The Development and Performance of NCEP GFS in sigma-theta Coordinates

Hann-Ming Henry Juang
Environmental Modeling Center, NCEP

Approach

- Instead of developing a sigma-theta hybrid coordinates dynamics code
- A generic coordinates dynamic code is implemented into NCEP GFS, so it can have possible sigma, sigma-pressure, sigma-theta, and sigma-theta-pressure combination hybrid coordinates.
- Thus we can compare different coordinates under the same system.

Contents

- Introducing a generic coordinate system with enthalpy as thermodynamic equation
- Discritization of the generic coordinate system
- Performance of the new dynamics code, especially in sigma-theta hybrid coordinates
- Problems of sigma-theta coordinate and possible solution for next version

The thermodynamics equation used in operational GFS is

$$
\frac{d T_{v}}{d t}-\frac{\kappa T_{v}}{p} \frac{d p}{d t}=F_{T_{v}}
$$

where

$$
T_{v}=\left\langle 1+\left(R_{v} / R_{d}-1\right) q\right\rangle T
$$

$$
\kappa=\frac{R_{d}}{C_{P}}=\frac{R_{d}}{C_{P d}+\left(C_{P v}-C_{P d}\right) q}=\frac{\kappa_{d}}{1+\left(C_{P v} / C_{P d}-1\right) q}
$$

with ideal-gas law of

$$
p=\rho R_{d} T_{v}
$$

including only standard atmospheric dry air and vapor, but current GFS, we have humidity, ozone, and cloud water, and other tracers will be added in.

From the ideal-gas law for individual gas as

$$
p_{i}=\rho_{i} R_{i} T
$$

from $p=\sum_{i=1}^{N} p_{i}$
through $\quad p=\sum_{i=1}^{N} \rho_{i} R_{i} T=\rho \sum_{i=1}^{N} \frac{\rho_{i}}{\rho} R_{i} T=\rho R T$
we have $\quad p=\rho R T$
where $\quad \rho=\sum_{i=1}^{N} \rho_{i} \quad$ and let $\quad q_{i}=\frac{\rho_{i}}{\rho}$

The thermodynamic equation, derived from internal energy equation, should be written as

$$
\rho \frac{d C_{P} T}{d t}-\frac{d p}{d t}=\rho Q
$$

and the same as R

$$
C_{P}=\sum_{i=0}^{\text {Ntracers }} C_{P i} q_{i}=\left(1-\sum_{i=1}^{\text {Ntracers }} q_{i}\right) C_{P d}+\sum_{i=1}^{\text {Ntracers }} C_{P i} q_{i}
$$

Our current tracers are specific humidity, ozone and cloud water, thus Ntracers=3

$$
\begin{array}{llll}
\mathrm{Ri} & 287.05 & 461.50 & 191.87 \\
\mathrm{Cpi} & 1004.6 & 1846.0 & 39370 .
\end{array}
$$

Instead of using tracer equations to derive

$$
\rho \frac{d C_{P} T}{d t}-\frac{d p}{d t}=\rho Q
$$

into

$$
\left(\sum_{i=1}^{\mathrm{N}} C_{P_{i}} q_{i}\right) \frac{d T}{d t}+T\left(\sum_{i=1}^{\mathrm{N}} C_{P_{i}} \frac{d q_{i}}{d t}\right)-\frac{1}{\rho} \frac{d p}{d t}=Q
$$

we let $h=C_{P} T$ as a prognostic variable, enthalpy. the above thermodynamics equation can be re-written as

$$
\frac{d h}{d t}-\frac{\kappa h}{p} \frac{d p}{d t}=Q \quad \text { comparing } \quad \frac{d T_{v}}{d t}-\frac{\kappa T_{v}}{p} \frac{d p}{d t}=F_{T_{v}}
$$

From horizontal pressure gradient
We have

$$
-\frac{1}{\rho}(\nabla p)_{z}=-\frac{R T}{p}(\nabla p)_{z}=-\frac{\kappa h}{p}(\nabla p)_{z}
$$

from generalized coordinate transform, above can be written

$$
\left.-\frac{\kappa h}{p}(\nabla p)_{z}=-\frac{\kappa h}{p}[\nabla p)_{\zeta}-\frac{\partial p}{\partial \Phi}(\nabla \Phi)_{\zeta}\right]
$$

from hydrostatic $\frac{\partial p}{\partial z}=-\rho g(z)$ and $\frac{\partial \Phi}{\partial z}=g(z)$ or $\Phi=\int_{0}^{z} g(z) d z$ the pressure gradient force and hydrostatic can be written as

$$
\begin{gathered}
-\frac{\kappa h}{p}(\nabla p)_{z}=-\frac{\kappa h}{p}(\nabla p)_{\zeta}-(\nabla \Phi)_{\zeta} \\
\frac{\partial \Phi}{\partial \zeta}=-\frac{\kappa h}{p} \frac{\partial p}{\partial \zeta}
\end{gathered}
$$

We can define potential enthalpy Θ as following

$$
\Theta=\frac{h}{\pi} \quad \text { where } \quad \pi=\left(\frac{p}{p_{0}}\right)^{\kappa}
$$

then total derivative of potential enthalpy can be derived as

$$
\frac{d \Theta}{d t}=\frac{1}{\pi}\left(\frac{d h}{d t}-h \frac{d \ln \pi}{d t}\right)=\frac{1}{\pi}\left(\frac{d h}{d t}-\frac{\kappa h}{p} \frac{d p}{d t}-h \ln \frac{p}{p_{0}} \frac{d \kappa}{d t}\right)=\frac{Q}{\pi}-\frac{h}{\pi} \ln \left(\frac{p}{p_{0}}\right) \frac{d \kappa}{d t}
$$

if adiabatic, we have $Q=0$ and
if no sink/source $\frac{d q_{i}}{d t}=0$ we have $\frac{d R}{d t}=\frac{d C_{P}}{d t}=\frac{d \kappa}{d t}=0$
thus $\frac{d \Theta}{d t}=0$ conservation of potential enthalpy

Put enthalpy into generic coordinate system

$$
\begin{aligned}
& \frac{\partial u^{*}}{\partial}=-m^{2} u^{*} \frac{\partial u^{*}}{a \partial \lambda}-m^{2} v^{*} \frac{\partial u^{*}}{a \partial \varphi}-\dot{\zeta} \frac{\partial i}{\partial \zeta}-\frac{\kappa h}{p} \frac{\partial \phi}{a \partial \lambda}-\frac{\partial \Phi}{a \partial \lambda}+f_{s} v^{*} \\
& \frac{\partial^{*}}{\partial}=-m^{2} u^{*} \frac{\partial^{*}}{a \partial \lambda}-m^{2} v^{*} \frac{\partial \partial^{*}}{a \partial \varphi}-\dot{\zeta} \frac{\partial \partial^{*}}{\partial \zeta}-\frac{\kappa h}{p} \frac{\partial}{a \partial \varphi}-\frac{\partial \Phi}{a \partial \varphi}-f_{s} u^{*}-m^{2} \frac{s^{* 2}}{a} \sin \phi \\
& \frac{\partial}{\partial}=-m^{2} u^{*} \frac{\partial}{a \partial \lambda}-m^{2} v^{*} \frac{\partial}{a \partial \varphi}-\dot{\zeta} \frac{\partial}{\partial \zeta}+\frac{\kappa h}{p} \frac{d p}{d t} \\
& \frac{\partial \partial(\partial \zeta)}{\partial}=-m^{2}\left(\frac{\partial u^{*}(\partial \phi / \partial \zeta)}{a \partial \lambda}+\frac{\partial^{*}(\partial \rho / \partial \zeta)}{a \partial \varphi}\right)-\frac{\partial \dot{\zeta}(\partial \rho / \partial \zeta)}{\partial \zeta} \\
& \frac{\partial q_{i}}{\partial}=-m^{2} u^{*} \frac{\partial q_{i}}{a \partial \lambda}-m^{2} v^{*} \frac{\partial q_{i}}{a \partial \varphi}-\dot{\zeta} \frac{\partial q_{i}}{\partial \zeta}
\end{aligned}
$$

Consider Multi-conserving

- The natural of the differential equations
- Conservation of momentum
- Conservation of total energy
- Conservation of mass
- Conservation of potential enthalpy
- (Juang 2005 NCEP Office Note \#445)
levels

layers

K+1
K
\qquad
k+1
$\hat{p} \quad\left(\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)$ \qquad
k U,V,h, q_{i}

2
.. 1
1
October 15, 2008
4th isentropic coordinates

Conservation Constraint 1

 Mass weighted vertically integration of PGF$$
\begin{aligned}
& \int_{\zeta}^{\zeta} \frac{\partial p}{\partial \zeta}\left(\nabla \Phi+\frac{\kappa h}{p} \nabla p\right) d \zeta=\int_{\zeta_{5}}^{\zeta \zeta}\left[\nabla\left(\frac{\partial p}{\partial \zeta} \Phi\right)-\Phi \nabla \frac{\partial}{\partial \zeta}+\frac{\partial p}{\partial \zeta} \frac{\kappa h}{p} \nabla p\right] d \zeta \\
& =\int_{\zeta_{0}}^{\zeta} \nabla\left(\frac{\partial p}{\partial \zeta} \Phi\right) d \zeta-\int_{\zeta}^{\zeta}\left(\Phi \nabla \frac{\partial}{\partial \zeta}+\frac{\partial \Phi}{\partial \zeta} \nabla p\right) d \zeta \\
& =\nabla \int_{\zeta_{s}}^{\zeta}\left(\frac{\partial p}{\partial \zeta} \Phi\right) d \zeta-\int_{\zeta_{s}}^{\zeta} \frac{\partial \nabla \nabla p}{\partial \zeta} d \zeta \\
& =\nabla \int_{\zeta_{s}}^{\zeta \zeta}\left(\frac{\partial p}{\partial \zeta} \Phi\right) d \zeta-\Phi_{T} \nabla p_{T}+\Phi_{S} \nabla p_{s}
\end{aligned}
$$

Since we need pressure at model layer and level

$$
\begin{array}{ll}
\text { let } & p_{k}=f\left(\hat{p}_{k+1}, \hat{p}_{k}\right) \\
\text { so } & \nabla p_{k}=\frac{\partial p_{k}}{\widehat{p}_{k+1}} \nabla \hat{p}_{k+1}+\frac{\partial p_{k}}{\partial \widehat{p}_{k}} \nabla \hat{p}_{k}
\end{array}
$$

then let

$$
\left(\frac{\partial p}{\partial \zeta}\right)_{k}=\frac{\hat{p}_{k+1}-\hat{p}_{k}}{\Delta \zeta_{k}} \quad \text { and } \quad \nabla \hat{p}_{\text {Top }}=0
$$

the equation in the previous page can be written as

$$
\sum_{k=1}^{K}\left[-\Phi_{k} \nabla\left(\hat{p}_{k+1}-\hat{p}_{k}\right)+\left(\hat{p}_{k+1}-\hat{p}_{k}\right)\left(\frac{\kappa h}{p}\right)_{k}\left(\frac{\hat{p}_{k}}{\hat{क}_{k+1}} \nabla \hat{p}_{k+1}+\frac{\hat{p}_{k}}{\hat{p}_{k}} \nabla \hat{p}_{k}\right)\right]=\Phi_{s} \nabla p_{s}
$$

Expanding the above equation for all k, we will find there can be grouped based on $\nabla \hat{p}_{k}$

Regroup the previous equation, let each group=0, we have

$$
\begin{gathered}
-\Phi_{k}+\left(\hat{p}_{k+1}-\hat{p}_{k}\right)\left(\frac{\kappa h}{p}\right)_{k} \frac{\dot{p}_{k}}{\hat{क}_{k+1}}+\Phi_{k+1}+\left(\hat{p}_{k+2}-\hat{p}_{k+1}\right)\left(\frac{\kappa h}{p}\right)_{k+1} \frac{\partial p_{k+1}}{\widehat{p}_{k+1}}=0 \\
\Phi_{1}+\left(\hat{p}_{2}-p_{s}\right)\left(\frac{\kappa h}{p}\right)_{1} \frac{p_{1}}{\partial p_{s}}=\Phi_{s}
\end{gathered}
$$

Thus hydrostatic between layers

$$
\Phi_{k+1}-\Phi_{k}=-\left(\hat{p}_{k+2}-\hat{p}_{k+1}\right)\left(\frac{\kappa h}{p}\right)_{k+1} \frac{\partial p_{k+1}}{\hat{p}_{k+1}}-\left(\hat{p}_{k+1}-\hat{p}_{k}\right)\left(\frac{\kappa h}{p}\right)_{k} \frac{\partial p_{k}}{\hat{p}_{k+1}}
$$

And let hydrostatic between layer and level

$$
\begin{aligned}
& \Phi_{k+1}-\hat{\Phi}_{k+1}=-\left(\hat{p}_{k+2}-\hat{p}_{k+1}\right)\left(\frac{\kappa h}{p}\right)_{k+1} \frac{\hat{क}_{k+1}}{\widehat{x}_{k+1}} \\
& \hat{\Phi}_{k+1}-\Phi_{k}=-\left(\hat{p}_{k+1}-\hat{p}_{k}\right)\left(\frac{\kappa h}{p}\right)_{k} \frac{p_{k}}{\widehat{x}_{k+1}}
\end{aligned}
$$

Conservation Constraint 2

Consistency in energy conversion term

From thermodynamic energy

$$
\begin{gathered}
\left.\frac{\partial p}{\partial \zeta} \left\lvert\, \frac{\partial}{\partial t}=-m^{2} u^{*} \frac{\partial}{a \partial \lambda}-m^{2} v^{*} \frac{\partial h}{a \partial \varphi}-\dot{\zeta} \frac{\partial h}{\partial \zeta}+\frac{\kappa h}{p} \frac{d p}{d t}\right.\right] \\
h\left[\frac{\partial(\partial p / \partial \zeta)}{\partial}=-m^{2}\left(\frac{\partial u^{*}(\partial p / \partial \zeta)}{a \partial \lambda}+\frac{\partial^{*}(\partial p / \partial \zeta)}{a \partial \varphi}\right)-\frac{\partial \zeta(\partial p / \partial \zeta)}{\partial \zeta}\right] \\
\frac{\partial\left(\frac{\partial p}{\partial \zeta}\right) h}{\partial}=-m^{2}\left(\frac{\partial u^{*}\left(\frac{\partial p}{\partial \zeta}\right) h}{a \partial \lambda}+\frac{\partial^{*}\left(\frac{\partial p}{\partial \zeta}\right) h}{a \partial \varphi}\right)-\frac{\partial \dot{\zeta}\left(\frac{\partial p}{\partial \zeta}\right) h}{\partial \zeta}+\frac{\partial p}{\partial \zeta} \frac{\kappa h}{p} \frac{d p}{d t}
\end{gathered}
$$

From kinetic energy equation

$$
\left[\begin{array}{c}
\frac{\partial p}{\partial \zeta} u^{*}\left[\frac{\partial u^{*}}{\partial}=-m^{2} u^{*} \frac{\partial u^{*}}{a \partial \lambda}-m^{2} v^{*} \frac{\partial u^{*}}{a \partial \varphi}-\dot{\zeta} \frac{\partial u^{*}}{\partial \zeta}-\frac{\kappa h}{p} \frac{\partial p}{a \partial \lambda}-\frac{\partial \Phi}{a \partial \lambda}+f_{s} v^{*}\right] \\
\frac{\partial p}{\partial \zeta} v^{*}\left[\frac{\partial v^{*}}{\partial}=-m^{2} u^{*} \frac{\partial^{*}}{a \partial \lambda}-m^{2} v^{*} \frac{\partial^{*}}{a \partial \varphi}-\dot{\zeta} \frac{\partial^{*}}{\partial \zeta}-\frac{\kappa h}{p} \frac{\partial p}{a \partial \varphi}-\frac{\partial \Phi}{a \partial \varphi}-f_{s} u^{*}-m^{2} \frac{s^{* 2}}{a} \sin \phi\right] \\
\frac{1}{2}\left(u^{* 2}+v^{* 2}\right)\left[\frac{\partial(\partial / / \partial \zeta)}{\partial}=-m^{2}\left(\frac{\partial u^{*}(\partial p / \partial \zeta)}{a \partial \lambda}+\frac{\partial^{*}(\partial p / \partial \zeta)}{a \partial \varphi}\right)-\frac{\partial \zeta(\partial p / \partial \zeta)}{\partial \zeta}\right]
\end{array}\right]
$$

$$
\begin{aligned}
& K^{*}=(\partial p / \partial \zeta) \frac{1}{2}\left(u^{* 2}+v^{* 2}\right)=\frac{(\partial \rho / \partial \zeta)}{m^{2}} \frac{1}{2}\left(u^{2}+v^{2}\right) \\
& \frac{D K^{*}}{D t}=\frac{\partial K^{*}}{\partial}+m^{2} \nabla \cdot V K^{*}+\frac{\partial \dot{\zeta} K^{*}}{\partial \zeta}
\end{aligned}
$$

$$
\begin{aligned}
\frac{D K^{*}}{D t} & =-\frac{\partial p}{\partial \zeta} \vec{V} \cdot\left(\nabla \Phi+\frac{\kappa h}{p} \nabla p\right) \\
& =-\nabla \cdot\left(\frac{\partial p}{\partial \zeta} \Phi \vec{V}\right)+\Phi \nabla \cdot\left(\frac{\partial p}{\partial \zeta} \vec{V}\right)-\frac{\partial p}{\partial \zeta} \frac{\kappa h}{p} \vec{V} \bullet \nabla p \\
& =-\nabla \cdot\left(\frac{\partial p}{\partial \zeta} \Phi \vec{V}\right)-\Phi \frac{1}{m^{2}}\left(\frac{\partial(\partial p / \partial \zeta)}{\partial}+\frac{\partial \zeta(\partial p / \partial \zeta)}{\partial \zeta}\right)-\frac{\partial p}{\partial \zeta} \frac{\kappa h}{p} \vec{V} \bullet \nabla p \\
& =-\nabla \cdot\left(\frac{\partial p}{\partial \zeta} \Phi \vec{V}\right)-\Phi \frac{1}{m^{2}}\left(\frac{\partial(\partial p / \partial \zeta)}{\partial}+\frac{\partial \zeta(\partial p / \partial \zeta)}{\partial \zeta}\right)-\frac{\partial p}{\partial \zeta} \frac{\kappa h}{p} \frac{1}{m^{2}}\left(\frac{d p}{d t}-\frac{\partial p}{\partial}-\dot{\zeta} \frac{\partial p}{\partial \zeta}\right) \\
& =-\nabla \cdot\left(\frac{\partial p}{\partial \zeta} \Phi \vec{V}\right)-\frac{1}{m^{2}} \Phi\left(\frac{\partial(\partial p / \partial)}{\partial \zeta}+\frac{\partial \zeta(\partial p / \partial \zeta)}{\partial \zeta}\right)-\frac{1}{m^{2}} \frac{\partial \Phi}{\partial \zeta}\left(\frac{\partial p}{\partial t}+\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)-\frac{1}{m^{2}} \frac{\partial p}{\partial \zeta} \frac{\kappa h}{p} \frac{d p}{d t} \\
& =-\nabla \cdot\left(\frac{\partial p}{\partial \zeta} \Phi \vec{V}\right)-\frac{1}{m^{2}} \frac{\partial}{\partial \zeta}\left[\Phi\left(\frac{\partial p}{\partial}+\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)\right]-\frac{1}{m^{2}} \frac{\partial p}{\partial \zeta} \frac{\kappa h}{p} \frac{d p}{d t}
\end{aligned}
$$

From the known discretization of hydrostatic relation

$$
\begin{aligned}
& \Phi_{k}-\hat{\Phi}_{k}=-\left(\hat{p}_{k+1}-\hat{p}_{k}\right)\left(\frac{\kappa h}{p}\right)_{k} \frac{\partial p_{k}}{\widehat{p}_{k}} \\
& \hat{\Phi}_{k+1}-\Phi_{k}=-\left(\hat{p}_{k+1}-\hat{p}_{k}\right)\left(\frac{\kappa h}{p}\right)_{k} \frac{\partial{p_{k}}_{\partial}^{\widehat{क}_{k+1}}}{\left(\frac{\partial p}{\partial \zeta}\right)_{k}=\frac{1}{\Delta \zeta}\left(\hat{p}_{k+1}-\hat{p}_{k}\right)}
\end{aligned}
$$

the equation in the previous page can be written, after some manipulations, as following

$$
\left(\frac{d p}{d t}\right)_{k}=\frac{\partial p_{k}}{\hat{क}_{k+1}} \frac{\hat{क}_{k+1}}{\partial}+\frac{\partial_{k}}{\hat{क}_{k}} \frac{\hat{क}_{k}}{\partial}+m^{2} \vec{V}_{k} \bullet \nabla p_{k}+\frac{\partial p_{k}}{\hat{क}_{k+1}}\left(\dot{\zeta} \frac{\hat{\partial}}{\partial \zeta}\right)_{k+1}+\frac{\partial p_{k}}{\widehat{क}_{k}}\left(\dot{\zeta} \frac{\hat{\partial}}{\partial \zeta}\right)_{k}
$$

For simplicity, we can have

$$
\frac{\hat{p}_{k}}{\widehat{क}_{k}}=\frac{\hat{p}_{k}}{\hat{क}_{k+1}}=\frac{1}{2} \quad \text { so } \quad p_{k}=\frac{1}{2}\left(\hat{p}_{k}+\hat{p}_{k+1}\right)
$$

in order to satisfy previous equation as

$$
\left(\frac{d p}{d t}\right)_{k}=\frac{1}{2}\left\langle\frac{\hat{क}_{k}}{\partial}+\frac{\hat{क}_{k+1}}{\partial}\right)+m^{2} \vec{V}_{k} \bullet \nabla p_{k}+\frac{1}{2}\left(\left(\dot{\zeta} \frac{\hat{p}}{\partial \zeta}\right)_{k}+\left(\dot{\zeta} \frac{\hat{p}}{\partial \zeta}\right)_{k+1}\right)
$$

It is obtained from in kinetic energy equation with momentum conservation, if we apply it to thermodynamic equation for potential energy equation

$$
\frac{d h_{k}}{d t}=\frac{(\kappa h)_{k}}{p_{k}}\left(\frac{d p}{d t}\right)_{k}
$$

then the total energy will be conserved.

Discretizing continuity equation

$$
\begin{aligned}
& \text { with } \quad\left(\frac{\partial \hat{p}}{\partial \zeta}\right)_{k}=\frac{\left(\hat{p}_{k+1}-\hat{p}_{k}\right)}{\Delta \zeta} \\
& \begin{array}{l}
\frac{\left.\partial \hat{p}_{k+1}-\hat{p}_{k}\right)}{\partial}=-m^{2}\left(\left(\hat{p}_{k+1}-\hat{p}_{k}\right)\left(\frac{\partial u_{k}^{*}}{a \partial \lambda}+\frac{\hat{\partial}_{k}^{*}}{a \partial \varphi}\right)+u_{k}^{*} \frac{\left.\partial \hat{p}_{k+1}-\hat{p}_{k}\right)}{a \partial \lambda}+v_{k}^{*} \frac{\left.\partial \hat{p}_{k+1}-\hat{p}_{k}\right)}{a \partial \varphi}\right) \\
\\
-\left(\left(\dot{\zeta} \frac{\partial \hat{p}}{\partial \zeta}\right)_{k+1}-\left(\dot{\zeta} \frac{\hat{\partial}}{\partial \zeta}\right)_{k}\right)
\end{array}
\end{aligned}
$$

vertical sum from top with

$$
\left(\dot{\zeta} \frac{\hat{\partial}}{\partial \zeta}\right)_{K+1}=\left(\dot{\zeta} \dot{\hat{\partial}} \frac{\partial}{\partial \zeta}\right)_{1}=0
$$

we obtain pressure equation for all levels, including Ps

$$
\frac{\hat{p}_{k}}{\partial}=-m^{2} \sum_{i=k}^{K}\left(\left(\hat{p}_{i}-\hat{p}_{i+1}\right)\left(\frac{\partial u_{i}^{*}}{a \partial \lambda}+\frac{\partial_{i}^{*}}{a \partial \varphi}\right)+u_{i}^{*} \frac{\partial\left(\hat{p}_{i}-\hat{p}_{i+1}\right)}{a \partial \lambda}+v_{i}^{*} \frac{\partial\left(\hat{p}_{i}-\hat{p}_{i+1}\right)}{a \partial \varphi}\right)-\left(\dot{\zeta} \frac{\dot{\partial}}{\partial \zeta}\right)_{k}
$$

Substitute following

$$
\begin{aligned}
& \frac{\hat{क}_{k+1}}{\partial}=-m^{2} \sum_{i=k+1}^{K}\left(\left(\hat{p}_{i}-\hat{p}_{i+1}\right)\left(\frac{\partial u_{i}^{*}}{a \partial \lambda}+\frac{\partial_{i}^{*}}{a \partial \varphi}\right)+u_{i}^{*} \frac{\partial\left(\hat{p}_{i}-\hat{p}_{i+1}\right)}{a \partial \lambda}+v_{i}^{*} \frac{\left.\partial \hat{p}_{i}-\hat{p}_{i+1}\right)}{a \partial \varphi}\right)-\left(\dot{\zeta} \frac{\hat{\sigma}^{\partial}}{\partial \zeta}\right)_{k+1} \\
& \frac{\hat{p}_{k}}{\partial}=-m^{2} \sum_{i=k}^{K}\left(\left(\hat{p}_{i}-\hat{p}_{i+1}\right)\left(\frac{\partial u_{i}^{*}}{a \partial \lambda}+\frac{\partial_{i}^{*}}{a \partial \varphi}\right)+u_{i}^{*} \frac{\left.\partial \hat{p}_{i}-\hat{p}_{i+1}\right)}{a \partial \lambda}+v_{i}^{*} \frac{\left.\partial \hat{p}_{i}-\hat{p}_{i+1}\right)}{a \partial \varphi}\right)-\left(\dot{\zeta} \frac{\partial \hat{p}}{\partial \zeta}\right)_{k}
\end{aligned}
$$

into $\quad \frac{d h_{k}}{d t}=\frac{(\kappa h)_{k}}{\hat{p}_{k}+\hat{p}_{k+1}}\left[\left(\frac{\hat{p}_{k}}{\partial}+\frac{\hat{p}_{k+1}}{\partial}\right)+m^{2} \vec{V}_{k} \bullet \nabla\left(\hat{p}_{k}+\hat{p}_{k+1}\right)+\left\langle\left(\dot{\zeta} \frac{\hat{\partial}}{\partial \zeta}\right)_{k}+\left(\dot{\zeta} \frac{\hat{\partial}}{\partial \zeta}\right)_{k+1}\right)\right]$

We got energy conversion without vertical flux

$$
\begin{aligned}
\frac{d h_{k}}{d t}= & \frac{(\kappa h)_{k} m^{2}}{\hat{p}_{k}+\hat{p}_{k+1}}\left[V_{k}^{*} \bullet \nabla\left(\hat{p}_{k}+\hat{p}_{k+1}\right)\right. \\
& \left.-\sum_{i=k}^{K}\left(\left(\hat{p}_{i}-\hat{p}_{i+1}\right) D_{i}^{*}+V_{i}^{*} \bullet \nabla\left(\hat{p}_{i}-\hat{p}_{i+1}\right)\right)-\sum_{i=k+1}^{K}\left(\left(\hat{p}_{i}-\hat{p}_{i+1}\right) D_{i}^{*}+V_{i}^{*} \bullet \nabla\left(\hat{p}_{i}-\hat{p}_{i+1}\right)\right)\right]
\end{aligned}
$$

Vertical advection for momentum, tracers, \& potential h Total integral of total derivative should be zero if no force

$$
\begin{aligned}
& \frac{\partial A}{\partial}=-u^{*} \frac{\partial A}{a \partial \lambda}-v^{*} \frac{\partial A}{a \partial \phi}-\dot{\zeta} \frac{\partial A}{\partial \zeta}+F \\
& \frac{\partial \rho}{\partial}=-\left(\frac{\partial \rho u^{*}}{a \partial \lambda}+\frac{\partial \partial v^{*}}{a \partial \phi}\right)-\frac{\partial \rho \dot{\zeta}}{\partial \zeta}
\end{aligned}
$$

Combine them, we have

$$
\frac{\partial \rho A}{\partial}=-\frac{\partial \rho A u^{*}}{a \partial \lambda}-\frac{\partial \rho A v^{*}}{a \partial \phi}-\frac{\partial \rho A \dot{\zeta}}{\partial \zeta}+\rho F_{A}
$$

Then total integrate without forcing, we should have

$$
\oiiint_{i j k} \frac{\partial \rho A}{\partial}=-\oiiint_{k j i} \frac{\partial \rho A u^{*}}{a \partial \lambda}-\oiiint_{k j} \frac{\partial \rho A v^{*}}{a \partial \phi}-\oiiint_{i j k} \frac{\partial \rho A \dot{\zeta}}{\partial \zeta}=0
$$

If we combine equations without dealing vertical advection as

$$
\frac{\partial \rho A}{\partial t}=-\frac{\partial \rho A u^{*}}{a \partial \lambda}-\frac{\partial \rho A v^{*}}{a \partial \phi}-\rho \dot{\zeta} \frac{\partial \mathrm{A}}{\partial \zeta}-A \frac{\partial \rho \dot{\zeta}}{\partial \zeta}+\rho F
$$

Compare with the previous equation

$$
\frac{\partial \rho A}{\partial}=-\frac{\partial \rho A u^{*}}{a \partial \lambda}-\frac{\partial \rho A v^{*}}{a \partial \phi}-\frac{\partial \rho A \dot{\zeta}}{\partial \zeta}+\rho F
$$

We have

$$
\rho \dot{\zeta} \frac{\partial A}{\partial \zeta}+A \frac{\partial \rho \dot{\zeta}}{\partial \zeta}=\frac{\partial A \rho \dot{\zeta}}{\partial \zeta}
$$

$$
\begin{aligned}
\left(\dot{\zeta} \frac{\partial A}{\partial \zeta}\right)_{k} & =\frac{1}{\rho}\left(\frac{\partial A \rho \dot{\zeta}}{\partial \zeta}-A \frac{\partial \rho \dot{\zeta}}{\partial \zeta}\right)_{k} \\
& =\frac{\left(A_{k-1}-A_{k}\right)\left(\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)_{k}+\left(A_{k}-A_{k+1}\right)\left(\dot{\zeta} \frac{\partial \bar{\partial}}{\partial \zeta}\right)_{k+1}}{2\left(p_{k}-p_{k+1}\right)}
\end{aligned}
$$

Expand the thermodynamic equation as

$$
\begin{aligned}
& \pi_{k}\left(\frac{\partial \Theta}{\partial}+m^{2} \vec{V} \bullet \nabla \Theta\right)_{k}+\Theta_{k}\left(\frac{\partial \pi}{\partial}+m^{2} \vec{V} \bullet \nabla \pi\right)_{k}+\left(\dot{\zeta} \frac{\partial}{\partial \zeta}\right)_{k} \\
& =\frac{(\kappa h)_{k}}{p_{k}}\left[\frac{1}{2}\left\langle\frac{\hat{क}_{k}}{\partial}+\frac{\hat{क}_{k+1}}{\partial}\right\rangle+m^{2} \vec{V}_{k} \bullet \nabla p_{k}+\frac{1}{2}\left\langle\left(\dot{\zeta} \frac{\hat{\partial p}}{\partial \zeta}\right)_{k}+\left(\dot{\zeta} \frac{\hat{\partial p}}{\partial \zeta}\right)_{k+1}\right)\right]
\end{aligned}
$$

apply

$$
\begin{gathered}
\left(\frac{\partial \pi}{\partial}+m^{2} \vec{V} \bullet \nabla \pi\right)_{k}=\left[\frac{\partial \pi_{k}}{\partial p_{k}} \frac{\partial p_{k}}{\partial}+m^{2} \frac{\partial \pi_{k}}{\partial p_{k}} \vec{V}_{k} \bullet \nabla p_{k}\right] \\
\frac{\partial \pi_{k}}{\partial p_{k}}=\frac{\kappa \pi_{k}}{p_{k}} \quad p_{k}=\frac{1}{2}\left(\hat{p}_{k}+\hat{p}_{k+1}\right)
\end{gathered}
$$

$$
\left(\frac{\partial \Theta}{\partial}+m^{2} \vec{V} \cdot \nabla \Theta\right)_{k}+\left(\dot{\zeta} \frac{\partial \Theta}{\partial \zeta}\right)_{k}=0
$$

We have

$$
-\pi_{k}\left(\dot{\zeta} \frac{\partial \Theta}{\partial \zeta}\right)_{k}+\left(\dot{\zeta} \frac{\partial}{\partial \zeta}\right)_{k}=\frac{(\kappa h)_{k}}{\hat{p}_{k}+\hat{p}_{k+1}}\left[\left(\dot{\zeta} \frac{\hat{\partial p}}{\partial \zeta}\right)_{k}+\left(\dot{\zeta} \frac{\hat{\partial p}}{\partial \zeta}\right)_{k+1}\right]
$$

substitute advection term by potential h conserving

$$
\left(\dot{\zeta} \frac{\partial \Theta}{\partial \zeta}\right)_{k}=\frac{1}{2\left(\hat{p}_{k}-\hat{p}_{k+1}\right)}\left[\left(\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)_{k}\left(\left(\frac{h}{\pi}\right)_{k-1}-\left(\frac{h}{\pi}\right)_{k}\right)+\left(\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)_{k+1}\left(\left(\frac{h}{\pi}\right)_{k}-\left(\frac{h}{\pi}\right)_{k+1}\right)\right]
$$

after some arrangement, we obtain

$$
\begin{aligned}
\left(\dot{\zeta} \frac{\partial}{\partial \zeta}\right)_{k}= & \frac{1}{2\left(\hat{p}_{k}-\hat{p}_{k+1}\right)}\left\{\left(\dot{\zeta} \frac{\hat{\partial p}}{\partial \zeta}\right)_{k}\left(\frac{\pi_{k}}{\pi_{k-1}} h_{k-1}-\left(1-2 \kappa_{k} \frac{\hat{p}_{k}-\hat{p}_{k+1}}{\hat{p}_{k}+\hat{p}_{k+1}}\right) h_{k}\right)\right. \\
& \left.+\left(\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)_{k+1}\left(\left(1+2 \kappa_{k} \frac{\hat{p}_{k}-\hat{p}_{k+1}}{\hat{p}_{k}+\hat{p}_{k+1}}\right) h_{k}-\frac{\pi_{k}}{\pi_{k+1}} h_{k+1}\right)\right\}
\end{aligned}
$$

Summary for finite difference

$$
\begin{aligned}
& \frac{d u_{k}^{*}}{d t}=-\frac{(\kappa h)_{k}}{\hat{p}_{k}+\hat{p}_{k+1}}\left[\frac{\widehat{p}_{k}+\hat{p}_{k+1}}{a \partial \lambda}+\frac{\widehat{p}_{k}-\hat{p}_{k+1}}{a \partial \lambda}-\frac{\left(\hat{p}_{k}-\hat{p}_{k+1}\right)}{\left(\hat{p}_{k}+\hat{p}_{k+1}\right)} \frac{\widehat{p}_{k}+\hat{p}_{k+1}}{a \partial \lambda}\right]-2 \sum_{i=1}^{k-1} \frac{(\kappa h)_{i}}{\hat{p}_{i}+\hat{p}_{i+1}}\left[\frac{\widehat{p}_{i}-\hat{p}_{i+1}}{a \partial \lambda}-\frac{\hat{p}_{i}-\hat{p}_{i+1}}{\hat{p}_{i}+\hat{p}_{i+1}} \frac{\widehat{p}_{i}+\hat{p}_{i+1}}{a \partial \lambda}\right] \\
& -\frac{\partial \Phi_{s}}{a \partial \lambda}-\frac{\hat{p}_{k}-\hat{p}_{k+1}}{\hat{p}_{k}+\hat{p}_{k+1}} \frac{\partial(\kappa h)_{k}}{a \partial \lambda}-2 \sum_{i=1}^{k-1} \frac{\hat{p}_{i}-\hat{p}_{i+1}}{\hat{p}_{i}+\hat{p}_{i+1}} \frac{\partial(\kappa h)_{i}}{a \partial \lambda}+f_{s} v_{k}{ }^{*} \\
& \frac{d v_{k}^{*}}{d t}=-\frac{(\kappa h)_{k}}{\hat{p}_{k}+\hat{p}_{k+1}}\left[\frac{\hat{p}_{k}-\hat{p}_{k+1}}{a \partial \varphi}+\frac{\hat{क}_{k}-\hat{p}_{k+1}}{a \partial \varphi}-\frac{\left(\hat{p}_{k}-\hat{p}_{k+1}\right)}{\left(\hat{p}_{k}+\hat{p}_{k+1}\right)} \frac{\hat{p}_{k}+\hat{p}_{k+1}}{a \partial \varphi}\right]-2 \sum_{i=1}^{k-1} \frac{(\kappa h)_{i}}{\hat{p}_{i}+\hat{p}_{i+1}}\left[\frac{\widehat{p}_{i}-\hat{p}_{i+1}}{a \partial \varphi}-\frac{\hat{p}_{i}-\hat{p}_{i+1}}{\hat{p}_{i}+\hat{p}_{i+1}} \frac{\widehat{p}_{i}+\hat{p}_{i+1}}{a \partial \varphi}\right] \\
& -\frac{\partial \Phi_{s}}{a \partial \varphi}-\frac{\hat{p}_{k}-\hat{p}_{k+1}}{\hat{p}_{k}+\hat{p}_{k+1}} \frac{\partial(\kappa h)_{k}}{a \partial \varphi}-2 \sum_{i=1}^{k-1} \frac{\hat{p}_{i}-\hat{p}_{i+1}}{\hat{p}_{i}+\hat{p}_{i+1}} \frac{\partial(\kappa h)_{i}}{a \partial \varphi}-f_{s} u_{k}{ }^{*}-m^{2} \frac{s_{k}^{* 2}}{a} \sin \phi \\
& \frac{d h_{k}}{d t}=\frac{(\kappa h)_{k}}{\hat{p}_{k}+\hat{p}_{k+1}} m^{2}\left[\vec{V}_{k} \bullet \nabla\left(\hat{p}_{k}+\hat{p}_{k+1}\right)-\sum_{i=k}^{K}\left(\left(\hat{p}_{i}-\hat{p}_{i+1}\right) D_{i}^{*}+V_{i}^{*} \bullet \nabla\left(\hat{p}_{i}-\hat{p}_{i+1}\right)\right)-\sum_{i=k+1}^{K}\left(\left(\hat{p}_{i}-\hat{p}_{i+1}\right) D_{i}^{*}+V_{i}^{*} \bullet \nabla\left(\hat{p}_{i}-\hat{p}_{i+1}\right)\right)\right] \\
& \frac{\widehat{p}_{k}}{\partial t}=-m^{2} \sum_{i=k}^{K}\left(\left(\hat{p}_{i}-\hat{p}_{i+1}\right)\left(\frac{\partial u_{i}^{*}}{a \partial \lambda}+\frac{\partial v_{i}^{*}}{a \partial \varphi}\right)+u_{i}^{*} \frac{\partial\left(\hat{p}_{i}-\hat{p}_{i+1}\right)}{a \partial \lambda}+v_{i}^{*} \frac{\partial\left(\hat{p}_{i}-\hat{p}_{i+1}\right)}{a \partial \varphi}\right)-\left(\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)_{k} \\
& \frac{d q_{i_{k}}}{d t}=0
\end{aligned}
$$

Where $\frac{d()_{k}}{d t}=\frac{\partial)_{k}}{\partial t}+m^{2}\left(V^{*} \bullet \nabla()\right)_{k}+\frac{1}{2}\left\langle\left(\dot{\zeta} \frac{\hat{\partial p}}{\partial \zeta}\right)_{k} \frac{()_{k-1}-()_{k}}{\hat{p}_{k}-\hat{p}_{k+1}}+\left(\dot{\zeta} \frac{\hat{\partial p}}{\partial \zeta}\right)_{k+1} \frac{()_{k}-()_{k+1}}{\hat{p}_{k}-\hat{p}_{k+1}}\right)$

$$
\text { and } \quad \frac{d h_{k}}{d t}=\frac{\partial h_{k}}{\partial}+m^{2}\left(V^{*} \bullet \nabla h\right)_{k}+\frac{1}{2}\left\langle\left(\dot{\zeta} \frac{\hat{\partial p}}{\partial \zeta}\right)_{k} \frac{\alpha_{k-1} h_{k-1}-\gamma_{k} h_{k}}{\hat{p}_{k}-\hat{p}_{k+1}}+\left(\dot{\zeta} \frac{\hat{\partial p}}{\partial \zeta}\right)_{k+1} \frac{\delta_{k} h_{k}-\beta_{k+1} h_{k+1}}{\hat{p}_{k}-\hat{p}_{k+1}}\right\rangle
$$

4th isentropic coordinates

The generic vertical coordinate can be defined as

$$
\zeta=F\left(p_{s f c}, p, h\right)
$$

The vertical flux can be obtained by

$$
\left(\frac{\partial \hat{\zeta}}{\partial}\right)_{k}=\left(\frac{\partial F}{\partial p_{s t}}\right)_{k} \frac{\partial p_{s f_{k}}}{\partial}+\left(\frac{\partial F}{\partial p_{k}}\right)_{k} \frac{\hat{x}_{k}}{\partial}+\left(\frac{\partial F}{\partial}\right)_{k} \frac{\hat{h}_{k}}{\partial}=0
$$

then, separating horizontal and vertical terms in equations

$$
\begin{gathered}
\frac{\hat{p}_{s c}}{\partial}=\left(\frac{\hat{क}_{s c}}{\partial}\right)_{H} \\
\frac{\hat{क}_{k}}{\partial}=\left(\frac{\partial p_{k}}{\partial}\right)_{H}-\left(\dot{\zeta} \frac{\hat{\partial}}{\partial \zeta}\right)_{k} \\
\frac{\hat{\hat{w}_{k}}}{\partial}=\frac{1}{2}\left(\frac{\partial_{k}}{\partial}+\frac{क_{k-1}}{\partial}\right)_{H}+\operatorname{fun}\left(\left(\dot{\zeta} \frac{\hat{\partial}}{\partial \zeta}\right)_{k-1},\left(\dot{\zeta} \frac{\hat{p}}{\partial \zeta}\right)_{k},\left(\dot{\zeta} \frac{\hat{\partial}}{\partial \zeta}\right)_{k+1}\right)
\end{gathered}
$$

A specific hybrid coordinate can be defined as

$$
\hat{p}_{k}=\hat{A}_{k}+\hat{B}_{k} p_{s}+\hat{C}_{k}\left(\frac{h_{k-1}+h_{k}}{h_{0 k-1}+h_{0 k}}\right)^{C_{p d} / R_{d}}
$$

The vertical flux can be obtained by

$$
\frac{\hat{क}_{k}}{\partial}=\hat{B}_{k} \frac{\partial p_{s}}{\partial}+\frac{\hat{C}_{k}}{h_{k-1}+h_{k}} \frac{C_{p_{d}}}{R_{d}}\left(\frac{h_{k-1}+h_{k}}{h_{0 k-1}+h_{0 k}}\right)^{C_{p_{d}} / R_{d}}\left(\frac{\partial_{k-1}}{\partial}+\frac{h_{k}}{\partial}\right)=\hat{B}_{k} \frac{\partial p_{s}}{\partial}+\hat{C}_{T k}\left(\frac{\partial_{k-1}}{\partial}+\frac{\partial_{k}}{\partial}\right)
$$

then, again, separating horizontal and vertical terms after some arrangement, we have

$$
\begin{aligned}
& \overline{\hat{C}_{T k} \frac{\left(\delta_{k} h_{k}-\beta_{k+1} h_{k+1}\right)}{\left(\hat{p}_{k}-\hat{p}_{k+1}\right)}\left(\dot{\zeta} \frac{\partial \partial}{\partial \zeta}\right)_{k+1}} \\
& \left.+\left\{\hat{C}_{T k} /\left(\frac{\left(\delta_{k-1} h_{k-1}-\beta_{k} h_{k}\right)}{\left(\hat{p}_{k-1}-\hat{p}_{k}\right)}\right)+\left(\frac{\left(\alpha_{k-1} h_{k-1}-\gamma_{k} h_{k}\right)}{\left(\hat{p}_{k}-\hat{p}_{k+1}\right)}\right)\right\rangle-1\right\}\left(\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)_{k} \\
& \left.+\underline{\underline{\hat{C}_{T k}}{ }^{\left(\alpha_{k-2} h_{k-2}-\gamma_{k-1} h_{k-1}\right)}\left(\hat{p}_{k-1}-\hat{p}_{k}\right)}\left(\dot{\zeta} \frac{\partial p}{\partial \zeta}\right)_{k-1}\right)=-\left(\frac{\hat{\phi}}{\partial t}\right)_{k}^{H}+\hat{B}_{k} \frac{\partial p_{s}}{\partial}+\hat{C}_{T k}\left[\left(\frac{\partial}{\partial}\right)_{k-1}^{H}+\left(\frac{\partial}{\partial}\right)_{k}^{H}\right]
\end{aligned}
$$

2004070100 90E 64-taval siqma levels $\mathbf{v - h t}$
$A=0$ $\mathrm{C}=0$

2004070100 90E 64-lave siq-Brel levels v-ht
$B=0$

2004076100 90E 64-level sig-pre kevels v-ht

2004070100905 64-fovel siq-He2 bevels v-ht

T (hyb) $-T$ (analysis) DAY 5 FCST

T (genhyb_sp) -T (analysis) DAY 5 FCST

T (genhyb_enthalpy_sp) $-T$ (analysis) DAY 5 FCST

Enthalpy Sigma-P
T (genhyb_st)-T(analysis) DAY 5 FCST

T(genhyb_enthalpy_st)-T(analysis) DAY 5 FCST Enthalpy

T (hyb) $-T$ (analysis) DAY 5 FCST

T382L64

Tropic Wind 850mb 72hr

T382L64

Tropical Wind 500mb 72hr

Tropical Wind 200mb 72hr

Black s: operational GFS Red t: sigma-theta GFS
October 15, 2008
4th isentropic coordinates

Black s: operational GFS Red t: sigma-theta GFS
October 15, 2008
4th isentropic coordinates

Black s: operational GFS Red t: sigma-theta GFS
October 15, 2008
4th isentropic coordinates

Black s: operational GFS Red t: sigma-theta GFS
October 15, 2008
4th isentropic coordinates

TROPICAL 200 mb Speed at day 3

 for 00Z01JAN2006 - 00Z20JUN2006

Black s: operational GFS Red t: sigma-theta GFS
October 15, 2008
4th isentropic coordinates

Black s: operational GFS Red t: sigma-theta GFS

Frequency of Superior Performance (\%)

4th isentropic coordinates

3 ICs versus 6 experiments for GB_ALL tracer

0.1- 0.2 \%, except for OPR

Accomplish/Problem/Solution

- Enthalpy sigma-p version is ready for CFSRR and next GFS implementation
- But enthalpy sigma-theta coordinates run into negative mass through current advection scheme, in 2 to 3 days per month, then model stops.
- Thus the positive mass is required to have stable integration, it implies that we need positive defined advection, which will be introduced and called as nislfv scheme.

For mass conservation and positive advection, let's start from

$$
\begin{aligned}
& \frac{\partial \rho}{\partial}+\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho \dot{\zeta}}{\partial \zeta}=0 \\
& \rho=\Delta p
\end{aligned}
$$

Consider 1-D and rewrite it in advection form, we have

$$
\begin{aligned}
& \left(\frac{\partial \rho}{\partial}\right)_{X-\text { direction }}+u \frac{\partial \rho}{\partial x}=-\rho \frac{\partial u}{\partial x} \\
& \left(\frac{d \rho}{d t}\right)_{X-\text { direction }}=-\rho \frac{\partial u}{\partial x}
\end{aligned}
$$

Advection form is for semi-Lagrangian, but it is not conserved if divergence is treated as force at mid-point, So divergence term should be treated with advection

Divergence term in Lagrangian sense is the change of the volume if mass is conserved, so we can write divergence form as

$$
\left(\frac{\partial u}{\partial x}\right)_{\text {Lagrangian_sense }}=\frac{1}{\Delta_{x}} \frac{d \Delta_{x}}{d t}
$$

Put it into the previous continuity equation, we have

$$
\begin{aligned}
& \left(\frac{d \rho \Delta_{x}}{d t}\right)_{X-\text { direction }}=0 \\
& \left(\frac{\partial \rho \Delta_{x}}{\partial t}\right)_{X-\text { direction }}+u \frac{\partial \rho \Delta_{x}}{\partial x}=0
\end{aligned}
$$

which can be seen as

$$
\left(\rho \Delta_{x}\right)_{\text {departure }}=\left(\rho \Delta_{x}\right)_{\text {arrival }}
$$

The given value can be presented piece-wisely by

$$
\rho=S(x)
$$

so the previous mass equality can be replaced as following

$$
\int_{D_{L}}^{D_{R}} S_{D}^{n-1}(x) d x=\int_{A_{L}}^{A_{R}} S_{A}^{n+1}(x) d x
$$

Also we want to make sure that total mass is conserved as

$$
\oint S_{R}^{n-1}(x) d x=\oint S_{D}^{n-1}(x) d x=\oint S_{A}^{n+1}(x) d x=\oint S_{R}^{n+1}(x) d x
$$

where subscript R is regular grid
D is departure grid
A is arrival grid for
This implies that mass conservation should be used during interpolation from regular cell to departure cell and from arrival cell to regular cell. thus, we apply monotonic PPM for $S(x)$.

Gaussian 256×128 with time step of 1800 sec

arbitrary tracer at initial condition 512×256

arbitary tracer after 10 days $512 \times 256 \mathrm{dt}=900 \mathrm{~s}$

control

06h fcst specific humidity at model layer 40

nislfv

October 15, 2008

SPFH(g/kg) model layer 40 hour 12 control run
control

12h fcst specific humidity at model layer 40

nislfv

October 15, 2008
4

24 h fcst specific humidity at model layer 40

nislfv

October 15, 2008

SPFH (g/kg) model layer 40 hour 24 with nislfv

control

72h fcst specific humidity at model layer 40

nislfv

October 15, 2008

CLW (g/kg) model layer 35 hour 06 control run

control

6hr fcst cloud water at model layer 35

nislfv

October 15, 2008

control

12hr fcst cloud water at model layer 30

nislfv

October 15, 2008

CLW $(\mathrm{g} / \mathrm{kg})$ model layer 20 hour 24 control run

control

24hr fcst cloud water at model layer 30

nislfv

October 15, 2008

CLW (g/kg) model layer 20 hour 24 with nislfv

72hr fcst cloud water at model layer 5

nislfv

October 15, 2008

CLW(g/kg) model layer 5 hour 72 with nislfv

Conclusion \& Future Works

- Enthalpy generic vertical coordinate has been implemented into NCEP GFS for CFSRR and operational GFS in sigma-p version, with multiconserving schemes.
- Mass conserving positive advection with semiLagrangain should be a stable scheme for large time step in sigma-theta hybrid coordinate.
- Final step to have sigma-theta requires
- Completing semi-implicit semi-Lagragian mass conserving positive advection
- Long period of parallel runs to obtain statistic scores

