

Department of Health and Human Services

The Centers for Medicare and
Medicaid Services IT

Modernization Program

J2EE Application Development Guidelines

Version 1.0

November 5, 2004

This document was prepared for authorized distribution only.
It has not been approved for public release.

Centers for Medicare and Medicaid Services i November 5, 2004

EExxeeccuuttiivvee SSuummmmaarryy
The Centers for Medicare and Medicaid Services (CMS) has embarked on a significant
information technology (IT) modernization program to take better advantage of technology
innovation and improve the quality, efficiency, and effectiveness of its services to its users,
beneficiaries, and external business partners. As part of these modernization initiatives, the
Office of Information Services is developing a set of IT technical guidelines that will assist in
ensuring consistency and interoperability among the software applications, components, and
services that comprise the CMS Infrastructure. These technical guidelines focus on providing a
secure, public-facing infrastructure platform that ensures common infrastructure services for
next-generation systems and applications within the CMS Internet Architecture.

CMS has adopted Java 2 Enterprise Edition (J2EE) as the standard application development
environment for the CMS Infrastructure. J2EE uses a multi-tiered distributed application model
in which application logic is divided into components according to its function. Successful
design and integration of applications into the CMS Internet Architecture will require an
understanding of the CMS enterprise application and infrastructure standards.

This document describes the CMS three-zone target architecture (Presentation, Application, and
Data Zones), including the hardware and software products, and maps the components that make
up a J2EE application into this architecture. The focus of this document is on application
architecture, such as distributing J2EE application functionality across zones and choosing
design options within each zone. The J2EE Application Development Guidelines inform in-
house and contractor software developers who design, build, and implement J2EE solutions for
the CMS Infrastructure and Internet Architecture. The identification of the standards and
conventions that CMS has adopted will ensure uniform and consistent implementations of J2EE
platform-based solutions.

Toward that end, these guidelines describe common infrastructure and security services, best
practices, and preferred design patterns that are applicable to the CMS J2EE environment. This
document identifies CMS’ selected set of products as the standard components of the target J2EE
environment, J2EE development tools, and supporting commercial-off-the-shelf products.
Software developers can use these appropriate resources to create well-designed J2EE solutions
that are flexible, scalable, and extensible.

These guidelines are based on industry best practices and are intended to be prescriptive for
design and development of J2EE-based enterprise applications compliant with the CMS Internet
Architecture.

This document is designed to reflect current CMS guidance for J2EE-based application
development within the CMS Infrastructure. CMS will incorporate additional items within the
J2EE Application Development Guidelines throughout the implementation of the CMS three-
zone Internet architecture.

Centers for Medicare and Medicaid Services ii November 5, 2004

Table of Contents

1. Introduction.. 1

1.1 Purpose...1
1.2 Scope..1
1.3 Audience ..1
1.4 Document Organization ...1

2. CMS Three-Zone Internet Architecture, Applications Environment, and
Infrastructure ... 2

2.1 CMS Three-Zone Internet Architecture...2
2.2 CMS Applications Environment..4

2.2.1 Test Environment..4
2.2.2 Production Environment ...4

2.3 CMS Infrastructure ..4
2.3.1 Operating Systems ..5
2.3.2 Relational Database Management System..5
2.3.3 Web Server and Web Application Server...5
2.3.4 Messaging Services...6
2.3.5 COTS Products ...6

3. CMS J2EE Application Infrastructure.. 7

3.1 J2EE Layers ...7
3.2 Presentation Layer ...8

3.2.1 Web Clients...8
3.2.2 Web (HTTP) Server..8
3.2.3 Web Application Server..9

3.3 Business Logic Layer...11
3.3.1 WebSphere Application Server...12

3.4 Data Access Logic Layer ...14

4. Common Infrastructure Services and Preferred Design Patterns........................ 16

4.1 Infrastructure Services ...16
4.1.1 J2EE Application Security Services ...16
4.1.2 Future Infrastructure Services...17

4.2 Preferred Design Patterns ..17
4.2.1 Model-View-Controller ..18
4.2.2 Messaging Gateway..19
4.2.3 Messaging Mapper..21

4.3 Best Practices and Recommendations ...22
4.3.1 Static Web Applications ...22
4.3.2 Simple Dynamic Web Applications..22
4.3.3 Files and Directory Structure ..23
4.3.4 Separate Data Management From User Interface...23

J2EE Application Development Guidelines ■ Version 1.0 Table of Contents

Centers for Medicare and Medicaid Services iii November 5, 2004

4.3.5 Principles for the Data Architecture ...23

5. CMS J2EE Standard Development Tools and Products.. 25

Acronyms.. 26

List of References... 28

Centers for Medicare and Medicaid Services iv November 5, 2004

List of Figures

Figure 1. CMS Three-Zone Internet Architecture ... 3

Figure 2. CMS J2EE Application Infrastructure.. 8

Figure 3. Model-View-Controller Design Pattern ... 19

Figure 4. Messaging Gateway.. 20

Figure 5. Messaging Mapper ... 21

List of Tables

Table 1. J2EE Standard Services for Presentation Layer .. 10

Table 2. J2EE Standard Services for Business Layer .. 13

Table 3. J2EE Standard Services for Data Access Logic Layer .. 15

Table 4. Technology and Sensitivity of CMS Application Security Services............................. 16

Table 5. J2EE Standard Development Tools and Products ... 25

Centers for Medicare and Medicaid Services 1 November 5, 2004

1. Introduction
The Centers for Medicare and Medicaid Services (CMS) has adopted this J2EE Application
Development Guidelines document (hereinafter the “J2EE Guidelines”) as part of the
Information Technology (IT) Modernization Program. The J2EE Guidelines delineate those
standards that CMS has adopted to ensure uniform and consistent implementations of Java 2
Enterprise Edition (J2EE) Platform-based solutions throughout the CMS Enterprise.

1.1 Purpose
The purpose of the J2EE Guidelines is to provide clear guidance to software developers on CMS
standards while software projects are initiated and developed. The information contained in this
document is a summary of key lessons learned, industry best practices, and extensive research
that applies to designing and developing J2EE-based enterprise applications that comply with the
CMS three-zone Internet Architecture.

1.2 Scope
The guidelines in this document provide developers with resources to create well-designed J2EE
solutions that are flexible, scalable, and extensible. The focus of the J2EE Guidelines is on
application architecture, such as distributing J2EE application functionality across zones and
choosing design options within each zone.

The document is a living document that will need periodic updating to take advantage of
technology advances and changes in CMS standards.

1.3 Audience
This document is intended to guide CMS developers and contractors who design, build, and
implement J2EE solutions for the CMS environment and Internet Architecture.

1.4 Document Organization
The J2EE Guidelines are organized as follows:

• Section 2 describes the CMS three-zone Internet architecture and identifies the current set
of commercial products and versions supported in the CMS Infrastructure

• Section 3 describes the CMS J2EE Reference Architecture
• Section 4 describes J2EE best practices and patterns that pertain to the CMS environment
• Section 5 describes CMS’ choice of development tools.

Centers for Medicare and Medicaid Services 2 November 5, 2004

2. CMS Three-Zone Internet Architecture, Applications
Environment, and Infrastructure

CMS believes in architecture that is “good enough” to accomplish CMS’ business goals and
purpose. The design goals of “good enough” architecture are based on four principles:

• Be flexible
• Concentrate on the most-important pieces of the architecture
• Create an architecture capable of rapid iteration
• Provide accurate documentation so others may follow or learn from previous work.

This section delineates the overall CMS three-zone Internet Architecture that is designed to
ensure application efficiency and security, and provides clear guidance on the CMS three-zone
Internet Architecture, environment, and infrastructure from the J2EE enterprise application
perspective. This section also describes the CMS facility as it would appear to the developer of a
new application during its development and deployment. From this description, an application
developer can easily determine the physical and logical environment within which a new
application must interact and fit. The also section includes a description of the target CMS
Infrastructure. Finally, this section provides certain restrictions that may be placed on new
applications (e.g., platform and operating systems selection and database usage) to ensure that
their addition to CMS will continue the robustness of the CMS Infrastructure. CMS requires that
developers and contractors adhere to this specific guidance when designing new CMS IT
systems and applications.

2.1 CMS Three-Zone Internet Architecture
In striving to meet its mission and business goals, CMS established a standard Web-enabled
architecture for new Web-based applications. This standard is represented in the three-zone
Internet architecture shown in Figure 1. The outermost or Presentation Zone consists of web
servers that provide presentation services to users who interface to the CMS environment via a
web browser. The middle or Application Zone supports business logic for the applications and
services. The innermost or Data Zone consists of the database servers used by the applications.
The architecture will also support such additional network services as Public Key Infrastructure
(PKI) and Domain Naming Services (DNS).

J2EE Application Development Guidelines ■ Version 1.0 CMS Three-Zone Internet Architecture, Applications Environment, and Infrastructure

Centers for Medicare and Medicaid Services 3 November 5, 2004

Figure 1. CMS Three-Zone Internet Architecture

An application that is designed for the CMS three-zone Internet architecture should be divided
into three layers, each providing a specific application function: presentation logic layer,
business logic layer, and data access logic layer. The layers cooperate with each other through
well-defined interfaces that allow sharing of critical data and state information.

The CMS three-zone Internet Architecture encompasses the following:

• A thin client at the end user’s interface, coupled with a layered approach to system
services

• A high-level and seamless service base for internal and external enterprise users and
application-processing platforms

• The thin client at the workstation is limited to a browser. A multi-layer Technical
Infrastructure supports the layered approach that complies with the specification and
design of the application systems and services.

• The Technical Infrastructure describes the technologies that will be assembled into a
system to support CMS Enterprise application-processing requirements. The Technical
Infrastructure consists of a number of segments, each providing a distinct service.

The CMS Internet Architecture provides additional detail of the CMS three-zone Internet
Architecture.

J2EE Application Development Guidelines ■ Version 1.0 CMS Three-Zone Internet Architecture, Applications Environment, and Infrastructure

Centers for Medicare and Medicaid Services 4 November 5, 2004

2.2 CMS Applications Environment
CMS’ objectives for its target applications infrastructure are as follows:

• Move to a storage area network (SAN) storage environment
• Create an integration and test environment (I&TE) to support pre-production verification

and validation (V&V) of systems before production. This I&TE environment will allow
CMS to perform load and performance testing prior to installing the system in the
production environment.

• Create standards for infrastructure operations in conjunction with applications
deployments.

Currently, CMS provides a testing environment directly accessible by application developers.
Application developers may load and test the integration of their software with the CMS
common software utilities in this multi-tier environment.

The following subsections describe the CMS Test and Production Environments, which operate
under a formal change control process.

2.2.1 Test Environment
The CMS Test Environment is accessible to application developers for testing the functional
capabilities of application software within the CMS environment. Using a formal change control
process, CMS promotes applications from the Development Environment. Functional testing
includes clustering, fail-over, and load balancing. All hardware and software must be tested first
in the prescribed Test Environment before production. Regression testing is also required before
updates are implemented on the production system.

2.2.2 Production Environment
The CMS Production Environment offers 24x7x365 support and follows Standard Operating
Procedures (SOP) and regular maintenance. Application teams do not have access to the
production system. CMS Change Management policies apply to both the Test and Production
Environments.

2.3 CMS Infrastructure
The CMS Infrastructure, which is currently under development, provides a flexible and scalable
environment to support the CMS mission and business processes. It allows no single point of
failure and features distributed load balancing. The CMS Infrastructure must:

• Enable secure access, irrespective of the specific network topology
• Adjust to a continually changing business environment and provide the flexibility to

adapt to changes in regulatory constraints
• Permit technology refreshment and upgrade of CMS technical capabilities without

impacting ongoing operations.

J2EE Application Development Guidelines ■ Version 1.0 CMS Three-Zone Internet Architecture, Applications Environment, and Infrastructure

Centers for Medicare and Medicaid Services 5 November 5, 2004

The following subsections describe the standard products that CMS has selected to support J2EE
enterprise applications in the CMS Infrastructure. The CMS Target Architecture specifies the
approved commercial off-the-shelf (COTS) products (hardware and software) that otherwise
support the CMS environment.

2.3.1 Operating Systems
CMS has selected the following operating system (OS) standards for mainframe and mid-level
environments:

• Mainframe: IBM z /OS is the standard OS for the mainframe platform used for high-
end corporate data servers.

• Mid-Level: Sun Solaris is the standard OS for all new server-class machines.

2.3.2 Relational Database Management System
CMS has selected the following relational database management systems (RDBMS) for the CMS
Environment:

• Mainframe: The RDBMS for mainframes is IBM DB2. The mainframe servers are
used for large applications and legacy applications. These servers will be configured for
both high performance and maximum practical availability. They function primarily as
large-scale, back-end data servers.

• Mid-Level: Oracle is the RDBMS for other applications.

2.3.3 Web Server and Web Application Server
The CMS standards for web server and web application servers are:

• Sun or IBM HTTP Server: Sun or IBM HTTP Servers serve static hypertext markup
language (HTML) based on hypertext transport protocol (HTTP) requests. In the case
where the data and/or the programming logic are not local to the Web Server or where the
HTML is dynamically composed and may require programming logic and/or data, these
services are requested from the Web Application Server in the Application Zone. HTML
files that are requested by the Web Servers are passed to them from the file servers in the
Application Zone. The multiple elements incorporated in the Web Server provide
detailed audit logging capability.

• WebSphere Application Server: WebSphere Application Servers serve dynamic Web
content through the Web Servers to the users. Web Application Servers accept business
information from the Business Logic Layer and provide page formatting and content
integration on a single page. All dynamic page content is generated at this level, but no
business logic or business data is stored at this level.

J2EE Application Development Guidelines ■ Version 1.0 CMS Three-Zone Internet Architecture, Applications Environment, and Infrastructure

Centers for Medicare and Medicaid Services 6 November 5, 2004

2.3.4 Messaging Services
The CMS standard for messaging services is:

• WebSphere MQ: WebSphere MQ is the enterprise standard and transport for all
messaging services. WebSphere MQ enables application integration by helping business
applications exchange information across different platforms by sending and receiving
data as messages.

All custom applications need to communicate through an Enterprise Messaging Broker built on
top of WebSphere MQ. This Enterprise Messaging Broker performs messaging delivery services
through a secure messaging interface to Enterprise data and provides appropriate audit trails.
The Enterprise Messaging Broker should support messaging, workflow, and data transformation
between loosely coupled application components. All COTS components should adhere to either
Java Messaging Services (JMS) or MQ-standard application programming interfaces (API) to
enable them to fit into the CMS J2EE messaging infrastructure.

2.3.5 COTS Products
CMS encourages the use of COTS in lieu of custom application development. COTS products
must be compatible with and support the target CMS 3-zone Internet architecture.

A useful reference on selecting COTS products is the set of lessons learned described in
“Assessing the Risks of Commercial-Off-The-Shelf Applications” from the Information
Technology Resources Board, Revised Version, December 1999 (www.itrb.gov).

SAS and Cognos are appropriate examples of COTS products. SAS is a standard product used
for statistical analysis, and Cognos is well-established business intelligence software.

Centers for Medicare and Medicaid Services 7 November 5, 2004

3. CMS J2EE Application Infrastructure
CMS has adopted J2EE as the standard for application development in the CMS Infrastructure.
J2EE uses a multi-tiered distributed application model, where application logic is divided into
components, according to its function. The various components that make up a J2EE application
are installed on different machines and mapped into the three-zone architecture. The successful
design and integration of applications into the CMS three-zone Internet Architecture will require
an understanding of the CMS enterprise application and infrastructure standards.

In addition, the CMS Infrastructure provides functionality of the J2EE specification through
incorporation of the WebSphere application server. Typically, this deployment encompasses all
of the functionality that WebSphere provides, including:

• Java Messaging Service (JMS)
• WebSphere MQ
• Java Database Connectivity (JDBC)1
• Java Transaction API (JTA)
• Remote Method Invocation (RMI)
• Internet Inter-Orb Protocol (IIOP)
• Common Object Request Broker Architecture (CORBA).

3.1 J2EE Layers
J2EE applications are made up of components in three loosely coupled layers. A J2EE
component is a self-contained functional software unit that is assembled into a J2EE application
with its related classes and files and that communicates with other components. The J2EE
specification defines the following J2EE components:

• Application clients: mainly a browser that runs on the client machines
• Java Servlet and JavaServer Pages (JSP) technology components: web components

that run on the Web Application Server
• Enterprise JavaBeans (EJB) components (enterprise beans): business components

that run on the Web Application Server.

J2EE components are compiled and assembled into a J2EE application, verified to be well
formed and in compliance with the J2EE specification, and deployed to production, where they
are run and managed by the J2EE server.

Figure 2 shows the three layers of a J2EE application within the three-zone architecture. The
following subsections discuss the mapping of the logical application layers into the physical
three-zone architecture.

1 The use of JDBC is potentially limited due to the inclusion of MQ and WebSphere Business Integration Message

Broker (WBI Message Broker).

J2EE Application Development Guidelines ■ Version 1.0 CMS J2EE Application Infrastructure

Centers for Medicare and Medicaid Services 8 November 5, 2004

May be implemented on same server

SunSun

Web Page Logic
and Page

Construction

Business Logic

Transaction Mgt
Logic

Java Servlets
JSP

JavaScript

WebSphere
Application Server

Solaris
WebSphere

Application Server
Solaris

Java/J2EE

JTA, JCA, EJB

Mainframe

Sun

Data Mgt Logic

Enterprise
Message Adapter

PC

Browser

HTML
JavaScript

Internet Explorer
PC OS

Sun

Web Page Delivery

HTML
Formatted
Web Pages

Content
Management

Sun/IBM HTTP
Server
Solaris Data Mgt Logic

WBI Msg Broker

DBMS
Stored Procedures

Oracle/DB2

Solaris

DBMS
Stored Procedures

DB2 UDB

z/OS

Presentation Zone Application Zone Data Zone

HTTPS MQRMI/Local AccessHTTP

InternetInternet
HTTP (Web)

Server
Web Application

Server
Business Logic

Server

Presentation Logic Business Logic Data Access Logic

May be implemented on same serverMay be implemented on same serverMay be implemented on same server

SunSun

Web Page Logic
and Page

Construction

Business Logic

Transaction Mgt
Logic

Java Servlets
JSP

JavaScript

WebSphere
Application Server

Solaris
WebSphere

Application Server
Solaris

Java/J2EE

JTA, JCA, EJB

Mainframe

Sun

Data Mgt Logic

Enterprise
Message Adapter

PC

Browser

HTML
JavaScript

Internet Explorer
PC OS

Sun

Web Page Delivery

HTML
Formatted
Web Pages

Content
Management

Sun/IBM HTTP
Server
Solaris Data Mgt Logic

WBI Msg Broker

DBMS
Stored Procedures

Oracle/DB2

Solaris

DBMS
Stored Procedures

DB2 UDB

z/OS

Presentation Zone Application Zone Data Zone

HTTPS MQRMI/Local AccessRMI/Local AccessHTTP

InternetInternet
HTTP (Web)

Server
Web Application

Server
Business Logic

Server

Presentation Logic Business Logic Data Access Logic

Figure 2. CMS J2EE Application Infrastructure

3.2 Presentation Layer
WebSphere-based Java Servlets and JSP will be used in the presentation layer development, but
will not be used for any business logic layer development. The only approved product for Java-
based applications is the WebSphere Applications Server. This layer is mapped into the
Presentation Zone shown in Figure 1.

3.2.1 Web Clients
A web client consists of a web browser, which renders the pages received from the server.
Developers should use best practices, and J2EE standards where applicable, for the graphical
user interface (GUI) Elements. Use of applets is not allowed. Because of their security
implications, applets typically violate CMS security principles. Developers should use servlet-
based applications when dealing with dialogs, forms data, and information.

3.2.2 Web (HTTP) Server
The Web Server serves static HTML based on URL requests. In the case where the data and/or
the programming logic are not local to the Web server or where the HTML is dynamically
composed and may require programming logic and/or data, these services are requested from the
Web application layer. HTML files that are requested by the Web servers are passed to them
from the file servers in the application layer. The multiple elements incorporated in the Web

J2EE Application Development Guidelines ■ Version 1.0 CMS J2EE Application Infrastructure

Centers for Medicare and Medicaid Services 9 November 5, 2004

server provide detailed audit logging capability and collection of output. Web Servers store and
manage static content for user-facing applications.

Web servers present static content (such as Web pages). The common look and feel of the CMS’
Web pages is enforced through the IBM Content Manager. Customization of Web page
presentation is available, as appropriate to suit the application and an individual’s roles,
permissions, and personal preferences. Individual home pages can be created for users and
personalized subject to the requirements of Section 508 of the Rehabilitation Act of 1973. These
requirements are available at: http://www.usdoj.gov/crt/508/508home.html. Application- or
project-specific Web servers or content managers are prohibited. The Web servers will also
house several plug-ins/interfaces that will provide required services for identification,
authentication and access control, incident detection, system management, and connections to
various COTS servers.

3.2.3 Web Application Server
The WebSphere Application Server is the enterprise standard Java- and CORBA-compliant
application server that integrates enterprise data, applications, and transactions while utilizing
open technologies and APIs.

The WebSphere Application Server supports the complete set of J2EE standards and supports
Business Logic and Presentation Logic for the CMS Enterprise Architecture (EA). The CMS EA
supports Business Logic and Presentation Logic on physically separate tiers with different J2EE
capabilities per tier. The description in this subsection concerns the subset of J2EE and other
Java capabilities permitted in the Presentation Logic Tier resident on the Web Application Server
Tier.

The CMS Application Security Services will be provided within the CMS enterprise by IBM
Tivoli PolicyDirector and Tivoli Identity Management.

Usage Guidance and Limitations
The application server is a Java-based, J2EE engine, which supports a full range of enterprise
data transactions on UNIX platforms. As the foundation of the WebSphere software platform,
the WebSphere Application Server manages e-business applications from dynamic Web
presentation to sophisticated transaction processing. This product is the standard application
server to be used enterprise wide.

For the Web Application Server, WebSphere Application Server supports the following
J2EE/J2SE standard capabilities:

• J2EE
 JSPs
 Servlets
 Java Naming and Directory Interface (JNDI) – Discovery
 Java Messaging Service (JMS) – over WebSphere MQ
 Java Architecture for XML (eXtensible Markup Language) Binding (JAXB)
 Java API for XML Processing (JAXP)

J2EE Application Development Guidelines ■ Version 1.0 CMS J2EE Application Infrastructure

Centers for Medicare and Medicaid Services 10 November 5, 2004

 Java API for XM (JAX)-RPC
 SAAJ
 J2EE Connector Architecture (JCA)
 JMX – Java Management interfaces implemented over Tivoli
 Javax.transform – XML transforms
 J2EE Application Deployment

• J2SE
 XML
 Logging
 Beans
 Locale Support
 Preferences
 Collections
 Lang
 Util
 New Input/Ouput (I/O)
 Networking
 Server Java Virtual Machine (JVM) on Solaris.

The permissible versions of each of the foregoing specifications are determined by the version of
WebSphere Application Server.

Table 1 describes each service that is applicable to this layer and the guideline for its usage.

Table 1. J2EE Standard Services for Presentation Layer

Service Usage
Naming
Because J2EE applications are
distributed, they need a way to look up
and access remote objects and
resources, such as Enterprise Java
Beans (EJB). This is supported via the
Java Naming and Directory Interface
(JNDI).

The JNDI API is the standard API for naming and directory
access. The JNDI API has two parts: an application-level
interface used by the application components to access
naming and directory services and a service provider
interface to attach a provider of a naming and directory
service.

Messaging
J2EE provides Java Messaging Service
(JMS) to asynchronously send and
receive messages. JMS is for program-
to-program messages.

Messaging is used for all inter-application
communications. It provides a common framework for
integrating disparate applications and systems, including
legacy systems. Messaging shall be used for the
following tiers of application-to-application communication:
• For communications among individual applications
• For communicating among server processes and other

applications, even if the processes were on the same

J2EE Application Development Guidelines ■ Version 1.0 CMS J2EE Application Infrastructure

Centers for Medicare and Medicaid Services 11 November 5, 2004

Service Usage
machine

• For any inter-process communication in which an
immediate response is not needed, or no response is
needed, e.g., sending event messages to an auditing
application

• When communicating with legacy systems in situations
that require more interaction than bulk file transfers

Security
J2EE supports both declarative and
programmatic security. It provides the
Java Authentication and Authorization
Service (JAAS) to authenticate and
enforce access controls upon users.

The Java Authentication and Authorization Service
(enables services to authenticate and enforce access
controls upon users. It implements a Java technology
version of the standard Plugable Authentication Module
(PAM) framework, and extends the access control
architecture of the Java 2 Platform in a compatible fashion
to support user-based authorization. The Java
Authorization Service Provider Contract for Containers
(JACC) defines a contract between a J2EE application
server and an authorization service provider, allowing
custom authorization service providers to be plugged into
any J2EE product.

Communication

J2EE supports the following protocols:
• Internet protocols—These include

TCP/IP, HTTP 1.0, and Secure Socket
Layer (SSL) 3.0

• RMI (Remote Method Invocation)
protocols—RMI is a set of APIs used
by Java-distributed applications,
including EJBs.

The HTTP client-side API is defined by the java.net
package. The HTTP server-side API is defined by the
servlet and Java Server Page (interfaces.

HTTPS: Use of the HTTP protocol over the SSL protocol
is supported by the same client and server APIs as HTTP.

eXtensible Markup Language (XML)
Transforms

JAXP provides support for the industry standard Simple
API for XML (SAX) and Document Object Model (DOM)
APIs for parsing XML documents, as well as support for
eXtensible Stylesheet Language Transformation (XSLT)
engines.

Java Management Extensions (JMX)
Java Management interfaces

The Java 2 Platform, Enterprise Edition Management
Specification defines APIs for managing J2EE servers
using a special management enterprise bean. The Java
Management Extensions (JME) API is also used to
provide some management support.

3.3 Business Logic Layer
Java Beans and EJB shall be used for development of business and transaction logic in the
Business Logic Layer. WebSphere MQ messaging shall be used for all intersystem
communication between the Application and Data Zones.

Interface between the Business Logic and Presentation Logic Layers within the Application Zone
shall be through the use of RMI or Local Interface. The restriction on the use of Java Database

J2EE Application Development Guidelines ■ Version 1.0 CMS J2EE Application Infrastructure

Centers for Medicare and Medicaid Services 12 November 5, 2004

Connectivity (JDBC) will prevent the use of Entity Beans in the Business Logic Layer. The use
of WebSphere MQ instead of JDBC will promote loose coupling between the Business Logic
and Data Access Logic.

The Business Logic Layer is mapped into the Application Zone shown in Figure 1.

3.3.1 WebSphere Application Server
WebSphere Application Server is the enterprise standard Java- and CORBA-compliant Web and
application server that integrates enterprise data, application, and transactions while utilizing
open technologies and APIs. It supports the complete set of J2EE standards and supports
Business Logic for the CMS EA. This description concerns the subset of J2EE and other Java
capabilities permitted in the Business Logic Layer.

For the Business Logic Server Layer, WebSphere Application Server supports the following
J2EE/J2SE standard capabilities:

• J2EE
 EJBs
 RMI – EJBs interact over RMI
 JNDI – Discovery
 JMS – over WebSphere MQ
 JDBC2
 JAX-RPC (but over MQ transport, not HTTP)
 SOAP (Simple Object Access Protocol) with Attachments API for Java (SAAJ)
 JCA
 JMX – Java Management interfaces implemented over Tivoli
 Javax.transform – XML transforms
 JTA

• J2SE
 XML
 Logging
 Beans
 Locale Support
 Preferences
 Collections
 JNI
 Lang
 Util

2 The use of JDBC is potentially limited due to the inclusion of MQ and WebSphere Business Integration Message

Broker (WBI Message Broker).

J2EE Application Development Guidelines ■ Version 1.0 CMS J2EE Application Infrastructure

Centers for Medicare and Medicaid Services 13 November 5, 2004

 New I/O
 Networking
 Server JVMs on both Solaris and Windows.

Usage Guidance and Limitations
As the foundation of the WebSphere software platform, the WebSphere Application Server
manages e-business applications from dynamic Web presentation to sophisticated transaction
processing. This product is the standard application server to be used enterprise wide.

Table 2 describes each service that is applicable to this layer and the guideline for its usage.

Table 2. J2EE Standard Services for Business Layer

Service Usage
Naming
Because J2EE applications are distributed, they
need a way to look up and access remote objects
and resources, such as EJBs and data sources.
This is supported via the Java Naming and
Directory Interface (JNDI).

The JNDI API is the standard API for naming and
directory access. The JNDI API has two parts: an
application-level interface used by the application
components to access naming and directory
services and a service provider interface to attach
a provider of a naming and directory service.

Data Access
J2EE supports both declarative and programmatic
data access. It provides the JDBC API for
connectivity with relational database systems. It
provides the Connector architecture (resource
adapters) to give applications uniform access to
various kinds of enterprise information systems.

Data interchange is managed as an Enterprise
common service because all application access to
CMS data stores must be through these services.
This access provides data abstraction to
application developers and isolates them from the
underlying details of database structures and the
data manipulation languages. Data management
and data optimization activities are contained
within the data interchange service layer, allowing
database specialists to independently construct
and maintain these services without impact to the
applications that use them. These services also
include wrapper services such as security and
privacy control. logging of data access requests,
and error checking.
The use of Java Database Connectivity (JDBC) is
potentially limited due to the inclusion of MQ and
WebSphere Business Integration Message Broker
(WBI Message Broker).

Security
J2EE supports both declarative and programmatic
security. It provides the Java authorization to
enforce access controls upon users.

The Java Authentication and Authorization
Service (JAAS) enables services to authenticate
and enforce access controls upon users. It
implements a Java technology version of the
standard Plugable Authentication Module
framework, and extends the access control
architecture of the Java 2 Platform in a compatible

J2EE Application Development Guidelines ■ Version 1.0 CMS J2EE Application Infrastructure

Centers for Medicare and Medicaid Services 14 November 5, 2004

Service Usage
fashion to support user-based authorization. The
Java Authorization Service Provider Contract for
Containers (JACC) defines a contract between a
J2EE application server and an authorization
service provider, allowing custom authorization
service providers to be plugged into any J2EE
product.

Messaging
J2EE provides JavaMail and the Java Messaging
Service (JMS) to asynchronously send and
receive messages. JavaMail is for e-mail
messages. JMS is for program-to-program
messages.

Mail messages should be accomplished via the
WBI Message Broker and SMTP adapter.

Communication
Remote Method Invocation (RMI) protocols—RMI
is a set of APIs used by Java distributed
applications, including EJBs.

Object Management Group (OMG) protocols—
allow J2EE applications to communication with
remote CORBA objects.

J2EE applications can use RMI-Internet Inter-Orb
Protocol (IIOP), with IIOP protocol support, to
access CORBA services that are compatible
with the RMI programming restrictions. Such
CORBA services would typically be defined by
components that live outside of a J2EE product,
usually in a legacy system. Only J2EE application
clients are required to be able to define their own
CORBA services directly, using the RMI-IIOP
APIs. Typically, such CORBA objects would be
used for callbacks when accessing other CORBA
objects.

3.4 Data Access Logic Layer
The Data Access APIs provide a layer of abstraction between the applications and the data in the
Data Zone as well as the location and structure of the data stores. The Data Access APIs abstract
the users of high-level business logic partitions from the low-level mechanics of data access—
such as Structure Query Language (SQL)—and transaction mechanisms, such as commit,
rollback, or cursor control. The business logic partitions of the applications do not perform
direct SQL procedures on the databases. Instead, they invoke the Data Access APIs to access
data (Create, Read, Update and Delete). The Data Access APIs will support data retrieval for
read-only use and creating/updating/deleting data.

Data interchange is managed as an Enterprise common service because all application access to
CMS data stores must be accomplished through these services. This access provides data
abstraction to application developers and isolates them from the underlying details of database
structures and the data manipulation languages. Data management and data optimization
activities are contained within the data interchange service layer, allowing database specialists to
independently construct and maintain these services without impact to the applications that use
them. These services also include wrapper services such as security and privacy control, logging
of data access requests, and error checking.

J2EE Application Development Guidelines ■ Version 1.0 CMS J2EE Application Infrastructure

Centers for Medicare and Medicaid Services 15 November 5, 2004

This layer is mapped into the Data Zone shown in Figure 1. Table 3 describes each service that
is applicable to this layer and the guideline for its usage.

Table 3. J2EE Standard Services for Data Access Logic Layer

Service Usage
Naming
Because J2EE applications are distributed, they
need a way to look up and access remote objects
and resources, such as EJBs and data sources.
This is supported via the Java Naming and
Directory Interface (JNDI).

The JNDI API is the standard API for naming and
directory access. The JNDI API has two parts: an
application-level interface used by the application
components to access naming and directory
services and a service provider interface to attach
a provider of a naming and directory service.

Data Access
J2EE supports both declarative and programmatic
data access. It provides the Java Database
Connectivity (JDBC) API for connectivity with
relational database systems. It provides the
Connector architecture (resource adapters) to
give applications uniform access to various kinds
of enterprise information systems.

Data interchange services are provided in three
layers:
(1) Messaging and data access services
(2) Enterprise application integration (EAI)

messaging
(3) Data access services (DAS)

The functions of the Messaging and DAS are:
• Logging
• Error checking and handling
• Security and privacy

The use of JDBC is potentially limited due to the
inclusion of MQ and WBI Message Broker.

Transaction
J2EE supports both declarative and programmatic
transactions. It provides the Java Transaction API
(JTA) to handle transaction processing.

Online transactional data processing must be to
authoritative data stores through the DAS.

Messaging
J2EE provides JavaMail and the Java Messaging
Service (JMS) to asynchronously send and
receive messages. JavaMail is for e-mail
messages. JMS is for program-to-program
messages.

Mail messages should be accomplished via the
WBI Message Broker and SMTP adapter.

Centers for Medicare and Medicaid Services 16 November 5, 2004

4. Common Infrastructure Services and Preferred Design Patterns
This section describes common infrastructure services and preferred design patterns that are
applicable to the CMS J2EE environment. Projects shall design applications using the design
patterns and implement their applications using the available infrastructure services. This
section concludes with a description of best practices and applicable recommendations for CMS
in-house developers and contractors.

4.1 Infrastructure Services
At present, CMS offers application security services in support of application development. The
following subsection addresses the J2EE Application Security Services.

4.1.1 J2EE Application Security Services
Application Security Services are the security services that are available to COTS applications,
developers, and eventually, to the end user.

Security services should allow applications to abstract away security functions from business
logic. This helps to minimize the complexity that application developers and integrators have to
deal with when developing and deploying secure applications. In some cases, applications have
to enforce their own security, such as fine-trained access control that is tied to complex business
logic. Typically, the CMS Application Security Services would intercept client requests and
enforce security policy in a manner that is transparent to the applications.

Table 4 lists the CMS Application Security Services, the applicable technology, and sensitivity.

Table 4. Technology and Sensitivity of CMS Application Security Services

Sensitivity
CMS Application Security

Services Security Technology
Low Med High

UserID / Password X X
UserID / Password Plus
Hardware or Software Token X

Single Sign-On X X

Identification & Authentication

Registration X X
Authorization/Access Control Role Based X X

Data Encryption X X
Digital Signature X X

Cryptography

Cryptography Infrastructure X X
Audit Audit Logs X X X

Whenever possible, application developers should leverage the J2EE authentication model and
J2EE roles in conjunction with their specific extended rules. If a complex business rule is
needed to make a security decision, developers may write the code to implement it.

J2EE Application Development Guidelines ■ Version 1.0 Common Infrastructure Services and Preferred Design Patterns

Centers for Medicare and Medicaid Services 17 November 5, 2004

In most cases, CMS applications will depend entirely on the Security Services of the CMS
Infrastructure for their security needs. The application Risk Assessment, System Security Plan,
and Security Certification and Accreditation documentation are to be prepared under the
assumption that all required capabilities of the CMS Infrastructure Security Services are in place,
fully operational, and functioning correctly.

It is expected that applications will rarely require custom security measures beyond available
Security Services. Any custom security measures must be approved by CMS management on a
case-by-case basis.

CMS has chosen Tivoli Access Manager as the standard product for the application security
services. The Tivoli Access Manager is a policy-based access control solution for enterprise
applications. Tivoli Access Manager has a Java run-time component, which uses the WebSphere
Application Server version of the Java run time.

Special Considerations
• Tivoli Access Manager requires the use of IBM LDAP Directory Server as the user

registry
• The login polices set in Tivoli Access Manager are honored only when the user logs in

with a password.

Detailed Description
By providing authentication and authorization APIs and integration with application platforms
such as J2EE, Tivoli Access Manager helps to secure access to business-critical applications and
data spread across the extended enterprise.

Tivoli Access Manager helps provide a self-protecting environment through:

• Prevention of unauthorized access by using a single security policy server to enforce
security across multiple file types, application providers, devices, and protocols

• Web-based Single Sign-on
• Robust auditing capabilities.

4.1.2 Future Infrastructure Services
It is anticipated that CMS will provide other infrastructure services in support of application
development.

4.2 Preferred Design Patterns
This section describes the most important patterns for the design of CMS J2EE applications:
Model-View-Controller, Messaging Gateway, and Messaging Mapper. As CMS infrastructure
evolves, additional design patterns may be added.

J2EE Application Development Guidelines ■ Version 1.0 Common Infrastructure Services and Preferred Design Patterns

Centers for Medicare and Medicaid Services 18 November 5, 2004

4.2.1 Model-View-Controller
The Model-View-Controller design pattern is central to the successful adoption of J2EE and is
fundamental to the design of good J2EE applications. It is simply the division of the application
into the following parts:

• Those parts responsible for business logic (the Model—often implemented using EJBs or
simple Java objects)

• Those parts responsible for presentation of the user interface (the View—usually
implemented with JSP and tag libraries, but sometimes with XML and XSLT).

• Those parts responsible for application navigation (the Controller—usually implemented
with Java Servlets or associated classes like Struts controllers).

The Model is the application’s business logic and data. This is any of the functional logic that
CMS business applications use. This code and data is conceptually independent of the View and
the Controller; it is possible to have one Model supporting both desktop and web applications
(i.e., multiple presentation layers). Alternatively, multiple applications may access the same
business logic.

The View is that part of the application that displays information to the user. In a web
application, the display is on the screen of the remote user. Thus, the view is the web page
returned to the user following the request.

The Controller is that part of the application that manages the user input. In a desktop
application, input can be keystrokes or mouse clicks. In a web application, input is most likely
an HTTP request.

Problem
An application design must have a strategy for serving current and future client types. An
architecture pattern can be used to structure the application into isolated parts to provide greater
flexibility, reuse, and ease of maintenance.

Solution
A major consideration for using MVC design patterns is that the user interface is the element
most likely to change in any relatively mature application. An application may be required to
display an additional table field, or may need the application to be accessible in multiple
languages.

If the user interface is kept separate from the application’s business logic, then changes to the
application interface do not run the risk of breaking that logic. At the same time, the separation
of the user interface from the back-end logic allows changes in logic without affecting the front-
end interface. CMS recommends that applications for the CMS Infrastructure environment be
designed with this principle in mind.

J2EE Application Development Guidelines ■ Version 1.0 Common Infrastructure Services and Preferred Design Patterns

Centers for Medicare and Medicaid Services 19 November 5, 2004

Figure 3 illustrates the MVC design pattern as applied to Java-Based Web Development.

Control
Servlet

View
(JSP)

Model
(Java

Beans or
EJBs)

Database

Http Request

Forward Request

Update Model

Get Data

Display Page

User

Control
Servlet

View
(JSP)

Model
(Java

Beans or
EJBs)

Database

Http Request

Forward Request

Update Model

Get Data

Display Page

User

Figure 3. Model-View-Controller Design Pattern

In the CMS environment, Common Gateway Interface (CGI) on the Web server is not allowed
because of security considerations. Thus, only a Servlet is allowed over CGI.

Typical uses for an HTTP Servlet include:

• Processing and/or storing data submitted by an HTML form
• Managing state information on top of the stateless HTTP (e.g., for an online shopping

cart system that manages shopping carts for many concurrent customers)
• Implementing Web Services on a transactional basis.

In order to function as a controller in an MVC configuration, a Servlet must be able to trigger the
display of a JSP. This can be done in two ways: the first way is by sending an HTTP redirect
request back to the user, indicating which page the user’s browser must now request.
Redirecting is not recommended in the CMS Infrastructure. The redirect requires an additional
request by the user’s browser, which takes extra time. Redirecting from the first to the second
request may require passing data through the URL, which may cause some security risk.

The second, and far superior, method is to use the Request Dispatcher. There is ample guidance
available for using this tool in the literature on implementing Servlets and JSPs.

Developers should separate Business Logic (Java beans and EJB components) from Controller
Logic (Servlets/Struts actions) and from Presentation (JSP, XML/XSLT). The use of the entity
beans is potentially limited due to the inclusion of MQ and WBI Message Broker.

4.2.2 Messaging Gateway
The Messaging Gateway encapsulates messaging-specific code (e.g., the code required to send or
receive a message) and separates it from the rest of the application code. Only the Messaging
Gateway code knows about the messaging system; the rest of the application code does not. The
Messaging Gateway shields the application developer from vendor-specific APIs. As an

J2EE Application Development Guidelines ■ Version 1.0 Common Infrastructure Services and Preferred Design Patterns

Centers for Medicare and Medicaid Services 20 November 5, 2004

example, a Messaging Gateway exposes domain-specific methods such as GetMedicareID that
accept strongly typed parameters.

A Messaging Gateway sits between the application and the messaging system and provides a
domain-specific API to the application (see Figure 4). Because the application does not know
that it is using a messaging system, the gateway can be transparently replaced with a different
implementation that uses another integration technology, such as Web services.

Application Messaging Gateway Messaging System

Figure 4. Messaging Gateway

Problem
The CMS Internet Architecture guide states that no direct database interaction may be initiated
from the Application Zone. All queries must be handled via a messaging system between the
Application and Data Zones. The problem is encapsulating access to the messaging subsystem
from the rest of the application.

Solution
The preferred solution is to use a Messaging Gateway, a class that wraps messaging-specific
method calls and exposes domain-specific methods to the application. In general, an application
should not be aware that it is using a messaging system for enterprise data integration or
integration to external systems or resources. Most of the application’s code should be written
without messaging in mind. At the points where the application integrates with the messaging
subsystem, there should be a thin layer of code that performs the application’s part of the
integration. When the integration is implemented with messaging, the Messaging Gateway is
that thin layer of code that attaches the application to the messaging system.

The other advantages of the Messaging Gateway pattern are as follows:

• Encapsulate Asynchronous Nature of Messaging System: Messaging systems are
inherently asynchronous. This can complicate the code to access an external function
over messaging. The Messaging Gateway can expose a simpler function with
synchronous semantics, which encapsulates the asynchronous nature of the request and
reply messages.

• Application-Specific Error Handling: In addition to simplifying the coding of the
application, the Messaging Gateway also eliminates dependencies of the application code
on specific messaging technologies. The Messaging Gateway can catch all message-
specific exceptions and throw application-specific (or generic) exceptions instead. This
is very helpful if it is ever necessary to switch the underlying implementations, e.g., from
JMS to Web services.

J2EE Application Development Guidelines ■ Version 1.0 Common Infrastructure Services and Preferred Design Patterns

Centers for Medicare and Medicaid Services 21 November 5, 2004

• Improved Unit Testing: Messaging Gateways make excellent testing vehicles. By
separating the interface from the implementation, two implementations are available: one
“real” implementation that accesses the messaging system and a “fake” implementation
for testing purposes.

4.2.3 Messaging Mapper
The Messaging Mapper, as shown in Figure 5, accesses one or more domain objects and converts
them into a message as required by the messaging channel. It also performs the opposite
function, creating or updating domain objects based on incoming messages. Since the
Messaging Mapper is implemented as a separate class that references the domain object(s) and
the messaging layer, neither layer is aware of the other. The layers also are unaware of the
Messaging Mapper. The Messaging Mapper can be invoked by the Messaging Gateway
described in Subsection 4.2.2.

Figure 5. Messaging Mapper

Problem
How can data be moved between domain objects and the messaging infrastructure while keeping
the two independent?

Solution
The preferred solution is to create a separate Messaging Mapper that contains the mapping logic
between the messaging infrastructure and the domain objects. Neither the objects nor the
infrastructure have knowledge of the Messaging Mapper’s existence.

When applications use messaging, the messages’ data are often derived from the applications’
domain objects. There are some distinct differences between messages and objects. For
example, most objects rely on associations in the form of object references and inheritance
relationships. Many messaging infrastructures do not support these concepts because they have
to be able to communicate with a range of applications, some of which may not be object-
oriented at all.

Business Object

Messaging Mapper

Messaging Infrastructure

J2EE Application Development Guidelines ■ Version 1.0 Common Infrastructure Services and Preferred Design Patterns

Centers for Medicare and Medicaid Services 22 November 5, 2004

4.3 Best Practices and Recommendations
CMS has developed these J2EE Guidelines based on a set of lessons learned and best practices.
CMS in-house developers and contractors should consider these best practices and
recommendations in the development and implementation of J2EE-based applications in the
CMS Infrastructure.

4.3.1 Static Web Applications
The CMS architecture maintains a heavy focus on security.3 The greater the depth of the content
within the application, the better. Placing images and static content on Web servers
(Presentation Zone) is acceptable; however, where content is sensitive (not necessarily secure), it
must reside on the Application Server (Application Zone). With this approach, access to such
content will only be available through the Web server.

Server-sided applications can utilize client-sided complements of JavaScript for presentation and
URL management, but no business rules should be stored on the client. J2EE applications
should have all state management on the server, since there may be security implications with
storing sensitive information in the Document Object Model of the browser.

4.3.2 Simple Dynamic Web Applications
When delivering a dynamic web site, the developer must take a slightly different perspective on
how to separate the standard, most unchanging parts of a web page from the parts that do change.
By limiting the number of pages or templates, the web page will be easier to maintain.

No matter how simple or complex the web site, users make requests to the server and the server
returns pages to the user. When a database enters the mix, the content of those pages inevitably
becomes dynamic. Sometimes even the choice of pages becomes dynamic.

Developers should consider presenting this kind of data to the user through JSP, Java Servlets, or
Java Beans. Regardless of the mechanism chosen, developers should be aware that the Servlet
engine is the main operator of the Application Server and the central driver for all Servlets,
JHTML, and JSP. Java Beans deployment provides encapsulation to the dynamic
implementation of their instances and is desirable from an Object-Oriented Design (OOD)
perspective.

Developers should carefully consider the implications of concurrent threading and state when
developing applications. To ensure that the business pipeline does not put other processes—such
as XML parsing—in a wait state while processing, WebSphere threading should be considered
carefully during the design phase.

3 CGI shall neither be designed, developed, nor installed on any of the CMS Web servers.

J2EE Application Development Guidelines ■ Version 1.0 Common Infrastructure Services and Preferred Design Patterns

Centers for Medicare and Medicaid Services 23 November 5, 2004

4.3.3 Files and Directory Structure
Along the lines of the CMS Infrastructure directory structure, application teams should advise on
extended and other directory structures to be used. This aids construction of fault-tolerant
designs for items like shared volumes, RAID configurations, and consistency.

A cardinal rule of CMS policy is the proscription against overwriting an existing file when
making changes to an environment.

Application developers must use a convention to temporarily backup the file or directory. This
ensures an immediate rollback and represents an error-reduced practice for changing the
environment during a deployment.

The code migration and deployment processes assume that the Java application code will be
included in an Enterprise Application Resource (EAR) File. The EAR file is used to bundle all
of the components that a Java web application will require. The bundled components include
static HTML, images, Servlets, JSP, and EJBs, as well as the deployment descriptors that instruct
the container on how to run the application. The EAR file is a standard J2EE application
package, and is supported by WebSphere.

The Web Application Resource (WAR) file is used to bundle web application resources that the
application requires. WAR files bundle all of the same components that an EAR file bundles,
with the exception of the EJBs. WAR files are typically used by smaller applications that only
require Servlets and JSP. The WAR file is a standard J2EE application package, and is
supported by WebSphere.

The Java Archive file typically contains only Java-class files. In most cases, JAR files are
wrapped in an EAR file or WAR file.

4.3.4 Separate Data Management From User Interface
CMS requires that separate procedures be written to manage data and call them from the user
interface (UI) code. This allows the developer to redesign the interface (a more common
change) without redesigning the data management code.

The business logic is collected in Java beans representing OOD and equivalent functionality.
The glue and transaction model is represented in the JSP implementation. JSP covers the
transaction model, fault tolerance, and load balancing (scalability) aspect. Meanwhile, the
browser behavior and presentation layers can be managed by JSP presentation templates or
passed through Java script for rendering on the respective DOM.

4.3.5 Principles for the Data Architecture
The following principles guide the CMS data architecture:

• Data is an enterprise resource that is not owned by any application or by any organization
other than CMS

• Data needed by CMS applications must be obtained and stored within CMS Data Zone
• Data stores are to be loosely coupled with applications

J2EE Application Development Guidelines ■ Version 1.0 Common Infrastructure Services and Preferred Design Patterns

Centers for Medicare and Medicaid Services 24 November 5, 2004

• A single copy of data must be designated as the authoritative source for data—any other
copy or replication of data must be designated as non-authoritative

• Data must be kept secure
• Data must be easily and quickly available for authorized applications and users
• Access to the data must be independent of configuration and location
• Normal data management levels of service must be provided
• Database management systems, as well as tools and COTS products that use a database

management system, must be both scalable and able to handle the extremely large
volumes of data inherent to CMS

• Data architecture must be able to transition across succeeding generations of technology
and organization.

Centers for Medicare and Medicaid Services 25 November 5, 2004

5. CMS J2EE Standard Development Tools and Products
CMS has selected a set of products as the standard components of the target J2EE infrastructure.
Table 2 presents the list of products applicable to CMS utilities and services.

Table 5. J2EE Standard Development Tools and Products

Utilities and Services Mid-Tier Products/Standards

Operating System Sun Solaris

Database Management System (DBMS) Oracle, UDB

Messaging IBM WebSphere MQ

Application Zone Server IBM WebSphere for Sun

Presentation Zone Web Server IBM WebSphere for Sun

Java Developer Tools J2EE SDK, Developer Pack, WebSphere Studio, Eclipse

Programming Language Java

Content Management/Unstructured Data IBM Content Manager

Web Content Management Stellent Content Server

Data Interoperability XML and XML Schema

Network Authentication/Access Java Enterprise LDAP (Sun ONE) or LDAP Proxy

LDAP Authentication Java Enterprise LDAP (Sun ONE) or LDAP Proxy

Identification and Authentication Tivoli Identity Management

Authorization/Logical Access Control Tivoli PolicyDirector and Tivoli Identity Management

Other COTS products that are proposed for use at CMS must be compatible with these products
and standards. The CMS Target Architecture document (published in September 2004) provides
more information on other standard tools and software.

Centers for Medicare and Medicaid Services 26 November 5, 2004

Acronyms

API Application Programming Interface

CGI Common Gateway Interface

CMS Centers for Medicare and Medicaid Services

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-The-Shelf

DAS Data Access Services

DB2 Database 2 (IBM product)

DNS Domain Naming Services

DOM Document Object Model

EA Enterprise Architecture

EAI Enterprise Application Integration

EAR Enterprise Application Resource

EJB Enterprise JavaBeans

GUI Graphical User Interface

HHS Health and Human Services

HTML HyperText Markup Language

IIOP Internet Inter-Orb Protocol

IT Information Technology

J2EE Java 2 Enterprise Edition

JAAS Java Authentication and Authorization Service

JACC Java Authorization Service Provider Contract for Containers

JAS Java Agent Service

JAX Java API for XML

JAXB Java Architecture for XML Binding

JAXP Java API for XML Processing

JCA J2EE Connector Architecture

JDBC Java Database Connectivity

JMS Java Messaginge Service

JMX Java Management Extensions

JNDI Java Naming and Directory Interface

J2EE Application Development Guidelines� ■ Version 1.0 Acronyms

Centers for Medicare and Medicaid Services 27 November 5, 2004

JSP JavaServer Page

JTA Java Transaction API

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

MQ Message Queue

MVC Model-View-Controller

OOD Object-Oriented Design

OS Operating System

PAM Plugable Authentication Module

PKI Public Key Infrastructure

RAID Redundant Array of Inexpensive Disks

RMI Remote Method Invocation

SAAJ SOAP with Attachments API for Java

SAS Formerly the “Statistical Analysis System,” now the name of the company

SAX Simple API for XML

SOAP Simple Object Access Protocol

SSL Secure Socket Layer

UDB Unified Database

UI User Interface

V&V Verification and Validation

WAR Web Application Resource

WBI WebSphere Broker Integration

Centers for Medicare and Medicaid Services 28 November 5, 2004

List of References

The key Department of Health and Human Services (HHS)/CMS documents and Java/J2EE
standards and references relied on in the preparation of the J2EE Application Development
Guidelines include:

1. CMS Internet Architecture, Centers for Medicare and Medicaid Services, July 2003.

2. CMS Enterprise Messaging Infrastructure, Centers for Medicare and Medicaid Services,
December 2003.

3. CMS Web-Enabled Application Architecture (in preparation), Centers for Medicare and
Medicaid Services.

4. CMS Intrusion Detection System Internet Architecture and Design (in preparation), Centers
for Medicare and Medicaid Services.

5. CMS Data and Database Architecture (in preparation), Centers for Medicare and Medicaid
Services.

6. CMS Target Architecture, Centers for Medicare and Medicaid Services, September 2004.

7. CMS Policy for Software Quality Assurance, Document Number CMS-CIO-POL-
QA001.1, Centers for Medicare and Medicaid Services, July 2002.

8. IEEE/EIA/ISO/IEC 12207 Standard for Information Technology—Software Life Cycle
Processes.

9. Java 2 Platform Enterprise Edition Specification, v1.3, Bill Shannon, Sun Microsystems
Inc., 2001.

10. Java 2 Platform, Standard Edition, v 1.4.2 API Specification,
http://java.sun.com/j2se/1.4.2/docs/api/index.html

11. Redbook: WebSphere Application Server and WebSphere MQ Family Integration, SG24-
6878, http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246878.html

12. Core J2EE Patterns: Best Practices and Design Strategies (2nd edition), Deepak Alur,
John Crupi, & Dan Malks. Prentice Hall PTR 2003, ISBN 0131422464.

13. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions,
Gregor Hohpe and Bobby Woolf. Pearson Education Inc., ISBN 0321200683.

