Skip Standard Navigation Links
Centers for Disease Control and Prevention
 CDC Home Search Health Topics A-Z
peer-reviewed.gif (582 bytes)
eid_header.gif (2942 bytes)
Past Issue

Vol. 11, No. 11
November 2005

Adobe Acrobat logo

EID Home | Ahead of Print | Past Issues | EID Search | Contact Us | Announcements | Suggested Citation | Submit Manuscript

PDF Version | Comments Comments | Email this article Email this article



Acknowledgments
References
Table

Letter

Profiling Mycobacterium ulcerans with hsp65

Sylvia Cardoso Leão,*Comments Jorge Luiz Mello Sampaio,* Anandi Martin,† Juan Carlos Palomino,† and Françoise Portaels†
*Universidade Federal de São Paulo, São Paulo, Brazil; and †Institute of Tropical Medicine, Antwerp, Belgium

Suggested citation for this article


To the Editor: Mycobacterium ulcerans is an emerging human pathogen responsible for Buruli ulcer, a necrotizing skin disease most commonly found in West Africa, but outbreaks have also been reported in the Americas, Australia, and Asia (1). Environmental sources of infection and mode of transmission are not completely known. M. ulcerans grows slowly at 32°C, requiring 6–8 weeks for colonies to be visible in primary culture. Differentiation from M. marinum, which also causes skin infections, is important, since M. marinum can usually be treated with antimicrobial agents, whereas M. ulcerans most often does not respond favorably to drug therapy, and treatment is usually by surgical excision (2). M. shinshuense, initially isolated from a child in Japan, is phenotypically and genetically related but biochemically distinct from M. ulcerans (3).

In the last decade, several DNA-based techniques for mycobacterial identification have been developed. Rapid molecular detection and differentiation of organisms that cause skin infections directly from tissue or exudates could be of great value for early treatment. Some techniques, especially those that include nucleic acid amplification, could be used directly on clinical samples. The accepted standard for molecular identification of mycobacteria is sequencing analysis of 2 hypervariable regions identified in 16S rRNA gene. M. marinum and M. ulcerans share identical 5´-16S rDNA and 16S-23S rRNA gene spacer sequences (4). Polymerase chain reaction (PCR)-dependent methods are based on the 16S rRNA gene (5), the hsp65 gene (6) or the insertion sequence IS2404 (7). Recently, a novel category of variable number tandem repeats that could distinguish M. marinum and M. ulcerans genotypes has been described (8).

Polymorphisms in the 3´-16S rDNA region discriminate M. ulcerans from M. marinum and M. shinshuense (5). These polymorphisms also allow the separation of M. ulcerans into 3 subgroups according to geographic origin and variable phenotypic differences. IS2404 discriminates M. ulcerans from M. marinum (7). It has been used in restriction fragment length polymorphism analysis applied to a comparable number of M. ulcerans and M. marinum strains, confirming that this sequence is present in high copy numbers in M. ulcerans but absent in M. marinum. Nevertheless, an unusual mycobacterium was recently isolated that is closely related to M. marinum by phenotypic tests, lipid pattern, and partial 16S rDNA sequencing but presents low copy numbers of this element (9).

PCR-restriction enzyme analysis (PRA) of a 441-bp fragment of the hsp65 gene is a rapid, easy, and inexpensive method for identifying mycobacteria (10). Devallois et al. (6) described the PRA-hsp65 pattern of 1 M. ulcerans strain ATCC 33728 that originated in Japan. This isolate was considered a new species that resembled M. ulcerans and was named M. shinshuense (3).

We report here the usefulness of PRA-hsp65 to differentiate M. ulcerans strains from different geographic areas. Since Buruli ulcer cases have been reported on 5 continents, we studied 33 M. ulcerans strains that originated from Africa (Benin, Zaire, Ghana, Congo, Angola, Côte d'Ivoire, Togo), Asia (China, Malaysia), Australia (Papua New Guinea, Australia), the Caribbean (Mexico, Surinam, French Guiana), 1 M. shinshuense from Japan, 1 M. marinum isolate and 1 IS2404-positive M. marinum isolate from France (9). All strains were identified at the Institute of Tropical Medicine, the World Health Organization Collaborating Centre for the Diagnosis and Surveillance of Mycobacterium ulcerans Infection by IS2404 PCR and biochemical tests (Table).

DNA extracted from cultures by 3 freeze-boiling cycles was used for amplification, according to the protocol described by Leao et al. (10). Gel images were analyzed by using GelCompar II v. 2.5 (AppliedMaths, Sint-Martens-Latem, Belgium). Two distinct M. ulcerans PRA-hsp65 patterns were identified. Of 36 strains, 34 had a PRA-hsp65 pattern indistinguishable from that of M. marinum [BstEII and HaeIII (bp) of 235/210/0 and 145/105/80] at the Swiss PRAsite (http://app.chuv.ch/prasite/index.html). Two strains, 1 each from Japan and China, showed a different pattern [BstEII and HaeIII (bp) of 235/210/0 and 190/105/80], that described by Devallois et al. (6).

We have shown that PRA-hsp65 analysis performed on several M. ulcerans strains from different geographic areas produced different patterns. In fact, the unique PRA-hsp65 profile of the M. ulcerans strain previously published (6) was the most rarely found pattern among the profiles found in this study. This work helps to clarify the PRA-hsp65 patterns of M. ulcerans found in different countries. Because the epidemiology of Buruli ulcer is poorly understood, new molecular tools are still needed to differentiate M. ulcerans from different geographic settings, mainly in Africa, where the disease is more prevalent. The PRA-hsp65 method represents a rapid, easy, and inexpensive technique to differentiate M. shinshuense from M. ulcerans and M. marinum.

Acknowledgments

We acknowledge Cécile Uwizeye for technical assistance.

This work was supported by INCO-CA project No. ICA4-CT-2001-10087 from the European Commission and by the Funds for Scientific Research, Flanders (FWO, Vlaanderen), Grant no. 0301.01.

References

  1. Asiedu K, Scherpbier R, Raviglione M, editors. Buruli ulcer. Mycobacterium ulcerans infection. Geneva: The World Health Organization; 2000.
  2. Buntine J, Crofts K, editors. Buruli ulcer. Management of Mycobacterium ulcerans disease. Geneva: The World Health Organization; 2001.
  3. Tsukamura M, Kaneda K, Imaeda T, Mikoshiba H. [A taxonomic study on a mycobacterium which caused a skin ulcer in a Japanese girl and resembled Mycobacterium ulcerans]. Kekkaku. 1989;64:691–7.
  4. Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol. 1998;36:139–47.
  5. Portaels F, Fonteyne PA, de Beenhouwer H, de Rijk P, Guedenon A, Hayman J, et al. Variability in 3´ end of 16S rRNA sequence of Mycobacterium ulcerans is related to geographic origin of isolates. J Clin Microbiol. 1996;34:962–5.
  6. Devallois A, Goh KS, Rastogi N. Rapid identification of mycobacteria to species level by PCR-restriction fragment length polymorphism analysis of the hsp65 gene and proposition of an algorithm to differentiate 34 mycobacterial species. J Clin Microbiol. 1997;35:2969–73.
  7. Stinear T, Ross BC, Davies JK, Marino L, Robins-Browne RM, Oppedisano F, et al. Identification and characterization of IS2404 and IS2606: two distinct repeated sequences for detection of Mycobacterium ulcerans by PCR. J Clin Microbiol. 1999;37:1018–23.
  8. Stragier P, Ablordey A, Meyers WM, Portaels F. Genotyping Mycobacterium ulcerans and Mycobacterium marinum using mycobacterial interspersed repetitive units. J Bacteriol. 2005;187:1639–47.
  9. Chemlal K, Huys G, Laval F, Vincent V, Savage C, Gutierrez C, et al. Characterization of an unusual Mycobacterium: a possible missing link between Mycobacterium marinum and Mycobacterium ulcerans. J Clin Microbiol. 2002;40:2370–80.
  10. Leao SC, Bernardelli A, Cataldi A, Zumarraga M, Robledo J, Realpe T, et al. Multicenter evaluation of mycobacteria identification by PCR restriction enzyme analysis in laboratories from Latin America and the Caribbean. J Microbiol Methods. 2005;61:193–9.

 

Table. Origin of strains used in this study*


ITM no.

Species identification

Geographic origin

Source

Providers†

PRA-hsp65


960657

Mycobacterium ulcerans

Angola

Human

ITM

I

960658

M. ulcerans

Angola

Human

ITM

I

5142

M. ulcerans

Australia

Human

ATCC 19423

I

5147

M. ulcerans

Australia

Human

JS

I

8849

M. ulcerans

Australia

Human

DD 8471/69

I

9540

M. ulcerans

Australia

Human

DD 11098

I

9550

M. ulcerans

Australia

Human

DD 17679

I

940339

M. ulcerans

Australia

Human

ITM

I

1441

M. ulcerans

Benin

Insect

ITM

I

9146

M. ulcerans

Benin

Human

ITM

I

940512

M. ulcerans

Benin

Human

ITM

I

940886

M. ulcerans

Benin

Human

ITM

I

970010

M. ulcerans

Benin

Human

ITM

I

970104

M. ulcerans

Benin

Human

ITM

I

970111

M. ulcerans

Benin

Human

ITM

I

980912

M. ulcerans

China

Human

W.R Faber

II

5150

M. ulcerans

D.R.Congo

Human

ITM

I

5151

M. ulcerans

D.R.Congo

Human

ITM

I

5155

M. ulcerans

D.R.Congo

Human

ITM

I

7922

M. ulcerans

French Guiana

Human

IPP 1410900

I

970321

M. ulcerans

Ghana

Human

ITM

I

970359

M. ulcerans

Ghana

Human

ITM

I

970483

M. ulcerans

Ghana

Human

ITM

I

940511

M. ulcerans

Côte d'Ivoire

Human

ITM

I

940662

M. ulcerans

Côte d'Ivoire

Human

ITM

I

940815

M. ulcerans

Côte d'Ivoire

Human

ITM

I

941328

M. ulcerans

Malaysia

Human

K. Jackson 18651

I

5114

M. ulcerans

Mexico

Human

PL

I

5143

M. ulcerans

Mexico

Human

ITM

I

9537

M. ulcerans

Papua New Guinea

Human

DD 11878

I

941331

M. ulcerans

Papua New Guinea

Human

ITM

I

842

M. ulcerans

Surinam

Human

VK 701357

I

970680

M. ulcerans

Togo

Human

ITM

I

8756

M. shinshuense

Japan

Human

ATCC 33728

II

1027

M. marinum

France

Human

VV IPP 99363

I

1026

M. marinum

France

Human

VV IPP2000372

I


*PCR restriction enzyme analysis–hsp65 patterns: I [BstEII and HaeIII (bp) of 235/210/0 and 145/105/80] and II [BstEII and HaeIII (bp) of 235/210/0 and 190/105/80].

†ATCC, American Type Culture Collection; ITM, Institute of Tropical Medicine, Antwerp, Belgium; IPP, Institut Pasteur, Paris, France; VK, Academic Medical Center, Amsterdam, the Netherlands; JS, J Standford, School of Pathology, London, United Kingdom; DD, D Dawson, Laboratory of Microbiology and Pathology, Queensland Health, Australia; PL, P Lavalle, Centro Dermatologico Pascua, Mexico City, Mexico; VV, V Vincent, IPP, Paris, France.

 

Suggested citation for this article:
Leão SC, Sampaio JLM, Martin A, Palomino JC, Portaels F. Profiling Mycobacterium ulcerans with hsp65 [letter]. Emerg Infect Dis [serial on the Internet]. 2005 Nov [date cited]. Available from http://www.cdc.gov/ncidod/EID/vol11no11/05-0234.htm

   
     
   
Comments to the Authors

Please use the form below to submit correspondence to the authors or contact them at the following address:

Sylvia Cardoso Leão, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo–Escola Paulista de Medicina, Rua Botucatu, 862 3° andar, 04023-062 São Paulo, Brazil; fax: 55-11-5572-4711; email: sylvia@ecb.epm.br

Please note: To prevent email errors, please use no web addresses, email addresses, HTML code, or the characters <, >, and @ in the body of your message.

Return email address optional:


 


Comments to the EID Editors
Please contact the EID Editors at eideditor@cdc.gov

Email this article

Please note: To prevent email errors, please use no web addresses, email addresses, HTML code, or the characters <, >, and @ in the body of your message.

Your email:

Your friend's email:

Message (optional):

 

 

 

EID Home | Top of Page | Ahead-of-Print | Past Issues | Suggested Citation | EID Search | Contact Us | Accessibility | Privacy Policy Notice | CDC Home | CDC Search | Health Topics A-Z

This page posted September 26, 2005
This page last reviewed October 18, 2005

Emerging Infectious Diseases Journal
National Center for Infectious Diseases
Centers for Disease Control and Prevention