

🕊 Permeation Calculator				
File Help				
About	w Graph Modify Settings	Save Print		
Help Topics				~

🚉 Perm	eation Calculator		
File Help			
	bout View Graph Modify Settings	Save Print	
<			

Pie be Wordt Data Staring Weik Setting See Fire F	👑 Permeation Calcu	lator			×
Invest Use of Modify Statings Save Print	File Help				
Ver Keuls Gradh Swe IPirt Eu	Import Data A	View Graph Modify Settings S	ave Print	lon long	-
See Pint Ext	View Results Graph			-	
Prick Esk	Save				
	Print				
	Exit				
				~	
	<				

<u>مع</u>	Permeation Calcula	itor					×
File	Help						
	Import Data	View Graph	Modify Settings	Save	Print		
	<					Σ	

🕼 Permeation Calculator 🔤 🖬	×
File Help	
Import Data View Graph Modify Settings Save Print	
Import Data Yiew Graph Modify Settings Save Print Choice of Variable * All active fields are required data fields unless noted as optional Manually Select Data Columns Choose System Type Open Loop System (OL) Analyzer Response Format © Constant Flow Rate of Fresh Collection Medium (F in ASTM F 739): Option 2: Use Concentration (in Option 3: Use Other Analyzer Output Reading Analyzer Output: Column Time: Column Flow Rate (optional) Column Valume Removed (Vs.in ASTM F 739): 	
OK Clear Cancel Time Format Sample Volume IS replaced, enter Volume Replaced (Vs in ASTM F 739) Time in Minutes Ninimum detectable mass permeated: YYYY/MM/DD HH:MM:SS Minimum detectable mass permeated: MM/DD/YYYY HH:MM:SS ## Cancel	\$

Permeation Calculator		
Import Data View Graph Modify Sett	tings Save Print	-
Data Input * All active fields are required data fields Swatch Exposure Size (for A in ASTM F 739) Diameter 1.00 Diameter 1.00 Area: 5.07 Specimen Weight 1.00 1.00 © grams	Cumulative Permeation vs Time Cumulative Permeation (µg/cm²)	
Cumulative Permeation for: 60 min Cumulative Permeation Mass target: 150 µg/cm^2 Enter times Ti-1: 0.00 and Ti: 120.83 (in Minutes) for Average Permeation Rate	0 Time (Minutes) View Data Graph	
Back	Cancel	~

Additional Data Input

* All fields are optional data fields (values entered here wi	ill not affect the results)
Report Title: Neoprene Against Acetone	Project Number: PR-1234
Date: 3/10/2008 MM/DD/YYYY	Operator: Jane Doe
Material Type (Manufacture/Product); Neoprene Average Material Thickness (mm): 0.685	Experiment Setting Instrument Type (e.g., MIRAN IR, GC, etc.):
Chemical Information:	Instrument Settings: Wavelength 8.5 µm Pathlength 20.25 meters
C Gas	Collection Medium: (e.g., N2, He, or air)
CAS #: 67-64-1 Manufacturer: FisherChemicals	Instrument ID Number: CDC 1236
Lot/Batch #: 034404 Expiration Date: May 30, 2010	Pump ID Number: Wr-156p
	Data Sampling Inteval (second): 3
Comments: This is to compare decontamination methods.	Nominal Test Temperature: 23.5 ° ⊂
	Temperature Range: 22.1 to 23.2 ° ⊂
Back Ca	ancel Finish

×

Fil	e Help	
	Import Data View Graph Modify Settings Save Print	
	Report Title: Neoprene Against Acetone	
	Project Number: PR-1234	
	Experiment type: Closed Loop, Discrete Sampling, Volume Replaced.	
	Results based on NIOSH's Permeation Calculator Version 2.4.1	
	Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 μg/(cm²*min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Time (permeation mass at 2.5 μg/cm²): 40.5 min Minimum Breakthrough Detection Time (permeation rate at 0.01 μg/(cm²*min)): 18.5 min	
	Steady-State Permeation Rate (SSPR) SSPR: 2.92 μg/(cm²*min) Correlation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340	
	Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 μg/cm²: 97.9 minutes Cumulative Permeation for 60 minutes: 40.2 μg/cm² Average Permeation Rate from 0.00 to 120.00 min: 1.75 μg/(cm²*min)	
	Operator: Jane Doe Date: 3/10/2008 -Data Filename- Filename: Data File 18.xls	
	Experiment Information	
	Test Duration: 2.00 hours	

Import Data Modify Setting Wew Results (aph) Neoprene Against Acetone Swe PR-1234 Swe PR-1234 Exit Closed Loop, Discrete Sampling, Volume Replaced. Results based on NIOSH's Permeation Calculator Version 2.4.1 Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 µg/(cm ²⁺ min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Detection Time (permeation rate at 0.01 µg/(cm ²⁺ min)): 18.5 min Steady-State Permeation Rate (SSPR) SSPR: 2.92 µg/(cm ²⁺ min) Correlation Factor (R ²) in the steady-state region from 93.0 to 108 min: 0.998340 Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 µg/cm ² . 97.9 minutes Cumulative Permeation Rate from 0.00 to 120.00 min: 1.75 µg/(cm ³⁺ min) Operator: Jane Doe Date: 310/2008 -Data Filename- Filename: Data File 18.xls Experiment Information Test Duration: 2.00 hours	File Help				
Modry Setting* New Reads Graph Seve Print Ext Closed Loop, Discrete Sampling, Volume Replaced. Results based on NIOSH's Permeation Calculator Version 2.4.1 Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 µg/(cm²*min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Time (permeation rate at 0.10 µg/(cm²*min)): 18.5 min Steady-State Permeation Rate (SSPR) SSPR: 2.92 µg/(cm²min) Correlation Facter (R*) in the steady-state region from 93.0 to 108 min: 0.998340 Cumulative Permeation rate from 0.00 to 120.00 min: 1.75 µg/(cm²*min) Operator: Jane Doe Data: 3/10/2008 -Data Filename- Filename: Data File 18.xis Experiment Information Test Duration: 2.00 hours	Import Data	View Graph Modify Settings Save Print			
Save min PR-1234 Exit Closed Loop, Discrete Sampling, Volume Replaced. Results based on NIOSH's Permeation Calculator Version 2.4.1 Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 µg/(cm*min)): 21.1 min Breakthrough Detection Time (portmeation rate at 0.10 µg/(cm*min)): 11.1 min Breakthrough Detection Time (permeation rate at 0.01 µg/(cm*min)): 18.5 min Normalized Breakthrough Time (permeation rate at 0.01 µg/(cm*min)): 18.5 min Steady-State Permeation Rate (SSPR) SSPR: 2.92 µg/(cm*min) Correlation Factor (R*) in the steady-state region from 93.0 to 108 min: 0.998340 Cumulative Permeation rate from 0.00 to 120.00 min: 1.75 µg/(cm*min) Operator: Jane Doe Data: Filename- Filename- Eilename- Filename- Filen	Nodiry Setting	Neoprene Against Acetone	^		
Ext Closed Loop, Discrete Sampling, Volume Replaced. Results based on NIOSH's Permeation Calculator Version 2.4.1 Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 µg/(cm²*min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Detection Time (permeation rate at 0.01 µg/(cm²*min)): 18.5 min Steady-State Permeation Rate (SSPR) SSPR: 2.92 µg/(cm²*min) Correlation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340 Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 µg/cm²: 97.9 minutes Cumulative Permeation Rate from 0.00 to 120.00 min: 1.75 µg/(cm²*min) Operator: Jane Doe Date: 310/2008 -Data Filename- Filename: Data File 18.xls Experiment Information Test Duration: 2.00 hours	Save Print	PR-1234			
Results based on NIOSH's Permeation Calculator Version 2.4.1 Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 µg/(cm²*min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Dime (permeation mass at 2.5 µg/cm²): 40.5 min Minimum Breakthrough Detection Time (permeation rate at 0.01 µg/(cm²*min)): 18.5 min Steady-State Permeation Rate (SSPR) SSPR: 2.92 µg/(cm²*min) Correlation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340 Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 µg/cm²: 97.9 minutes Cumulative Permeation for 60 minutes: 40.2 µg/cm² Average Permeation Rate from 0.00 to 120.00 min: 1.75 µg/(cm²*min) Operator: Jane Doe Date 3110/2008 -Data Filename: Filename: Data File 18.xls Experiment Information Test Duration: 2.00 hours	Exit	Closed Loop, Discrete Sampling, Volume Replaced.			
Breakthrough Time- Standardized Breakthrough Time (permeation rate at 0.10 µg/(cm²*min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Dime (permeation mass at 2.5 µg/cm²): 40.5 min Minimum Breakthrough Detection Time (permeation rate at 0.01 µg/(cm²*min)): 18.5 min Steady-State Permeation Rate (SSPR) SSPR: 2.92 µg/(cm*min) Correlation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340 Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 µg/cm²: 97.9 minutes Cumulative Permeation Rate from 0.00 to 120.00 min: 1.75 µg/(cm²*min) Operator: Jane Doe Date: 3/10/2008 -Data Filename: Filename: Data File 18.xls Experiment Information Test Duration: 2.00 hours	Results based	on NIOSH's Permeation Calculator Version 2.4.1			
Steady-State Permeation Rate (SSPR) SSPR: 2.92 µg/(cm²*min) Correlation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340 Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 µg/cm²: 97.9 minutes Cumulative Permeation for 60 minutes: 40.2 µg/cm² Average Permeation Rate from 0.00 to 120.00 min: 1.75 µg/(cm²*min) Operator: Jane Doe Date: 3/10/2008 -Data Filename- Filename: Data File 18.xls Experiment Information Test Duration: 2.00 hours	Breakthrough Tir Standa Breakt Norma Minimu	me lardized Breakthrough Time (permeation rate at 0.10 μg/(cm²*min)): 21.1 min through Detection Time (BDT): 34.0 min alized Breakthrough Time (permeation mass at 2.5 μg/cm²): 40.5 min um Breakthrough Detection Time (permeation rate at 0.01 μg/(cm²*min)): 18.5 min			
Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 µg/cm ² : 97.9 minutes Cumulative Permeation for 60 minutes: 40.2 µg/cm ² Average Permeation Rate from 0.00 to 120.00 min: 1.75 µg/(cm ² *min) Operator: Jane Doe Date: 3/10/2008 -Data Filename- Filename: Data File 18.xls Experiment Information Test Duration: 2.00 hours	Steady-State Pe SSPR Correla	ermeation Rate (SSPR) t: 2.92 µg/(cm²*min) ation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340			
Operator: Jane Doe Date: 3/10/2008 -Data Filename- Filename: Data File 18.xls Experiment Information Test Duration: 2.00 hours	Cumulative Perm Elapse Cumul Averaç	Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 μg/cm²: 97.9 minutes Cumulative Permeation for 60 minutes: 40.2 μg/cm² Average Permeation Rate from 0.00 to 120.00 min: 1.75 μg/(cm²*min)			
Experiment Information Test Duration: 2.00 hours	Operator: Jane E Date: 3/10/2008 -Data Filename- Filenal	Doe Ime: Data File 18.xls			
Test Duration: 2.00 hours	Experiment Info	ormation			
	Test D	Duration: 2.00 hours			
	<		>		

Fi	le Help	
	Import Data View Graph Modify Settings Save Print	
	Report Title: Neoprene Against Acetone	^
	Project Number: PR-1234	
	Experiment type: Closed Loop, Discrete Sampling, Volume Replaced.	
	Results based on NIOSH's Permeation Calculator Version 2.4.1	
	Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 μg/(cm²*min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Time (permeation mass at 2.5 μg/cm²): 40.5 min Minimum Breakthrough Detection Time (permeation rate at 0.01 μg/(cm²*min)): 18.5 min	
	Steady-State Permeation Rate (SSPR) SSPR: 2.92 μg/(cm²*min) Correlation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340	
	Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 µg/cm²: 97.9 minutes Cumulative Permeation for 60 minutes: 40.2 µg/cm² Average Permeation Rate from 0.00 to 120.00 min: 1.75 µg/(cm²*min)	
	Operator: Jane Doe Date: 3/10/2008 -Data Filename- Filename: Data File 18.xls	
	Experiment Information	
	Test Duration: 2.00 hours	~

🚰 Permeation Calculator	_ 2 ×
File Help	
Import Data View Graph Modify Settings Save Print	
Report Title: Neoprene Against Acetone	^
Choice of Variable	
* All active fields are required data fields unless noted as optional Manually Select Data Columns Analyzer Response Format © Option 1: Use Concentration (in µg/L) © Option 2: Use Concentration (in ppm) © Option 3: Use Other Analyzer Output Reading Option 3: Use Other Analyzer Output Reading © Variable Flow Rate of Fresh Collection Medium (F.in ASTM F.739): C Constant Flow Rate of Medium (Vt in ASTM F.739): Solution Use Other Analyzer © Variable Flow Rate. Minimum detectable permeation rate: Solution Use Other Collection Medium (Vt in ASTM F.739): Sole Loop System (CL) Total Volume of the Collection Medium (Vt in ASTM F.739): Sole Discrete Sampling © Discrete Sampling © Sample Volume NOT replaced, enter Volume Removed (Vs in ASTM F.739)	
Time Format	
Operator: Jane Doe Date: 3/10/2008 -Data Filename- Filename: Data File 18.xls	
Experiment Information Test Duration: 2.00 hours	

File Help	
Import DataView GraphModify SettingsSavePrint 🖌	
Report Title: Neoprene Against Acetone	<u></u>
Project Number: PR-1234	
Experiment type: Closed Loop, Discrete Sampling, Volume Replaced.	
Results based on NIOSH's Permeation Calculator Version 2.4.1	
Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 μg/(cm²*min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Time (permeation mass at 2.5 μg/cm²): 40.5 min Minimum Breakthrough Detection Time (permeation rate at 0.01 μg/(cm²*min)): 18.5 min	
Steady-State Permeation Rate (SSPR) SSPR: 2.92 μg/(cm²*min) Correlation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340	
Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 µg/cm²: 97.9 minutes Cumulative Permeation for 60 minutes: 40.2 µg/cm² Average Permeation Rate from 0.00 to 120.00 min: 1.75 µg/(cm²*min)	
Operator: Jane Doe Date: 3/10/2008 -Data Filename- Filename: Data File 18.xls	
Experiment Information	
Test Duration: 2.00 hours	~

File Help				
Import Data View Graph Modify Settings Save Print				
Report Inte. Neoprene Against Acetone				
Project Number: PR-1234				
Experiment type: Closed Loop, Discrete Sampling, Volume Replaced.				
Results based on NIOSH's Permeation Calculator Version 2.4.1				
Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 μg/(cm²*min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Time (permeation mass at 2.5 μg/cm²): 40.5 min Minimum Breakthrough Detection Time (permeation rate at 0.01 μg/(cm²*min)): 18.5 min				
Steady-State Permeation Rate (SSPR) SSPR: 2.92 µg/(cm ^{2*} min)				
Correlation Factor (R ²) in the stea Name: Wasspiritdfs/Pitt143-0104 Properties Cumulative Permeation Status: Ready Elapsed Time for Cumulative Per Cumulative Permeation for 60 mit Type: HP Color LaserJet 4600 PCL 6 Where: Pitt-143-111-Color Comment:				
Operator: Jane Doe Print range Date: 3/10/2008 Image -Data Filename- Image Filename: Data File 18.xls Image Image Image Ima				
Experiment Information Help OK Cancel				
Test Duration: 2.00 hours				

File Help		
Import Data	View Graph Modify Settings Save Print	
Modify Settings	Neoprene Against Acetone	^
Print	PR-1234	
	Ulosed Loop, Discrete Sampling, Volume Replaced.	
Results based	d on NIOSH's Permeation Calculator Version 2.4.1	
Breakthrough T	-ime	
Stan	dardized Breakthrough Time (permeation rate at 0.10 μg/(cm²*min)): 21.1 min	
Brea	kthrough Detection Time (BDT): 34.0 min	
Norm	nalized Breakthrough Time (permeation mass at 2.5 μg/cm²): 40.5 min	
Minin	num Breakthrough Detection Time (permeation rate at 0.01 µg/(cm²*min)): 18.5 min	
Steady-State P	Permention Pate (SSPP)-	
SSPI	$B^{-} 2.92 \mu a //cm^{2*} min)$	
Corre	elation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340	
Cumulative Per	meation	
Elaps	sed Time for Cumulative Permeation Mass of 150 µg/cm²: 97.9 minutes	
Cumi	ulative Permeation for 60 minutes: 40.2 µg/cm² age Permeation Pate from 0.00 to 1.20.00 min: 1.75 µg/(cm²*min)	
~~~~	age Fernealion Rate from 0.00 to 120.00 min. 1.75 µg/(cm min)	
Operator: Jane	Doe	
Date: 3/10/200	8	
-Data Filename	}-	
Filen	ame: Data File 18.xls	
Experiment In	formation	
Test	Duration: 2.00 hours	
<		>

Import Data View Graph Modify Settings Save Print	
Report Title: Neoprene Against Acetone	^
Project Number PR-1234	
Dialog	
Experiment type: Closed Loop, Discrete S	
Results based on NIOSH's Permeation C	
Breaktbrough Time	
Standardized Breakthrough Tim	
Breakthrough Detection Time (B	
Minimum Breakthrough Detectic	
Standy State Permantian Pate (SSDD)	
Steady-State Fernieation Rate (SSFR) SSPR: 2.92 µg/(cm ^{2*} min)	
Correlation Factor (R²) in the ste	
Cumulative Permeation	
Elapsed Time for Cumulative Pe	
Cumulative Permeation for 60 m Average Permeation Rate from u	
Show Graph Close Window Print Graph	
Operator: Jane Doe	
-Data Filename-	
Filename: Data File 18.xls	
Experiment Information	
Test Duration: 2.00 hours	~



File Help		
Import Data	View Graph Modify Settings Save Print	
Modiry Settings View Results Graph	Neoprene Against Acetone	^
Save Print	PR-1234	
Exit	Closed Loop, Discrete Sampling, Volume Replaced.	
Results based	on NIOSH's Permeation Calculator Version 2.4.1	
Breakthrough Tir Stand Break Norma Minimu	me ardized Breakthrough Time (permeation rate at 0.10 μg/(cm²*min)): 21.1 min through Detection Time (BDT): 34.0 min alized Breakthrough Time (permeation mass at 2.5 μg/cm²): 40.5 min um Breakthrough Detection Time (permeation rate at 0.01 μg/(cm²*min)): 18.5 min	
Steady-State Pe SSPR Correl:	rmeation Rate (SSPR) : 2.92 μg/(cm²*min) ation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340	
Cumulative Perm Elapse Cumul Average	neation ed Time for Cumulative Permeation Mass of 150 μg/cm²: 97.9 minutes lative Permeation for 60 minutes: 40.2 μg/cm² ge Permeation Rate from 0.00 to 120.00 min: 1.75 μg/(cm²*min)	
Operator: Jane I Date: 3/10/2008 -Data Filename- Filena	Doe me: Data File 18.xls	
Experiment Info	ormation	
Test D	Duration: 2.00 hours	~

File Hel	р				
In	nport Data 📗	View Graph Modify Settings	Save	Print	
Rep	ort Title:	Neoprene Against Acetone			<u>^</u>
Proje	ect Number:	PR-1234			
Expe	eriment type: C	losed Loop, Discrete Sampling	, Volume Replac	ed.	
Re	sults based on	NIOSH's Permeation Calculate	or Version 2.4.1		
Brea	akthrough Time Standard Breakthro Normalize Minimum	 lized Breakthrough Time (perm ough Detection Time (BDT): 34 ed Breakthrough Time (permea Breakthrough Detection Time	eation rate at 0.1 .0 min ition mass at 2.5 (permeation rate	10 µg/(cm²*min)): µg/cm²): 40.5 mir at 0.01 µg/(cm²*i	21.1 min n min)): 18.5 min
Stea	ady-State Perm SSPR: 2. Correlatio	eation Rate (SSPR) 92 μg/(cm²*min) on Factor (R²) in the steady-sta	te region from 90	3.0 to 108 min: 0.9	998340
Cum	ulative Permea Elapsed Cumulativ Average	tion Time for Cumulative Permeatio ve Permeation for 60 minutes: - Permeation Rate from 0.00 to	n Mass of 150 µg 40.2 µg/cm² 120.00 min: 1.75	g/cm²: 97.9 minute µg/(cm²*min)	es
Ope Date -Dat	rator: Jane Doe e: 3/10/2008 a Filename- Filename	e : Data File 18.xls			
Ex	periment Inform	nation			
	Test Dura	ation: 2.00 hours			~
<					

Fil	le Help
	Import Data View Graph Modify Settings Save Print
	Report Title: Neoprene Against Acetone
	Project Number: PR-1234
	Experiment type: Closed Loop, Discrete Sampling, Volume Replaced.
	Results based on NIOSH's Permeation Calculator Version 2.4.1 C Save As Text File
	Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 µg/(cm²*min)): 21.1 min Breakthrough Detection Time (BDT): 34.0 min Normalized Breakthrough Time (permeation mass at 2.5 µg/cm²): 40.5 min Minimum Breakthrough Detection Time (permeation rate at 0.01 µg/(cm²*min)): 18.5 min
	Steady-State Permeation Rate (SSPR) SSPR: 2.92 µg/(cm²*min) Correlation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340
	Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 μg/cm²: 97.9 minutes Cumulative Permeation for 60 minutes: 40.2 μg/cm² Average Permeation Rate from 0.00 to 120.00 min: 1.75 μg/(cm²*min)
	Operator: Jane Doe Date: 3/10/2008 -Data Filename- Filename: Data File 18.xls
	Experiment Information
	Test Duration: 2.00 hours

File	: Help									
	Import Data	View Graph	Modify Settings	Save	Print					
	Report Title:	Neoprene A	gainst Acetone							^
	Project Number:	PR-1234								
	Experiment type:	Closed Loop, [	Discrete Sampling,	Save As					? 🛛	
	Results based o	on NIOSH's Per	meation Calculator	Save in:	🗀 Option 10		• +	🗈 💣 🎫		
	Breakthrough Tin Standa Breakt Norma Minimu	ne ardized Breakthi hrough Detectio lized Breakthrou im Breakthrougi	rough Time (perme on Time (BDT): 34.0 ugh Time (permeat h Detection Time (p	My Recent Documents	Data File 18.xls					E
	Steady-State Per SSPR: Correla	rmeation Rate ( 2.92 μg/(cm²*m ation Factor (R²)	SSPR) in) i in the steady-state	My Documents						
	Cumulative Perm Elapse Cumula Averag	eation d Time for Cum ative Permeation je Permeation F	ulative Permeation n for 60 minutes: 4 Rate from 0.00 to 1:	y Computer	File name:	Results for Data File 18.xls		•	Save	
	Operator: Jane D Date: 3/10/2008 -Data Filename- Filenar	ioe ne: Data File 18	3.xls	My Network Places	Save as type:	Excel Files (*.xls)		<u> </u>	Cancel	
	Experiment Info	ormation								
	Test D	uration: 2.00 ho	urs							>

File Help		
Import Data	View Graph Modify Settings Save Print	
Modify Settings View Results Graph	Neoprene Against Acetone	^
Save Print	PB 1234	
Exit	Closed Loop, Discrete Sampling, Volume Replaced.	
Results based	on NIOSH's Permeation Calculator Version 2.4.1	
Breakthrough Ti Stand Break Norma Minim	me lardized Breakthrough Time (permeation rate at 0.10 µg/(cm²*min)): 21.1 min through Detection Time (BDT): 34.0 min alized Breakthrough Time (permeation mass at 2.5 µg/cm²): 40.5 min um Breakthrough Detection Time (permeation rate at 0.01 µg/(cm²*min)): 18.5 min	
Steady-State Pe SSPR Correl	ermeation Rate (SSPR) t: 2.92 μg/(cm²*min) ation Factor (R²) in the steady-state region from 93.0 to 108 min: 0.998340	
Cumulative Pern Elaps Cumu Avera	neation ed Time for Cumulative Permeation Mass of 150 μg/cm²: 97.9 minutes lative Permeation for 60 minutes: 40.2 μg/cm² ge Permeation Rate from 0.00 to 120.00 min: 1.75 μg/(cm²*min)	
Operator: Jane I Date: 3/10/2008 -Data Filename- Filena	Doe 	
Experiment Inf	ormation	
Test [	Duration: 2.00 hours	~
<		

<b>N</b>	Aicrosoft Excel - Re	sults for Data File 18.:	xls		∎₽⊠
:9)	<u>Eile E</u> dit <u>V</u> iew <u>I</u>	[nsert F <u>o</u> rmat <u>T</u> ools [	2ata <u>W</u> indow <u>H</u> elp	Туре а qu	estion for help 🛛 🗕 🗗 🗙
1	🞽 🖌 👌 🗇 🕯	🚨 - 🔊 - Σ -	🗵 🛄 80% 🔹 🕡 🍟 MS Sans Serif 🔹 10 🔹 🖪 .	ℤ型 ≣≣≣≣ \$%,	譯 🗉 • 🧆 • 🛕 • 📲
	F21 🗸	f _x			
	A	В	С	D	E F 💳
1	Report Title:	Neoprene Against Acetone	Results based on NIDSH Permeation Calculator		Version 2-4-1
2					
3	Operator:	Jane Doe			
4	Date:	3/10/2008			
5	Data Filename:	Data File 18.xls			
6	Project Number:	PR-1234			
7			Standardized Breakthrough Time (permeation rate at 0.10 µg/(cm²*min)):	21.1	min
8	Distor	×	Breakthrough Detection Time (BDT):	34	min
9	Cumulative Permeation (µg/on*)		Normalized Breakthrough Time (permeation mass at 2.5 µg/cm²):	40.5	min
10	240		Minimum Breakthrough Detection Time (permeation rate at 0.01 µg/(cm ² *min)):	18.5	min
11	150		Steady-State Permeation Rate (SSPR):	2.92	μg/(cm²*min)
12	150		Correlation Factor (R ² ) in the Steady-State Region:	0.99834	
13	100		Start Time in the Steady-State Region:	93	min
14			End Time in the Steady-State Region:	108	min
15	56	/	Elapsed Lime for Cumulative Permeation Mass of 150 µg/cm ² :	97.5	minutes
16	0		Lumulative Permeation for 60 minutes:	40.2	μg/cm ²
17	12 24 36 48 Test ()	60 72 84 36 108 120	Average Permeation Rate from 0.00 to 120.00 minutes:	1.75	µg/(cm²min)
18	Shew Graph Close W	ndaw hint Graph			
20	Experiment Information				
21			Test Duration:	2	hours
22		Material	Manufacturer & Product:	Neoprene	
23			Average Thickness:	0.685	mm
24			Exposure Area:	5.07	cm ²
25			Weight Per Unit Area of Specimen:	1970	g/m²
26		Test Chemical	Physical State:	Liquid	
27			Test Chemical:	Acetone, 99.5% min	
28			CAS #:	67-64-1	
29			Manufacturer:	FisherChemicals	
30			Lot/Batch #:	034404	
31			Expiration Date:	May 30, 2010	
32		Temperature	Nominal Test:	23.5 degrees Celsius	
33			Range:	22.1 to 23.2 degrees Celsius	
34		Analytical Technique	Instrument Type:	Miran IR	
35			Instrument ID Number:	CDC 1236	
36			Instrument Settings:	Wavelength 8.5 µm, Pathlength 20.25	
37			Sampling Pump ID:	Wr-156p	
38		Collection System	Medium:	Air	·
39			I otal Volume of the Collection Medium (Vt):	5.64	
40		System Type:	Llosed Loop, Discrete Sampling, Volume Replaced.		
41			Volume of Discrete Sample (Vs) Removed from Collection Medium:	0.05	
42			Data Sampling Interval (seconds):	3	
4   4	► M \ Results /				
Read	iv .				NUM

The permeation curve can be copied into the Excel file formatted report by selecting "View Graph" and pressing "Ctrl/Print Scrn", then pasting the image into the report.

For open loop testing under a constant flow rate, there is an option to enter a value for the "Analytical Method Detection Limit" to calculate the "Minimum Detectable Permeation Rate" (see the report on the next slide).

File Help	
Import Data View Graph Modify Settings Save Print	
Report Title: Neoprene Against Acetone	~
Project Number: PR-1234	
Experiment type: Open Loop, Constant Flow Rate.	
Recults Choice of Variable	
* All active fields are required data fields unless noted as optional Breakthro Manually Select Data Columns Choose System (OL)	
Analyzer Response Format <ul> <li>Option 1: Use Concentration (in µg/L)</li> <li>Option 2: Use Concentration (in ppm)</li> <li>Option 3: Use Other Analyzer</li> <li>Output Reading</li> </ul> <ul> <li>Steady-St</li> <li>Constant Flow Rate of Fresh Collection Medium (F in ASTM F 739):</li> <li>J.94</li> <li>L / min</li> <li>Analytical Method Detection Limit: 1000</li> <li>µg/mL (optional)</li> <li>C Variable Flow Rate.</li> <li>Minimum detectable permeation rate: 0.1</li> <li>µg/(cm²⁺min)</li> <li>C Constant F 739):</li> <li>C Constant Graphic Permeation Medium (Vt in ASTM F 739):</li> <li>C Continuous Sampling</li> <li>Discrete Sampling</li> <li>C Sample Values Molt replaced other Malume Demound (Wt in ASTM F 739):</li> <li>C Sample Values Molt replaced other Malume Demound (Wt in ASTM F 739):</li> </ul>	
Cumulativ  Cumulativ  Time Format  Time Format  Time in Minutes  Minimum detectable mass permeated:  MM/DD/YYYY HH:MM:SS ##  Cancel Next  Next Next	
Operator: Jane Doe Date: 3/10/2008 -Data Filename- Filename: Data File 10.xls	

File	Help	
	Import Data View Graph Modify Settings Save Print	
- 1	Report Title: Neoprene Against Acetone	^
1	Project Number: PR-1234	
	Experiment type: Open Loop, Constant Flow Rate.	
-	-Results based on NIOSH's Permeation Calculator Version 2.4.1	
	Breakthrough Time Standardized Breakthrough Time (permeation rate at 0.10 μg/(cm²*min)): 4.57 min Breakthrough Detection Time (BDT): 5.65 min Normalized Breakthrough Time (permeation rate at 1.0 μg/(cm²*min)): 5.04 min Minimum Breakthrough Detection Time (permeation rate at 0.01 μg/(cm²*min)): 18.5 min	
	Steady-State Permeation Rate (SSPR) SSPR: 2640 μg/(cm²*min) Determined around 20.4 (average of: 20.5; 20.4; 20.2) min Maximum Permeation Rate: 2650 μg/(cm²*min) Determined at 20.5 min	
(	Cumulative Permeation Elapsed Time for Cumulative Permeation Mass of 150 μg/cm²: 6.96 minutes Cumulative Permeation for 20 minutes: 29500 μg/cm² Average Permeation Rate from 0.00 to 21.09 min: 1540 μg/(cm²*min)	
	Minimum detectable permeation rate based on analytical method detection limit: 0.78 µg/(cm²*min)	
(	Dperator: Jane Doe Date: 3/10/2008 Data Filename- Filename: Data File 10.xls	>