Carbon Monoxide and Environmental Public Health Tracking

EPHT Brown Bag June 26, 2006

CO poisoning: an important public health issue

CO is an odorless, colorless gas Produced by combustion engines CO poisoning can occur: During routine activities • Domestic, occupational and recreational In the wake of large-scale disasters • Morbidity and mortality

CO: An important public health issue

 In US, recognized burden of unintentional, non-fire-related CO poisoning:

- ◆ 15,200 treated annually in EDs¹
 - Likely underestimated
- ◆ 800 deaths annually ²

Estimated persistent neurological injury 10 - 40% of CO poisoning survivors severe poisoning

CDC. Unintentional non-fire-related carbon monoxide exposures – United States, 2001-2002. MMWR: Jan.21 2005 / 54(02);36-39
 Cobb N, Etzel RA. Unintentional carbon monoxide-related deaths in the Unites States1979 through 1988. JAMA 1991;266:659-63
 Ernst A, Zibrak JD. Carbon monoxide poisoning. N Engl J Med. 1998 Nov 26;339(22):1603-1608

CO: An important public health issue

Evidence based prevention strategies

- Correct installation/ maintenance potential CO emitting devices
- ♦ CO detectors

- Legislation/regulation
 - CO emissions
 - CO detectors

Why AREN'T we conducting public health surveillance?

CO: an important EPHT work area

Demonstrated links between health and environment Feasible to track ◆ Measurable and trackable ◆ Data sources available in most states ◆ Can track in real-time Tied to public health objectives Useful and understood ♦ Informative

CO: an important EPHT work area

- Established EPHT interest
 - The National Workgroup on Carbon Monoxide Surveillance
 - Formed in April 2005
 - Membership:

- EPHT grantees
- Academic and other CDC partners

National Workgroup on CO Surveillance

Goals:

- 1. Build a system for CO surveillance
 - National
 - Sustainable
- 2. Standardize methodology CO surveillance
- 3. Promote programs for prevention/education of CO poisoning.

National Workgroup on CO Surveillance

Accomplishments:

- Produced:
 - Carbon Monoxide: A Model Environmental Public Health Indicator
 - Collaborating with CDC
 - Evaluation of national case definitions
 - Planning a national conference
 - July 12-13th, 2006
 - CO surveillance at CSTE (June 2006)
 - Conducted a session
 - 2 roundtable discussions

National Workgroup on CO Surveillance

Contacts:

Steven Macdonald – Washington EPHT <u>steven.macdonald@doh.wa.gov</u>

Judith Graber – Maine EPHT judith.graber@maine.gov

EPHT Branch Monthly Brown Bag --Carbon Monoxide Poisoning

Presentations:

Judith Graber, Maine Making the Best of What's There: Building a State-Based Surveillance System for CO Poisoning

Kathleen Wheeler, New York City Preventing CO Poisoning: Tracking the Impact of Legislative and Regulatory Changes in New York City

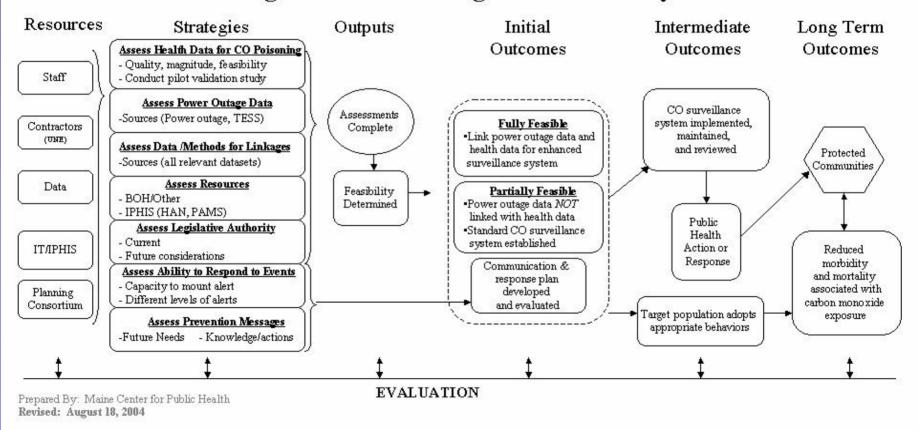
Brian Toal, Connecticut Comparison of Three CO Databases in Connecticut Making the best of what's there: Building a state-based surveillance system for carbon monoxide poisoning

Judith M. Graber, M.S. Andrew E. Smith, Sc.D. Maine Department of Health and Human Services

CO poisonings excess January 1998:

- Outpatient settings
 - January 1998 = 289
 - January 1999 = 20
- Hospitalizations
 - January 1998 = 14
 - January 1999 = 1
- Deaths
 - January 1998 = 2
 - All of 1999 = 0

Maine's Surveillance System for Carbon Monoxide Poisoning


Outline

- A statewide system for unintentional, nonfire-related CO poisoning in Maine
 - Approach
 - ♦ Data sources
 - Analysis/results
 - Dissemination
 - Use of data for public health action

Limitations, next steps

CO Surveillance Logic Model

Environmental Health Tracking Program CO Logic Model: Planning a Surveillance System

Data Sources

- 1. Morbidity
 - Maine hospital visits data
- 2. Mortality
 - Death certificate files
- 3. Knowledge and prevention behaviors
 - BRFSS
- 4. Qualitative information
 - Newspaper search engine

Data Sources: 1. Hospital visits

- Hospital billing records available electronically
 - Hospital discharge data
 - Emergency department
 - Hospital-based outpatient
- Reported quarterly
 - \diamond 12-18 month delay

Data sources: Hospital visits

DATA ELEMENTS INCLUDED:

Demographics	Diagnosis	Hospitalization
Age / DOB Sex Zipcode (Res.)* County (Res.) Encrypted medical record number	Principal diagnosis ¹ Admitting diagnosis ¹ Secondary diagnoses(1-9) ¹	Admission date Payer Source of admission Discharge Date

DATA ELEMENTS NOT INCLUDED:

Name Street address Race or ethnicity

Case Definition

1998 CSTE definition, for CO included:

- Confirmed and probable cases
- ♦ Maine residents

We then excluded cases with E-codes indicating:

- ♦ Fire-related
- ♦ Intentional injury

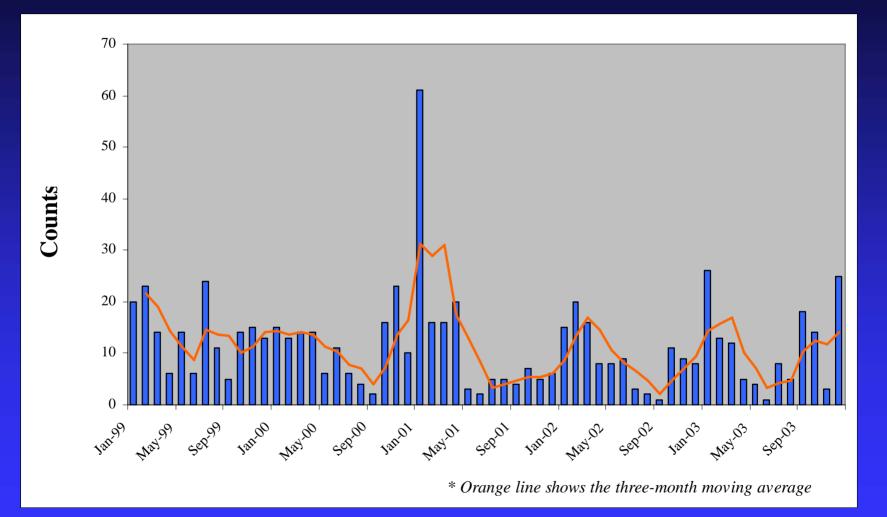
Data Analysis

1. Measures of person, place and time

2. Methods to estimate work-place exposure Verification using a newspaper search

Comparison
 Disaster vs. non-disaster-related cases

Maine Hospital Visits Data, 1999 – 2003


Total 740 cases identified;
47 (6.4%) hospitalized
693 (93.6%) in an outpatient setting
Subset of both seen in ED = 442 (60%)

Demographic Characteristics; 1999 – 2003

Average annual rates / 100,000

		OUT P	ATIENT	H	OSPITA	LIZATIONS
	N	Crude Rate	95% CI *	N	Crude Rate	95% CI **
All	693	10.8	(10.0 - 11.6)	47	0.7	(0.5 - 1.0)
BY AGE GROUP						
0-17	140	9.6	(8.0 - 11.2)	0	•	• •
18-34	233	17.4	(15.2 - 19.6)	9	0.7	(0.3 - 1.3)
35-64	290	10.8	(9.6 - 12.0)	25	0.9	(0.6 - 1.4)
>=65	30	3.3	(2.1 - 4.5)	13	1.4	(0.7 - 2.4)
BYSEX						
Male	380	11.5	(10.3 - 12.7)	33	1.0	(0.7 - 1.4)
Female	313	10	(8.9 - 11.1)	14	0.4	(0.2 - 0.8)

CO Poisoning – Maine Outpatient data 1999 – 2003

CO Poisoning – Characterizing Exposure Source

Frequency of Carbon Monoxide Exposure-related E-codes Accidental poisoning by....

	OUT PATIENT	HOSPITALIZATIONS	
	N (%)	N (%)	
Any CO-related E-code	435 (62.8)	27 (57.5)	
E868.2 : Motor vehicle gas exhaust	132 (19.1)	11 (23.4)	
E868.3 : CO domestic fuel	85 (12.3)	4 (8.5)	
E868.8 : .CO other sources	90 (13.0)	8 (17.0)	

CO Poisoning – Setting (Included those aged 16 and older)

Source of Setting Description	N = 577	(%)	
E-code for Place of Occurrence (E849)			
Residence	100	(17.3)	
Work	77	(13.3)	
Other (Specified)	37	(6.4)	
Missing	363	(62.9)	
Payer Code			
Worker's Compensation	77	(13.3)	
Other	500	(86.7)	
Combined Payer Code And E-Code			
Work	133	(23.1)	
Other	444	(77.0)	

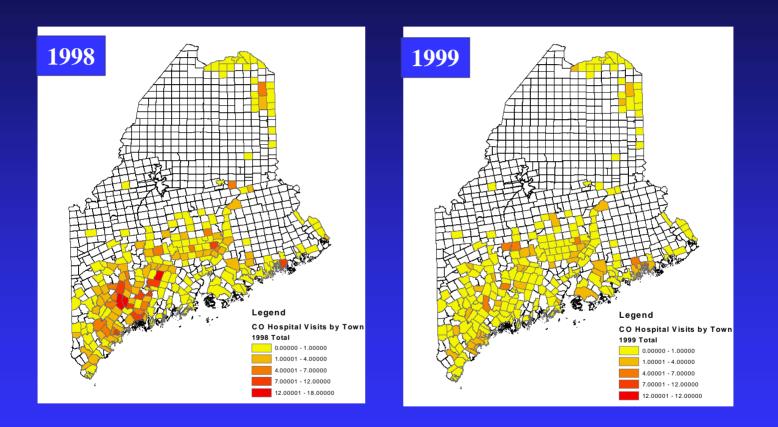
Using E-codes to Identify Work-related Cases – Is it valid?

- Online newspaper search
 - ProQuest Information and Learning Company [Copyright © 2005]
- Searched for occupational exposure events
 - ◆ Search criteria:
 - Major Maine newspapers
 - Articles with the words "carbon monoxide" in the text
 - 1999 through 2003

Using E-codes to Identify Work-related Cases – Is it valid?

- 3 occupational exposure events
 Searched hospital visits data for corresponding records
 Time 5-day window around the date
 - ◆ Place facility within HSA
 - ◆ Patient age >=16

Case Verification for Approach


Found cases in ED visits database
 Range: 7 to 29 people / event

Payer code for Worker's Compensation:
 5% to 14%

E-code for place (*Industrial place/premises*)
 58% to 96%

Outpatient visits for CO poisoning: *RATE/1,000*

Disaster vs. Non-disaster-related cases Comparison of Case Characteristics

	Ice Storm	Non-ice storm		
	1/7 - 1/27/1998	1999-2003		
Age group	N %	N %		
<17	64 (23.3)	140 (20.2)		
18-34	69 (25.1)	233 (33.6)		
35-64	109 (39.6)	290 (41.9)		
>=65	33 (12.0)	30 (4.3)		
Total	275	693		
Sex: Female	170 (61.8)	313 (45.2)		

All P-values are <0.0001 based on CMH Chi-square tests

Disaster vs. Non-disaster-related cases Comparison of Exposure Characteristics

	Ice Storm 1/7 - 1/27/1998	Non-ice storm 1999-2003		
	1/1 1/21/1330	1333 2003		
Exposure Setting:				
Work place*	4 (1.8)	133 (23.1)		
Motor vehicle exhaust	17 (6.2)	132 (19.1)		
Domestic fuel	78.0 (28.4)	85.0 (12.3)		

All P-values are <0.0001 based on CMH Chi-square tests

BRFSS – random digit dial survey
 9 questions Module

 CO monitor presence in household (3)
 Generators (6)

- Use
- Placement
- Ownership

BRFSS: Generator use

Ever use a generator during a power outage?
 25.1% (95% CI: 23.2-26.9)

- Where was the generator usually placed when it is running?
 - ◆ Risk = in an attached or detached structure
 - ◆ Women were more likely then men

♦ P= <0.0206

Especially during rain or snow

♦ P= <0.0001

BRFSS: CO Detector in Household

• Have a CO detector in the household?

- ♦ 33.0%
- \diamond > 95% have a smoke detector
- Less likely to have a CO detector: (P = < 0.001)
 - ◆ Older 65+
 - ♦ Lower income
 - ♦ Female head of household
 - Not married or living as a couple
- More likely to have a CO detector: (P = < 0.001)
 - ♦ Have children
 - Own a generator

Limitations

- Lack of national standards for surveillance
 - National Workgroup on CO surveillance
- Data sources not designed for this use
- Health outcome only
- Comparability with other states
 - ◆ 90% of states have hospitalization
 - ◆ 50% ED
 - Few have other outpatient visits

Conclusions

- Conducting EPHT for CO poisoning is:
 - ♦ Feasible
 - ♦ Useful
 - ◆ Fills an existing PH gap
- Can track/describe person, place time
 - ♦ Conduct other useful analyses
- Can detect specific exposure events
 - ♦ Type and place of exposure event

Next Steps: Maine

- Incorporate poison control data
- Broader dissemination of results
- Educate public / policy makers
- Apply to prevention and control
 - Legislative CO detectors
 - ♦ Make CO a reportable condition
 - ♦ Issue health alerts to clinicians
 - During large-scale power outage

Next Steps: Nationally

- Continue working on surveillance standards
- Consider developing model legislation
 - Requirement for CO detectors
 - Residences
 - ♦ Work places
- Improve labeling on potential CO emitting devices
 - e.g. generators, boat engines

