

Data Synopsis for HLY0806

September 05 – October 01, 2008 Barrow to Barrow

Chief Scientist- Jonathan Childs Healy Captain- Captain Frederick Sommer

Prepared by: Tom Bolmer, David Forcucci, David Hassilev, Steve Roberts & Dale Chayes

Table of Contents

Project Summary	4
A Summary of the Joint Operations on The Louis S. St-Laurent	5
Cruise Track	7
Personnel	8
HLY0806 Science Party Personnel	8
Ship's Crew	9
Science Components and their major sampling activities	10
Distribution Contents	11
Introduction to Data	11
SCS Data Overview	12
LDS Data Overview: Directories: 1_Minute_Averaged_Data: data SCS_Data: Extra files in the directory SCS_Data: LDS_Data: Raw: Satellite_Images: Meta_Data: SVP: Plots: Contents by directory:	12 13 13 13 13 13 13 15 15 15 17 17 17 17 18 18 18
Merged Data	20
LDEO Averaged One Minute Data File	20
File Formats of Data Collected Underway	22
APPENDIX:	22
Acquisition Problems and Events	22
Comments that might help when using the data	24
Cruise Weather Summary	26
Underway Sensors and Calibrations	27
Sensors and Calibrations HLY0806 Shipboard Sensors HLY0806- CTD Sensors HLY0806 Sensor Calculations Calculating Temperature – ITS-90 Calculating Conductivity – ITS-90 Calculating Fluorometry Voltage Calculating Fluorometry Voltage Calculating Transmittance Calculating PAR for surface PAR Calculating Pyrgeometer Values	27 27 29 30 30 30 30 30 30 30 31
Calibrations Meteorology & Radiometers R.M. Young Wind Bird, Starboard R.M. Young Wind Bird Port Barometer	32 32 32 33 34

Air Temperture / Relative Humidity	35
Shortwave Radiation Pyranometer	38
Longwave Radiation Pyrgeometer	39
Jack Staff MET Station	40
Seabird ThermoSalinograph	42
Temperature	42
Conductivity	43
Remote Sea Temperature (Sea Chest)	44
Oxygen Sensor A	45
CTD Sensors	46
Pressure Sensor	46
Temperature #1	47
Temperature #2	48
Temperature #3	49
Conductivity #1	50
Conductivity # 2	51
Oxygen	52
Fluorometer	53
Transmisometer	54
PAR	55
Gravity Meters	56
Serial # 221	56
Serial # 222	61
Instrument Locations on the Healy	66
Layout plot of instrument locations	66
Table of Survey measurements	67
SBE 21 SEACAT Thermosalinograph Data Output Formats	70

Project Summary

This cruise was a two-ship program with the Canadian Coast Guard icebreaker Louis S. St-Laurent (LSSL) and the US Coast Guard Healy. The Healy sailed from Barrow, AK and the LSSL sailed from Tuktoyuktuk, CA. The ship's met on **_month-day-year at xxxx latitude**, yyyy longitude and worked in close proximity until they separated on September 27, 2008 in the vicinity of **xxx latitude**, yyy longitude. Two modes of operation were employed during this cruise. The primary mode was multichannel seismic survey. During this mode the Healy led, breaking a channel for the LSSL to follow while towing their seismic source and streamer. The secondary mode was focused on collecting multibeam bathymetry. During multibeam-mode, the LSSL lead, breaking a channel for the Healy to follow.

2008 USGS/NRCAN

Healy – Louis Joint Science Plan (prepared before the cruise)

The primary purpose of the two-ship experiment is to collect seismic and bathymetric data in support of delineating the extended continental shelf in the western Arctic Ocean for both Canada and the United States. The extended continental shelf is that region beyond 200 nautical miles where a nation can show it satisfies the conditions of Article 76 of the United Nations Convention on the Law of the Sea. The data most relevant to fulfilling the conditions of Article 76 are bathymetric and seismic reflection data. The logistical difficulties of collecting seismic data in ice-covered regions make it much more likely that the data will be collected successfully if two icebreakers participate, one in the lead to break a path for the second following with the towed seismic acquisition system. *USCGC Healy* is equipped to collect multibeam bathymetric, high-resolution subbottom, and gravity data during the expedition and the *CCGS Louis S. St. Laurent (Louis)* is equipped to collect multichannel seismic reflection and refraction data as well as gravity data. With two ships, the priority areas will be those locations where ice cover requires a two-ship operation.

Because acquiring seismic data is the reason for having a two-ship experiment, alterations to the original science plan during the experiment need to ensure successful acquisition of seismic data with coincident bathymetric data to foot of slope, and second on obtaining additional multibeam bathymetric data. If the ice is too thick for ship profiling along the seismic profile in the vicinity of the foot of the slope, the fall-back strategy is to take spot soundings using the helicopter and use those spot sounding to define foot of slope. Ice conditions and ship location with respect to the continental margin will determine when the helicopter soundings will be employed in this manner.

Along the Canadian continental margin north of Banks Island, where the planned ship tracks are parallel to the margin, a secondary priority is to collect bathymetric data to identify the foot of the slope between the seismic profiles. To fulfill this secondary objective, it may be optimal to have *Louis* as the lead vessel to break ice for *Healy*. If ice conditions are heavy, a decision at sea will need to be made to determine how much effort to expend obtaining bathymetry along the continental margin between seismic profiles. If this secondary operation delays the seismic survey significantly, it will be abandoned and a faster route taken to the start of the next seismic line. The foot of slope information between seismic profiles is useful but not essential.

A Summary of the Joint Operations on The Louis S. St-Laurent

By: Ruth Jackson (Canadian Geological Survey) and Deborah Hutchinson (US Geological Survey)

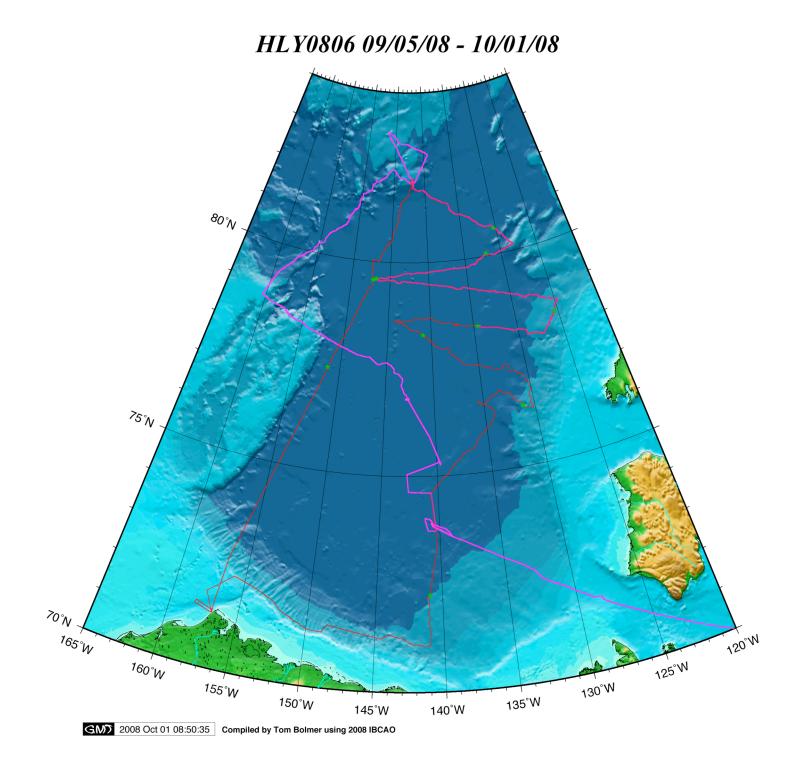
UNCLOS 2008 Arctic Ocean: Canada - U.S. Joint Expedition


The purpose of the *Louis S.St-Laurent* 2008 UNCLOS expedition is to collect data that will help define the limits of the extended continental shelf for both Canada and the United States in the Arctic Ocean. The Convention on the Law of the Sea (UNCLOS) allows every coastal state a continental shelf out to 200 nm. UNCLOS also allows coastal states, under certain circumstances, to exert sovereign rights over portions of the continental margin beyond 200 nm. The portion of the continental margin beyond 200 nm is called the extended continental shelf. Both Canada and the United States have a national interest in knowing (and declaring to others) the locations of the outer limits of their respective extended continental shelf.

Photo: Kelly Hansen

Two kinds of data are necessary for defining the outer limits of the extended continental shelf: sediment thickness and morphology. Sediment thickness information is gathered using seismic reflection techniques that canimage many kilometers beneath the sea floor. Morphology data are gathered using echo sounders which typically only image the surface of the sea floor. The collaboration between Canada and the United States grew from recognizing that Canada has developed a seismic reflection system for use in the Arctic Ocean (using *Louis S. St-Laurent*) whereas the United States operates a sophisticated multibeam echo sounder aboard its Arctic Research vessel, *Healy*.

Collaboration makes sense in the remote and harsh conditions of operating in the Arctic. Not only do the U.S. and Canada have a long history of cooperation, but the collaboration saves money for each country, provides a more complete dataset for UNCLOS purposes, and facilitates collecting these kinds of data in conditions of thick ice where it is impractical for one ship to operate.


UNCLOS 2008 Data Types

During the 2008 cruise, approximately 2800 km of multichannel seismic data were collected. Of those, ~1500 km were with *Healy* breaking ice for *Louis*. An additional ~950 km of multibeam data were collected with *Louis* breaking ice for *Healy*. Louis reached 830N, 1460 W during profiling.

In addition, these data are in regions never before explored by surface ship. Not only are the results relevant to Law of the Sea, they are also scientifically exciting forrevealing the geologic and tectonic history of the Canada Basin of the Arctic Ocean.

29 September, 2008,

Aboard Louis S. St-Laurent

Personnel

HLY0806 Science Party Personnel

Name	Institution	Position	Phone	Email
Kevin Berberich	NIC/NOAA	Ice Analyst	717-816-8823	kberberich@natice.noaa.gov
Tom Bolmer	WHOI	Computer Technician	508-289-2628	tbolmer@whoi.edu
Kelley Brumley	UAF	Grad Student	907-474-5385	fskjb20@uaf.edu
Dale Chayes	LDEO	Science Technical Support	845-365-8434	dale@ldeo.columbia.edu
Jonathan Childs	USGS	Chief Scientist	650-329-5195	jchilds@usgs.gov
Pablo Clemente- Colon	NIC/NOAA	Scientist	301-394-3105	Pablo.Clemente- Colon@natice.noaa.gov
William Danforth	USGS	Scientist	508-457-2274	bdanforth@usgs.gov
Rebecca Gast	WHOI	Scientist	508 289 3209	rgast@whoi.edu
Don Graham	USCG / ESU / Seattle Science	IT2 / Comp. Tech.	206-217-6692	Donald.E.Graham@uscg.mil
Michael Merchant	ESU	Network Administrator	206-217-6576	Michael.W.Merchant@uscg.mil
Ellyn Montgomery	USGS	Scientist	508-457-2356	emontgomery@usgs.gov
George Neakok	BASC	Native Community Liaison	907-852-6283 907-852-4881	basc@arcticscience.org
Thomas OBrien	USGS	Scientist	508-457-2246	tobrien@usgs.gov
Justin Pudenz	NOAA	Mammal Observer	507-822-0405	justinpudenz@yahoo.com
Steve Roberts	UCAR/LDEO	Software Engineer	303-497-2637	sroberts@ucar.edu
Jessica Robertson	USGS	Media Relations	703-648-6624	jrobertson@usgs.gov
Robert Sanders	Temple U	Scientist	215-204-2056	robert.sanders@temple.edu
Capt. John Stewart	Canadian CG	CCG Command Liaison	519-312-1045 519-312-1622	ccgsgriffon@dfo-mpo.gc.ca
Peter Triezenberg	USGS	Scientist	650-329-5207	ptriezenberg@usgs.gov
Brian Van Pay	U.S. Dept. of State	Geographer	202-647-5123	vanpaybj@state.gov

Ship's Crew

Sommer, Frederick CAPT Bateman, Dale CDR Stewart, Jeffrey CDR Petrusa, Douglas LCDR Angelo, James YNC Appleberry, Jason LT Ayers, Silas LT Bartlett, Charles MST1 Baldwin, Robin FS3 Beasley, Corey HSCS Bender, Zachary ENS Berringer, Mike ETC Blas, Paul FN Brogan, John MKC Brown, Betty MK3 Buford, Aimee BM2 Coombe, Jeffrey MK2 Dabe, Jeffrey IT1 Davis, Jonathon ET2 Dolton, Peter ENS Dull, Steven FS2 Dunning, Lara BM3 Fernandez, Chelsey SN Ford, Angela SN Galvez, Oscar R. LT Glenzer, William BM1 Ghosn, Kathleen FN Gray, Deidre SN Griffin, Bobby SK2 Hamilton, H. Mark FS3 Harbinsky, Mark ET2 Harris, Daniel SK1 Huneycutt, Gaines BM2

Hurtado, Daniell EM1 Imgarten, Christopher DC1 Irwin, Paul EM2 Jacobs, Bryson ENS Jones, Greg MKCS Kidd, Wayne BMC Kimmel, Brian BM3 Kruger, Thomas MST3 Ladd, Donald EM2 Laisure, Jeremy SK2 Lambert, Douglas MKC Layman, Rich MST1 Liebrecht, Brian ET1 Lyons, Sean R CWO3 Manangan, Sorjen OSC Marsden, George DCC McNally, Terence SK1 McManus, Gene SN Merten, James SN Miller, Valerie CWO2 Murphy, Nicholas MK2 Murray, Justin SN Myatt, Lisa ENS Olson, James EM3 O'Sullivan, Brandon MK2 Passalacqua, Joseph ETCM Podhora, Curtis EMCM Powell, Gregory ET3 Quichocho, Robert MK1 Redd, Davion DC2 Rieg, Mark MSTC Rivera-Maldonado, Abner SKC Rodermund, Michael, SA

Rose, John CWO Roy, Evan BM3 Rudibaugh, Kenneth MK1 Schendorf, Tara ENS Shaffer, Hans EM1 Siciak, Anthony MK3 Smith, Corey MK3 Smith, Josh LTJG Starling, Wendy MK2 Swanson, Shawn ET1 Thomas, Tasha ENS Thompson, Emily SN Tysin, Alley SNFS Von Kauffmann, Daniel IT1 Wagner, Alexander FN Whiting, Allan, MK1 Williams, Tony FSCS Wilson, Thomas BMCM Worrell, Kenneth EM1 Yeckley, Andy BM3 Zitting, Arrene FS1

Science Components and their major sampling activities

Auxiliary Science (Healy)

IABP - National Ice Center Pablo Clemente-Colon (NIC/NOAA)

This effort represents continued participation of NIC personnel and the testing and deployment of International Arctic Buoy Program (IABP) buoys. Drifting buoys will be deployed in open water during the most western and southern tracks of the cruise. None of these deployments should require on ice operations. Although unlikely, depending on need, opportunity, and sea ice conditions encountered, one of the seasonal buoys may instead be deployed on multiyear sea ice (MYI). In this case, the deployment on MYI, if needed, would be scheduled to take advantage of other planned stops but in all cases will be conducted strictly as independent and separate field activities from other cruise plans. Typical deployments on MYI take 30-45 minutes of on-the-ice time. The seasonal buoys testing and deployment should be completed during HLY0805. A pre-cruise nowcast analysis of sea ice conditions in the Beaufort Sea and Canada Basin region will be provided by the NIC to the Chief Scientist. In addition to on board sea ice analysis and imagery cruise support, the NIC personnel will collect hourly observations of sea ice characteristic as the Healy navigates ice infected waters. Recorded observations will include estimates of ice thickness and snow depth during icebreaking operations in the ice pack. NIC personnel will also coordinate with the Louis St. Laurent the acquisition and analysis of satellite imagery from NIC and Canadian Ice Service sources under the North American Ice Service collaboration.

Mixotrophy in Arctic Protists - Alternative Nutritional Strategies

Rebecca J. Gast (WHOI) and Robert Sanders (Temple University)

One-celled plankton traditionally have been divided into either phototrophic (algal, using light for metabolism) or heterotrophic (using complex organic compounds for metabolism). However, mixotrophic behavior, whereby organisms combine both modes of nutrition within a single cell, has been increasingly recognized and documented in recent decades. The potential nutritional benefits of being able to use chemosynthesis as well as particle ingestion gives greater survival potential to the phytoplankton, by enabling it to utilize potential diverse sources of energy, major nutrients, and micronutrients including vitamins and trace metals during long periods of polar darkness when chemosynthesis is not practical. This science experiment involves taking water samples in the Arctic to test for the presence of mixotrophic one-celled organisms. The participating scientists have conducted numerous studies of mixotrophy off Antarctica and are unaware of similar studies in the Arctic.

Water samples are to be collected via CTD equipped with the 24-place rosette with 12L Niskin bottles and silicone O-rings, Chelsea fluorometer, and PAR sensor. Optimally, water is to be collected about every other day (so about 12-13 casts total), at the near surface (5m) and the chlorophyll maximum (around 20-30m in the Antarctic). The samples are cultured, and examined microscopically for evidence of mixotrophy

Distribution Contents

Introduction to Data

The Healy data acquisition systems continuously log data from the instruments used during the cruise. This document describes:

- The structure and organization of the data on the distribution media.
- The format and contents of the data strings.
- Formulas for calculating scaled, calibrated values from logged data.
- Information about the specific instruments in use during the cruise.
- A log of instrumentation issues, adjustments, acquisition problems, and events during the cruise that may affect the data.
- Calibration data for the instruments in use during the cruise.

The data is distributed on a small USB disk drive.

IMPORTANT: Read the section, "Acquisition Problems and Events," for important information that may affect the processing of this data.

There are two logging system on the Healy. The US Coast Guard Seattle Electronic Support Unit (ESU) runs the NOAA/SCS logging system and the LDEO support group runs the Lamont Data System (LDS) logging system. Although this provides some redundancy in logging, LDS is required to provide precision time-stamping, real-time reformatting, and logging of data that SCS was not designed to support including the sonar systems, web cameras, and gravity meters.

The NOAA-developed Scientific Computer System (SCS) (version 4.2) is a data acquisition, and display system designed for Oceanographic, Atmospheric, and Fisheries research applications and was originally intended to log data from supporting sensors (not the mapping sonar's) on survey launches. It acquires sensor data from shipboard oceanographic, atmospheric, and fisheries sensors and provides this information to scientists in real time via text and graphic displays, while simultaneously logging the data to disk for later analysis. SCS also performs quality checks by monitoring I/O, providing delta/range checks and plotting data after acquisition.

The LDEO Data System (LDS) is derived the logging code originally developed on the R/V Conrad in 1986 and has evolved through use on the Conrad, Ewing, Nathaniel B. Plamer, R/V Gould, six SCICEX submarine cruises and a number of smaller, short field programs since 1987. LDS is the result of significant restructuring of the code base in 2004 and has been data acquisition system on the R/V Langseth since she went into service.

SCS Data Overview

SCS receives all of its data through asynchronous serial (RS-232) connections. In SCS a time tag is added at the beginning of each line of data in the form,

mm/dd/yyyy,hh:mm:ss.sss,[data stream from instrument] where:

Format	Value used
mm	2 digit month of the year
dd	2 digit ay of the year
уууу	4 digit year
hh	2 digit hour of the day
mm	2 digit minute
SS.SSS	seconds

An example string from the Seabeam Centerbeam file is:

04/13/2007,06:49:20.920,\$SBCTR,2007,4,13,06:49:09.437,57.158792,-165.664322,69.15,60*00

All times are reported in UTC. Each file type has it's own NEMA string name (\$SBCTR as an example).

The delimiters that separate fields in the raw data files are commas. Care should be taken when reprocessing the data that the field's separations are clearly understood.

By design, SCS separates different data records from a single serial data stream into different directories. For instance, a GPS receiver may transmit \$GPGGA, \$GPHDT, and \$GPGLL records. In the SCS data architecture, each of these messages will be logged in a different directory.

LDS Data Overview:

LDS receives most of its data through serial ports like SCS and like SCS, prepends a time stamp. Unlike SCS, LDS uses remote nodes to acquire and timestamp data and provide it to the central LDS logger. Data from the two ship's gyrocompasses is handled by a remote node installed on the bridge and data form the two gravity meters is handled by a node in IC/Gyro. Remote nodes are substantively different than terminal servers in that they timestamp the data locally which eliminates the network latency associated with acquiring data through a terminal server and then providing the timestamp later.

An example LDS data record is shown below. The first field is the instrument identifier, the second is a precioisn time stamp and the remainder is the raw data from the device, in this case, an LDEO iLab BGM-3 gravity meter interface:

bgm222 2008:264:00:00:26.9340 04:025508 00

Directories:	
1_Minute_Averaged_Data:	This directory contains one minute averages of many of the the under way data types.
data:	This directory contains the data directories below.
SCS_Data:	This directory contains serial data collected by the SCS version 4.2 data collection system in different directories. Directory names are labeled by the instrument name and string type of the data collected. A description of the data contained in this directory is below.
LDS_Data:	This directory contains data collected by the Lamont LDS data collection system in different directories. Directory names are labeled by the name of the instrument. A description of the data contained in this directory is below.
Raw:	This directory contains raw data as recorded by individual instruments and put into different directories. Directory names are labeled by the instrument name. A description of the data contained in this directory is below.
Meta_data:	This directory contains documents useful in the post analysis of the data on this DVD media set. The data types are separated into different directories. A description of these directories is below.
Plots:	This directory contain daily and hourly plots of underway data that were generated in LDS.

1_Minute_Averaged_Data:

HLY0806_distance.csv.gz	Distance along track from port.
HLY0806_Averaged.csv.gz	All the Under way data averaged for 1 minute.
Shapefile	All of the 1 minute under way data averaged at 1 minute spacing in shp, shx and dbf GIS files.

data

SCS_Data:

/aft_a_frame	Wire tension, wire out, and wire speed for the Aft A frame sheaves.
/air_temp_f	Temperature data from the RM Young wind sensor in Fahrenheit. Data is derived from data from files in the rmyoung_air directory
/ashtech_attitude	Attitude in NMEA format from the Ashtech ADU5 GPS receiver
/ashtech_gga	Position data in NMEA GGA format from the Ashtech ADU5 GPS receiver
/ashtech_gll	Position data in NMEA GLL format from the Ashtech ADU5 GPS receiver

	HLY0806 Data Synopsis
/ashtech_hdt	Heading data in NMEA HDT format from the Ashtech ADU5 GPS receiver
/dew_point_f	Dew point temperature derived from air temp
/flomet_a	Flow meter data just upstream of the A TSG and Fluorometer.
/fluro_a	Flurometer for the A TSG sensor.
/glonass_gga	Position data in NMEA GGA format from the GLONASS GPS receiver.
/glonass_gll	Position data in NMEA GLL format from the GLONASS GPS receiver.
/gyro_mk27	Heading data in NMEA HDT format from the Sperry MK27gyro compass
/gyro_mk39	Heading data in NMEA HDT format from the Sperry MK39 gyro compass
/ibs_waypoints	Waypoints from the Healy's Integrated Bridge System
/isus	ISUS Nitrate Sensor small file
/isus3v	ISUS Nitrate Sensor 3V full file
/knudsen	Depth data in the Knudsen PKEL format received from Knudsen 320 B/R serial output
/met3a_sen	Meteorology data from the top of the Jack Staff on the bow.
/oxygen_a	Dissolved oxygen values from A TSG.
/pcode_aft_gga	Position data in NMEA GGA format from the Trimble Centurion P-Code GPS receiver located in the Computer Lab
/pcode_aft_gll	Position data in NMEA GLL format from the Trimble Centurion P-Code GPS receiver located in the Computer Lab
/pcode_aft_vtg	Course made good and speed over ground in NMEA VTG format from the Trimble Centurion P-Code GPS receiver located in the Computer Lab
/pcode_aft_zda	Time and date data in the NMEA ZDA format from the Trimble Centurion P-Code GPS receiver located in the Computer lab
/pcode_bridge_gga	Position data in NMEA GGA format from the Trimble GPS receiver located on the bridge.
/pcode_bridge_gll	Position data in NMEA GLL format from the Trimble GPS receiver located on the bridge.
/pcode_bridge_vtg	Course and speed over ground data in NMEA VTG format from the Trimble GPS receiver located on the bridge.
/posmv_gga	Position data in NMEA GGA format from the POS/MV
/posmv_gst	Pseudorange error statistics in NMEA GST format from the POS/MV
/posmv_hdt	Heading data in NMEA HDT format from the POS/MV
/posmv_pashr	Roll, pitch and heave from POS MV inertial navigation system.
/posmv_vtg	Course and speed over ground in NMEA VTG format from the POS/MV
/posmv_zda	Time and date data in NMEA ZDA format from the POS/MV
/pressure_sen	Water pressure in the Uncontaminated Seawater System in the Bio Chem Lab in pounds per square inch.

	HLY0806 Data Synopsis
/rmyoung_air	Temperature, relative humidity, and atmospheric pressure in NMEA format from the RM Young meteorological system on the bridge and flying bridge.
/rmyportwind	Wind speed and direction data in NMEA format from the RM Young weather vane on the port side of the Healy.
/rmystbdwind	Wind speed and direction data in NMEA WMV format from the RM Young weather vane on the starboard side of the Healy.
/samos_data	Derived (assembled) meteorology data reported automatically during the cruise for SAMOS.
/sbd_a_frame	Wire tension, wire out, and wire speed for the starboard A frame sheaves.
/seabeam_center	Center depth extracted in real-time from the SeaBeam 2112
/solar_radiometers	Short wave and long wave solar Radiometer data from sensors on the top of HCO.
/sperry_speedlog	Ground/water speed data from the Sperry SRD-500 Speed Log. The speed log is retracted and not operated when the ship is operating in ice.
/surface_par	Photosynthetic Active Radiation volts and microeinstens/m ² from the surface PAR sensor on the top of HCO.
/sv2000	Speed of sound in the water/propelyene glycol solution as measured by the SV2000 acoustic velocimeter located in the ADCP BB150 sonar well
/true_wind_port	True wind speed calculated by SCS from gyro heading (source undefined) and the port-side RM Young windbird
/true_wind_stbd	True wind speed calculated by SCS from gyro heading and the starboard- side RM Young windbird.
/winch_data	Wire data (line out, tension and wire speed) from the Totco wire metering ssystem.
/wind_sen_a	Wind data from the ultrasonic anemometer on the Jack Staff.
/wind_sen_b	Wind data from the the ultrasonic anemometer on the starboard yard arm (of the mast.)

Extra files in the directory SCS_Data:

ACQLOG.LOG	Contains the data as to what occurred with SCS data. It shows when data collection was started and stopped. Includes startup and shutdown events.
Incidents_YYYYMMDD-TTT7	TT.DTM Contains any incident data, which were triggered in SCS. Refer to the SCS documentation for the definition of "incidents."
sensor_YYYYMMDD-TTTTT	.scf Contains the configuration file for data collection as configured by SCS.

LDS_Data:

/AloftConCam

Contains photographs (images) in JPEG format from the digital camera mounted in Aloftcon and pointed forward. Picture files are grouped in

	HLY0806 Data Synopsis
	subdirectories by folders by Day of Year (YYYYJJJ). The picture files are in 5 minute JPEG format.
/FantailCam	Photographs from a digital camera mounted in AftCon and pointed at the fantail/stern A-frame. Same structure as the AloftCon photos but not at the same resolution.
/adu5	Contains the data from the Thales (Ashtech) ADU5 GPS Receiver whose antenna array is mounted on the top of HCO
/aggps	Contains the data from the Trimble AG132 differential GPS Receiver. Antenna is on the top of HCO
/ais	Contains data from the Automatic Identification System (AIS) receiver mounted on the top of HCO. These are binary messages encapsulated in NMEA VDM sentences.
/bgm221	Contains the data from the Bell BGM-3 Marine Gravity meter system serial number 221 installed in IC/Gyro.
/bgm222	Contains the data from the Bell BGM-3 Marine Gravity meter system serial number 222 installed in IC/Gyro
/events	Contains the LDS event log for each logging process. Typically a record for each time that process was started plus any other messages.
/mk27	Contains the data from the ship's Sperry MK27 Gyrocompass
/mk30	Contains the data from the ship's Sperry MK30 Gyro.
/posatt	Contains the attitude data from the POSMV GPS aided inertial guidance, heading and attitude reference system.
/posnav	Contains the navigation data records in NMEA format from the POSMV GPS.
/posreform2sb	Contains the navigation data from the POSMV GPS reformatted in real- time for the SeaBeam 2112 multibeam sonar.
/sbctr	Contains the center beam data in NMEA format extracted from the SeaBeam 2112 data.
/sbsv	Contains the surface sound speed calculated in real-time from the TSG records and formatted for the SeaBeam.
/seabeam	Contains the raw SeaBeam 2112 multibeam data. These data are in MB- System Type 41 format which is the native format of the sonar.
/tsg_met	Contains the all data from the TSG and Met sensors installed and supported by the Ocean Data Facility (ODF) of the Scripps Institution of Oceanography (SIO).
/SwapPingHLY	Contains network performance statistics (from 'ping ')for the Healy/LSSL SWAP2 wireless network connection.
/SwapRoute	Contains routing table information for Healy/LSSL SWAP2 wireless network connection.
/SwapStatsHLY	Contains Healy wireless stats for Healy/Louis wireless network(swap) connection.
/SwapStatsLSL	Contains Louis wireless stats for Healy/Louis wireless network(swap) connection.

Raw:

/adcp75	The VMDAS native-format data for the RDI OS75 KHz ADCP data	
/adcp150	The VMDAS native format data for the RDI VM150 Acoustic Doppler Profiler (ADCP) 150 KHz	
/ctd	CTD data in directories by Cast number.	
/xbt	Expendable Bathythermograph data in raw (RDF) and export (EDF) formats.	
/knudsenraw	Data from the Knudsen 320B/R chirp subbottom profiler.	
Satellite_Images:		
	Contains satellite imagery in jpeg format	
/dmsp	Data from the Defense Meteorology Satellite Program passes logged by the Healy's Terascan. Directories are identified by Year, Month, Day	

S

	Contains satellite imagery in jpeg format
/dmsp	Data from the Defense Meteorology Satellite Program passes logged by the Healy's Terascan. Directories are identified by Year, Month, Day
/hrpt	Data from the NOAA weather satellite passes logged by the Healy's Terascan. Directories are identified by Year, Month, Day

Meta_Data:

/elog	Contains the technical support staff narrative of important events, which occurred both to the network and to individual sensors.
/Bridge_Logs	
DDMMMYY.doc	The "smooth log" containing events recorded by the bridge watch.
DDMMMYYWX.xls	Weather log recorded by the watch.
DDMMMYYNAV.xls	Navigation logs recorded by the watch.
/Sensor_Formats	Contains html and PDF files documenting the formats of all the files collected under way during the cruise.
./Systems_Calibrations	All of the calibrations sheets for the underway instruments are here.
./WHOisWHO	The directory has information about contacts for the Science personnel on this cruise.

CI	70.
21	1.

Sound speed profiles used for the Seabeam

Plots:

./knudsen_hourly_plots:	Directories of the SIOSEIS plots of the Knudsen 3.5 kHz data are in directories named by year, month, and day. These images are in the png format. There are two plots for each window in time. One is a large sized plot and one is a smaller plot. The files start 10 minutes before the file name and 10 minutes after the hour the file is named for.
./surface_daily_plots	Directories containing daily plots of under way data.

Contents by directory:

SCS Data: aft a frame air temp f ashtech attitude ashtech gga ashtech gll ashtech hdt dew_point_f flomet a fluro a glonass gga glonass gll gyro mk27 gyro mk39 ibs waypoints isus knudsen met3a sen oxygen_a pcode aft gga pcode_aft_gll pcode aft vtg pcode aft zda pcode bridge gga pcode bridge gll pcode_bridge_vtg posmv gga posmv_gst posmv hdt posmv pashr posmv_vtg posmv zda rmyoung air rmyportwind

rmystbdwind samos data seabeam center solar radiometers sperry speedlog stbd a frame surface par surface temp sv2000 true wind port true_wind_stbd tsg a wind sen a wind sen b Raw: adcp150 adcp75 ctd knudsenraw xbt Satellite Images: dmsp hrpt LDS Data: AloftConnCam FantailCam **SwapPingHLY** SwapRoute SwapStatsHLY SwapStatsLSL adu5 aggps ais bgm221

bgm222 events mk27 mk30 posatt posnav posreform2sb sbctr sbsv seabeam tsg met Meta Data: Bridge Logs Systems Calibration Data Elog **WHOisWHO** Sensor Formats **Plots:** Knudsen hourly plots Surface daily plots SVP: **1 Minute Averaged Data:**

Page 19 of 71

Merged Data

LDEO Averaged One Minute Data File

The data are summarized into an averaged one (1) minute data file by the LDEO technician. This file takes the average value centered around the minute, (30 seconds either side of the whole minute). The averages are calculated from the raw values as they are logged. There has been no quality control done on these files prior to the averaging. Those wishing more accurate and quality controlled values should process the data in the directories described below in the document.

HLY0806_track.csv

16945,2008/09/17 02:56,79.4979640,-140.5858535,108.9,3.4,115.4,3786.4,-1.313,-0.801,21.6495,26.034,0.474,0.047,0.000,0.010,2.77,11.98,320.65,271.60,271.58,34.78,-1.82,98.20,1019.26,5.01,143.96,4.36,267.71,5.94,129.06,4.07,258.55,5.46,7.350,-0.801,,,1,-20,8,0,1,-20,8,0,11.91,263.1,8.72,1.37

16946,2008/09/17 02:57,79.4976388,-140.5811450,112.1,3.3,119.0,3785.6,-1.311,-0.802,21.6451,26.029,0.482,0.048,0.000,0.010,2.77,11.98,320.57,271.60,271.58,34.78,-1.82,98.20,1019.23,5.02,144.36,5.54,270.33,7.07,121.20,3.88,255.88,5.10,7.352,-0.802,,,1,-20,8,0,1,-20,8,0,12.46,259.4,8.72,1.36

16947,2008/09/17 02:58,79.4972918,-140.5765272,112.7,3.3,119.3,3781.4,-1.310,-0.803,21.6409,26.024,0.478,0.048,0.000,0.010,2.77,11.98,320.64,271.59,271.57,34.34,-1.83,98.18,1019.20,5.02,148.16,5.97,272.92,7.51,132.40,4.11,264.42,5.51,7.352,-0.803,,,1,-20,8,0,1,-20,8,0,13.82,265.1,8.72,1.36

Field	Data	Example	Units		
01	ID	16945	sample count		
02	date	2008/09/17 02:56	date & time UTC (year/month/day hour:minute)		
03	lat	79.4979640	\$INGGA, POSMV Latitude (decimal degrees)		
04	lon	-140.5858535	\$INGGA, POSMV Longitude (decimal degrees)		
05	cog	108.9	\$INVTG, POSMV Course Over Ground (angular distance		
			from 0 (North) clockwise through 360, 1 minute average)		
06	sog	3.4	\$INVTG, POSMV Speed Over Ground (Knots, 1 minute		
			average		
07	heading	115.4	\$PASHR, POSMV ship heading(angular distance from 0		
			(North) clockwise through 360, 1 minute average)		
08	depth	3786.4	\$SBCTR, Seabeam centerbeam depth(meters, 1 minute		
			average)		
09	SST	-1.313	\$PSSTA, SBE3s RemoteTemperature, Sea Chest intake		
			(Celsius, 1 minute average)		
10	TSG_InTemp	-0.801	\$PSTSA, SBE45 internal temperature (Celsius, 1 minute		
			average)		
11	TSG_Cond	21.6495	\$PSTSA, SBE45 Water Conductivity		
			(millisiemens/centimeter, 1 minute average)		
12	TSG_Sal	26.034	\$PSTSA, SBE45 Water Salinity (PSU, 1 minute average)		
13	SCF-FL	0.474	\$PSFLA, SCF Fluorometer (Ug/l, 1 minute average)		
14	SCF-FL-V	0.047	\$PSFLA, SCF Fluorometer (Volts, 1 minute average)		
15	SCF-Turb	0.000	\$PSFLA, SCF Turbidity (NTU, 1 minute average)		
16	SCF-Turb-V	0.010	\$PSFLA, SCF Turbidity (Volts, 1 minute average)		

Field	Data	Example	Units		
17	tsg_flow_A	2.77	\$PSFMA, Flowmeter in-line with PSTSGA, PSOXA,		
			PSFLA (LitersPerMinute, minimum value in 1 minute		
			interval)		
18	SWR	11.98	\$PSSRA, Short Wave Radiation (W/M^2, 1 minute average)		
19	LWR	320.65	\$PSSRA, Long Wave Radiation (W/M^2, 1 minute average)		
20	LWR_Dome_T	271.60	\$PSSRA, LWD Dome Temperature (Deg K, 1 minute		
			average)		
21	LWR_Body_T	271.58	\$PSSRA, LWD Body Temperature (Deg K, 1 minute		
			average)		
22	PAR	34.78	\$PSSPA, Surface PAR (uE/Sec/M^2, 1 minute average)		
23	MET3A_Temp	-1.82	\$PSMEA, MET3A Air Temperature (Deg C, 1 minute		
			average)		
24	MET3A_RH	98.20	\$PSMEA, MET3A Relative Humidity (%, 1 minute average)		
25	MET3A_Baro	1019.26	\$PSMEA, MET3A Barometric Pressure (millibars, 1 minute		
2(5.01	average)		
26	MET3A_Precip	5.01	\$PSMEA, MET3A Precipitation (mm, 1 minute average)		
27	JS_WndDirR	143.96	\$PSWDA, Jackstaff Relative wind direction (deg, 1 minute		
28	JS WndSpdR	4.36	average) \$PSWDA, Jackstaff Relative wind speed (m/s, 1 minute		
28	JS_WIIdSpak	4.30	· · · · · ·		
29	JS_WndDirT	267.71	average) \$PSWDA, Jackstaff True wind direction (deg, 1 minute		
29		207.71	average)		
30	JS_WndSpdT	5.94	\$PSWDA, Jackstaff True wind speed (m/s, 1 minute		
50		5.74	average)		
31	MM WndDirR	129.06	\$PSWDB, Main Mast Relative wind direction (deg, 1 minute		
01		1_,	average)		
32	MM_WndSpdR	4.07	\$PSWDB, Main Mast Relative wind speed (m/s, 1 minute		
	_ 1		average)		
33	MM WndDirT	258.55	\$PSWDB, Main Mast True wind direction (deg, 1 minute		
	_		average)		
34	MM_WndSpdT	5.46	\$PSWDB, Main Mast True wind speed (m/s, 1 minute		
			average)		
35	SBE_Oxy	7.350	\$PSOXA, SBE-43 Oxygen(ml/l, 1 minute average)		
36	SBE_Oxy_T	-0.801	\$PSOXA, SBE-43 Oxygen Temperature(Deg C, 1 minute		
			average)		
37	Isus_1		\$PSNTA, Isus Aux 1(Volts, 1 minute average)		
38	Isus_2		\$PSNTA, Isus Aux 2(Volts, 1 minute average)		
39	WinchAft	1	Aft A-Frame Winch number		
40	TensionAft	-20	Aft A-Frame Winch Wire tension(Pounds, 1 minute		
4.1		0	average)		
41	WireOutAft	8	Aft A-Frame Winch Wire out (Meters, 1 minute average)		
42	SpeedAft	0	Aft A-Frame Winch Wire speed (Meters/minute, 1 minute		
43	WinchSbd	1	average) Starboard A-Frame Winch number		
43	TensionSbd	-20	Starboard A-Frame Winch Nire tension (Pounds, 1 minute		
	1 CHSIOHSUU	-20	average)		
45	WireOutSbd	8	Starboard A-Frame Winch Wire out (Meters, 1 minute		
	WIICOULDUU		average)		
46	SpeedSbd	0	Starboard A-Frame Winch Wire speed (Meters/minute, 1		
1 0	specusou	V	Starboard A-maine which whe speed (Meters/Inniute, 1		

III MOOOL D	a	•
HLY0806 Data	Svi	100515
IIL I 00000 Duite	~	10pbib

Field	Data	Example	Units
			minute average)
47	StbdWndSpdT	11.91	RM Young True Wind Speed, starboard (Knots, 1 minute
			average)
48	StbdWndDirT	263.1	RM Young True Wind Direction, starboard (angular distance
			from 0 (North) clockwise through 360, 1 minute average)
49	OxySat	8.72	Dissolved oxygen (DO) saturation as a function of T and S
			(Weiss)(ml/L, 1 minute average)
50	AOU	1.37	Apparent Oxygen Utilization (AOU)(ml/L,1 minute average)

File Formats of Data Collected Underway

The formats of the Under way data files that were collected on this cruise are in a separate document named HLY0806_Sensors. This is now a separate document due to its large size. The file HLY0806_Sensors.htm is found in the Meta_Data directory. A PDF version of this file should also be here. To use this html file you will need to have the directory HLY0806_Sensors_files in the same directory as the html file.

Also in the Meta_Data directory there may be some PDF files for data that was collected but not part of the normal science routine.

APPENDIX:

Acquisition Problems and Events

A electronic logbook (elog) is utilized on the ship for logging of science related problems and events as they happen. A dump of the logbook is done at the end of the cruise and saved in the Meta_Data directory under the "elog" subdirectory. Two logbooks are kept: one by the technical support personnel and one of entries by the science party watchstanders. Several dump formats are made available such as html, csv, xml and raw. These logs should be consulted to help identify instrument and system anomalies affecting data quality. Times are reported in GMT (UTC, Z).

Below here is a summary of technical logbook. For exact details you should check the files in elog. The science watchstanders log is not summarized here.

Date	Time (UTC)	Comment		
09/05/08	09:17	Start Knudsen for HLY0806		
09/06/08	04:00	Start SeaBeam for HLY0806		
09/06/08	16:21	Start ADCP 150 for HLY0806		
09/07/08	00:30	Start ADCP 75 for HLY0806		
09/07/08	21:09	Adjust flow rate for Science Seawater		
09/08/08	20:17	Load codes into P-Code GPS		
09/09/08	06:20	Note at about 10Z 9/8/8 the Jack Staff and Yard Arm Ultrasonics		
		rime iced		
09/09/08	17:21	WDS system configured to encrypted mode		
09/13/08	02:38	Port side Ship's wind bird frozen for the last few days		
09/13/08	02:45	Ship to ship SWAP came up today		
09/13/08	05:22	SeaBeam stopped ¹ / ₂ hour ago, investigating		
09/13/08	05:55	SeaBeam running again with new MO disk		
09/18/08	03:27	Gravimeter 221 failed around 00:00 UTC		
09/18/08	11:03	Around 01:30Z the winds sensors look like they are mostly working again		
09/18/08	23:05	Attempt Gravimeter 221 restart 15 minutes ago		
09/19/08	21:38	ice in Biochem sink, TSG flow clogged. MST water flow tests		
09/19/08	23:58	TSG flow rate at about 2.5 1/m		
09/20/08	03:29	TSG was getting various tests with water flowing on the bow (see notes)		
09/22/08	07:07	on 9/21 at 21:04Z ADCP 75 was secured to get cleaner 150 data.		
09/22/08	07:14	ADCP 150 gyro input locked		
09/22/08	07:40	ADCP 150 gyro reset		
09/22/08	12:45	SCS display adjusted. SCS restarted??		
09/22/08	15:10	ADU5 Attitude stopped at about 18Z on 9/19		
09/22/08	16:35	ADU5 Attitude reset		
09/23/08	07:04	ADCP 150 gyro input locked		
09/23/08	07:16	ADCP 150 reset		
09/25/08	03:33	Gravimeter roll gyro replaced and restarted		
09/25/08	16:47	Saltwater flow adjusted		
09/25/08	16:57	Earlier Gyro MK27 failed. Reset and up again		
09/25/08	19:35	Various TSG tests conducted over the day		
09/28/08	00:16	Maybe a restart of some SeaBeam serial console windows?		
09/28/08	09:02	AU5 heading stopped at 21:00Z the previous day, contact ECC		
09/28/08	09:11	AU5 reset heading working again		
09/29/08	07:52	SeaVenture crashed. Links to other computers re-established		
09/29/08	21:20	VMS was taken down without notice. SeaBeam time thrown off.		
10/01/08	05:46	ADCP 150 stopped. End of HLY0806 data.		
10/01/08	05:47	ADCP 75 stopped. End of HLY0806 data.		
10/01/08	05:51	Knudsen stopped. End of HLY0806 data.		
10/01/08	06:02	SCS recording stopped. End of HLY0806 data.		
10/01/08	06:07	LDS recording stopped. End of HLY0806 data.		

Comments that might help when using the data

The SCS system has to be stopped when fixing some kinds of issues. If this is the case, you should consult the elog entries for possible explanations and look for the corresponding data in the LDS_Data directories. The data may have been recorded there.

The Knudsen data written into SCS_Data/Knudsen has an inconsistent time in the data. The time that the SCS writes to the start of the KEA file should be used. The Knudsen internal clock adds about 22.8 seconds to the internal clock each day near 00:00. But this is reset when the recording program is started up and when watchstanders manually synchronize the time. Use only the SCS time stamp for time in this data and it should be fine. The accuracy of the time in the SEG-Y files and KEB files should be inspected and compared to the time-stamped KEA records.

The SeaBeam data is raw and unedited. This data may need significant editing and care depending on the intended use. The SeaBeam 2112 has significant issues with the near-nadir beams: the bathymetry tends to be less repeatable in the near-nadir region compared to the middle of the swath. The outer beams are noisier in the icebreaker 2112 installations than those installed on non-icebreakers.. The acoustic noise plus bubble-sweep down and masking by ice under the hull all contribute to degrading the data quality while operating in ice.

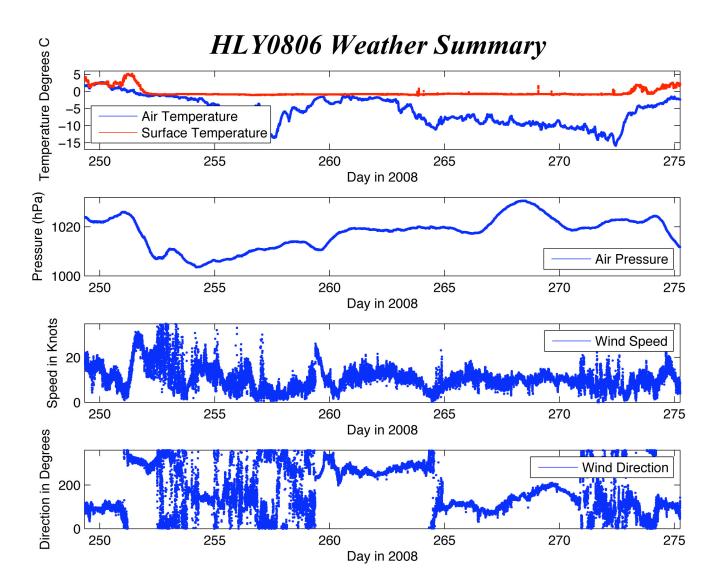
The Knudsen subbottom data is not an accurate source of water depth for a number of reasons, including the fact that it is always recorded using a sound speed of 1500 meters/second., because the beam pattern Is large (3-to 60 degrees), because of it's bottom detection algorithm and because it penetrates the seafloor.

Both the mechanical windbirds and the ultrasonic anemometers spent much of the trip iced up. Care should be taken when using the data from the wind sensors. Although the ultrasonic anemometers are heated, it seems like there amount of heat was not up to the task.

Part way into the cruise the Gravimeter #221 failed. This was fixed and the meter was restarted. There is a difference in offset of the raw counts compared to the #222 Gravimeter after the restart. Care should be taken when using this data until calibrations have been completed.

During the cruise at various times the MSTs were changing the water flow in the Science Sea Water system to test the system's response to various flow rates in the ice. This changes the amount of water going through the TSG and has discernable impact on the dissolved oxygen measurement among other things. You should closely follow the elog entries for the TSG to see when water flow rates were adjusted. These events were not always accurately entered into elog.

In the SVP directory are the sound speed proviles use for the SeaBeam. These are constructed from various sources including XBTs, historical data (the Levitus climatology), CTDs and from the XCTDs deployed from LSSL. These files were created from the full XCTD data, which is proprietary. The Sound Speed Profiles used are entered into the SeaBeam. When the MO crashes, the SVP's used are not preserved and need to be transferred to the new MO disk. The SVP directory has many of the SVPs used but not all of them.


The ADCP file naming uses a series number after a base name. Below is a summary of the dates and the series numbers used for this cruise for each ADCP. Details of events that affect the ADCP data recording were logged in both the Technicans' and the Watch Standers' electronic logs for HLY0806.

ADCP Operational summary:

150Khz Broadband		75KHz Narrowband		
HLY0806001*	09/06 - 09/16	HLY0806001*	09/06 - 09/21	
tests				
HLY0806002-4*	09/16			
		turned off to check interference on 150	09/21	
New configuration w/ low exclusion thresholds				
HLY0806005*	09/16 - 09/24			
System hung, had to				
restart				
HLY0806006*	09/24 - 09/28			
		turned back on		
		HLY0806002*	09/26 -	
Trouble restarting,				
several tries to start				
HLY0806007-11*	09/28 -			

The POSMV navigation system reports it's location as the master reference point and not at the antenna locations above the Helicopter Control Shack (HCO). The Location of the Master Reference Point (MRP) can be seen in the diagram at the end of this document showing instrument locations on the ship.

Cruise Weather Summary

Underway Sensors and Calibrations

Sensors and Calibrations

HLY0806 Shipboard Sensors

Sensor	Description	Serial #	Last Calibration Date	Status
Meteorology & Radiometer	`S			
Port Anemometer	RM Young 09101	L001	02/06/07	Collected
Stbd Anemometer	RM Young 09101	L003	03/07/07	Collected
Barometer	RM Young 612011	BP01643	02/22/08	Collected
Air Temp/Rel. Hum.	RM Young 41382V	13352	02/22/08	Collected
Helo shack PAR	BSI QSR-2200	20270	01/09/07	Collected
Shortwave Radiation	Eppley labs - PSP	35032F3	08/01/07	Collected
Longwave Radiation	Eppley labs - PIR	34955F3	08/17/07	Collected
Barometer	Paroscientific MET3A	101757	06/27/07	Collected
Bow Temperature	Paroscientific MET3A	101757	06/27/07	Collected
Precipitation	Paroscientific MET3A	101757	06/27/07	Collected
Relative Humidity	Paroscientific MET3A	101757	06/27/07	Collected
Jack Staff Ultrasonic Anemometer	RM Young 85004	00703	09/20/07	Collected
Yard Arm Stb Ultrasonic Anemometer	RM Young 85004	00704	09/20/07	Collected
Underway Ocean				<u> </u>
TSG A	SeaBird SBE45	0215	08/01/07	Collected
Remote Sea Temp	SeaBird SBE3S	4063	12/13/07	Collected
Fluorometer A	Seapoint SCF	SCF2957	12/15/07	Collected
Oxygen Sensor A	SeaBird SBE-43	1307	09/28/07	Collected
Flowmeter A	Flocat C-ES45-B003	09061005	01/07/08	Collected
AC-S Spectral Attenuation and Absorption Meter	Wetlabs	053	010/10/8	Colected
Sonars		1		1
Knudsen- subbottom	320 B/R	K2K-00-0013	N/A	Collected
ADCP 150 kHz	Broad Band (BB150)	80	N/A	Collected

HLY0806 Data Synopsis

Sensor	Description	Serial #	Last Calibration Date	Status	
ADCP 75 kHz	Ocean Surveyor	172	N/A	Collected	
Multibeam	Seabeam 2112	?	N/A	Collected	
Speed log	Sperry	?	N/A	Collected	
Navigation					
P-Code GPS (aft)	Trimble Centurion	0220035469	N/A	Collected	
Attitude GPS	Ashtech ADU5	AD52003351 3	N/A	Collected	
DGPS	Trimble AGGPS- AG132	0224016199	N/A	Collected	
POSMV	Model- MV V4	2306	N/A	Collected	
P-Code GPS (fwd)	Rockwell	?	N/A	Collected	
Glonass GPS	?	?	N/A	Collected	
GYRO 1	Sperry MK39 Mod 3A PN 03956-1982416-2	340	?	Collected	
GYRO 2	Sperry MK27A 4800880-1	025	N/A	Collected	

Sensor	Comments	Serial #	Last service/ Calibration Date	Status
CTD sensor	SBE 911plus	639	01/18/08	
Pressure Sensor #1	Digiquartz with TC	83012	01/18/08	Collected
Temperature #1	SBE3- Primary	2855	01/21/08	Collected
Temperature #2	SBE3- Secondary	2796	01/27/08	Collected
Temperature #3	SBE 35	0011	03/08	Collected
Conductivity #1	SBE4- Primary	2568	01/18/08	Collected
Conductivity #2	SBE4- Secondary	2561	01/18/08	Collected
Pump	SBE5 Primary	3115	01/08	NA
Pump	SBE5 Secondary	3112	01/08	NA
Deck Unit	SBE 11-Plus V2	0417	12/07	NA
Altimeter	PSA916	843	01/08	Collected
Oxygen	SBE43	458	12/12/07	Collected
Fluorometer	Chelsea-Aquatrack3	088234	03/07	Collected
Transmisometer	Wetlabs	CST-390DR	01/08	Collected
PAR	Bioshperical QSP2300	70115	01/07	Collected
Carousel	SBE32- 12 place	347	01/08	NA

HLY0806 Sensor Calculations

The coefficients for temperature, conductivity, fluorometer and turbidity sensors can be found in the calibrations sheets below in the Appendix.

Calculating Temperature – ITS-90

- T = decimal equivalent of bytes 1-4
- Temperature Frequency: f = T/19 +2100
- Temperature = $1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\}$ -

```
273.15 (°C)
```

Calculating Conductivity – ITS-90

- C = decimal equivalent of bytes 5-8
- Conductivity Frequency f = sqrt(C*2100+6250000)
- Conductivity = $(g + hf^2 + if^3 + jf^4) / [10(1 + \delta t + \epsilon p)]$ (siemens/meter)
- t = temperature (°C); p = pressure (decibars); δ = Ctcor; ϵ = CPcor

Calculating Fluorometry Voltage

- f = decimal equivalent of bytes 15-17
- Fluorometry Voltage = f/819

Calculating Transmittance

- $V_{dark} = 0.058 V$
- $V_{ref} = 4.765 V$
- t = decimal equivalent of bytes 18 20
- Transmissometer Voltage (V_{signal}) = t/819
- % Transmittance = (V_{signal} V_{dark}) / (V_{ref} V_{dark})

Calculating PAR for surface PAR

- raw data = mV
- calibration scale = 6.08 V/(µEinstiens/cm²sec)
- offset $(V_{dark}) = 0.3 \text{ mV}$
- (raw mV V_{dark})/scale x 10⁴ cm²/m² x 10⁻³ V/mV= μ Einstiens/m²sec
- or
- (data mV 0.3 mV) x 1.65 (μ Einstiens/m²sec)/mV = μ Einstiens/m²sec

Calculating Pyrgeometer Values

V = Eppley PIR Thermopile voltage S = Sensitivity (Calibration factor from Eppley Cal sheet) S = 3.32J = Stefan-Boltzmann Constant J = 5.6697e - 8B = [absorption constant (for Eppley Black paint formula) 0.985 / dome glass IR transmission 0.5] B= 3.5 for Stock Eppley PIR Tb = Eppley Body Temperature in degrees Kelvin Td = Eppley Dome Temperature in degrees Kelvin Tb and Td calculated as follows: T = 1/(a + ln(Vo/Irt)*(b + c*(ln(Vo/Irt)**2)));Irt = (Vref-Vin)/R1 Vref = 5.0On Healy R1 = 82500a= 0.0010295 b= 0.0002391 c = 1.568e-7

 $W/M2 = V/S + (J * Tb^4) + (B*J*(Tb^4 - Td^4))$

Calibrations

The following pages are replicas of current calibration sheets for the sensors used during this cruise.

Meteorology & Radiometers

R.M. Young Wind Bird, Starboard

Serial # L001

R. M. Young Wind bird Calibration Results Model # 09101, S/N L003 (Starboard Windbird) As per Young Meteorological Instruments Wind System Calibration Manual

Date: 07 Mar 07 Technician: ET1 Berringer / ETC Rodda

Wind speed torque: Passed

Maximum toque = 2.4 gm/cm Test results: CW 0.7 CCW 0.7

Wind direction torque: Passed

Maximum toque = 30 gm/cm

Test results:	
CW	20 gm/cm
CCW	22 gm/cm

Wind speed signal:

Maximum % error = 1%

Test results: Passed

Actual RPM	Actual Wind Speed	Measured	% Error
200	1.90	1.9	0.21
500	4.76	4.8	0.84
1200	11.42	11.4	0.21
3600	34.27	34.3	0.08
5000	47.60	47.6	0.00

Note; Wind speed in knots = 0.00952 * shaft RPM

Wind direction signal:

Maximum error = +/- 2 degrees

Test results: Failed - off by 1 degree

Actual	Meaured	Error		
0	358	-2		
30	27	3		
60	58	2		
90	88	2		
120	118	2		
150	149	1		
180	178	2		
210	207	3		
240	238	2		
270	268	2		
300	297	-2 3 2 2 2 1 2 3 2 2 3 2 2 3 3 3		
330	327	3		

R.M. Young Wind Bird Port

Serial # L001

R. M. Young Wind bird Calibration Results Model # 09101, S/N L001 (Port Windbird)

As per Young Meteorological Instruments Wind System Calibration Manual

Date: 06 Feb 07

Technician: ET3 Daem / ET2 Davis

Wind speed torque: Passed

Maximum toque =2.40 gm/cm

Test results:	
CW	.2 gm/cm
CCW	.2 gm/cm

Wind direction torque: Passed

Maximum toque = 30 gm/cm

Test results: CW CCW

10gm/cm 10gm/cm

Wind speed signal: Passed

Maximum % error = 1%

Test results:

Actual RPM	Actual Wind Speed	Measured	% Error
200	1.90	1.9	0.21
500	4.76	4.8	0.84
1200	11.42	11.4	0.21
3600	34.27	34.3	0.08
5000	47.60	47.6	0.00

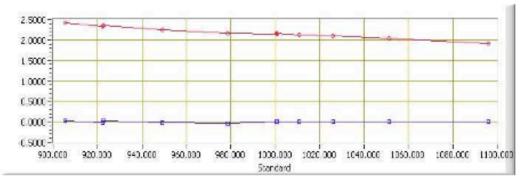
Note; Wind speed in knots = 0.00952 * shaft RPM

Wind direction signal: Passed

Barometer

Serial # BP01643

Baro Pres Calibration Report STS/ODF Calibration Facility


SENSOR SERIAL NUMBER: BP01643 CALIBRATION DATE: 22-Feb-08 SENSOR ID: BPR80 Mfg: RM Young Model: 612011 Previous Cal Date: 01-Jan-00 Calibration Tech: CM CALIBRATION AT 25.0 DegC

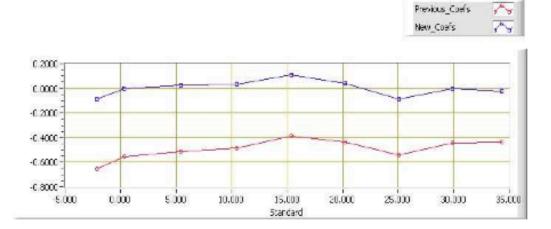
A= 5.98528E+1 B= 8.02635E+2

Calibration Standard: Mfg: Paroscientific Model: 765-16B s/n: 101778 Polynomial Order = 1 Xcalc = A*X+B

GTANDARD	GENGOR	CODT_TNCT	SPRT-INST
DATA	New_Coefs	Prev_Coefs	New_Coefs
1095.960	1095.953	1.920	0.007
1051.090	1051.086	2.028	0.004
1025.970	1025.963	2.092	0.007
1010.640	1010.645	2.118	-0.005
1000.490	1000.479	2.159	0.011
1000.990	1000.986	2.151	0.004
978.480	978.517	2.165	-0.037
948.980	949.001	2.254	-0.021
922.570	922.555	2.355	0.015
922.190	922.205	2.326	-0.015
905.210	905.180	2.413	0.030
	1051.090 1025.970 1010.640 1000.490 1000.990 978.480 948.980 922.570 922.190	DATA New_Coefs 1095.960 1095.953 1051.090 1051.086 1025.970 1025.963 1010.640 1010.645 1000.490 1000.479 1000.990 1000.986 978.480 978.517 948.980 949.001 922.570 922.555 922.190 922.205	DATA New_Coefs Prev_Coefs 1095.960 1095.953 1.920 1051.090 1051.086 2.028 1025.970 1025.963 2.092 1010.640 1010.645 2.118 1000.490 1000.479 2.159 1000.990 1000.986 2.151 978.480 978.517 2.165 948.980 949.001 2.254 922.570 922.555 2.355 922.190 922.205 2.326

Air Temperture / Relative Humidity

Serial # 13352

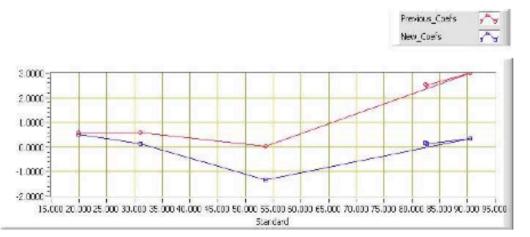

Air Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 22-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.01413E+2 B= -5.07642E+1

Calibration Standard: Mfg: Seabird Model: SBE35 s/n: 0006 Polynomial Order = 1 Xcalc = A*X+B

SENSOR	STANDARD DATA	SENSOR New Coefs	SPRT-INST Prev Coefs	SPRT-INST New Coefs
0.480	-2.122	-2.035	-0.652	-0.087
0.504	0.337	0.338	-0.557	-0.001
0.554	5.421	5.398	-0.513	0.023
0.603	10.448	10.418	-0.485	0.030
0.651	15.345	15.235	-0.386	0.110
0.699	20.190	20.154	-0.439	0.036
0.748	25.029	25.113	-0.539	-0.084
0.796	29.914	29.920	-0.442	-0.006
0.840	34.361	34.382	-0.439	-0.021


HUMIDITY Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 13352 CALIBRATION DATE: 24-Feb-08 SENSOR ID: HRH17 Mfg: RM Young Model: 41382V Previous Cal Date: 01-Jan-2000 Calibration Tech: CM

A= 1.04836E+2 B= -6.79727E-1

Calibration Standard: Mfg: GE Sensing Model: Humilab s/n: 0240507 Polynomial Order = 1 Xcalc = A*X+B

STANDARD DATA	SENSOR New Coefs	SPRT-INST Prev Coefs	SPRT-INST New Coefs
82.450	82.266	2.539	0.184
82.710	82.560	2.516	0.150
90.460	90.108	2.994	0.352
53.570	54.904	0.020	-1.334
31.000	30.876	0.599	0.124
19.920	19.396	0.579	0.524
	DATA 82.450 82.710 90.460 53.570 31.000	DATA New_Coefs 82.450 82.266 82.710 82.560 90.460 90.108 53.570 54.904 31.000 30.876	DATA New_Coefs Prev_Coefs 82.450 82.266 2.539 82.710 82.560 2.516 90.460 90.108 2.994 53.570 54.904 0.020 31.000 30.876 0.599

Biospherical Instruments Inc.

CALIBRATION CERTIFICATE

Calibration Date	1/9/2007				
Model Number	QSR-2200				
Serial Number	20270				
Operator	TPC				
Standard Lamp	F-863				
Probe Excitation Vol	tage Range:	6	to	18	VDC(+)
Output Polarity:	Positive				
Probe Conditions at	Calibration(in ai	<u>r):</u>			
	on Voltage:	6	V	DC(+)	
Probe Cu	urrent:	4.0	m	A	
Probe Output Voltag	e:				
Probe Ille	uminated	95.87	m	V	
Probe Da	10111	1.32		١V	
Probe No	et Response	94.55	m	١V	
Corrected Lamp Out	tput:				
Output Ir	Air (same cond	lition as ca	alibratio	on):	
	9.43E+15	quanta/cr			
	0.01566	uE/cm ² se	C		
Calibration Factor:	the state the second			a la Ma	the build in a
(To calculate irradia	nce, divide the n	et voltage	readir	ig in Vo	its by this v
Dry:	1.00E-17		-	ec)	
	6.04E+00	V/(uE/cm	(sec)		

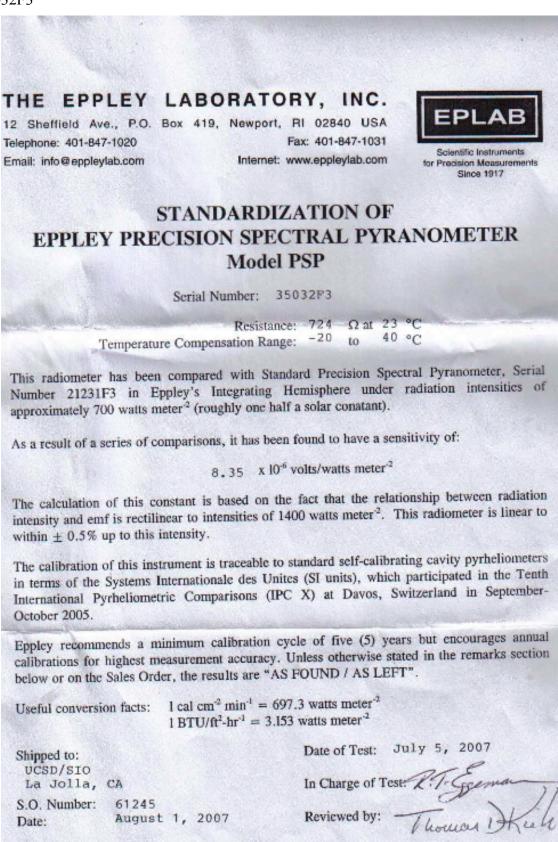
Notes:

1. Annual calibration is recommended.

2. Calibration is performed using a Standard of Spectral Irradiance traceable to the

National Institute of Standards and Technology (NIST).

3. The collector should be cleaned frequently with alcohol.


4. Calibration was performed with customer cable, when available.

QSR240R 05/24/95

Shortwave Radiation Pyranometer

Remarks:

Serial # 35032F3

Longwave Radiation Pyrgeometer

Serial # 34955F3

THE EPPLEY LABORATORY, INC.

 12
 Sheffleld Ave., P.O. Box 419, Newport, RI 02840 USA

 Telephone: 401-847-1020
 Fax: 401-847-1031

 Email: info@eppleylab.com
 Internet: www.eppleylab.com

Scientific Instruments for Precision Measurements Since 1917

STANDARDIZATION OF EPPLEY PRECISION INFRARED RADIOMETER Model PIR

Serial Number: 34955F3

Resistance:708 Ω at23°CTemperature Compensation Range:-20to40°C

This pyrgeometer has been compared against Eppley's Blackbody Calibration System under radiation intensities of approximately 200 watts meter² and an average ambient temperature of 25°C as measured by Standard Omega Temperature Probe, RTD#1.

As a result of a series of comparisons, it has been found to have a sensitivity of:

3.32 x 10⁶ volts/watts meter²

The calculation of this constant is based on the fact that the relationship between radiation intensity and emf is rectilinear to intensities of 700 watts meter². This radiometer is linear to within $\pm 1.0\%$ up to this intensity.

The calibration of this instrument is traceable to the International Practical Temperature Scale (IPTS) through a precision low-temperature blackbody.

Eppley recommends a minimum calibration cycle of five (5) years but encourages annual calibrations for highest measurement accuracy. Unless otherwise stated in the remarks section below or on the Sales Order, the results are "AS FOUND / AS LEFT".

Shipped to: UCSD/SIO La Jolla, CA S.O. Number: 61272 Date: August 17, 2007 Date of Test: May 31, 2007

In Charge of Test P.T. Syman Reviewed by: Thomas .

Remarks:

Jack Staff MET Station

Serial # 101757

	Paroscien Pressure Instru	tific, Inc. ment Configuration
SN: 101757 Part	Number: 1539-004 Mod	iel:MET3A Port:
Calibration Date	a: 27-Jun-07 Report N	Io: 7238 Technician: WMR
		mperature Range: -50 to -60
Fleasure wande:	500 LD 1105 MPA 18	nperatore kange: -50 CO -60
Customer: Scripp	os Inst. of Oceanograp	hy Report Date: 27-Jun-07
Address : 8825 1	Biological Grade	Sales Order: 24387
La Jol	lla, CA 92037 USA	S/R Number :
Con	figuration	Calibration Coefficients
BL: 0	PT: N	U0: 5.766908 µsec
BR: 9600	QD: -	Y1: -4015.975 deg C / µsec
DD: -	20: -	Y2: -17065.37 deg C / µsec?
DL: -	SL: -	Y3: -140256.4 deg C / µsec*
DM: -	SN: 101757	C1: 94.87589 psi
D0: -	ST: -	C2: 3.545282 psi / µsec
DP:	SU: -	C3: -114.9551 psi / usec*
ID: 01	TI: -	D1: 0.0345157
IM: -	TR: 00952	D2: 0.0000000
LL: -	TU: -	T1: 28.00064 µsec
LH: -	UF: 1.000000	T2: 0.837535 µsec / µsec
MC: Y	UL: -	T3: 16.78157 µsec / µsec?
MD: 0	UM: -	T4: -150.7085 µsec / µsec*
MN: -	UN: 3	T5: -129.729 µsec / µsec*
OP: -	US: -	TC: 0.6782145
PF: -	VR: M1.02	PA: 0.0000000
PI: -	ZI: -	PM: 1.0000000
PL: -	ZS: -	
PO: -	ZL: -	
PR: 00238	ZV: -	
PS: -		

Met3/3A C	oefficients
R1: -0.551136	E2: 0.84
F1: -264.3591	F2: 3.152
G1: 12.56743	G2: 0.00216
H1: RHT694	H2: 0.0036
K1: 01842	K2: 0.00511
M1: 1	M2: 1
Z1: 0	Z2: 0

4500 148th Avenue N. E.

Facsimile: (425) 867-5407 Redmond, WA 98052-5194 Email:salessupport@paroscientific.com Telephone: (425) 883-8700 Internet:http://www.paroscientific.com

CERTIFICATE OF CALIBRATION

TRANSDUCER MODEL: MET3A

SERIAL NUMBER: 101757

The Paroscientific transducer(s) identified above has been calibrated and tested with one or more of the following primary pressure and temperature standards. All have traceability to the National Institute of Standards and Technology.

Bell and Howell Primary Pressure Standard

Pneumatic Absolute or Gauge Dead Weight Tester Part Number: 6-201-0001, S/N 4034 and S/N 1014

- Piston/Cylinder: 6-001-0002, P2-919/C2-1523, Weight Set 1: 6-002-0002 Range: 1.5 to 50 psi [10 to 345 kPa]
- Accuracy: 0.010 percent of reading Piston/Cylinder: 6-001-0002, P2-652/C2-1378, Weight Set 2: 6-002-0002 Range: 1.5 to 50 psi [10 to 345 kPa]

Accuracy: 0.010 percent of reading

Piston/Cylinder: 6-001-0001, P1-949/C1-922, Weight Set 2: 6-002-0002 Range: 0.3 to 5 psi [2 to 34 kPa] Accuracy: 0.015 percent of reading

DH Primary Pressure Standard

V

Pneumatic Absolute or Gauge Dead Weight Tester Part Number: PG7601 S/N 161

Piston/Cylinder: S/N 305, Mass Set: S/N 2052 Range: 0.7 to 50 psi [5 to 345 kPa] absolute mode, 0.29 to 50 psi [2 to 345 kPa] gauge mode Accuracy: 0.002 percent of reading

DH Primary Pressure Standard

Pneumatic Gauge Dead Weight Tester, Model 5203, S/N 5557

Piston/Cylinder: S/N 4845, Mass Sets: S/N 2032, S/N 3293 Range: 20 to 1,600 psi [0.14 to 11 MPa] Accuracy: 0.005 percent of reading

DH Primary Pressure Standard

Oil Operated Gauge Dead Weight Tester, Model 5306, S/N 3505

- Piston/Cylinder: S/N 3375, Mass Set: S/N 2032 Range: 40 to 20,000 psi [0.3 to 138 MPa] Accuracy: 0.01 percent of reading above 200 psi [1.4 MPa] or 0.02 psi [0.14 kPa] at lower pressure
- Piston/Cylinder: S/N 3511, Mass Set: S/N 2032 Range: 145 to 72,500 psi [1 to 500 MPa] Accuracy: 0.02 percent of reading above 725 psi [5 MPa] or 0.145 psi [1 kPa] at lower pressure

Hart Scientific Precision Thermometer (MET3A only)

1 Black Stack model 1560 S/N 97568, PRT Scanner model 2562 S/N A34523, Temperature Probe Model A1959: S/Ns 4424A-02, 4424A-04, 4424A-05, 4424A-06 and 5177C-02. Range: -50° to 60° C. Accuracy: .015°C.

Tested By: DATE 6-27-07

Digiguartz[®] Pressure Instrumentation Document No. 8145-001, Rev. M 4/18/07

Underway Ocean Flow through Sensors

Seabird ThermoSalinograph

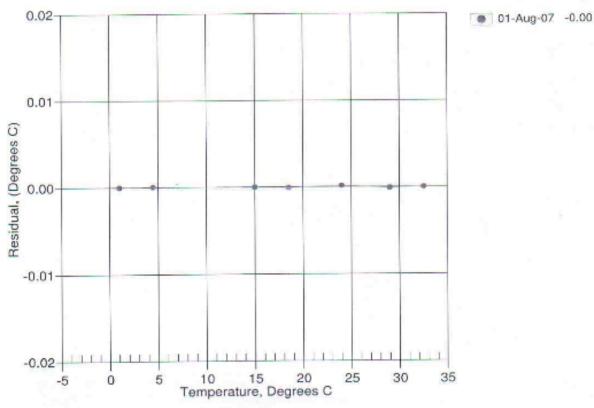
Serial # 0215

Temperature

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0215 CALIBRATION DATE: 01-Aug-07		SBE 45 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE
ITS-90 COEFFICIENTS		
a0 = -1.277283e-006		
al = 2.800988e-004	91	


a2 = -2.767325e-006 a3 = 1.635307e-007

BATH TEMP (ITS-90)	INSTRUMENT OUTPUT	INST TEMP (ITS-90)	RESIDUAL (ITS-90)
1.0000	\$57810.B	0.9939	-0.0000
4.5000	562392.3	4,5000	0.0000
15,0000	358334.1	14,9999	-0.0000
18,5001	310251.4	18,5000	-0,0001
26,0000	248855.2	24,0001	0.0002
	204884.7	29.0000	-0.0001
32.4999	179404.2	32.5000	0.0000
15.0000 18.5001 24.0000 29.0001	562392.5 358324.1 310251.4 248855.2 204884.7	4.5000 14.9999 18.5000 24.0001 29.0000	0.000 -0.000 -0.000 0.000 -0.000

Temperature ITS-90 = $1/(a0 + a1[in(n)] + a2[in^2(n)] + a3[in^3(n)]] - 273.15$ (*C).

Residual = instrument temperature - bath temperature

Date, Delta T (mdeg C)

Page 42 of 71

Conductivity

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA

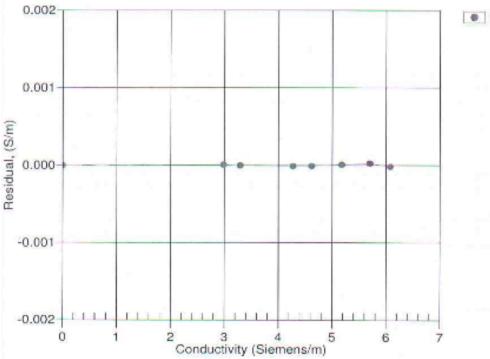
Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0215 CALIBRATION DATE: 01-Aug-07 SBE 45 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g = -9.817728e-001 h = 1.408375e-001 i = -1.671624e-004 j = 3.431539e-005

CPeor	-	-9.5700e-008
CTcor	-	3.2500c-006
WEOTC	-	2.4202e-005


BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22,0000	0.0000	0.00000	2641.45	0.00000	0.00000
1.0000	34.8934	2.98192	5363.53	2.38193	0.00001
4.5000	34.8731	3.28955	5504.48	3.28955	-0.00000
15.0000	34.8297	4.27308	6101.73	4.27307	-0.00001
18.5001	34.8207	4.61890	5297,94	4.61889	-0.00001
24.0000	34.8111	5,17793	5502.44	5.17794	0.00001
29.0001	34.8062	5.70086	6874.67	5.70088	0.00002
32.4999	34.8046	6.07417	7062.34	6.07415	-0.00002

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0


Conductivity = $(g + hf^2 + if^3 + jf^4) / (1 + \delta t + \epsilon p)$ Siemens/meter

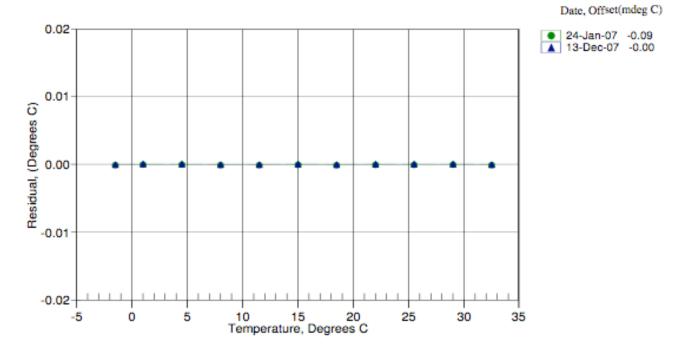
 $t = temperature[°C)]; p = pressure[decibars]; \delta = CTcor, \epsilon = CPcor;$

Residual = instrument conductivity - bath conductivity

Date, Slope Correction

Remote Sea Temperature (Sea Chest)

Serial # 4063


SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 4063 CALIBRATION DATE: 13-Dec-07			SBE3 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE		
ITS-90 COEFFICIENTS		IPTS-68 COEFFICIENTS			
g = 4.29921671e-003		a = 3.68121265e-003			
h = 6.36406488e-004		b = 5.99688417e-004			
i = 2.06912541e-005		c = 1.61521904e-005			
j = 1.52019386e-006		d = 1.52164480e-006			
f0 = 1000.0		f0 = 2721.791			
BATH TEMP	INSTRUMENT FREO	INST TEMP	RESIDUAL		
(ITS-90)	(Hz)	(ITS-90)	(ITS-90)		
-1.5000	2721.791	-1.5000	-0.00002		
1.0000	2878.781	11.5000	0.00003		
4.5000	3109.455		0.00002		
8.0000	3353.176		-0.00001		
11.5000	3610.316		-0.00001		
15.0000	3881.236	15.0000	0.00002		
18.5000	4166.278	18.5000	-0.00004		
22.0000	4465.803	22.0000	0.00000		
25.5000	4780.134	25.5000	0.00003		
29.0000	5109.596	29.0000	0.00002		
32.5000	5454.501	32.5000	-0.00002		

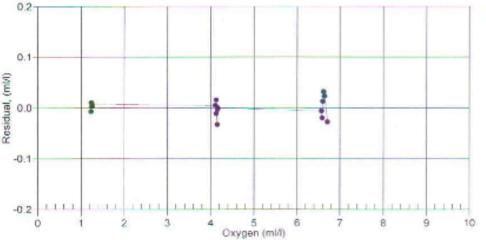
Temperature ITS-90 = $1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15$ (°C) Temperature IPTS-68 = $1/\{a + b[ln(f_0/f)] + c[ln^2(f_0/f)] + d[ln^3(f_0/f)]\} - 273.15$ (°C) Following the recommendation of JPOTS: T_{68} is assumed to be 1.00024 * T_{90} (-2 to 35 °C)

Residual = instrument temperature - bath temperature

Oxygen Sensor A

Serial # 1307

SEA-BIRD ELECTRONICS, INC.


1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 1307 SBE 43 OXYGEN CALIBRATION DATA CALIBRATION DATE: 28-Sep-07p COEFFICIENTS TCor = 0.0025 Soc = 0.3834 PCor = 1.350e-04 Boc = 0.0000 Voffset = -0.4781 INSTRUMENT RESIDUAL BATH OX BATH TEMP BATH SAL INSTRUMENT PSU OXYGEN(ml/l) TTS-90 OUTPUT(VOLTS) (ml/l) (ml/l)-0.01 1.22 2.00 0.01 0.00 0.805 1.22 0.01 1,24 12.00 0.898 1.25 0.966 20.00 0.01 1.25 1.24 26.00 0.01 0.00 1.016 1.25 1.24 0.848 1.25 0.00 1.25 6.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 . 1.26 0.01 1.25 30.00 1.057 4.11 0.00 4.11 20.00 2.086 2.254 4.11 -0.01 4.13 26.00 12.00 4.13 1.870 0.02 4.14 -0.03 4.15 2,00 1.583 4.11 0.01 2.382 -0.00 4.15 4.15 30.00 6.00 0.00 1.705 4,15 -0.00 4.15 0.01 -0.01 6.57 30.00 3.491 6.57 0.01 3.311 6.56 0.02 6.58 26.00 0.01 6.60 20.00 0.01 3.061 6.61 0.03 6.65 6,62 12.00 0.01 2.712 0.00 2.447 6.67 0.02 5.00 6.64 6.71 2.00 0.00 2.273 6.68 -0.03

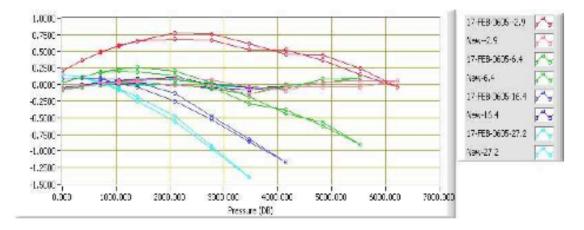
oxygen (ml/l) = (Soc * (V + Voffset)) * exp(Tcor * T) * Oxsat(T,S) * exp(Pcor * P) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU] Oxsat(T,S) = oxygen saturation [ml/l], P = pressure [dbar] Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)

28-Sep-07p 0.01

CTD Sensors

Pressure Sensor


Serial # 83012

Pressure Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 639 CALIBRATION DATE: 18-JAN-2008 Mfg: Seabird Model: SBE9P CTD Prs s/n: 83012

C1= -3.841449E+4 C2= 4.630485E-1 C3= 1.014581E-2 D1= 3.051116E-2 D2= 0.000000E+0 T1= 3.019016E+1 T2= -1.746821E-4 T3= 4.517296E-6 T4= -9.087207E-9 T5= 0.000000E+0 AD590M= 1.27551E-2 AD590B= -9.09133E+0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: Ruska Model: 2400 s/n: 34336 t0=t1+t2*td+t3*td*td+t4*td*td*td w = 1-t0*t0*f*f Pressure = (0.6894759*((c1+c2*td+c3*td*td)*w*(1-(d1+d2*td)*w)-14.7)

Temperature #1

Serial # 2855

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 2855 CALIBRATION DATE: 21-JAN-2008 Mfg: Seabird Model: SBE3Plus Previous Cal Date: 24-Jan-07 Calibration Tech: CM

g= 4.35951439E-3 h= 6.45648951E-4 i= 2.38075037E-5 j= 2.35385504E-6 f0 = 1000.0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[In(f0/f)]+i[In2(f0/f)]+j[In3(f0/f)]} - 273.15 (°C)

SBE3		SBE3	SPRT-SBE3	SPRT-SBE3
Freq	SPRT	New_Coefs	Prev_Coefs	New_Coefs
5479.6760	28.1875	28.1875	0.00140	0.00002
5798.0010	31.2142	31.2142	0.00189	-0.00002
5174.8630	25.1737	25.1737	0.00101	0.00002
4839.0220	21.7073	21.7073	0.00066	-0.00000
4563.9390	18.7410	18.7410	0.00045	-0.00003
4313.5900	15.9306	15.9306	0.00036	-0.00000
4062.6960	12.9964	12.9964	0.00029	0.00002
3819.2680	10.0242	10.0242	0.00019	-0.00001
3580.6660	6.9771	6.9771	0.00011	-0.00001
3359.2520	4.0167	4.0167	0.00007	0.00004
3216.0510	2.0264	2.0264	-0.00010	-0.00004
3143.3570	0.9916	0.9916	-0.00010	0.00002
3042.0950	-0.4792	-0.4792	-0.00018	0.00003
3003.6410	-1.0471	-1.0471	-0.00029	-0.00003
2934.0140	-2.0888	-2.0888	-0.00036	-0.00001

Temperature #2

Serial # 2796

Temperature Calibration Report STS/ODF Calibration Facility

SENSOR SERIAL NUMBER: 2796 CALIBRATION DATE: 21-JAN-2008 Mfg: Seabird Model: SBE3Plus Previous Cal Date: 27-Jan-07 Calibration Tech: CM

g= 4.30545772E-3 h= 6.41541965E-4 i= 2.26535491E-5 j= 2.15838215E-6 f0 = 1000.0 Slope = 1.0 Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[in(f0/f)]+i[in2(f0/f)]+j[in3(f0/f)]} - 273.15 (°C)

SBE3		SBE3	SPRT-SBE3	SPRT-SBE3
Freq	SPRT	New_Coefs	Prev_Coefs	New_Coefs
5034.9080	28.1869	28.1869	0.00129	-0.00001
5327.3120	31.2134	31.2134	0.00145	0.00001
4754.9570	25.1736	25.1736	0.00117	-0.00003
4446.4900	21.7075	21.7075	0.00113	0.00003
4193.8400	18.7414	18.7414	0.00105	0.00000
3963.9100	15.9311	15.9311	0.00097	-0.00004
3733.4680	12.9969	12.9969	0.00098	0.00001
3509.8970	10.0249	10.0248	0.00098	0.00005
3290.7460	6.9777	6.9777	0.00087	-0.00002
3087.3980	4.0175	4.0175	0.00082	-0.00001
2955.8690	2.0273	2.0273	0.00077	-0.00001
2889.1220	0.9928	0.9928	0.00074	-0.00001
2796.0920	-0.4783	-0.4783	0.00068	-0.00002
2760.7580	-1.0463	-1.0463	0.00070	0.00001
2696.7970	-2.0881	-2.0881	0.00067	0.00003

Temperature #3

Serial # 0011

SBE35 V 2.0a SERIAL NO. 0011 25 Jun 2008 number of measurement cycles to average = 8 number of data points stored in memory = 0 bottle confirm interface = SBE 911plus

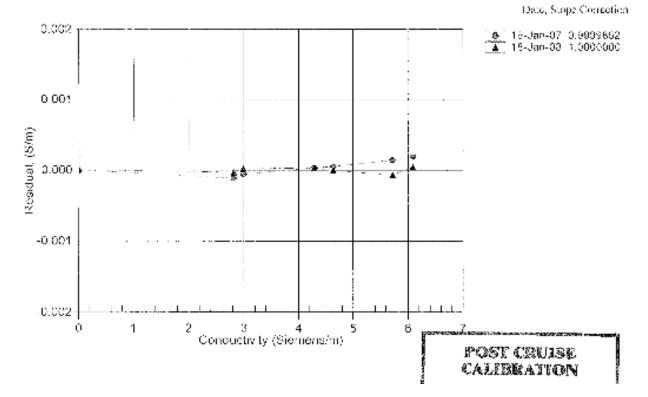
SBE35 V 2.0a SERIAL NO. 0011 29-mar-08 A0 = 5.030840630e-03 A1 = -1.387153030e-03 A2 = 2.040326840e-04 A3 = -1.129031550e-05 A4 = 2.392311380e-07 SLOPE = 1.000000 OFFSET = 0.000000

Conductivity #1

Serial # 2568

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com


SENSOR SERIAL NUMBER: 2568 CALIBRATION DATE: 18-Jul-08	SBE4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) – 4 3914 Seidens/Delor			
QUILCORFICIEN 'S	ABCDM COBFFICIEN IS			
g1.03650721e+001	a = 0.84930472e+004			
h - 1.48463602e-000	5 - 1148492005e CCC			
≤ = 3.48405740e~000	c = -1.03867351e CC1			
(- 6.15237682a-003	o ← 8.28373675e 007			
CPcor = -9.5700z - 008 (romina))	m 3.5			
$\texttt{CTcor} = -3.250\texttt{Cc-CCC} \pmod{\texttt{ind}}$	Creer = ~9.5700e-008 (nominal)			

BATH TEMP (HS-90)	BATH SAU (PSU)	BATH COND (Siemens/m)	INST FREO (KU2)	INST COND (Siemeastin)	RESPOLAT. (Sizmens/m)
0.0000	0.0000	0.00000	2.64369	0.00000	C, OHUCC
-1.0000	04.9397	2.81315	5.06747	2,51312	-0.00003
1.0000	34.9340	2.98306	5.19962	2.96506	0.0002
15.0000	34.5362	4.28454	5.37907	4.26458	0.00004
18,30CC	34.9339	4,63208	6.17064	4.633007	-0.00005
29.0000	34.9293	3.71876	6.73469	5,71967	-0.100007
32.5000	341.9138	5.09199	e.91///	6.09204	0100005

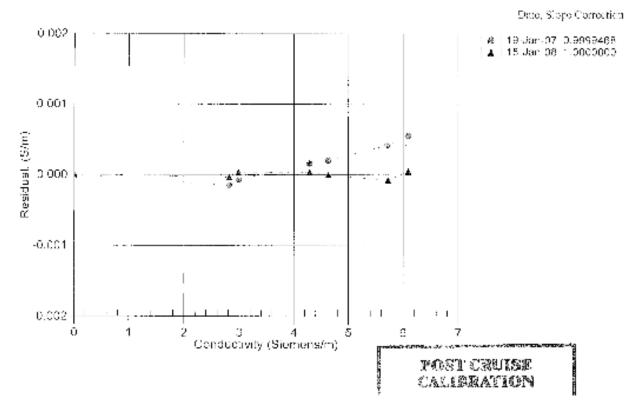
Conductivity =
$$(\mathbf{g} + \mathbf{b}\mathbf{f}^2 + \mathbf{i}\mathbf{f}^3) : \mathbf{j}\mathbf{f}^4$$
 / $(0(1 - St - cp))$ Siemens/indicer
Conductivity = $(\mathbf{af}^n - \mathbf{b})^2 + c + dt)$ / $(10)(1 - cp)$ Scemens/indeer

 $t \leftarrow temperature \{PC\}\}; \ p \leftarrow pressure \{dacibars\}; \ \delta \leftarrow CTeer; \ s \leftarrow CPeer;$

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Conductivity # 2

Serial # 2561


SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: adab rd@scabird.com

SENSOR'S DEF CALLORATION					CALIBRATION DATA .2914 Seiners/meter
$\begin{array}{l} GHV COLUTION\\ \eta &= -1.0716\\ h &= 1.0731\\ h &= -1.0730\\ h &= -2.0730\\ h &= -2.0736\end{array}$	12134+001 36084+000 16854-000		2 2 3	M COEPFICIENT 1,3693393364 1,6239164064 1,0522732364 3,2063644564	205 200 201
Снорт – -Э., Спорт – П., ВАТН ТВМР (ПР-90)	800-600		ar T CEcor	4.7	DDB (rombradt) RESIDUAL (Sicmersén)
0.0000 -1.0000 1.0000	0,0000 30,0337 10,0500 32,9340 35,9309 34,9309 84,9198	0.00000 2.81315 2.98596	2.34142 4.86880 4.97278 3.71530 5.96234 8.44624 8.44624 8.44624	0.00000 2.81311 2.90504 4.20450 4.60228	0.00000 -0.00000 0.00003 -0.00000 0.00000 0.00000 0.00000

Conductivity $(-1g - 1f^2 - if^3 - jf^4)/10(1 + \delta t + \epsilon p)$ Siemensémeter Conductivity = $(\epsilon f^{(0)} + 1cf^2 + c + \delta t)/(10(1 + \epsilon p))$ Siemensémeter t - ten perdu e[°C)]; p = pressure[decibers]; δ = CTech; ϵ = CPeor;

Residual τ (instrument conductivity - both conductivity) using $g,\,h,\,i,j$ coefficients.

Oxygen

Serial # 0458

SEA-BIRD ELECTRONICS, INC.

1808 136th Place N.E., Bellevue, Washington, 98005 USA

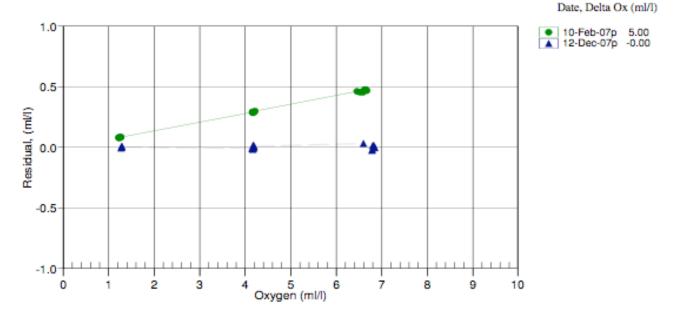
Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

TCor = 0.0006

PCor = 1.350e-04

SENSOR SERIAL NUMBER: 0458 CALIBRATION DATE: 12-Dec-07p

SBE 43 OXYGEN CALIBRATION DATA


COEFFICIENTS

Soc = 0.4060 Boc = 0.0000 Voffset = -0.4927

BATH OX (ml/l)	BATH TEMP ITS-90	BATH SAL PSU	INSTRUMENT OUTPUT(VOLTS)	INSTRUMENT OXYGEN(ml/l)	RESIDUAL (ml/l)
1.27	20.00	0.01	0.979	1.27	-0.01
1.28	26.00	0.01	1.037	1.27	-0.01
1.28	12.00	0.01	0.909	1.28	0.00
1.28	2.00	0.00	0.820	1.28	0.00
1.29	6.00	0.00	0.858	1.29	0.01
1.29	30.00	0.01	1.085	1.29	0.00
4.15	26.00	0.01	2.265	4.13	-0.01
4.16	20.00	0.01	2.083	4.15	-0.02
4.17	12.00	0.01	1.847	4.17	0.00
4.18	30.00	0.01	2.419	4.19	0.02
4.19	2.00	0.00	1.556	4.18	-0.01
4.19	6.00	0.00	1.677	4.20	0.01
6.59	30.00	0.01	3.535	6.62	0.03
6.78	20.00	0.01	3.082	6.75	-0.03
6.79	26.00	0.01	3.397	6.77	-0.02
6.80	12.00	0.01	2.706	6.81	0.01
6.82	6.00	0.00	2.420	6.83	0.01
6.84	2.00	0.00	2.234	6.84	-0.00

oxygen (ml/l) = (Soc * (V + Voffset)) * exp(Tcor * T) * Oxsat(T,S) * exp(Pcor * P) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU]

Oxsat(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen

Fluorometer

CERTIFICATE OF CALIBRATION

All test equipment and standards used are of known accuracy and are traceable to national standards. Details of test equipment and standards relevant to this certificate are available upon request.

Date of issue	06 March 2007
Description	Mk III Aquatracka (Chlorophyll-a)
Serial Number	088234
Part No	3598C

Chelsea Technologies Group

55 Central Avenue West Molesey Surrey KT8 20,2 United Kingdom Tel: +44 (0):20 8481 9000 Fax: +44 (0):20 8941 9019 sales@chelsea.co.uk www.chelsea.co.uk

REPORT

The fluorimeter was exposed to various concentrations of Chlorophyll-a dissolved in acetone in addition to pure water and pure acetone. The following formula was derived from the readings to relate instrument output to chlorophyll-a concentration.

Cone. = $(0.00779 \times 10^{\text{Output}}) - 0.0211$

Where -

Conc. = fluorophor concentration in µg/l Output = Aquatracka output in volts

The above formula can be used in the range 0 - 100 microgrammes per litre to an uncertainty of 0.02 microgrammes per litre plus 5% of value.

Notes

The above formula has been derived using Chlorophyll-a dissolved in acetone. No guarantee is given as to the performance of the instrument to biologically active chlorophyll in sea-water.

The zero offset has been determined in the laboratory using purified water from a reverse osmosis/ion exchange column. It is possible that purer water may be found in clean deep ocean conditions. Under these conditions, the offset shown in the above formula should be replaced by the antilogarithm of the Aquatracka output in the purest water found, multiplied by the scale factor.

Serial number 88234 Page 1 of 2

Group Companies

Chelsea Technologies Ltd Chelsea Instruments Ltd Chelsea Environmental Ltd Marine Acoustics Ltd

Transmisometer

Serial # CST-390DR

PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-565 Fax (541) 929-527 www.wetlabs.com

C-Star Calibration

Date	February 27, 2007	Customer	US Coast Guard	
Job #	0012004			Work order 004
		Gree	CST-390DR	Pathlength 25 cm
V _d V _{air}			Analog meter 0.058 V 4.788 V	
V _{rst}			4.707 V	
Temper	ature of calibration wat	er		
Ambien	t temperature during ca	libration		18.8 °C
	and the second second second second	And the second		23.4 °C

Relationship of transmittance (Tr) to beam attenuation coefficient (c), and pathlength (x): $Tr = e^{-cx}$

To determine beam transmittance: Tr = (V_{sig} - V_{dark}) / (V_{ref} - V_{dark})

To determine beam attenuation coefficient: c = -1/x * In (Tr)

 V_{d} Meter output with the beam blocked. This is the offset.

 $V_{\rm air}$ Meter output in air with a clear beam path. Vref

Meter output with clean water in the path.

Temperature of calibration water: temperature of clean water used to obtain V_{ret} .

Ambient temperature: meter temperature in air during the calibration. Measured signal output of meter.

cstarwkbkf1.xls

Revision F

Operati	Cal M S St St	Calibration Date: 01/09/ Model Number: 05P2300 Serial Number: 7011 Operator: TPC Standard Lamp: F-863(9/3 Operating Voltage Range: 6	01/09/07 05P2300 70115 TPC F-863(9/30/06) 6	ą	5	VDC (+)		Job No.	1991
To ca	Ine	usP-2300 o ate irradiano Irradiance	Note: The QSP-2300 output is a voltage that is proportional to the log of the incident irradiance. To calculate irradiance, use this formula: Intradiance = Calibration factor * (10 ^A Light Signal Voltage - 10 ^A Dark Voltage)	tage that is rmula: factor * ('	s proportio 10^Light S	onal to the ignal Volt	e log of the age - 10^D	incident irrac ark Voltage)	diance.
Dry Cal Wet Cal	librat	Dry Calibration Factor: Wet Calibration Factor:	3.22E+12 5.42E+12	quanta/cm ² ·sec per volt quanta/cm ² ·sec per volt	2.sec per v	/olt /olt	5.34E-06 9.00E-06	μEinsteins/c μEinsteins/c	μEinsteins/cm²·sec per volt μEinsteins/cm²·sec per volt
Sensor	r Test La	Sensor Test Data and Results ²⁾ Sensor Supply Curr Supp Lamp Integrated PAR SC3 Immersion (st Data and Results ²⁾ Sensor Supply Current (Dark): Supply Voltage: Lamp Integrated PAR Irradiance: SC3 Immersion Coefficient:	3.5 6 9.43E-15 0.594	mA Volts quanta/cm ² .soc	005	0.01566	µEinsteins/cm²sec Te	soc Test Irrad.
Nominal Fitter OD 0.5 0.5 1 2 3 3	inal liter	Expected Transmission 50% 32% 10% 1.10% 0.10%	Calibrated Trans. 100.00% 36.10% 27.60% 9.27% 1.11% 0.05%	Sensor Voltage 3.467 3.007 2.897 2.478 1.608 0.500	Expected Voltage 3.467 3.024 2.908 2.434 1.512 0.194	Voltage % Error 0% 2% 6% 61%	Measured Trans. 100.00% 34.66% 26.87% 10.22% 1.35% 0.07%	Transmission Error (%) 0.0 4.2 2.7 -9.3 -17.7 -27.4	(quanta/ cm ² :sec) 9.43E+15 3.27E+15 2.54E+15 9.66E+14 1.30E+14 1.02E+13
Dark Before: 0.003 Light - No Filter Hidr.: 3.467 Dark After - NFH: 0.003 Average Dark 0.00274 Notes: 1. Annual calibration is recommended. 2) This section is for internal use and for more advanced analysis	-ight - Da recontr	Dark Before: Light - No Filter HIdr.: Dark After - NFH: Average Dark arecommended.		Volts Volts Volts Volts					

Page 55 of 71

Serial # 70115

Gravity Meters

Serial # 221

BGM-3 PLATFORM T	ESTS	
Sensor Subsys. S/N	221	
	324	
	324	14 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -
ZERO DAMP period (SI	PEC: 533 SEC +/- 5)	
	ROLL (R49)	PITCH (R65)
11 FE308 21572	1 2	530 sec. 2204 2
	sec.	sec.
	sec.	sec.
TH T TEST (OPEC)		
TILT TEST (SPEC: +/-	<i>p</i>	BITCH (BS6)
2343 2 NOMINAL 97	ROLL (R41)	PITCH (R56)
POS	314.95 mgal.	317.16 mgal. 0001
NEG	317.00 mgal.	3/4.62 mgal.
.36 (POS - NEG)05	-0.018 mrad . 54	
Adjustments	NONE	NONE
12 PEBOF ONY NOMINAL 979		
POS	mgal.	mgal.
NEG	mgal.	mgal.
.36 (POS - NEG)	mrad	mrad
Adjustments		
NOMINAL		
POS	mgal.	mgal.
NEG	mgal.	mgal.
.36 (POS - NEG)	mrad	mrad
Adjustments		
NOMINAL		
POS	mgal.	mgal.
NEG	mgal.	mgal.
.36 (POS - NEG)	mrad	mrad
Adjustments NOMINAL		
POS	mgal.	meel
NEG	mgal.	mgal. mgal.
.36 (POS - NEG)	mrad	mgal.
Adjustments		
NOMINAL		

PRE-SHIP	MENT SYSTEM CHECKOUT
SENSOR S/N ZZ/ CPS S/N 324 CLATFORM S/N 324 SCALE FACTOR 5.017 SLAS 855285.85	DATE 12 FEB 08 TIME (Z) 0020 387349 Se 1
ENSOR TEST POINTS	CPS MONITOR
: 30.08	1 14.80
2 27.98	2 10.02
3 /F.50	3 1.004
4 17.62	4 0.00
5 15.09	5 0.00
6 -15.00	6 -0.0Z
7	7 0.727
8 5.02	8 -0.045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 0.025
ACCELOVEN SO PROOVEN 50 BPTCOVEN . 65	
BAT VOLTAGE 28.0 ELEX VOLTAGE 29.4 ELEC CURRENT .16 A CHOR CURRENT .03 A	
	and the second sec

	POST INSTA	LLATION SYS	TEM CHECKO
SENSOR S/N	221 324 324 5,01738	DATE 2	FREOR
CPS S/N	324	TIME (Z)	
PLATFORM S/N	324		
SCALE FACTOR	5.01738	7349	
BIAS	85528S	84	
SENSOR TEST PO	INTS	CPS N	MONITOR
1	29.95	1	14.82
2	22.87	2	10.04
3	18:41 17:55 15:03	3	1.005
4	17.55	4	0.00
5	15.03	5	0.00
6	-14.93	6	1.22
7		7	076
8	5.00	8	053
9	13.60	9	.024
10	17.60		
11	4.47		
12	.005		
13	OR		
14	-17.87		
15	-6.90		
16	0,000		
ACCEL OVEN	75		
PRC OVEN	44		
BPTC OVEN	.64		
BAT VOLTAGE	28,5		
ELEX VOLTAGE	29.5		1
ELEC CURRENT	.16		
CHGR CURRENT	102		

AARV SYSTEM

BGM-3 PLATFORM TESTS

28F7208 Sensor Subsys. S/N <u>22/</u> C.P.S. S/N <u>324</u>	
$\begin{array}{c} C.P.S. & S/N \underline{324} \\ Platform & S/N \underline{324} \end{array}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·
ZERO DAMP period (SPEC: 533 SEC +/- 5)	
ROLL (R49) PITCH (R65)	
526 sec. (526) sec. /	7322
	54ccw
sec. <u>534</u> sec. /8	332 O¥
TILT TEST (SPEC: +/- 0.7 MRAD)	
ROLL (R41) PITCH (R56)	
NOMINAL 179 730.50	
1800 Z POS <u>29.85 mgal</u> . 29.55 mga	1. 1815 2
NEG <u>29.21</u> mgal.OK <u>29.59</u> mga	1.01
.36 (POS - NEG) .64 mrad mrad mrad	
Adjustments Nove Nove	
18462 NOMINAL 979730.50	
POSmgalmga	
NEG mgal. mga	
.36 (POS - NEG)mradmra	d
Adjustments	
DO0	
2((000))	
.36 (POS - NEG)mradmra Adjustments	a
NOMINAL	
POS mgal. mga	I
NEG mgal. mga	
.36 (POS - NEG) mrad mra	
Adjustments	u
NOMINAL	
POS mgal. mgal	
NEG mgal. mga	
.36 (POS - NEG) mrad mra	
Adjustments	
NOMINAL	

BASE CALIBRATION	READINGS	
BGM S/N: 221 /AARV	SURVOPS: ACC NO:	
SHIP: HEALY	SURVOPS DATES: TO:	
PORTS: SEATTLE WA	TO:	
PERSONNEL: HERR		
	BASE CALIBRATION READINGS	
DATE: 29 F98 08 J.D. 04	20 TIME GMT: 1700 TO: 1800 MEAN:	730
STA.# :	_	
STA. NAME: PIER 36	STA GRAV @ PIER LEVEL 980728.35	MGALS
	PIER STA HGT 7.4 X .094 + .70	MGALS
	BASE g @ WATER LEVEL 980729.05	
S.F. : 5.017387	BGM OBS GRAV 980729.34	_
CORR. BIAS : 855284.64	OBS g – BASE g + 0.29	
DRIFT CORR. ENTERED: N/A		
ARRIVAI	, BASE CALIBRATION READINGS	
DATE: J.D.:	TIME GMT: TO: MEAN:	
STA.#:		
STA. NAME:	STA GRAV @ PIER LEVEL	MGALS
	PIER STA HGTX .094 +	MGALS
	BASE g @ WATER LEVEL	MGALS
S.F.:	BGM OBS GRAV	MGALS
CORR. BIAS:	OBS g – BASE g	MGALS
LAP	ND METER NO.	
DEPARTURE J. D.: TIME G	MT: VALUE: C.D. =	MGALS
ARRIVAL J. D.: TIME G	MT: VALUE: C.D. =	MGALS
	DIFFERENCE:	MGALS
s	TA.GRAV @ PIER LEVEL DIFFERENCE:	
	MISTIE:	MGALS
BCR BY:		

. .

\$1.51

BGM-3 PLATFORM TESTS

Sensor Subsys.	S/N 222
C.P.S.	S/N 325
Platform	S/N 325

S/N	325
S/N	325

۰.,

ZERO DAMP period (SPEC: 533 SEC +/- 5) ROLL (R49)

	ZERO DAMP period (5		
CONG		ROLL (R49)	PITCH (R65)
FEB 0 B	2222 Z	533 sec.	534 sec. 22362
		sec.	sec.
		sec.	sec.
	TILT TEST (SPEC: +/-	<i>p</i>	
	2 -	ROLL (R41)	PITCH (R56)
239	37 NOMINAL <u>97</u>		12 Pagot
	POS	312.18 mgal.	3/2.02 mgal. 0001
	NEG	312.21 mgal.	312.30 mgal.
	.36 (POS - NEG) ~0.03	-0,0108 mrad 24	-0.0869 mrad
	Adjustments	NONE	Nine
12 F5805	0014 NOMINAL 979	813.31	
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	· mrad	mrad
	Adjustments		
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		
	POS	mgal.	mgal.
	NEG	mgal.	mgal.
	.36 (POS - NEG)	mrad	mrad
	Adjustments		
	NOMINAL		

		1	
SENSOR S/N	222	DATE 17	PB OF
PS S/N	325		0015
PLATFORM S/N	325		
CALE FACTOR	4,949004	e 443	
IAS F567	35.4953		
ENSOR TEST PO	INTS	CPS N	IONITOR
1	30.23	1	14.50
2	28.06	2	9.90
3	18.54	3	0.985
4		4	0.05
5	15.04	5	0.05
6	-14.98		-0.691
7		7	1.013
8	5.04	8	-0.07/
9	13.84	9	-0.012
10	18.03		
11	4.52	-	
12	04		
13	5.0 - 0		
14	-18.23		
15	-4.94		
16	. O Z_		
CCEL OVEN	100	-	
RC OVEN	45		
PTC OVEN	.65		
AT VOLTAGE	26.5		
LEX VOLTAGE	27.8		
LEC CURRENT	.15 A		1.000
HGR CURRENT	.OZ A		

SENSOR S/N Z 2.2 DATE 25 FEBOR CPS S/N 325 TIME (2) / 7/0 PLATFORM S/N 325 SCALE FACTOR 4.94490064443 BIAS 557285:84 856235.7 SENSOR TEST POINTS CPS MONITOR 1 30.0(1 14.447 2 27.95 2 9.92 3 18.45 3 -985 4 17.66 4 04 5 14.95 5 105 6 -14.95 6 .373 7 - 7 .25(8 4.99 8 073 9 13.77 9 .0/0 10 17.93 - - 11 6.477 - - 12 .0(6 - - 13 .0(C - - 14 -16.18 - - 15 -6.94 - - 16 .0000 - - ACCEL OVEN 45		, COST INSTA	LLATION SYS	TEM CHECKO	
SCALE FACTOR $4,9490064443$ BIAS $55285:84$ 856735.7 SENSOR TEST POINTS CPS MONITOR 1 $30.0(1)$ 14.477 2 27.95 29.92 3 16.45 9.92 3 16.45 9.92 3 16.45 9.92 3 16.45 9.92 3 16.45 9.92 3 16.45 9.92 3 16.45 0.44 5 14.95 6 $.373$ 7 -7 $.25f($ 8 4.99 8 073 9 13.77 9 010 10 17.93 -14.947 -14.947 12 $.066$ -14.947 -14.947 13 $0(C$ -14.947 -16.000 ACCEL OVEN 95 -4.947 -5.073 8PTC OVEN 455 -4.947 -4.947 8AT VOLTAGE 24.9 -4.947 -4.947	SENSOR S/N	222	DATE Z	FFSOF	ł
SCALE FACTOR 4.944006443 BIAS 55285.84 856735.7 BIAS 55285.84 856735.7 SENSOR TEST POINTS CPS MONITOR 1 30.01 14.447 2 27.95 2 9.92 3 18.45 3 -985 4 17.446 4 $.046$ 5 14.95 6 $.373$ 7 -286 $.055$ 6 6 -144.95 6 $.373$ 7 -286 $.055$ 6 8 4.99 8 073 9 13.77 9 010 10 17.93 $$	CPS S/N	325	TIME (Z)	1710	t
SCALE FACTOR $44,9490064443$ BIAS $55285:84$ 856735.7 SENSOR TEST POINTS CPS MONITOR 1 30.0(1 14.477 2 27.95 2 9.92 3 16.495 3 -985 4 17.44 $.04$ 5 14.95 6 $.373$ 7 - 7 $.287$ 8 4.99 8 073 9 13.77 9 $.010$ 10 17.93 - - 11 6.477 - - 12 $.076$ - - 13 $0[C_{-}]$ - - 14 -16.18 - - 15 -4.99 - - ACCEL OVEN 95 - - BAT VOLTAGE $26.7.0$ - - BAT VOLTAGE $2.6.0$ - - BAT VOLTAGE $2.6.0$ - - BLEX VOLTAGE 2	PLATFORM S/N	325			T
BIAS \$55285:84 \$52735.7 SENSOR TEST POINTS CPS MONITOR 1 30.0(1 14.477 2 27.95 2 9.92 3 18.45 3 -985 4 17.44 4 .04 5 14.95 6 .373 6 -14.95 6 .373 7 - 7 .28(8 4.99 8 073 9 13.77 9 .0/0 10 17.93 - - 11 6.477 - - 12 .0(6 - - 13 0(C - - 14 -16.18 - - 15 -4.94 - - ACCEL OVEN 95 - - PRC OVEN 45 - - BAT VOLTAGE 2.6.0 - - BAT VOLTAGE 2.6.0 - - BAT VOLTAGE 2.6.0 -	SCALE FACTOR	4.949000	443		L
1 $30.0($ 1 14.47 2 27.95 2 9.92 3 18.45 3 -985 4 17.46 4 $.04$ 5 14.95 5 $.05$ 6 -14.95 6 $.373$ 7 $-$ 7 $.28f($ 8 4.99 8 073 9 13.77 9 010 10 17.93 -111 6.47 11 6.47 -16 -17.93 11 6.47 -16 -17.93 12 016 -17.93 -1010 12 016 -17.93 -111 13 $0/C$ -111 -16.94 15 -4.94 -16 -16.94 16 0.000 -165 -14.94 16 0.000 -165 -14.94 16 0.000 -165 -14.94 17 16.55 -14.94 -16.16 <td>BIAS</td> <td>\$55285</td> <td>84 8.</td> <td>56735.</td> <td>2</td>	BIAS	\$55285	84 8.	56735.	2
$\begin{array}{c cccc} 2 & 27.95 & 2 & 9.92 \\ \hline 3 & /t.45 & 3 & -985 \\ \hline 4 & 17.66 & 4 & .04 \\ \hline 5 & 144.95 & 5 & .05 \\ \hline 6 & -144.95 & 6 & .373 \\ \hline 7 & - & 7 & .26(\\ \hline 8 & 4.99 & 8 &073 \\ \hline 9 & 13.77 & 9 &0/0 \\ \hline 10 & 17.93 &0/0 \\ \hline 10 & 17.93 &0/0 \\ \hline 10 & 17.93 &0/0 \\ \hline 11 & 6.47 &010 \\ \hline 12 & .066 &010 \\ \hline 13 & 0(C &010 \\ \hline 14 & -16.18 &010 \\ \hline 15 & -4.94 &010 \\ \hline 16 & 0.000 &000 \\ \hline 0 & 000 &$	SENSOR TEST PO	INTS	CPS N	ONITOR	╞
2 27.95 2 9.92 3 $18:45$ 3 -985 4 17.46 4 $.04$ 5 14.95 5 $.05$ 6 -14.95 6 $.373$ 7 $-$ 7 $.28f$ 8 4.99 8 073 9 13.77 9 $0/0$ 10 17.93 - - 11 6.47 - - 12 $.066$ - - 13 $0[C$ - - 14 -15.18 - - 15 -4.94 - - 16 0.000 - - ACCEL OVEN 95 - - PRC OVEN 45 - - BAT VOLTAGE 26.0 - - ELEX VOLTAGE $2.5.0$ - - ELEC CURRENT $.17$ - -	1 .	30.01	1	14.47	t
3 $/k.45$ 3 $-9&$ 4 $/7.46$ 4 $.04$ 5 $/4.95$ 5 $.05$ 6 $-1/4.95$ 6 $.373$ 7 $-$ 7 $.2&$ 8 4.99 8 073 9 $/3.77$ 9 $0/0$ 10 17.93 - - 11 4.47 - - 12 $.066$ - - 13 $0/C$ - - 14 -16.1% - - 15 -4.94 - - 16 0.000 - - ACCEL OVEN 95 - - PRC OVEN 45 - - BAT VOLTAGE $2&$ - - - BAT VOLTAGE $2&$ - - - ELEX VOLTAGE $2&$ - - -	2		2		
4 17.46 4 $.04$ 5 14.95 5 $.05$ 6 -14.95 6 $.373$ 7 $-$ 7 $.251$ 8 4.99 8 073 9 13.77 9 010 10 17.93 - - 11 6.477 9 010 10 17.93 - - 11 6.477 - - 12 $.066$ - - 13 $0/C$ - - 14 -16.18 - - 15 -4.94 - - 16 0.000 - - ACCEL OVEN 95 - - PRC OVEN 45 - - BAT VOLTAGE 26.0 - - ELEX VOLTAGE $2.5.0$ - - ELEC CURRENT $.17$ - -	3		3		t
5 14.95 5 105 6 -14.95 6 $.373$ 7 $-$ 7 $.25($ 8 4.99 8 073 9 13.77 9 $0/0$ 10 17.93 - - 11 4.47 - - 12 $.066$ - - 13 $0/C$ - - 14 $-15/F$ - - 15 -4.94 - - 16 0.000 - - ACCEL OVEN 95 - - PRC OVEN 45 - - BAT VOLTAGE 24.9 - - ELEX VOLTAGE 25.0 - - ELEC CURRENT $.17$ - -	4		4		t
6 -14.95 6 .373 7 $ 7$.25(8 4.99 8 073 9 $/3.77$ 9 $0/0$ 10 17.93 $0/0$ 10 17.93 $0/0$ 11 6.477 $0/0$ 12 $.066$ 073 13 $0/C$ $0/0$ 14 $-15/8$ 073 15 -4.94 000 16 0.000 000 ACCEL OVEN 95 000 BACCEL OVEN 45 000 BAT VOLTAGE 26.9 000 ELEX VOLTAGE 25.00 000 ELEC CURRENT $.17$ 17	5	14.95	5		t
7 $$ 7 $\cdot 2 + ($ 8 4.99 8 073 9 $/3.77$ 9 $0/0$ 10 17.93 - 11 4.47 - 12 $0(6$ - 13 $0(C$ - 14 -16.18 - 15 -4.94 - 16 0.000 - ACCEL OVEN 95 - PRC OVEN 45 - BAT VOLTAGE 24.9 - ELEX VOLTAGE $2.6.0$ - ELEC CURRENT $.17$ -	6	-14.95	6		t
8 4.99 8 073 9 $/3.77$ 9 $0/0$ 10 17.93 11 4.47 11 4.47 12 $0/6$ 13 $0/C$ 13 $0/C$ 14 $-/6.18$ 15 -4.94 16 0.000 16 0.000 ACCEL OVEN 95 0.000 0.000 ACCEL OVEN 45 0.000 0.000 ACCEL OVEN 45 0.000 0.000 ACCEL OVEN 25.00 0.000 0.000 ACCEL OVEN 1.05 0.000 0.000 ACCEL OVEN 9.5 0.000 0.000 ACCEL OVEN 1.05 0.000 0.000 ACCEL OVEN 1.55 0.000 0.000 BAT VOLTAGE $2.5.00$ 0.000 0.000 ELEX VOLTAGE $2.5.00$ 0.000 0.000	7		7		t
9 /3.77 9 0/0 10 /7.93	8	4.99	8		t
10 17.93 11 4.47 12 .0(6 13 0(C 14 -16.18 15 -4.94 16 0.000 ACCEL OVEN 95 PRC OVEN 45 BPTC OVEN .65 BAT VOLTAGE 26.9 ELEX VOLTAGE 2.6.0	9		9		t
11 6.47 12 .0(6 13 0/C 14 -/6/8 15 -6.94 16 0.000 ACCEL OVEN 95 PRC OVEN 45 BPTC OVEN .65 BAT VOLTAGE 26.9 ELEX VOLTAGE 2.6.0	10				t
12 .016 13 0/C 14 -16.18 15 -4.94 16 0.000 ACCEL OVEN 95 PRC OVEN 45 BPTC OVEN .65 BAT VOLTAGE 26.9 ELEX VOLTAGE 2.5.0 ELEC CURRENT .17	11				t
14 -/6/F 15 -6.94 16 0.000 ACCEL OVEN 95 PRC OVEN 45 BPTC OVEN .65 BAT VOLTAGE 26.9 ELEX VOLTAGE 2.5.0 ELEC CURRENT .17	12	.016			T
14 -/6/F 15 -6.94 16 0.000 ACCEL OVEN 95 PRC OVEN 45 BPTC OVEN .65 BAT VOLTAGE 26.9 ELEX VOLTAGE 2.5.0 ELEC CURRENT .17	13	OLC			T
15 -4.94 16 0.000 ACCEL OVEN 95 PRC OVEN 45 BPTC OVEN .65 BAT VOLTAGE 24.9 ELEX VOLTAGE 2.6.0 ELEC CURRENT .17	14	-16.18			ī
ACCEL OVEN 95 PRC OVEN 45 BPTC OVEN . 65 BAT VOLTAGE 26.9 ELEX VOLTAGE 2.6.0 ELEC CURRENT .17	15	-4.94			Γ
BPTC OVEN . 45 BAT VOLTAGE 24.9 ELEX VOLTAGE 2.6.0 ELEC CURRENT , 17	16	0.000			L
BPTC OVEN . 65 BAT VOLTAGE 26.9 ELEX VOLTAGE 2.6.0 ELEC CURRENT . 17	ACCEL OVEN	95			┝
BAT VOLTAGE 26.9 ELEX VOLTAGE 2.6.0 ELEC CURRENT ,17	PRC OVEN	45			Г
BAT VOLTAGE 26.9 ELEX VOLTAGE 2.6.0 ELEC CURRENT ,17	BPTC OVEN				F
ELEC CURRENT , 17	BAT VOLTAGE				f
	LEX VOLTAGE	28.0			t
	LEC CURRENT	.17			t
	HGR CURRENT	.02			ī

POST- INSTALLATION

HEALY SASTER

BGM-3 PLATFORM TESTS

28 FEB 08

Sensor Subsys.	S/N	222
C.P.S.	S/N	325
Platform	S/N	325

ZERO DAMP period (SPEC: 533 SEC +/- 5)

to zrinir penou (c	ROLL (1 _532	R49)	PITCH	(R65) JK
1930Z	532	_sec.or	535	sec./945-2
	1	sec.		_sec.
		sec.		_sec.

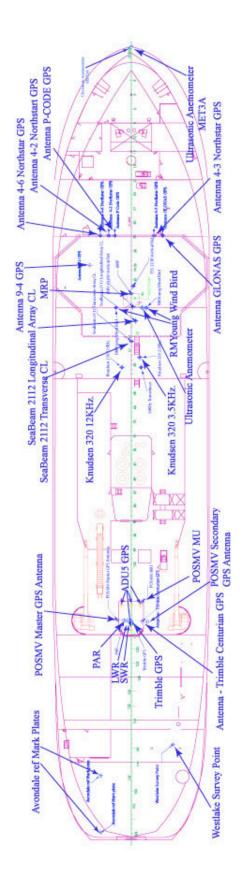
(1, 2)

5

.

-3

92 . 2


TILT TEST (SPEC: +/- 0.7 MRAD)

1843 2 NOMINAL 97	ROLL (R41)	PITCH (R56)
POS	23.82 mgal.	24.03 mgal. 18592
NEG	24.16 mgal.	23.92 mgal.
.36 (POS - NEG) 32	115 mrad.u	.039 mrad
Adjustments	NONE	NONE OF
NOMINAL		
POS	mgal.	mgal.
NEG	mgal.	mgal.
.36 (POS - NEG)	mrad	mrad
Adjustments		
NOMINAL		
POS	mgal.	mgal.
NEG	mgal.	mgal.
.36 (POS - NEG)	mrad	mrad
Adjustments		
NOMINAL		
POS	mgal.	mgal.
NEG	mgal.	mgal.
.36 (POS - NEG)	mrad	mrad
Adjustments		
NOMINAL		
POS	mgal.	mgal.
NEG	mgal.	mgal.
.36 (POS - NEG)	mrad	mrad
Adjustments		
NOMINAL		

BASE CALIBRATION F	READINGS	
BGM S/N: 222/HEQLY	SURVOPS:	ACC NO:
SHIP: HEALY		
PORTS: SEATTTLE, WA		
PERSONNEL: HERR		,
DEPARTURE E	BASE CALIBRATION READINGS	
DATE: 29 FEB 08 J.D. 06	TIME GMT: 1700 TO: 1	00 MEAN: 1730
STA.# :		
STA. NAME: PIER36	STA GRAV @ PIER LEVEL	980728.35 MGALS
	PIER STA HGT <u>7:4′</u> X .094 +	.70 MGALS
	BASE g @ WATER LEVEL	980729.05 MGALS
S.F. : 4.949006	BGM OBS GRAV	980729.26 MGALS
CORR. BIAS : 856740.23	OBS g – BASE g	+0.21 MGALS
DRIFT CORR. ENTERED: NA		
ÁRRIVAL	BASE CALIBRATION READING	S
DATE: J.D.:	TIME GMT:TO:	MEAN:
STA.#:	_	
STA. NAME:	_ STA GRAV @ PIER LEVEL	MGALS
	PIER STA HGTX .094 +	MGALS
	BASE g @ WATER LEVEL	MGALS
S.F.:	BGM OBS GRAV	MGALS
CORR. BIAS:	OBS g – BASE g	MGALS
LAN	D METER NO.	
DEPARTURE J. D.: TIME GM	1T: VALUE: C.D	e MGALS
ARRIVAL J. D.: TIME GN	1T: VALUE: C.D). = MGALS
	DIFFERENC	CE: MGALS
ST	A.GRAV @ PIER LEVEL DIFFERENC	
	MIST	
BCR BY:	CHECKED B	

Instrument Locations on the Healy

Layout plot of instrument locations

Page 66 of 71

Table of Survey measurements

Conso	lidated Surv	vey Data	I	1		
	Elements of	of:				
		Avondale Survey				
		Westlake Survey				
		Lamont Survey				
	All Measu	rements in <u>Meters</u> rela	tive to MRP unless otherv	vise stated		
	X = fore &	aft with + foreward				
		z starboard with + to s	tarboard			
		l with + upwards				
				X	Y	Z
<u>Item</u>	<u>Survey</u>	<u>Description</u>		<u>North</u>	<u>East</u>	<u>Elevation</u>
1	Avondale	MRP	See discussion Westlake Final Report	34.30	0.00	9.15
2	Westlake	MRP	by Definition	0.00	0.00	0.00
3	Westlake	Seabeam 2112				
		Transverse Array	Centerline	-7.679	0.030	9.242
		Longitudinal Array	Centerline	-4.386	0.711	9.238
4	Westlake	Transducers				
		Starboard - Forward	to Aft			
		Transducer -	Bathy 2000 3.5 kHz	-10.252	1.362	9.243
		Transducer -	Bathy 1500 34 kHz *	-11.866	1.559	9.245
		Transducer -	Doppler Speed Log	-12.168	0.414	9.245
		Transducer -	Spare Transducer Well	-13.081	1.449	9.237
5	Westlake	Port - Forward to Af	t			

		Transducer -	VM 150	-9.726	-1.395	9.230
		Transducer -	Ocean Surveyor 75 kHz	-10.819	-1.290	9.230
		Transducer -	Bathy 2000 12 kHz	-11.859	-1.492	9.234
		Transducer -	Spare Transducer Well	-13.078	-1.394	9.235
6	Westlake	Gyros				
		Starboard Gyro	Centerline	4.741	0.207	-19.604
		Port Gyro	Centerline	4.746	-0.207	-19.609
7	Westlake	Antennas				
 		REF DWG TBD	Antenna 9-4 * - GPS Antenna (4.1.5)	4.587	-6.622	-24.000
			Antenna 4-6 * - Northstar GPS (4.1.1)	9.374	-4.970	-23.406
			Antenna 4-2 * - Northstar (4.1.2)	9.362	-3.617	-23.451
			P CODE GPS Antenna *	9.368	-2.645	-23.609
		-	Antenna 4-3 * - Northstar (4.1.4)	9.355	3.638	-23.363
			GLONAS GPS Antenna *	9.379	5.066	-23.515
			Antenna base (4A)	-53.872	-0.011	-22.025
			Antenna base (4A)	-49.758	0.038	-22.023
			Antenna base (4C)	-49.785	1.629	-22.010
			Antenna base (4D)	-49.771	-1.546	-22.020
						22.000
			Trimble Centurion**	-52.726	-1.717	-21.113
			Time Server **	-52.671	1.838	-21.115
8	Westlake	Vertical Ref				
			MRV-M-MV -			
			Measured at Top of mounting bracket			

			Center (mid-point) - calculated	-2.100	0.291	-0.775
			TSS 333B - Marine Motion Sensor -			
		1	scribe atop mounting plate			
			Center of TSS 333B	1.210	0.329	-0.013
9	LDEO	POS/MV		_		
		From	ТО		Y	Z
		IMU	Port Antenna (Master)	-2.9719	-3.9140	-5.5310
i		MRP	IMU	-49.5710	1.7110	-16.7990
l		MRP	Transmit array	-4.3860	0.7110	9.2380
		MRP	Port Antenna (Master)	-52.5429	-2.2030	-22.3300
10	Westlake Raw	Fan Tail				
			Aft/Port	-86.737	-4.906	-3.617
			Forward/Port	-77.600	-4.881	-3.589
			Forward/Starboard	-72.590	6.676	-3.653

SBE 21 SEACAT Thermosalinograph Data Output Formats

This is extracted from page 33 of the SBE 21 SEACAT Thermosalinograph User's Manual (SeaBird Manual Version #022, 03/30/07).

The SBE 21 outputs data in raw, hexadecimal form as described below.

The inclusion of some output parameters is dependent on the system configuration - if the specified sensor is not enabled (see *Command Descriptions* above), the corresponding data is not included in the output data stream, shortening the data string.

• SBE 21 Format (F1) - ttttccccrrrrruuuvvvwwwxxx (use this format if you will be using SEASAVE to acquire real-time data and/or SBE Data Processing to process the data)

• SBE 16 Format (F2) - #ttttccccrrrrruuuvvvwwwxxxnnnn (custom format)

where

tttt = primary temperature

cccc = conductivity

rrrrrr = remote temperature (from SBE 38 or SBE 3 remote sensor)

uuu, vvv, www, xxx = voltage outputs 0, 1, 2, and 3 respectively

= attention character

```
nnnn = lineal sample count (0, 1, 2, \text{etc.})
```

Data is output in the order listed, with no spaces or commas between parameters. Shown with each parameter is the number of digits.

Calculation of the parameter from the data is described below (use the decimal equivalent of the hex data in the equations).

1. Temperature

temperature frequency (Hz) = (tttt / 19) + 2100

2. Conductivity

conductivity frequency (Hz) = square root [($\csc * 2100$) + 6250000]

3. SBE 3 secondary temperature (if **SBE3=Y**)

SBE 3 temperature frequency (Hz) = rrrrrr / 256

4. SBE 38 secondary temperature (if **SBE38=Y**)

SBE 38 temperature *psuedo* frequency (Hz) = rrrrrr / 256

5. External voltage 0 (if 1 or more external voltages defined with SVx)

external voltage 0 (volts) = uuu / 819

- 6. External voltage 1 (if 2 or more external voltages defined with SVx) external voltage 1 (volts) = vvv / 819
- 7. External voltage 2 (if 3 or more external voltages defined with SVx) external voltage 2 (volts) = www / 819
- 8. External voltage 3 (if 4 external voltages defined with SVx)

external voltage 3 (volts) = xxx / 819

Example: SBE 21 with SBE 38 and two external voltages sampled,

example scan = ttttccccrrrrruuuvvv = A80603DA1B58001F5A21

• Temperature = tttt = A806 (43014 decimal);

temperature frequency = (43014 / 19) + 2100 = 4363.89 Hz

• Conductivity = cccc = 03DA (986 decimal);

conductivity frequency =

square root [986 *2100) + 6250000] = 2884.545 Hz

• SBE 38 = rrrrr = 1B5800 (1,792,000 decimal)

temperature *pseudo* frequency (Hz) = (1,792,000 / 256) = 7000 Hz

• First external voltage = uuu = 1F5 (501 decimal);

voltage = 501 / 819 = 0.612 volts

• Second external voltage = vvv = A21 (2593 decimal);

voltage = 2593 / 819 = 3.166 volts

Note:

SBE 21 always outputs an even number of voltage characters. If you enable 1 or 3 voltages, it adds a 0 to the data stream before the last voltage, as shown below:

- Remote temperature and 1 voltage enabled
 - ttttccccrrrrr0uuu or
 - #ttttccccrrrrr0uuunnnn
- Remote temperature and 3 voltages enabled -

ttttccccrrrrrruuuvvv0www

#ttttccccrrrrrruuuvvv0wwwnnnn

Notes:

• Sea-Bird's software (SEASAVE and SBE Data Processing) uses the equations shown to perform these calculations; it then uses the calibration coefficients in the configuration (.con) file to convert the raw frequencies and voltages to engineering units. Alternatively, you can use the equations to develop your own processing software.

• See *Notes on SBE 38 Remote Temperature Data Output Format* below for details on how Sea-Bird handles SBE 38 data.