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Effect sizes are a type of quantitative representation of the magnitude of relations, differences, or 
comparisons that are in some way meaningful in the research design to which they are applied. 
Two classic examples of effect sizes include the difference in group means and a regression 
coefficient relating Y with X. However, statistical significance, which has certain universal 
appeal because many analyses compute the p-value, is not a replacement for effect size. In 
addition, there are faults in using statistical significance as an index of differences. For example, 
large studies frequently find significant effects, small studies frequently fail to find significant 
effects, and it is not obvious that all statistically reliable effects are substantively important. 

The reason that statistical significance is not an index of effect size is because the distribution of 
the test statistic depends on two things: (a) an effect size component (defined by substantively 
relevant population parameters and (b) a design component (including sample size). Effect sizes 
are a way of describing substantively important relations among population parameters in a way 
that is independent of the research design. This makes effect sizes from different studies 
comparable to one another.   

This point can be demonstrated by examining the t-test, written as Test Statistic = (Effect Size) x 
(Design Component). 
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More importantly, the sampling distribution of the t-statistic is determined by the noncentrality 
parameter which has two components as well—the population parameter and the study design 
parameter. 
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This equation highlights that the power and expected p-value are determined by both design and 
population characteristics. 

The term “effect size,” as used by Jacob Cohen, describes the part of the noncentrality 
parameters that are independent of sample size. For normal theory tests, these effect sizes tend to 
be standardized (since no test on means has power that is independent of the variance), which 
leads to effect size parameters like:  

μ1 − μ2δ = 
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A common question of standardized effect sizes is, why standardize quantitative representations 
of a standardized mean? First, standardization is mathematically “natural.” More importantly, for 



many cases of social measurements, there is no natural set of units. Scaling, such as test scores, 
is often arbitrary. Standardization represents one arbitrary, but potentially universal, choice of 
scale. Because scaling, in this sense, makes estimates of effect comparable across different study 
designs that use different kinds of outcomes, standardization promotes interpretability since it 
does not depend on any particular scale. Finally, standardized effects also have an interpretation 
in terms of overlap between distributions (i.e., Mahalanobis distance) and are interpretable even 
when comparing effects measured on “different” variables.  

Standardized effect sizes can: express results independent of data collection design (as much as 
possible), express results independent of location and scale parameters of measurement scale, 
and ideally, express results in a way that is substantively interpretable. However, there are 
complications in choosing standardized effect sizes. One of them is that in multilevel 
populations, there is an ambiguity about how to standardize (i.e., what σ?). For example, if you 
have a population, as in education, where there are students nested in classrooms nested in 
schools it is not so obvious what standard deviation is the right one to use. Is it the classroom, 
school, total or some other standardization? Standardization by the total (not within group) 
variance is often sensible because it is an obvious standard, but it introduces slight technical 
complications and there are cases where it is arguably not the right variance to use for 
interpretability purposes (e.g., when comparing differences between schools or when 
subpopulations are of primary interest). There are often other choices about the population. 
Measurement error can influence both the definition and estimation of effect size. Should you 
consider the relation between true scores or observed scores? There are arguments in some cases 
to do one or the other that can be persuasive. 

Another complication that arises is that sometimes research is done in restricted populations, but 
the interest may be in unrestricted populations. This issue occurs in a variety of settings, one of 
which is when researchers select extremes on one variable for research design, but want to infer 
to the relation in the whole population.  

Standardized metrics are not the only effect size nor are they always the safest effect size. If 
natural measurement scales are available, then standardization may actually reduce 
interpretability. For example, expressing effects on physical measurements in a standardized 
scale makes no sense. The question of whether to standardize depends heavily on the kinds of 
outcomes that are used and whether or not the metrics in which the outcomes are measured are 
well understood. 

Three families of effect sizes are widely used (a) the standardized mean difference family 
(including the d-index); (b) the standardized regression coefficient family (including the 
correlation coefficient); and (c) the odds ratio family (including the risk difference and risk 
ratio). Two other families of effect sizes that are used, but not discussed: (a) the response ratio 
family (often used in experimental ecology but not in social science) and (b) multiple degree of 
freedom effect sizes based on variance ratios (e.g., variance accounted for measures). They are 
seemingly simple, but deceptively difficult to interpret precisely. Effect sizes in each of these 
families can be (under certain assumptions) translated into one another, but sampling theory is 
better if the “natural” effect size is used for a given design. 



Standardized Mean Difference Family 
In population structure there are means in standard deviations symbolized by Greek letters and 
the effect size is the mean difference standardized by the population’s standard deviation.  
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Odds-Ratio Family 
The mean outcome is measured as the proportion of cases having one of the two outcomes (the 
target outcome). Study data are proportions in groups one and two having the target outcome. 
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There are several ways to make an Effect Size by comparing π1 with π2 
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The Standardized Regression Coefficient Family 
The most commonly used effect size in this family is the correlation coefficient: r. This is the 
standardized regression coefficient when there are no other covariates. 
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Interpretation of Effect Sizes 
It is crucial to recognize that the interpretation of effect sizes is a judgment process. No statistical 
theory can make these judgments, but judgments need to be made within some normative 
framework. In his Statistical Power book, Cohen provided some guidelines about small, medium 



and large effect sizes, which have been followed more rigidly than intended. In the psychological 
context, effect sizes should be considered in light of other characteristics to help researchers 
understand whether the effects are large enough to take seriously.   

There are a variety of different kinds of normative data to compare and inform the interpretation 
of effect sizes. One example is the gap between socially relevant groups, such as Black-White, 
High SES-Low SES and Male-Female. A second example is indices of growth such as one year’s 
average achievement growth and the rate of growth in a relevant period. Another example is to 
develop a normative understanding from collections of effect sizes of intervention studies (e.g., 
Lipsey and Wilson). Finally, the natural variation of relevant units such as inter-quartile range, 
probable error (median deviation from the mean), and distance between any relevant quartiles 
provides a mechanism for interpreting effect sizes. 

In interpreting effect sizes, the level of analysis matters in multilevel populations: a difference 
that is large compared to variation at one level may be small in terms of variation at another 
level. For example, a mean difference that is small compared to between-student variation may 
be large compared to between-school variation. Thus, universal criteria for large or small effect 
sizes have significant limitations.  

When reporting effect sizes, it is extremely important to include some notion of uncertainties 
(e.g., standard error or confidence intervals). The most useful effect size for any dataset may 
depend on the application. Therefore, it may be useful to report effects in several metrics (e.g., 
an odds ratio or a risk ratio for a given prevalence). 


