATIONS** (ETOPS)

G135.1 Definitions.

G135.1.1 Adequate Airport means an airport that an airplane operator may list with approval from the FAA because that airport meets the landing limitations of §135.385 or is a military airport that is active and operational.

G135.1.2 ETOPS Alternate Airport means an adequate airport that is designated in a dispatch or flight release for use in the event of a diversion during ETOPS. This definition applies to flight planning and does not in any way limit the authority of the pilot in command during flight.

G135.1.3 ETOPS Entry Point means the first point on the route of an ETOPS flight, determined using a one-engine inoperative cruise speed under standard conditions in still air, that is more than 180 minutes from an adequate airport.

G135.1.4 ETOPS Qualified Person means a person, performing maintenance for the certificate holder, who has satisfactorily completed the certificate holder's ETOPS training program.

G135.2 Requirements.

G135.2.1 General. After February 15, 2008, no certificate holder may operate an airplane, other than an all-cargo airplane with more than two engines, outside the continental United States more than 180 minutes flying time (at the one engine inoperative cruise speed under standard conditions in still air) from an airport described in §135.364 unless-

(a) The certificate holder receives ETOPS approval from the FAA;

(b) The operation is conducted in a multiengine transport category turbine-powered airplane;

Federal Aviation Administration, DOT

(c) The operation is planned to be no more than 240 minutes flying time (at the one engine inoperative cruise speed under standard conditions in still air) from an airport described in §135.364; and

(d) The certificate holder meets the requirements of this appendix.

G135.2.2 Required certificate holder experience prior to conducting ETOPS.

Before applying for ETOPS approval, the certificate holder must have at least 12 months experience conducting international operations (excluding Canada and Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may consider the following experience as international operations:

(a) Operations to or from the State of Hawaii.

(b) For certificate holders granted approval to operate under part 135 or part 121 before February 15, 2007, up to 6 months of domestic operating experience and operations in Canada and Mexico in multi-engine transport category turbojet-powered airplanes may be credited as part of the required 12 months of international experience required by paragraph G135.2.2(a) of this appendix.

(c) ETOPS experience with other aircraft types to the extent authorized by the FAA.

G135.2.3 Airplane requirements. No certificate holder may conduct ETOPS in an airplane that was manufactured after February 17, 2015 unless the airplane meets the standards of §25.1535.

G135.2.4 Crew information requirements. The certificate holder must ensure that flight crews have in-flight access to current weather and operational information needed to comply with §135.83, §135.225, and §135.229. This includes information on all ETOPS Alternate Airports, all destination alternates, and the destination airport proposed for each ETOPS flight.

G135.2.5 Operational Requirements.

(a) No person may allow a flight to continue beyond its ETOPS Entry Point unless—

(1) The weather conditions at each ETOPS Alternate Airport are forecast to be at or above the operating minima in the certificate holder's operations specifications for that airport when it might be used (from the earliest to the latest possible landing time), and

(3) All ETOPS Alternate Airports within the authorized ETOPS maximum diversion time are reviewed for any changes in conditions that have occurred since dispatch.

(b) In the event that an operator cannot comply with paragraph G135.2.5(a)(1) of this appendix for a specific airport, another ETOPS Alternate Airport must be substituted within the maximum ETOPS diversion time that could be authorized for that flight with weather conditions at or above operating minima.

(c) Pilots must plan and conduct ETOPS under instrument flight rules.

(d) Time-Limited Systems.

(1) Except as provided in paragraph G135.2.5(d)(3) of this appendix, the time required to fly the distance to each ETOPS Alternate Airport (at the all-engines-operating cruise speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight Manual for the airplane's most limiting fire suppression system time required by regulation for any cargo or baggage compartments (if installed), minus 15 minutes.

(2) Except as provided in G135.2.5(d)(3) of this appendix, the time required to fly the distance to each ETOPS Alternate Airport (at the approved one-engine-inoperative cruise speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight Manual for the airplane's most time limited system time (other than the airplane's most limiting fire suppression system time required by regulation for any cargo or baggage compartments), minus 15 minutes.

(3) A certificate holder operating an airplane without the Airplane Flight Manual information needed to comply with paragraphs G135.2.5(d)(1) and (d)(2) of this appendix, may continue ETOPS with that airplane until February 17, 2015.

G135.2.6 Communications Requirements.

(a) No person may conduct an ETOPS flight unless the following communications equipment, appropriate to the route to be flown, is installed and operational:

(1) Two independent communication transmitters, at least one of which allows voice communication.

(2) Two independent communication receivers, at least one of which allows voice communication.

(3) Two headsets, or one headset and one speaker.

(b) In areas where voice communication facilities are not available, or are of such poor quality that voice communication is not possible, communication using an alternative system must be substituted.

G135.2.7 Fuel Requirements. No person may dispatch or release for flight an ETOPS flight unless, considering wind and other weather conditions expected, it has the fuel otherwise required by this part and enough fuel to satisfy each of the following requirements:

(a) Fuel to fly to an ETOPS Alternate Airport. (1) Fuel to account for rapid decompression and engine failure. The airplane must carry the greater of the following amounts of fuel:

(i) Fuel sufficient to fly to an ETOPS Alternate Airport assuming a rapid decompression at the most critical point followed by

Pt. 135, App. G

descent to a safe altitude in compliance with the oxygen supply requirements of §135.157;

(ii) Fuel sufficient to fly to an ETOPS Alternate Airport (at the one-engine-inoperative cruise speed under standard conditions in still air) assuming a rapid decompression and a simultaneous engine failure at the most critical point followed by descent to a safe altitude in compliance with the oxygen requirements of §135.157; or

(iii) Fuel sufficient to fly to an ETOPS Alternate Airport (at the one-engine-inoperative cruise speed under standard conditions in still air) assuming an engine failure at the most critical point followed by descent to the one engine inoperative cruise altitude.

(2) Fuel to account for errors in wind forecasting. In calculating the amount of fuel required by paragraph G135.2.7(a)(1) of this appendix, the certificate holder must increase the actual forecast wind speed by 5% (resulting in an increase in headwind or a decrease in tailwind) to account for any potential errors in wind forecasting. If a certificate holder is not using the actual forecast wind based on a wind model accepted by the FAA, the airplane must carry additional fuel equal to 5% of the fuel required by paragraph G135.2.7(a) of this appendix, as reserve fuel to allow for errors in wind data.

(3) Fuel to account for icing. In calculating the amount of fuel required by paragraph G135.2.7(a)(1) of this appendix, (after completing the wind calculation in G135.2.7(a)(2) of this appendix), the certificate holder must ensure that the airplane carries the greater of the following amounts of fuel in anticipation of possible icing during the diversion:

(i) Fuel that would be burned as a result of airframe icing during 10 percent of the time icing is forecast (including the fuel used by engine and wing anti-ice during this period).

(ii) Fuel that would be used for engine anti-ice, and if appropriate wing anti-ice, for the entire time during which icing is forecast.

(4) Fuel to account for engine deterioration. In calculating the amount of fuel required by paragraph G135.2.7(a)(1) of this appendix (after completing the wind calculation in paragraph G135.2.7(a)(2) of this appendix), the certificate holder must ensure the airplane also carries fuel equal to 5% of the fuel specified above, to account for deterioration in cruise fuel burn performance unless the certificate holder has a program to monitor airplane in-service deterioration to cruise fuel burn performance.

(b) Fuel to account for holding, approach, and landing. In addition to the fuel required by paragraph G135.2.7 (a) of this appendix, the airplane must carry fuel sufficient to hold at 1500 feet above field elevation for 15 minutes upon reaching the ETOPS Alternate Airport and then conduct an instrument approach and land.

14 CFR Ch. I (1–1–08 Edition)

(c) *Fuel to account for APU use.* If an APU is a required power source, the certificate holder must account for its fuel consumption during the appropriate phases of flight.

G135.2.8 Maintenance Program Requirements. In order to conduct an ETOPS flight under §135.364, each certificate holder must develop and comply with the ETOPS maintenance program as authorized in the certificate holder's operations specifications for each two-engine airplane-engine combination used in ETOPS. This provision does not apply to operations using an airplane with more than two engines. The certificate holder must develop this ETOPS maintenance program to supplement the maintenance program currently approved for the operator. This ETOPS maintenance program must include the following elements:

(a) *ETOPS maintenance document*. The certificate holder must have an ETOPS maintenance document for use by each person involved in ETOPS. The document must—

(1) List each ETOPS Significant System,

(2) Refer to or include all of the ETOPS maintenance elements in this section.

(3) Refer to or include all supportive programs and procedures,

(4) Refer to or include all duties and responsibilities, and

(5) Clearly state where referenced material is located in the certificate holder's document system.

(b) *ETOPS pre-departure service check*. The certificate holder must develop a pre-departure check tailored to their specific operation.

(1) The certificate holder must complete a pre-departure service check immediately before each ETOPS flight.

(2) At a minimum, this check must:

(i) Verify the condition of all ETOPS Significant Systems;

(ii) Verify the overall status of the airplane by reviewing applicable maintenance records; and

(iii) Include an interior and exterior inspection to include a determination of engine and APU oil levels and consumption rates.

(3) An ETOPS qualified person must accomplish all ETOPS required items specified in the ETOPS pre-departure service check and certify by signature that the check has been completed.

(c) Limitations on dual maintenance. (1) Except as specified in paragraph G135.2.8(c)(2) of this appendix, the certificate holder may not perform scheduled or unscheduled dual maintenance during the same maintenance visit on the same or a substantially similar ETOPS Significant System listed in the ETOPS maintenance document, if the improper maintenance could result in the failure of an ETOPS Significant System.

Federal Aviation Administration, DOT

(2) In the event dual maintenance as defined in paragraph G135.2.8(c)(1) of this appendix cannot be avoided, the certificate holder may perform maintenance provided:

(i) The maintenance action on each affected ETOPS Significant System is performed by a different technician, or

(ii) The maintenance action on each affected ETOPS Significant System is performed by the same technician under the direct supervision of a second qualified individual; and

(iii) For either paragraph G135.2.8(c)(2)(i) or (ii) of this appendix, a qualified individual conducts a ground verification test and any in-flight verification test required under the program developed pursuant to paragraph G135.2.8(d) of this appendix.

(d) Verification program. The certificate holder must develop a program for the resolution of discrepancies that will ensure the effectiveness of maintenance actions taken ETOPS Significant Systems. The on verification program must identify potential problems and verify satisfactory corrective action. The verification program must include ground verification and in-flight verification policy and procedures. The certificate holder must establish procedures to clearly indicate who is going to initiate the verification action and what action is necessary. The verification action may be performed on an ETOPS revenue flight provided the verification action is documented as satisfactorily completed upon reaching the ETOPS entry point.

(e) Task identification. The certificate holder must identify all ETOPS-specific tasks. An ETOPS qualified person must accomplish and certify by signature that the ETOPSspecific task has been completed.

(f) Centralized maintenance control procedures. The certificate holder must develop procedures for centralized maintenance control for ETOPS.

(g) ETOPS parts control program. The certificate holder must develop an ETOPS parts control program to ensure the proper identification of parts used to maintain the configuration of airplanes used in ETOPS.

(h) Enhanced Continuing Analysis and Surveillance System (E-CASS) program. A certificate holder's existing CASS must be enhanced to include all elements of the ETOPS maintenance program. In addition to the reporting requirements of §135.415 and §135.417, the program includes reporting procedures, in the form specified in §135.415(e), for the following significant events detrimental to ETOPS within 96 hours of the occurrence to the certificate holding district office (CHDO):

(1) IFSDs, except planned IFSDs performed for flight training.

(2) Diversions and turnbacks for failures, malfunctions, or defects associated with any airplane or engine system. (3) Uncommanded power or thrust changes or surges.

(4) Inability to control the engine or obtain desired power or thrust.

(5) Inadvertent fuel loss or unavailability, or uncorrectable fuel imbalance in flight.

(6) Failures, malfunctions or defects associated with ETOPS Significant Systems.

(7) Any event that would jeopardize the safe flight and landing of the airplane on an ETOPS flight.

(i) Propulsion system monitoring.

The certificate holder, in coordination with the CHDO, must—

(1) Establish criteria as to what action is to be taken when adverse trends in propulsion system conditions are detected, and

(2) Investigate common cause effects or systemic errors and submit the findings to the CHDO within 30 days.

(j) Engine condition monitoring.

(1) The certificate holder must establish an engine-condition monitoring program to detect deterioration at an early stage and to allow for corrective action before safe operation is affected.

(2) This program must describe the parameters to be monitored, the method of data collection, the method of analyzing data, and the process for taking corrective action.

(3) The program must ensure that engine limit margins are maintained so that a prolonged engine-inoperative diversion may be conducted at approved power levels and in all expected environmental conditions without exceeding approved engine limits. This includes approved limits for items such as rotor speeds and exhaust gas temperatures.

(k) *Oil consumption monitoring.* The certificate holder must develop an engine oil consumption monitoring program to ensure that there is enough oil to complete each ETOPS flight. APU oil consumption must be included if an APU is required for ETOPS. The operator's consumption limit may not exceed the manufacturer's recommendation. Monitoring must be continuous and include oil added at each ETOPS departure point. The program must compare the amount of oil added at each ETOPS departure point with the running average consumption to identify sudden increases.

(1) *APU in-flight start program.* If an APU is required for ETOPS, but is not required to run during the ETOPS portion of the flight, the certificate holder must have a program acceptable to the FAA for cold soak in-flight start and run reliability.

(m) Maintenance training. For each airplane-engine combination, the certificate holder must develop a maintenance training program to ensure that it provides training adequate to support ETOPS. It must include ETOPS specific training for all persons involved in ETOPS maintenance that focuses on the special nature of ETOPS. This training must be in addition to the operator's maintenance training program used to qualify individuals for specific airplanes and engines.

(n) Configuration, maintenance, and procedures (CMP) document. The certificate holder must use a system to ensure compliance with the minimum requirements set forth in the current version of the CMP document for each airplane-engine combination that has a CMP.

(o) *Reporting.* The certificate holder must report quarterly to the CHDO and the airplane and engine manufacturer for each airplane authorized for ETOPS. The report must provide the operating hours and cycles for each airplane.

G135.2.9 Delayed compliance date for all airplanes. A certificate holder need not comply with this appendix for any airplane until February 15, 2008.

[Doc. No. FAA-2002-6717, 72 FR 1885, Jan. 16, 2007, as amended by Amdt. 135-108, 72 FR 7348, Feb. 15, 2007; 72 FR 26542, May 10, 2007]

PART 136—COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT

Subpart A—National Air Tour Safety Standards

Sec.

- 136.1 Applicability and definitions.
- 136.3 Letters of Authorization.
- 136.5 Additional requirements for Hawaii.
- 136.7 Passenger briefings.
- 136.9 Life preservers for over water.
- 136.11 Helicopter floats for over water.
- 136.13 Helicopter performance plan and operations.
- 136.15-136.29 [Reserved]

Subpart B—National Parks Air Tour Management

- 136.31 Applicability.
- 136.33 Definitions.
- 136.35 Prohibition of commercial air tour operations over the Rocky Mountain National Park.
- 136.37 Overflights of national parks and tribal lands
- 136.39 Air tour management plans (ATMP).
- 136.41 Interim operating authority.
- 136.43–136.49 [Reserved]

Subpart C—Grand Canyon National Park

136.51–136.69 [Reserved]

APPENDIX A TO PART 136—SPECIAL OPERATING RULES FOR AIR TOUR OPERATORS IN THE STATE OF HAWAII

AUTHORITY: 49 U.S.C. 106(g), 40113, 40119, 44101, 44701, 44701-44702, 44705, 44709-44711,

14 CFR Ch. I (1–1–08 Edition)

SOURCE: Docket No. FAA-2001-8690, 67 FR 65667, Oct. 25, 2002, unless otherwise noted.

Subpart A—National Air Tour Safety Standards

SOURCE: Docket No. FAA-1998-4521, 72 FR 6912, Feb. 13, 2007, unless otherwise noted.

§136.1 Applicability and definitions.

(a) This subpart applies to each person operating or intending to operate a commercial air tour in an airplane or helicopter and, when applicable, to all occupants of the airplane or helicopter engaged in a commercial air tour. When any requirement of this subpart is more stringent than any other requirement of this chapter, the person operating the commercial air tour must comply with the requirement in this subpart.

(b) As of September 11, 2007, this subpart is applicable to:

(1) Part 121 or 135 operators conducting a commercial air tour and holding a part 119 certificate;

- (2) Part 91 operators conducting flights as described in 119.1(e)(2); and
- (3) Part 91 operators conducting flights as described in 14 CFR 91.146

(c) This subpart is not applicable to operations conducted in balloons, gliders (powered or un-powered), parachutes (powered or un-powered), gyroplanes, or airships.

(d) For the purposes of this subpart the following definitions apply:

Commercial Air Tour means a flight conducted for compensation or hire in an airplane or helicopter where a purpose of the flight is sightseeing. The FAA may consider the following factors in determining whether a flight is a commercial air tour for purposes of this subpart:

(1) Whether there was a holding out to the public of willingness to conduct a sightseeing flight for compensation or hire;

(2) Whether the person offering the flight provided a narrative that referred to areas or points of interest on the surface below the route of the flight;

(3) The area of operation;