Contractor Report

High School and Beyond Third Follow-Up (1986) Sample Design Report

Center for Education Statistics

Office of Educational Research and Improvement U.S. Department of Education

High School and Beyond
Third Follow-Up (1986)
Sample Design Report
National Opinion Research Center (NORC)
University of Chicago
Bruce D. Spencer
Penny Sebring
Barbara Campbe!l
C. Dennis Carroll

Project Officer
Center for Education Statistics
Prepared for the Center for Education Statistics under contract 300-84-0169 with the U.S. Department of Education. Contractors undertaking such projects are encouraged to express freely their professional judgement. This report, therefore, does not necessarily represent positions or policies of the Government, and no official endorsement should be inferred. This report is released as received from the contractor.

December 1987

Acknowledgments

The authors wish to thank all those persons who contributed to the production of this report. Roger Tourangeau guided the process of calculating standard errors and design effects. Martin Glusberg, Jim Wolfe, and Tucker Landy in NORC's Center for Computing and Information Services put forth considerable effort in producing weights adjusted for nonresponse and in generating tables of standard errors and design effects. Our appreciation is also extended to Marilyn Ford for her patience and thoroughness in the production of the manuscript.

Finally, we would also like to thank those members of the CES staff who have worked closely with us on this project: C. Dennis Carroll, Chief, Longitudinal Studies Branch, and Carl Schmitt, Statistician.

TABLE OF CONTENTS

Page

1 INTRODUCTION 1
1.1 Overview of High School and Beyond 1
1.1.1 CES' Education Longitudinal Studies Program 1
1.1.2 HS\&B Base Year Survey 2
1.1.3 The HS\&B First, Second, and Third Follow-Up Surveys 2
1.2 Overview of Chapters 2 through 5 2
2 SAMPLE DESIGN AND IMPLEMENTATION 4
2.1 Base Year Survey Sample Design 4
2.2 First Follow-Up Survey Sample Design 4
2.3 High School Transcripts Sample Design (1980 Sophomore Cohort) 6
2.4 Second and Third Follow-Up Survey Sample Design 6
3 SAMPLE WEIGHTS 8
3.1 General Approach to Weighting 8
3.2 Weighting Procedures 9
3.3 Results of Weighting 11
4 NONRESPONSE ANALYSES 12
4.1 General Considerations 12
4.2 Analysis of Third Follow-Up Student Nonresponse Rates 14
4.2 .1 Third Follow-Up Survey Student Nonresponse Rates: School Variables 15
4.2.2 Third Follow-Up Survey Student Nonresponse Patterns: Student-Level Variables 18
4.2.3 Summary of Nonresponse Analyses 19
5 STANDARD ERRORS AND DESIGN EFFECTS 22
5.1 Computational Procedures 22
5.2 Design Effects 25
5.3 Standard Errors and Design Effects 26
5.3.1 Base-year and First Follow-Up 27
5.3.2 Second Follow-Up 32
5.3.3 Third Follow-Up. 37
TABLE OF GONTENTS
(continued)
Appendix A: Sophomore Weights and Nonresponse Adjustments 45
Appendix B: Senior Weights and Nonresponse Adjustments 55
Appendix C: Design Effects and Sampling Errors 65

1. INTRODUCTION

The High School and Beyond third follow-up survey was conducted during the spring of 1986. This report provides information that fully documents major technical aspects of the third follow-up sample selection and implementation, describes the weighting procedures, examines the possible impact of nonresponse on sample estimates, and evaluates the precision of estimates derived from the sample.

A thorough understanding of the third follow-up sample design requires familiarity with the base year design. The present report reviews the base year sample design but does not discuss it in detail. Readers who want more detailed information about the base year sample should consult the High School and Beyond base year Sample Design Report. ${ }^{1}$ In particular, readers not familiar with the base year school and student selection procedures may wish to review the construction of the sampling frame, selection procedures, replacement and substitution procedures for ineligible and noncooperating schools, and base year weighting procedures.

1.1 Overview of High School and Beyond

1.1.1 GES' Longitudinal Studies Program

The mission of the Center for Education Statistics (CES) includes the responsibility to "collect and disseminate statistics and other data related to education in the United States" and to "conduct and publish reports on specific analyses of the meaning and significance of such statistics" (Education Amendment of 1974--Public Law 93-380, Title V, Section 501, amending Part A of the General Education Provisions Act).

Consistent with this mandate and in response to the need for policy relevant time series data on a nationally representative sample of high school students, CES instituted the National Education Longitudinal Studies (NELS) program, a continuing long term effort. The general aim of the NELS program is to study the educational, vocational, and personal development of high school students and the personal, familial, social, institutional, and cultural factors that may affect that development.

The overall NELS program utilizes longitudinal time-series data bases in two ways: (1) each cohort is surveyed at regular intervals over a span of years, and (2) comparable data are obtained from successive cohorts, permitting studies of trends relevant to educational and career development and societal roles. Thus far the NELS program consists of two major studies: The National Longitudinal Study of the High School Class of 1972 (NLS-72) and High School and Beyond (HS\&B). A third major study, the National Education Longitudinal Study of 1988 (NELS:88), will begin with a survey of 8 th graders in 1988 and will continue with biennial follow-up surveys throughout the 1990 s.

The first major study, NLS-72, began with the collection of comprehensive base year data from approximately 19,000 high school seniors in the spring of 1972. The NLS-72 first follow-up survey added nearly 4,500 individuals in the original sample who did not participate at the time of the base year survey. Three more follow-up surveys were conducted with the full sample in 1974, 1976, and 1979, using a combination of mail surveys and personal and telephone interviews. Five follow-up surveys were conducted in the fall and winter of $1972,1974,1976,1979$, and 1986 using a combination of mail surveys and personal and telephone interviews.

The second major survey, HS\&B was designed to inform federal and state policy in the decade of the 1980 s . It began in 1980 with the collection of base year data on high school seniors and sophomores. The first follow-up study was conducted in the spring of 1982 , the second follow-up study occurred in the spring of 1984 , and the third follow-up study occurred in the spring of 1986.

1.1.2 The HS\&B Base Year Survey

The base year survey utilized a highly stratified multistage national probability sample of over 1,100 secondary schools as the first stage units of selection. In the second stage, 36 seniors and 36 sophomores were selected per school (in schools with fewer than 36 in either of these groups, all eligible students were included). A total of 30,030 sophomores and 28,240 seniors who were enrolled in 1,015 public and private high schools across the country participated in the base year survey. Student questionnaires focused on individual and family background, high school experiences, work experiences, and plans for the future. Students also were given cognitive tests to measure a variety of abilities.

School questionnaires, completed by principals or school administrators, provided information about enrollment, staff, educational programs; facilities and services, dropout cates; and special programs for handicapped and disadvantaged students. Teachers filled out checklists in which they commented on the abilities; behavior, and attitudes of students participating in the survey. A parent questionnaire, with questions on plans for postsecondary education, was mailed to the parents of a subsample of students.

1.1.3 The HS\&B First, Second, and Third Follow-Up Surveys

The first follow-up survey, conducted in 1982, included subsamples of 29,737 sophomore cohort and 11,995 senior cohort representatives from the base year survey samples. During the fall of 1982, nearly 18,500 of the sophomore cohort members selected for the first follow-up suryey were subsampled for the High School and Beyond Transcripts Survey. ${ }^{2}$ The second follow-up survey, conducted in 1984 , subsampled 14,825 members of those 18,500 sophomores, and it retained all of the seniors from the first follow-up survey selections. The questionnaires for the second follow-up focused on postsecondary education, work, family formation, and selected attitudes. The third follow-up survey, conducted in 1986, used the same samples as the second follow-up survey, and for the first time, the senior and sophomore cohores completed the same questionnaire, again covering postsecondary education, work, family formation, and selected attitudes.

1.2 Orerview of Chapters 2 through 5

Chapter 2 summarizes the base year sample selection procedures and describes in detail the selection procedures for the follow-up surveys. It describes the sub-sampling plans that were adopted and shows the allocation of cases to sample cells in the sophomore and senior cohorts. Base year sample stratification and sample allocations are also summarized.

Chapter 3 describes the calculation of sample case weights that adjust for differential probabilities of selection and for nonresponse within weighting cells. In order to provide full technical information, the nonresponse adjustment factors for all weighting cells are included in appendices A and B.

Chapter 4 examines the possible impact of survey nonresponse, a potential source of bias. The amount of bias depends on the proportion of nonrespondents and the magnitude of any difference between respondents and nonrespondents on variables of interest. Unfortunately, it is seldom possible to estimate accurately the amount of bias because, although the proportion of nonrespondents is known, there is usually no satisfactory way to estimate the difference between respondents and nonrespondents. Panel surveys, however, often are able to obtain estimates of nonresponse bias based on the characteristics of sample members who participated in one wave but were nonrespondents to another wave. Chapter 4 presents the results of a comparison between base year refusing schools and their substitutes, a comparison of base year responding students and nonresponding students, and a description of nonresponse rates among various subclasses of the third follow-up sample.

Chapter 5 describes procedures for computing sampling errors and design effects. The High School and Beyond sample, because it is a clustered, stratified, and disproportionately allocated sample, presents some special difficulties in estimating actual sampling errors. Chapter 5 discusses the approach NORC has taken to this problem. Sampling errors and design effects are presented for a set of proportions for both the entire sample and important domains or subgroups. Design effects obtained from the second follow-up sample are compared to those obtained from the base year sample. Finally, several "rules of thumb" are offered for estimating standard errors under various circumstances.

NOTES TO CHAPTER 1
IFrankel, M., Kohnke, L., Buonanno, D. and Tourangeau, R. (1981) Sample Design Report. Chicago: . NORC.
${ }^{2}$ Tourangeau R., McWilliams H., Jones C., Frankel M., and O'Brien F., (1983) High School and Beyond First Follow-Up (1982) Sample Design Report. Chicago: NORC.

2. SAMPLE DESIGN AND IMPLEMENTATION

2.1 Base Year Survey Sample Design ${ }^{1}$

In the base year, students were selected through a two stage, stratified probability sample with schools as the first stage units and students within schools as the second stage units. With the exception of certain special strata, which were oversampled, schools were selected with probabilities proportional to the estimated enrollment in their 10 th and 12 th grades. Within each school, 36 seniors and 36 sophomores were randomly selected. In those schools with fewer than 36 seniors or 36 sophomores, all eligible students were drawn in the sample. Sampling rates for each stratum were set so as to select in each stratum the number of schools needed to satisfy study design criteria regarding minimum sample sizes for certain types of schools. As a result, some schools had a very high probability of inclusion in the sample (in some cases, equal to 1.0), while others had a very low probability of inclusion. The total number of schools selected for the sample was 1,122, from a frame of 24,725 schools with grades 10 or 12 or both. ${ }^{2}$ Sampling strata and the number of schools selected in each are shown in table 2.1-1.

Substitution was carried out for schools that refused to participate in the survey, but there was no substitution for students who refused, whose parents refused, or who were absent on Survey Day and make-up days. ${ }^{3}$ Substitution for refusal schools occurred only within strata. In certain cases no substitution was possible because all schools were selected in some strata. The realization of the sample by stratum is shown in table 2.1-2.

2.2 First Follow- Øp Survey Sample Design

All 1980 senior cohort students selected for the base year sample had a known, non-zero chance of being selected for the first and all subsequent follow-up surveys. The first follow-up sample consisted of 11,995 selections from the base year probability sample. This total includes 11,500 selections from among the 28,240 base year participants and 495 selections from among the 6,741 base year nomparticipants. In addition, 204 non-sampled co-twins or triplets (not part of the probability sample) were included in the first follow-up sample, resulting in a total of 12,199 selections. The sample design retained the essential features of a stratified multi-stage design; for further details, see Tourangeau, et al., 1983.4

Most of the sophomore cohort students selected for the base-year sample were retained in the first follow-up survey. Students (1980 sophomores) still enrolled in their original base year schools were retained with certainty, and the remaining sophomores were subsampled with various rates. In all, the sample numbered 29,737. Like the design for the senior cohort, the sophomore cohort first follow-up was a stracified multi-stage design.

Table 2.1-1
High School and Beyond Base Year School Sample Selections

Special Strata (oversampled)	
Alternative public	$\frac{\text { Number }}{50}$
Cuban public	20*
Cuban Catholic	106*
Other Hispanic public	12
Other non-Catholic private (stratified by four census regions) Black Catholic	38 *
Regular Strata (not oversampled)	
Regular Catholic (stratified by four census regions)	48
Regular public (stratified by nine census divisions; racial composition; enrollment; central-city, suburban, rural)	808
	1,122

*These schools were defined as those having 30 percent or more of enrollment from the indicated subgroup.

Table 2.1-2

High School and Beyond Base Year Sample Realization

*Includes additional selections made when schools were found to be out-of-scope.
**Unusable because critical survey materials missing.

2.3 High School Transcripts Sample Design (1980 Sophomore Gohort)

Subsequent to the first follow-up survey, high school transcripts were sought for a probability subsample of nearly 18,500 members of the 1980 sophomore cohort. The subsampling plan for the Transcript Study emphasized the retention of members of subgroups of special relevance for education policy analysis. Compared to the base year and first follow-up surveys, the Transcript Study sample design further increased the overrepresentation of racial and ethnic minorities (especially those with above average HS\&B achievement test scores), students who attended private high schools, school dropouts, transfers and early graduates, and students whose parents participated in the base year Parents' Survey on financing postsecondary education.

2.4 Second and Third Follow-Up Survey Sample Design

The members of the senior cohort selected into the second follow-up sample consisted exactly of those who were selected into the first followup.

The sample for the second follow-up survey of the 1980 sophomore cohort was based upon the transcripts study design. A total of 14,825 cases were selected from among the 18,500 retained for the transcript study. As was the case for the elder cohort, che younger cohort second follow-up sample included disproportionate numbers of sample members from policy-relewant subpopulations (e.g., racial and ethnic minorities, students from private high schools, high school dropouts, students who planned to pursue some type of postsecondary schooling, and so on). Sample weights have been provided to compensate for differential selection probabilities and participation rates across all survey waves.

For both the elder and the younger cohorts, the third follow-up survey sample was the same as the second follow-up survey sample. Since the third follow-up survey sample of the elder cohort was the same as the first (and second) follow-up survey sample, and the third follow-up survey sample of the youngex cohort was the same as the second follow-up survey sample, descriptions of the compositions of the third follow-up survey samples of both cohorts may be found in earlier sample reports ${ }^{5}$.

NOTES TO CHAPTER 2
$1_{\text {For }}$ further details on the base year sample design see Frankel, M., Kohnke, L., Buonanno, D. and Tourangeau, R. (1981) Sample Design Report. Chicago: NORC.
${ }^{2}$ The sampling frame, defined as the universe of high schools in the United States, was obtained from the 1978 list of U.S. elementary and secondary schools of the Curriculum Information Center, a private firm. This was supplemented by the NCES lists of public and private elementary and secondary schools. Information on racial composition was obtained from the 1976 and 1972 DHEW/Office of Civil Rights Secondary School Civil Rights Computer File of public schools and the National Catholic Education Association's list of Catholic schools. Any school listed in any of these files that contained a 10th grade, a 12 th grade, or both was made part of the frame.
${ }^{3}$ Apart from substitution for schools that refused, there were a number of schools in the originally-drawn sample that were "out-of-scope," failing to fit the criteria for inclusion in the sample. The sample was then augmented through selection of an additional school for each out-ofscope school, within major strata. Most of the out-of-scope schools were area vocational schools, having no enrollment of their own, although they were listed in the frame as having enrollments.
${ }^{4}$ Tourangeau R., McWilliams H., Jones C., Frankel M., and O'Brien F., (1983) High School and Beyond First Follow-Up (1982) Sample Design Report. Chicago: NORG.
${ }^{5}$ For the elder cohort see Tables 2.6 and 2.7 of Tourangeau et al. (1983), or Tables 3.2-1 of the Senior Cohort Third Follow-Up (1986) Data File User's Manual, Vol.1. For the younger cohort see Tables 2.4-1 through 2.4-4 of Jones and Spencer (1985), High School and Beyond Second Follow-Up (1984) Sample Design Report or Tables 3.3-1 through 3.3-4 of the Sophomore Cohort Third Follow-Up Data File User's Manual, Vol.1. Chicago: NORC.

3. SAMPLE WEIGHTS

3.1 General Approach to Weighting

The general purpose of weighting is to compensate for unequal probabilities of selection (retention) for the base year and the follow-up surveys and to adjust for the fact that not all individuals selected for participation in the surveys actually participated. The weights are based on the inverse of the selection probabilities through all stages of the sample selection process and on nonresponse adjustment factors computed within weighting cells. In this report, weights are described separately for three subgroups of respondents from each cohort of the HS\&B sample: all third follow-up participants, third follow-up respondents who also participated in the base year, and third follow-up respondents who also participated in the base year, first, and second follow-up surveys. In addition to these various sets of weights, a raw weight, unadjusted for nonresponse in any of the surveys, was calculated and included on the data file for each cohort. The raw weight provides the basis for analysts to construct additional weights, adjusted for the presence of virtually any combination of data elements.

Several different weights have been calculated to adjust for the fact that not all sample members have data for all instruments in all survey waves. Table 3.1-1 describes four of the weights calculated for both the senior and sophomore cohorts. The senior cohort weights project to the population of approximately $3,040,000$ high school seniors in 1980 . Similarly, the sophomore cohort weights project to the population of $3,781,000$ high school sophomores in 1980.

Table 3.1-1
Sample Case Weights, Third Follow-Up Survey

Weight Applies to cases with:		Unweighted number of cases\qquad having these weights	
		1980 Seniors	1980 Sophomores
FU3WT	Third follow up questionnaire data	10,583	13,481
PANELWT4	Base year, first follow-up, second follow-up, and third follow-up questionnaire data	9,389	11,708
TESTWT3	Third follow-up questionnaire data and high school test data	9,149	13,205
RAWWTAll	Third follow-up selections	11,995	14,825

TESTWT3 was constructed only for cases for whom sufficient test data were available to construct a meaningful composite score (TEST). The counts in Table 3.1-1 include deceased persons, who have been given a weight in order to keep the population totals consistent with those of the base year survey.

3.2 Weighting Procedures

The weighting procedures consisted of two basic steps. The first step is the calculation of a preliminary follow-up weight based on the inverse of the cumulative probabilities of selection for the base year sample and up through the third follow-up survey. The second step carries out the adjustment of this preliminary weight to compensate for "unit" nonresponse-that is, for non-completion of an entire questionnaire or some combination of survey instruments. (No adjustments are made to the raw weights, which are, by definition, unadjusted for nonresponse.) These steps are described in more detail below.

Step 1: Calculation of raw weights. The first step in weighting the sample was to develop raw weights based on the inverse of the probability of selection (retention) for the various follow-ups. For HS\&B selections, the raw weights are identical to the raw weights for the second follow-up sample, because all cases selected for the second follow-up were retained in the third follow-up sample and no new cases were selected.

Step 2: Nonresponse adjustment. In this step, the raw weights obtained in step 1 were multiplied by nonresponse ratio adjustment factors. Different factors were used to develop FU3WT, PANELWT4, and TESTWT3, but the approach is similar for each weight. Cases were distributed among weighting cells. Within each weighting cell two sums of raw weights were computed: the first for all cases in the cell selected for the survey wave or combination of waves (selections); the second for all cases in the cell for whom the specified combination of questionnaire and/or test data were collected (participants). The ratio of the two sums (selections over participants) provided a factor used to expand the preliminary weight of each participant to compensate for the missing weights of those who were selected but did not participate. The raw weights of nonparticipants were multiplied by an adjustment factor of zero to produce final weights of zero for these cases. Thus, the nonresponse adjustment consists of distributing the preliminary weights of the nonparticipants proportionately among the participants in each weighting cell.

The weighting cells were defined by cross classifying cases by several variables. For the sophomore cohort third follow-up weight (FU3WT), the cells were defined by:
(1) Dropout status
(1) non-dropout
(2) dropout
(2) School type (for non-dropouts only)
(1) regular public and alternative
(2) Hispanic public
(3) Catholic
(4) private non-Catholic
(3) Sex
(1) male
(2) female
(4) Race
(1) Hispanic
(2) non-Hispanic Black
(3) non-Hispanic White and other
(5) Base year test quartile
for non-dropouts: for dropouts:
(0) no test data available
(1) lowest quartile
(2) second quartile
(0) no test data available
(3) third quartile
(1) below median
(4) highest quartile

In some instances, cells were combined by pooling cases across base year test quartile classifications or type of high school attended.

For the senior cohort third follow-up weight (FU3WT), the cells were defined by:
(1) Base year participation
(1) Non-paxticipant
(2) Participant
(2) School type
(1) Regular public and alternative
(2) Hispanic public
(3) Catholic
(4) Private non-Catholic
(3) Sex (for base year participants only)
(1) male
(2) female
(4) Race (for base year participants only)
(1) Hispanic
(2) non-Hispanic Black
(3) non-Hispanic White and other
(5) Base year test quartile (for base year participants only)
(0) no test data available
(1) lowest quartile
(2) second quartile
(3) third quartile
(4) highest quartile

In some instances, cells were combined by pooling cases across base year test quartile classifications or type of high school attended.

For the senior cohort panel weight (PANELWT4), the cells were defined as above except that neither base year participation nor base year test quartile were used. For senior cohort weight TESTWI3, the cells were defined as for PANELWT4, except that sex was ignored for cases who attended private schools.

3.3 Results of Weighting

As a check on the adequacy of the sample case weights, NORC analyzed the statistical properties of the weights and the effects of various weights on the composition of the survey samples. Tables 3.3-1 and 3.3-2 show the mean, variance, standard deviation, coefficient of variation, minimum, maximum, skewness, and kurtosis for each of the weights calculated for the third follow-up survey.

Table 3.3-1
Statistical Properties of Sample Weights: 1980 Sophomore Cohort

	RAWWT	FU3WT	PANELWT4	TSTWT3
Weight	255.0	280.5	322.9	286.3
Mean	V7,703	70,989	78,940	73,039
Variance	240.2	266.4	281.9	270.3
Standard Deviation	0.94	0.95	0.87	0.94
Coefficient of Variation	1.45	1.62	1.80	1.74
Minimum	3098	3350	3969.7	3446.3
Maximum	2.38	2.66	1.97	2.71
Skewness	11.9	14.5	10.5	15.6
Kurtosis	14,825	13,481	11,708	13,205
Number of Cases				

Table 3.3-2
Statistical Properties of Sample Weights: 1980 Senior Cohort

Weight	RAWWT	FU3WT	PANELWT4	TSTWT3
Mean	253.4	287.2	323.8	332.3
Variance	69,496	91,909	104,471	11,632
Standard Deviation	263.6	303.2	323.2	334.1
Coefficient of Variation	1.04	1.06	1.00	1.01
Minimum	1.09	1.14	1.57	1.67
Maximum	$1,080.8$	$1,548.8$	$1,045.5$	$1,081.9$
Skewness	1.02	1.22	0.09	0.94
Kurtosis	-0.40	0.60	-1.02	-0.92
Number of Cases	11,995	10,583	9,389	9,149

4. NONRESPONSE ANALYSES

4.1 General Considerations

Nonresponse inevitably introduces some degree of error into survey results. In examining the impact of nonresponse, it is useful to think of the survey population as including two strata-a respondent stratim that consists of all units that would have provided data had they been selected for the survey, and a nonrespondent stratum that consists of all units that would have been survey nonrespondents. The actual sample of respondents necessarily consists entirely of units from the respondent stratum. Sample statistics can serve as unbiased estimates only for this stratum; as estimates for the entire population, the sample statistics will be biased to the extent that the characteristics of the respondents differ from those of the entire population. The bias may be expressed as:

$$
\begin{equation*}
\text { Bias }=Y_{R}-Y \tag{1}
\end{equation*}
$$

in which

$$
\left.\begin{array}{rl}
Y_{R}= & \text { a parameter (e.g., a mean) characterizing the } \\
& \text { population of respondents }
\end{array}\right\}
$$

For many simple parameters such as means and proportions, the population parameter (Y) is a weighted average of the stratum parameters (Y_{R} and $Y_{N R}$):

$$
\begin{equation*}
Y=P\left(Y_{N R}\right)+(1-P) Y_{R} \tag{2}
\end{equation*}
$$

with
$P=$ the proportion of the population in the nonrespondent stratum.

It is evident from equations (1) and (2) that the nonresponse bias for an estimated mean or proportion depends on P and on the magnitude of the difference between respondents and nonrespondents:

$$
\begin{equation*}
\text { Bias }-P\left(Y_{R}-Y_{N R}\right) \tag{3}
\end{equation*}
$$

Nonresponse bias will be small if the nonrespondent stratum constitutes only a small portion of the survey population or if the differences between respondents and nonrespondents are small. P can generally be estimated from survey data using an appropriately weighted nonresponse rate.

In the High School and Beyond study, there were two stages of sample selection and therefore two stages of nonresponse. During the base year survey, sample schools were asked to permit the selection of individual sophomores and seniors from school rosters and to designate "survey days" for the collection of student questionnaire and test data... Schools that
refused to cooperate in either of these activities were dropped from the sample. Individual students at cooperating schools could also fail to take part in the base year survey. Unlike "refusal" schools, nomparticipating students were not dropped from the sample; they remained eligible for selection into the follow-up samples.

Estimates based on student data from the base year surveys include two components of nonresponse bias:

$$
\begin{equation*}
\text { Bias }=\left(Y_{1 R}-Y\right)+\left(Y_{2 R}-Y_{1 R}\right), \tag{4}
\end{equation*}
$$

in which

$$
\left.\begin{array}{rl}
Y= & \text { a parameter characterizing all students, } \\
Y_{1 R}= & \text { the corresponding parameter for all students } \\
& \text { attending cooperating schools, and }
\end{array}\right\}
$$

The first component ($Y_{1 R}-Y$) represents the bias introduced by nonresponse at the school level, and the second component ($Y_{2 R}-Y_{1 R}$) represents bias introduced by nonresponse on the part of students actending cooperating schools. Each component of the overall bias depends on two factors--the level of nonresponse and the difference between respondents and nonrespondents:

$$
\begin{equation*}
\text { Bias }=P_{1}\left(Y_{1 R}-Y 1_{N R}\right)+P_{2}\left(Y_{2 R}-Y_{2 N R}\right) \tag{5}
\end{equation*}
$$

in which
$P_{1}=$ the proportion of the population of students attending schools that would have been nonrespondents,
$Y_{1 N R}=$ the parameter describing the population of students attending nonrespondent schools,
$P_{2}=$ the proportion of students attending respondent schools who would have been nonrespondents, and
$Y_{2 N R}=$ the parameter describing this group of students.
The implications of equations (4) and (5) can be easily seen in terms of a particular base year estimate. On the average, sophomores got 10.9 items right on a standardized vocabulary test ${ }^{2}$. This figure is an estimate of $Y_{2 R}$, the population mean for all participating students at cooperating schools. Now, suppose that sophomores at cooperating schools average two more correct than sophomores attending refusal schools ($Y_{1 R}-Y_{1 N R}=2$), and suppose further that among sophomores attending cooperating schools, student respondents average one more correct answer than student nonrespondents $\left(Y_{2 R}-Y_{2 N R}=1\right)$. Noting that the base year school nonresponse rate was about $.30^{3}$ and the student nonresponse rate for sophomores was about $.12^{4}$, we can use these figures as estimates of P_{1} and P_{2} and we can use equation (5) to calculate the bias as:

$$
\text { Bias }=.30(2)+.12(1)=.72
$$

That is, the sample estimate is biased by about .7 of a test score point.

This example assumes knowledge of the relevant population means; in practice, of course, they are not known and, although P_{1} and P_{2} can generally be estimated from the nonresponse rates, the lack of survey data for nonrespondents prevents the estimation of the nonresponse bias. The High School and Beyond study is an exception to this general rule: during the first follow-up, school questionnaire data were obtained from most of the base year refusal schools, and student data were obtained from most of the base year student nonrespondents selected for the first follow-up sample. These data provide a basis for assessing the magnitude of nonresponse bias in base year estimates.

The bias introduced by base year school-level refusals is of particular concern since it carries over into successive rounds of the survey. Students attending refusal schools were not sampled during the base year and have no chance for selection into subsequent rounds of observation. To the extent that these students differ from students from cooperating schools during later waves of the study, the bias incroduced by base year school nonresponse will persist. Student nonresponse is not carried over in this way since student nonrespondents remain eligible for sampling in later waves of the study.

The results of three types of analyses concerning nonresponse are described in an earlier report . Based on school questionnaire data, schools that participated during the base year were compared with all eligible schools. Based on the first follow-up student data, base year student respondents were compared with nonrespondents. Finally, student nonresponse during the first follow-up survey was analyzed. Taken together, these earlier analyses indicated that nonresponse had little effect on base year and first follow-up estimates. The results presented there suggest that the school-level component of the bias affected base year estimates by 2 percent or less and that the student-level component had even less impact.

In section 4.2, we analyze student nonresponse during the HS\&B third follow-up. The school-lewel component of the nomresponse bias in third follow-up estimates is just the carryover from base year school nonresponse, which was shown to be 2 percent or less in the analysis cited above.

4.2 Analysis of the Third Follow- Op Survey Student Nonresponse Rates

This section examines the antecedents and correlates of nonresponse. A few preliminary remarks on the bias resulting from nonresponse are nonetheless in order. First, it should be noted that school nonresponse may have the same effect on base year, first, second, and third follow-up estimates-students attending refusal schools were not sampled in the base year and have no chance of inclusion in the first, second, or chixd follow-up. For this reason, the estimates presented in earlier reports ${ }^{6}$ may serve as escimates of the bias due to school nonresponse for the follow-up surveys as well as the base year. To the extent that the association between school attended and student characteristics decreases with the passage of time since the base year, the biasing effect of school refusals may be less now than it was for the base year. Second, student nonresponse was much lower in the third follow-up than in the base year
survey; other things being equal, the bias due to student nonresponse should be correspondingly smaller (see Equation 5). Overall, the weighted student nonresponse rates during the third follow-up were 9.6 percent in the sophomore cohort and 11.7 percent in the senior cohort (versus 12.0 and 15.2 percent respectively during the base year). Thus, it is reasonable to expect that bias in third follow-up estimates due to student nonresponse is smaller than that in the base year estimates, where it was already small.

There were several causes of student nonparticipation in the followup surveys. Some students refused to cooperate; others could not be located or were unavailable at the time of the third follow-up survey, and a few had died. Nonresponse rates were calculated in the usual way; the nonresponse rate is the proportion of the selected students (excluding deceased students) who were nonrespondents:

$$
P=\frac{N R}{R+N R}
$$

in which
$\mathbf{P}=$ the nonresponse rate
$\mathrm{R}=$ the number of responding students
$\mathrm{NR}=$ the number of nonresponding students.

Nonresponse rates were calculated for each cohort by school-level and student-level variables using both unweighted and weighted data. The weight used was RAWWT. (See chapter 3 for a complete description of the weighting procedures.)

An overall indication of the level of participation and nonparticipation in the base year, first follow-up, second follow-up, and third follow-up surveys is presented in Table 4.2-1 and 4.2-2. These tables show frequencies and percentages of cases in each of sixteen cells. The totals presented in Tables 4.2-1 and 4.2-2 are unweighted.

4.2.1 Third Follow-Up Survey Student Nonresponse Rates: School Variables

This section examines nonresponse to the third follow-up for each cohort by school-level variables. Five variables are shown in Table 4.2.1-1: school type, census region, level of urbanization, percentage of Black enrollment, and average enrollment. Base year and first follow-up data were used to classify the schools. The response rates given in the table are weighted, using RAWWT.

Table 4.2.1-1 indicates that the highest nonresponse rate for the sophomore cohort occurred among respondents who had been alternative public school students (19.8 percent), and the lowest rate was among former students at Catholic schools (5.7 percent). Among seniors, former Hispanic public school students had the highest nonresponse rate (16.9 percent) and former Catholic students the lowest (10.4 percent).

There is moderate variation in nonresponse by region, although in both cohorts, sample members selected from schools in the West show the highest rate of nonresponse (11.9 percent for the sophomores and 16.4 percent for the seniors). The nonresponse rates were lowest for participants who had been students in North Central schools (around 7.6 percent for each cohort).

Table 4.2-1
Participation Patterns for Base Year,
First Follow-Up, Second Follow-Up and Third Follow-Up Surveys: Sophomore Cohort

Participation Patterns*				Frequency	Percent
Sophomore Cohort					
BY	1FU	2 FU	3 FU		
N	N	N	N	76	0.5
N	N	N	Y	23	0.2
N	N	Y	N	9	0.1
N	N	Y	Y	18	0.1
N	Y	N	N	53	0.4
N	Y	N	Y	60	0.4
N	Y	Y	N	76	0.5
N	Y	Y	Y	758	5.1
Y	N	N	N	104	0.7
Y	N	N	Y	93	0.6
\underline{Y}	N	Y	N	52	0.4
Y	N	Y	Y	343	2.3
Y	Y	N	N	259	1.8
Y	Y	N	Y	447	3.0
Y	Y	Y	N	11, 715	4.8
Y	Y	Y	Y	11,683	79.1
Total				14,769	100.0

Table 4.2-2
Participation Patterns for Base Year,
First Follow-Up, Second Follow-Up, and Third Follow-Up Surveys: Senior Cohort

Participation Pattern*				Frequency	Percent
Senior Cohort					
BY	1 FU	$\underline{2 F U}$	3 FU		
N	N	N	N	48	0.4
N	N	N	Y	13	0.1
N	N	Y	N	4	0.0
N	N	Y	Y	18	0.2
N	Y	N	N	18	0.2
N	Y	N	Y	20	0.2
N	Y	Y	N	35	0.3
N	Y	Y	Y	335	2.8
Y	N	N	N	195	1.6
Y	N	N	Y	106	0.9
Y	N	Y	N	77	0.6
Y	N	Y	Y	- 294	2.5
Y	Y	N	*	266	2.2
Y	Y	N	Y	377	3.2
Y	צ	Y	N	769	6.4
Y	8	区	Ψ	9,373	78.5
Total				11,948	100.0

NOTE: Counts refer to main samples only, excluding nonsampled co-twins, and excluding deceased persons.
*BY = base year survey; $1 F U=$ first follow-up survey;
$2 \mathrm{FU}=$ second follow-up survey; $3 \mathrm{FU}=$ third follow-up survey; Y denotes participation, and \mathbb{N} denotes non participation.

Table 4.2.1-1
Weighted Student Nonresponse Rates by Selected School Characteristics (figures are percents)

Characteristics	Sophomore cohort	Senior cohort
Total population	9.6	11.7
School type:		
Regular public	9.6	11.6
Hispanic public	11.3	16.9
Alternative public	19.8	11.3
Non-Catholic private	11.9	14.7
Catholic	5.7	10.4
Region:		
Northeast	11.3	12.6
North Central	7.3	7.8
South	9.2	11.8
West	11.9	16.4
Urbanization:		
Urban	14.4	14.3
Suburban	9.2	12.8
Rural	6.7	8.2
Percent Black:		
25\% or less	8.6	11.0
Greater than 25\%	13.3	13.8.
Other/unknown	10.8	15.3
Average enrollment:		
100 or less	7.6	10.0
101.135	7.4	11.1
326-550	8.9	11.5
More than 550	13.5	13.6
Other/unknown	11.7	16.3

For both cohorts, there is a small but consistent relationship between student nonresponse and level of urbanization. The nonresponse rate is highest for students who were attending urban schools at the time of the base year sample selection (14.4 percent for the sophomore cohort and 14.3 percent for the senior), next highest for students from suburban schools (9.2 percent for sophomores and 12.8 percent for seniors) and lowest for students from rural schools (6.7 percent for sophomores and 8.2 percent for seniors).

Students selected at schools with a large percentage of Blacks (25 percent or more) showed somewhat higher rates of nonresponse than students at schools with fewer Blacks. The difference in nonresponse rates between these groups is slightly larger for the sophomore cohort (13.3 versus 8.6 percent) than for the seniors (13.8 versus 11.0 percent).

Student nonresponse seems to increase roughly with school size. For both cohorts, the rates are highest among students who attended the largest schools.

4.2.2 Third Follow-Op Survey Student Nonresponse Patterms: StudentLevel Variables

In this section, the student nonresponse rates to the third follow-up survey are analyzed by student-level variables, including demographic characteristics, academic aptitude, high school program, and postsecondary education. Students were classified by their responses to the base year questionnaire for all characteristics except student status (for which first and second follow-up data were used). Table 4.2.2-1 shows the weighted rate of nonresponse by race, sex, high school program, base year SES, and student status. The cacegory "other/unknown" is a general classification that includes both cases with missing data and cases that did not fall into any of the other specifically defined categories. Nonresponse generally is substantially higher for the "other/unknown" categories. This is an artifact attributable to the substantial number of third follow-up nonrespondents who were also nonrespondents in both the base year and the first follow-up surveys. These triple nonparticipants could only be classified in the unknown category, hence elevating the nonresponse rate for that group.

Table 4.2.2-1
Weighted Student Nonresponse Rates by Selected Student Characteristics (figures are percents)

Characteristics	Sophomore cohort	Senior cohort
Total population	9.6	11.7
Race:		
White/other	6.7	9.2
Black	13.1	15.3
Hispanic	11.9	$\frac{13}{39} \cdot \frac{1}{4}$
Other/unknown	36.2	39.4
Sex:		
Male	11.6	
Female	17.6	14. 9
High school program: 9.9		
General	9.9 6.3	$1 \frac{11.1}{}$
Vocational	9.5	11.0
Other/unknown*	63.3	21.1
SES quartile in base year:		
Highest quartile	5.7	8.2
Middle two quartile	7.6	9.6
Lowest quartile	35.4	11.5
Student status:		
No postsecondary education	7.8	9.2
Only vocational.		
postsecondary education	28.8	31.2
Other postsecondary education	4.5	8.1

Note: Other/unknown includes cases with missing data and cases who did not otherwise fall into any of the defined categories.

There is marked variation in student nonresponse by race. Blacks show the highest nonresponse rate in both cohorts, followed by Hispanics, and then by other whites; however, a substantial portion of the second follow-up student nonrespondents were also base year and first follow-up nonrespondents and were not classified by race. For this reason, there is some uncertainty about the actual nonresponse rates for the different racial and ethnic groups.

In both cohorts, males exhibit a higher nonresponse rate than females. The difference is 4.0 percent in the sophomore cohort (11.6 percent for males versus 7.6 percent for females) and 4.6 percent in the semior cohort (14.1 versus 9.5 percent).

In both cohorts, students who were in academic programs during the base year were less likely to be nonrespondents than students in general or vocational programs.

In each cohort, nonresponse was highest for students classified as the lowest SES level (9.4 percent in the sophomore cohort, 11.5 percent in the senior cohort). The lowest nonresponse rates were observed for students classified in the highest SES category (5.7 and 8.2 percent).

Table 4.2.2-1 also shows that the students who had non-vocational postsecondary education had the lowest nonresponse rates (4.5 percent for sophomores and 8.1 percent for seniors); students who reported no postsecondary education had somewhat higher rates of nonresponse (7.8 percent and 9.2 percent), and students who had only postsecondary vocational education had extremely.high nonresponse rates (28.8 percent and 31.2 percent).

These differences across groups in response rates are somewhat similar to those observed during previous rounds of data collection. A picture of student nonrespondents is continuing to emerge from the analyses which suggests that groups with less involvement with education were less likely to participate in the survey: dropouts had higher nonresponse rates than non-dropouts; students with lower grades and lower test scores showed higher nonresponse than students with higher grades and test scores; students who were frequently absent from school showed higher nomresponse than students absent infrequently; students in vocational or general programs were more likely to be nonrespondents than students in academic programs.

4.2.3 Sumary of Nonresponse Analyses

The analyses presented here and in previous reports ${ }^{7}$ support three general conclusions:
(1) The school-level bias component in estimates is small, averaging less than 2 percent for base year and first follow-up estimates. It is probably of a similar magnitude for third follow-up estimates.
(2) The student-level bias component in base year estimates is also small, averaging about 0.5 percent for percentage estimates concerning either cohort.
(3) The student-level bias component in first, second, and third follow-up estimates is limited by the nonresponse rates, which for both cohorts were about three fourths of the base year rates.

The first and second conclusion together suggest that nonresponse bias is not a major contributor to error in base year estimates; the first and third suggest that nonresponse bias is not a major contributor to error in follow-up estimates either.

Each of these conclusions must be given some qualifications. The analysis of school-level nonresponse is based on data concerning the schools, not the students attending them. The analyses of student nonresponse are based on survey data and are themselves subject to nonresponse bias. Despite these limitations, the results consistently indicate that nonresponse had a small impact on base year and follow-up estimates.

NOTES TO CHAPTER 4
${ }^{1}$ See Cochran, W. G. (1977) Sampling Techniques, Third Ed., New York: Wiley. p. 361
${ }^{2}$ See p. A-4 of Tourangeau, R., McWilliams, H., Jones, "C., Frankel, M., and O'Brien, F. (1983) High School and Beyond First Follow-Up (1982) Sample Design Report. Chicago: NORC.
${ }^{3}$ See Frankel, M., Kohnke, L., Buonanno, D., and Tourangeau, R. (1981). High School and Beyond Sample Design Report. Chicago: NORC, p. 93
${ }^{4}$ See Frankel et al. (1981), p. 124
${ }^{5}$ See Tourangeau et al. (1983), ch. 4
${ }^{6}$ See Tourangeau al. (1983), ch. 4, tables 4.1 and 4.3
${ }^{7}$ See Frankel et al. (1981), Tourangeau et al. (1983), and Jones, G. and Spencer, B. D. (1985) High School and Beyond Second Follow-Up (1984) Sample Design Report. Chicago: NORC.

5. STANDARD ERRORS AND DESIGN EFFEGTS

This chapter examines the standard errors for statistics--such as means and proportions-derived from the third follow-up survey data sets. Most researchers are familiar with the use of standard exrors to assess the variability of estimates based on simple random samples; more complex designs, however raise less familiar statistical issues. Both the senior and sophomore cohorts for the third follow-up survey were selected using stracified, clustered, unequal probability designs. With such complex designs, standard errors must be calculated using procedures different from the familiar methods used for data from simple random samples.

Before presenting standard errors for third follow-up survey estimates, it is useful to discuss some of the statistical issues raised by complex sample designs. First the computational procedures used to estimate the standard errors are discussed, followed by an examination of the relationship between standard errors based on complex samples and those based on simple random samples.

5.1 Computational Procedures

In a simple random sample, the mean is estimated as

$$
\begin{equation*}
x_{s r s}=\sum x i / n \tag{1}
\end{equation*}
$$

Only the numerator is subject to sampling error; the denominator (the sample size) is taken as a fixed constant. In more complex sample designs, the mean is estimated as a ratio of estimates; for the High School and Beyond survey, the ratio is

$$
\begin{equation*}
r=\frac{\sum \sum \sum y_{h i j}}{\sum \sum x_{h i}}=y / x \tag{2}
\end{equation*}
$$

in which

$$
\left.\begin{array}{rl}
y_{h i j}= & \text { the weighted value for student } j \\
& \text { from school i in stratum } h,
\end{array}\right\} \begin{aligned}
x_{h i}= & \text { the estimated size of school in in } \\
& \text { stratum } h .
\end{aligned}
$$

The numerator (y) represents an estimate of the population total; the denominator (x), an estimate of the population size. When cluster sizes (i.e., school sizes) are unequal, the overall sample size will fluctuate depending on which clusters are selected. For the same reason, the estimates of the population size will show sampling fluctuation. Thus, for a ratio estimator; both the numerator and the denominator are subject to sampling error.

Kish and Frankel ${ }^{1}$ distinguish three major approaches to the computation of standard errors for statistics based on complex designs where ratio estimators must be used: Taylor Series, balanced repeated replication (BRR), and jackknife repeated replication (JRR).

Taylor Series estimation. It can be shown ${ }^{2}$ that the variance of r (i.e., the square of the standard error of r) is

$$
\begin{equation*}
E(r-R)^{2}=E\left[\left(\frac{(d y-R d x)^{2}}{x^{2}}\right) \cdot(1+d x / X)^{2}-1\right] \tag{3}
\end{equation*}
$$

in which

$$
\begin{aligned}
E(r-R)^{2}= & \text { the expected value of the squared } \\
& \text { difference between the population } \\
& \text { parameter } R \text { and the sample estimate } r \\
d y= & \text { the difference between the sample } \\
& \text { estimate } y \text { and the population value } Y \\
X= & \text { the population size }
\end{aligned}
$$

$\mathrm{dx}=$ the difference between the sample estimate of the population size, x, and the population size X.

If the term involving one plus the relative error of x is ignored (i.e., $d x / X$ is negligible), it can be shown that (3) reduces to:

$$
\begin{equation*}
E(r-R)^{2}-1 / X^{2}\left(\operatorname{Var}_{y}+R^{2} \operatorname{Var}_{x}-2 R \operatorname{Cov}_{x y}\right) \tag{4}
\end{equation*}
$$

in which

$$
\begin{aligned}
& \operatorname{Var}_{y}=\text { the variance of } y \\
& \operatorname{Var}_{x}=\text { the variance of } x \\
& \operatorname{Cov}_{x y}=\text { the covariance of } x \text { and } y
\end{aligned}
$$

All the terms in equation (4) can be estimated from sample data (e.g., r would take the place of R, x the place of X, and so forth). The variance terms are estimated by the variation of primary selection means around the stratum mean. Sampling statisticians have offered several rationales for the use of equation (4) as an approximation of (3). One line of argument ${ }^{3}$ makes use of a standard approximation technique, called Taylor Series approximation, which gives this approach its name.

Balanced repeated replication (BRR). The replication approach was originally developed by Deming. ${ }^{4}$ The principle underlying replicated sampling is quite simple. If a sample of size n is desired, g independent replicate samples are selected, each of size n / g. The variation among estimates from each replicate can be used to estimate the variance of estimates based on the entire sample.

Balanced repeated replication extends the principle of replication. It is usually applied to stratified designs with two primary selections per stratum. By choosing one primary selection from each stratum, a halfsample is created; the unselected primary units form another half-sample. In a design with h strata, a total of $2^{(h-1)}$ different pairs of halfsamples can be formed in this fashion. Each pair is referred to as a replicate. It is customary to form only a portion of the possible replicates using an orthogonal balanced design.

For any given replicate, estimates such as the ratio means can be computed from each half-sample. Then the sampling variance for the overall statistic (r) can be estimated in any of several ways. ${ }^{5}$ One method compares the estimate from one halfsample with the overall estimate:

$$
\begin{equation*}
\operatorname{Var}_{k}(r)=\left(r_{1 k}-r\right)^{2} \tag{5}
\end{equation*}
$$

in which

$$
\begin{aligned}
\operatorname{Var}_{k}(r)= & \text { the variance estimate based on } \\
& \text { replicate } k, \\
r= & \text { an estimate of } R \text { based on the entire } \\
& \text { sample, and } \\
r_{1 k}= & \text { an estimate of } R \text { based on one of the } \\
& \text { half-samples from replicate } k .
\end{aligned}
$$

The final estimate for the variance of r is the average of Var_{k} (r) across all the replicates. The estimate x need not be a ratio mean; the logic of BRR applies to any type of estimate, giving the method its broad generality.

Jackknife repeated replicarion (JRR). Equation (5) shows that the variance of a sample statistic can be estimeted using data from a portion of the sample, that is from a single half-sample. Jackknifing is a generalization of this idea. Estimates of variance can be obtained from subsamples of a single original sample with a technique known as jackknifing.

Franke1 ${ }^{6}$ has shown how jackknifing can be used with complex stratified samples. Again this assumes a design with two primary selections in each stratum. For a particular stratum, the variance can be estimated:

$$
\begin{equation*}
\operatorname{Var}_{h}=\left(r_{1 h}-r_{h}\right)^{2} \tag{6}
\end{equation*}
$$

in which
$r_{1 h}=a n$ estimate based on one of the primary selections from stratum h, and
r_{h} the corresponding estimate based on both primary selections from the stratum.

The estimated variance for the entire sample is just the sum of the estimated strata variances. With JRR, each "replication" represents the contribution of a single stratum to the variance of estimates from the entire sample.

Comparison of the methods. In the base year survey, NORC provided standard errors for sample statistics, using a program based on the Taylor Series approach. Prior to the first follow-up survey, NCES (now CES) acquired a program that computes BRR standard error estimates. BRR programs were used to compute standard errors for statistics derived from the first and second follow-up data sets.

BRR assumes a design with two primary selections per stratum. Although the High School and Beyond sample is stratified, each of the
original strata includes more than two primary selections (the primary selections in this case were high schools or students at high schools that came into the sample with certainty). In order to meet the assumptions of $B R R$, the original 26 school strata were divided into 90 "computing" strata. Within each computing stratum, the primary selections were randomly divided into two groups, which were treated as "pseudoprimaries." The BRR program thus treats the sample as though it included two primary selections from each of 98 strata.

Previous empirical investigation ${ }^{9}$ indicated that Taylor Series, $B R R$ and JRR gave comparable results, although BRR standard error estimates consistently gave more accurate significance levels for t-statistics. Nonetheless, a comparison of Taylor Series and BRR standard error estimates was undertaken in order to assure that standard errors from the base year and first follow-up surveys could be interpreted in the same way. The comparison showed no appreciable differences between the Taylor Series and BRR standard error estimates. 10

5.2 Design Effects

No matter which method is used to estimate the standard errors for second follow-up statistics, the standard errors will be different from standard errors calculated on the assumption that the data are from a simple random sample. Like most national samples, the High School and Beyond sample is not a simple random sample; it departs from the model of simple random sampling in three major respects: the selections are clustered by school, major subgroups (such as private school students) are deliberately overrepresented in the sample, and the selections are stratified by school type. (The sample design is summarized in chapter 3, above.) Each of these departures from simple random sampling has a predictable impact on the standard errors of sample estimates. The variance of a statistic from a complex sample can be represented as the product of four factors:

$$
\begin{equation*}
\operatorname{Var}(x)=\operatorname{Var}_{\text {srs }} x \text { Cluster } x \text { Strat } x \text { Disprop } \tag{7}
\end{equation*}
$$

in which
$\operatorname{Var}(X)=$ the actual variance of a sample estimate,
$V_{\text {Vrs }}=$ the estimate variance that would be obtained if the sample were treated as a simple random sample, and

Cluster, Strat, Disprop = factors representing the impact of clustering, stratification, and disproportionate sampling.

Var (x) can be estimated from sample data using any of the techniques considered earlier.

The ratio of Var (X) to $\mathrm{Var}_{\mathrm{srs}}$ is commonly referred to as the design effect (DEFF).

In many cases, it is more useful to work with standard errors than with variances. The root design effect (DEFT) expresses the relation between the actual standard error of an estimate and the standard error of the corresponding estimate from a simple random sample:

$$
\begin{align*}
\text { DEFT } & =\left(\text { DEFF }^{1 / 2}\right. \tag{8}\\
& =\left(\operatorname{Var}(X) / \operatorname{Var}_{\text {srs }}\right)^{1 / 2} \\
& =\operatorname{se}(X) / \mathbf{s e}_{\text {srs }}
\end{align*}
$$

The mean design effects given in tables 5.3-1a through 5.3-5b can be used to calculate approximate standard errors for other estimates not included in the tables. For example, for proportions, the simple random sample variance is just

$$
\begin{equation*}
=p(1-p) / n \tag{9}
\end{equation*}
$$

in which $\quad p=$ the estimated proportion, and
n the number of cases with non-missing data,
and so the standard error of proportion can be estimated using the square root of the expression in (9) times the mean root design effect (DEFT):

$$
\begin{equation*}
S E=\operatorname{DEFT}(p[1-p] / n)^{1 / 2} \tag{10}
\end{equation*}
$$

Similarly, the standard error of a change in proportion can be calculated as the mean DEFT times the square root of the weighted variance of the change scores:

$$
\begin{equation*}
S E=\operatorname{DEFT}(W T V A R / n)^{1 / 2} \tag{11}
\end{equation*}
$$

in which

$$
\begin{aligned}
\text { WTVAR }= & \text { weighted variance of the individual change } \\
& \text { scores, } \\
n= & \text { unweighted number of valid observations, and } \\
D E F T= & \text { mean of the root design effects for change } \\
& \text { estimates. }
\end{aligned}
$$

The appropriate weight to use in calculating the variance for change estimates using the base year through third follow-up survey data is the panel weight (PANELWT4). The appropriace values of DEFT to use for inflating standard errors based on simple-random-sampling calculations are discussed below.

5.3 Standard Errors and Design Effects

This section presents several sets of standard errors and design effects calculated on data from all four waves. Standard errors and design effects pertain to proportions of a sample who had specified characteristics. (See Appendix C for standard errors and design effects that were calculated using third follow-up variables.)

5.3.1 Base-year and First Follow-Up

Table 5.3-1a displays standard errors and design effects for the sophomore cohort for 30 proportions and seven averages based on weighted data from the first follow-up questionnaires and tests. The mean root design effect for the 37 statistics is 1.8 , which is somewhat higher than the root design effect observed for the base year survey ${ }^{11}$. The reason for the difference is that the sample of sophomores for the first followup was a disproportionate subsample from the base year sample. Although most of the base year sophomore sample were retained (with certainty) for the first follow-up, several groups were subsampled. In particular, base year nonparticipants who dropped out of school prior to the first followup survey (approximately 500) cases, was subsampled at a rate of only 10%; the mean first follow-up survey weight for this group is about 15 rimes larger than the mean weight for the rest of the cohort sample. The variability of the weights due to disproportionate subsampling and higher nonresponse among dropouts reduces the efficiency of the sample and causes the increase in the design effects.

Table 5.3-1b displays standard errors and design effects for the senior cohort using the first follow-up questionnaire data and the first follow-up weights. The mean root design effect for the 30 proportions is 1.6. This is the same as the mean (1.6) found for the base year survey using Taylor Series estimation procedures rather than BRR. The sample of seniors for the follow-ups differs from the base year senior sample in several key respects. First of all, the sample is much smaller (11,995 selected cases versus 34,982), which means that the average cluster size (selections per school) is much smaller. Reducing the cluster size should increase the efficiency of the sample. However, the first follow-up sample of seniors represents some population subgroups even more disproportionately than did the base year sample; this greater disproportionality decreases the efficiency of the follow-up sample by introducing additional variability into the weights. Apparently, the effects of the reduced cluster size and the increased disproportionality offset each other--the base year and the follow-up samples exhibit similar mean design effects.

Table 5.3-2a displays estimates for the base year sophomore sample using data from base year participants who were selected for the first follow up sample. The questionnaire items in table 5.3-2a are identical to those in table 5.3-1a but the estimated proportions and standard errors are based on responses to these items in the base year sophomore questionnaire. For the most part, these items were repeated verbatim in the first follow-up questionnaire; in one case, however, response options were reordered in the follow-up questionnaire. As table 5.3-2a shows, the mean DEFT is 1.643, a value that differs little from the analogous figure calculated during the base year (1.651). The mean DEFT in table 5.3-2a is lower than the mean in table 5.3-1a (1.6 vs. 1.8), because, as noted earlier, the estimates for the follow-up sophomore sample are less efficient than estimates for the base year sophomores.

Table 5.3-2b displays estimates for the base year senior sample using only data from base year participants who were selected for the first follow-up sample. The questionnaire items in table 5.3-2b are identical to those in table 5.3-1b, but the estimated proportions and standard errors are based on responses to these items in the base year senior questionnaire. For the most part, these items were repeated verbatim

Table 5.3-1a
Standard Errors and Design Effects Associated with Estimated Proportions of First follow-Up Sophomores Who Had Specified Characteristics, Using fU1WT

Statistic.	Item Nunber*	Estimate	SE	DEFF	DEFT
Proportions					
In vocational progran	2	0.270	0.007	6.922	2.631
Horked last week	24	0.532	0.005	2.804	1.675
Working at clerical job	29	0.250	0.005	3.080	1.755
Current job is place where people goof off	33A	0.132	0.004	2.958	1.720
Work more enjoyable than school	33C	0.513	0.005	2.149	1.466
Job encourages good work habits	330	0.789	0.004	2.184	1.454
Father non-professional	53A	0.887	0.005	6.276	2.506
Father finished callege	55	0.213	0.007	7.040	2.653
Mother finished college	56	0.136	0.005	5.374	2.318
Watch more than one hour of TV per day	61	0.791	0.003	1.480	1.217
Career success important	73A	0.860	0.003	1.960	1.400
Having lots of money not important	73C	0.103	0.003	2.549	1.597
Important to be a leader in cormunity	$73 F$	0.476	0.006	3.748	1.936
Important to live close to parents	73H	0.707	0.005	3.147	1.774
Having leisure time not important	731	0.017	0.001	1.552	1.246
Have a positive attitude toward self	75A	0.932	0.002	1.564	1.250
Good luck more important than hard work	758	0.127	0.003	1.986	1.409
Believe sameone or sommthing prevents success	75 E	0.256	0.005	3.122	1.767
Bel feve plars hardly gver work oust	75 F	0.199	0.004	2.434	1.560
Have little co be proud of	731	0.126	0.003	1.992	9.411
Working to correct inequalities important	73.	0.396	0.004	1.738	1.318
No sericus trouble with law	76A	0.848	0.003	4.845	2.204
Expect to finish fuli-time education	80	0.382	0.007	5.288	2.300
Hould be satisfied with leas than college ed.	82	0.764	0.006	4.693	2.166
Seen by ochers as physically unattractive	76	0.803	0.003	2.480	1.575
Married	97A	0.035	0.002	2.883	4.698
Expect first child by age 25	978	0.538	0.005	2.404	9.550
Expeet to have own home of apt. by age 24	970	0.921	0.002	1.326	1.151
Expect to have no children	98.	0.089	0.003	2.706	1.645
Hard of hearing	103C	0.019	0.001	1.472	1.243
Averages					
Vocabulary score		10.387	0.085	5.776	2.403
Reading score		7.657	0.072	5.217	2.284
Math, part I score		10.820	0.143	7.407	2.722
Mathi part 2 score		2.736	0.048	5.031	2.243
Science scare		9.475	0.073	5.869	2.443
Writing score		9.503	0.074	4.993	2.234
Civics score		5.464	0.037	4.326	2.080
Mean (Propoptions only)				3.136	1.719
Mean (All scatistics)	.			3.589	1.837
Minimam				1.326	1.151
Maximm				7.407	2.722
Scanderd Deviation				9.804	0.470

* First follow-up questionnaire number.

Table 5.3-1b
Standard Errors and Design Effects Associated with Estimated Proportions of First follow-Up Seniors Who Had Specified Characteristics, Using FU1HT

Statistic	Item Number*	Estimate	SE	DEFF	DEFT
Hard of hearing	$83-\mathrm{c}$. 012	. 001	. 890	. 943
Having leisure time not important	85-1	. 013	. 001	. 802	. 896
Have physieal handicep	84	. 070	. 003	1.487	1.220
Hove little to be proud of	75-1	. 087	. 004	2.085	1.444
Expeet to have no children	61	. 098	. 004	1.880	1.371
itwor more sibl ings in high school	73	. 099	. 003	1.079	1.039
Good luck more important than hard work	75-b	.900	. 004	1.802	1.342
Expect to get married	15-8	. 107	. 006	3.963	1.991
Expect to finish full-time echucation	15-e	.136	. 006	3.182	1.782
Mother finished college	21	. 142	. 009	7.161	2.676
Believe plans hardly ever work out	75-f	.143	. 005	2.058	1.435
Having lots of money not important	85-c	. 147	. 004	1.362	1.167
Current job is place where people goof off	25-a	. 182	. 006	1.906	1.381
Believe someone/something prevents success	$75 \cdot \mathrm{e}$. 216	. 006	2.111	1.453
Father finished college	20	. 227	. 010	5.918	2.433
Planning professional career	$16 \cdot 0$. 260	. 006	2.064	1.437
Sibling in college	72	. 372	. 007	2.244	1.498
Have started first job	$15 \cdot 6$. 420	. 009	3.483	1.866
Important to be a leader in community	85-f	. 465	. 007	2.084	1.444
Plen to finish college	12	. 486	. 011	4.612	2.148
Expect first child by age 25	15-6	. 489	. 090	4.102	2.025
Work more enjoyable then school	25-b	. 513	. 008	2.011	1.418
Would be satisfied with less than college ed.	13	. 629	. 011	5.291	2.300
Working to correct inequalities important	85.j	. 670	. 007	2.345	1.531
Wetch more than one hour of TV per day	76	. 778	. 007	3.167	1.780
Career success important	85-a	. 829	. 005	1.890	1.375
Job encourages good work habits	25-c	. 858	. 005	1.804	1.343
Have ability to finish college	14	. 867	. 005	2.355	1.535
Expect to have own home or apt. by age 24	15-d	. 916	. 004	2.203	1.484
Have a positive attitude toward self	75-a	. 949	. 003	1.923	1.387
Mean				2.642	1.571
Minimum				. 802	. 896
Maximam Standard Deviation				7.161	2.676
Standard Deviation				1.499	. 423

[^0]Table 5.3-2a
Standard Errors and Design Effects Associated with Estimated Proportions and Âverages of First follow-Up Sophomores Who Had Specified

Characteristics, Using Base Year Weights

Statistics	Item Humber*	Estimate	SE	DEFF	DEFT
Proportions					
in vocational program	1	0.292	0.006	5.705	2.389
Horked last meek	24	0.382	0.005	2.901	1.703
Horking at elerical job	27	0.082	0.003	2.649	1.628
Current job is place where people goof off	30 A	0.863	0.003	१.356	1.164
Hork more enjoyable than school	30 C	0.557	0.006	3,050	1.746
Job encourages good sork habits	300	0.722	0.003	0.945	0.972
Father non-professional	38	0.883	0.004	3.182	1.784
Father finished college	39	0.225	0.007	5.308	2.304
Mother finished college	42	0.139	0.005	4.508	2.123
Watch more than one hour of TV per day	48	0.909	0.003	2.896	1.702
Career success important	61A	0.850	0.003	1.846	1.359
Having lots of money not important	61 C	0.102	0.003	2.556	1.599
Important to be a leader in community	617	0.539	0.005	2.578	1.606
Important to live close to parents	614	0.749	0.004	2.200	1.483
Hevire leisure time not important	731	0.022	0.009	1.189	9.091
Heve mestive atticude toward self	62A	0.909	0.002	1.138	1.066
cood luek more important than hard work	628	0.155	0.003	1.612	1.270
Beligye someene or something prevents suciess	62E	0.301	0.004	1.736	9.317
Batieve plane hardly over work out	62	0.221	0.004	2.190	9.480
Heve lietle so be proud of	621	0.156	0.003 .	1.623	9.274
Working to correct inequalities important	618	0.363	0.003	9.003	1.001
No serious trouble with law	678	0.944	0.002	1.944	1.394
Expect to finish full-time education	69	0.397 0.800	0.006	3.916 3.943	1.979
Seen by others as physically unattractive	67 C	0.800 0.166	0.003	3.943 1.606	1.986
Married	78 A	0.003	0.000	-.	-
Expect first child by age 25	788	0.583	0.004	1.563	1.250
Expect to have oun home or apt. by age 24	780	0.929	0.002	. 469	1.212
Expect to have no children	80	0.101	0.003	2.458	1.568
Hard of hearing :	88 C	0.024	0.009	1.034	1.017
Vocabulary score		8.479	0.068	4.070	2.017
Reeding score		6.649	0.060	4.025	2.006
Matho pert 1 score		9.801	0.116	5.646	2.376
Math, part 2 score Science score		2.49% 8.77	0.039 0.069	5.948 5.540	2.269 2.354
Science score Writing score		8.777	0.069 0.070	5.540	2.354
civies score		4.479	0.039	5.182	2.276
Meen (Proportions only)				2.487	1.508
Mean (All statisties)				2.895	1.643
Minimum				. 945	. 972
Maximun				5.705	2.389
Standard Deviation				1.523	. 448

* Base year questiomaire nunber.

Table 5.3-2b
Standard Errors and Design:Effects Associated With Estimated Proportions of First Follow-Up Seniors tho Had Specified Characteristics, Using BYWT

Statistic	Item Number*	Estimate SE		DEFF	DEFT
Herd of hearing	B8087c	. 018	. 002	2.404	1.551
Heving leisure time not important	日8057	. 021	. 002	2.184	1.478
Have physical handicap	88088	. 054	. 003	1.932	1.390
Heve little so be proud of	B8058L	. 196	. 005	2.563	1.601
Expect to have no children	-18082	. 098	. 005	3.037	1.743
Two or more siblings in high school	EB099	. 141	. 005	2.222	1.491
Good luck more important than hard work	88058B	. 121	. 004	1.573	1.254
Expect to get married	880814	. 010	. 002	4.300	2.074
Expect to finish full-time education	B8081E	. 013	. 001	0.844	0.919
Mother finished college	B8042	. 148	. 008	4.915	2.217
Believe plans hardly ever work out	B8058F	. 188	. 006	2.434	1.560
Having lots of money not important	B8057C	. 116	. 005	2.710	1.646
Current job is place where people goof off	bB027a	. 169	. 005	1.667	1.291
Believe someone or something prevents success	B8058E	. 236	. 007	2.763	1.662
Father finished college	B8039	. 245	. 011	5.461	2.337
Planning professional career	88062	. 269	. 005	8.390	1.179
Sibling in coltege	EB098	. 314	. 007	2.443	1.563
Have started first job	B80816	. 170	. 005	1.868	1.367
Impertant to be a leader in commnity	88057F	. 510	. 008	2.815	1.678
Plon to finish college	88065	. 457	. 009	3.646	1.909
Expect first child by age 23	880818	. 53	. 010	4.151	2.038
Hork more enjoyable then school	8B027C	. 515	. 007	1.850	1.360
Hould be satisfied with less than college ed.	88067	. 713	. 009	4.329	2.081
Working to eorreet inequal ities important	88057」	. 610	. 008	2.969	1.723
Hotch more than one hour of TV per day	88048	. 848	. 006	3.150	1.775
Career success important	8B057A	. 880	. 004	1.695	1.302
Job encourages good work habits	B80270	. 787	. 006	2.104	1.450
Have ability to finish college	88069	. 803	. 005	1.744	1.321
Expect to have own home or apt, by age 24	880810	. 913	. 004	2.123	1.457
Have a positive attitude toward self	B8058A	. 908	. 006	4.564	2.136
Mean				2.728	1.618
Minimum				0.844	0.919
Maximum				5.461	2.337
Standard Deviation				1.136	0.336

[^1]in the first follow-up questionnaire; three of them, however, had an additional response option in the first follow-up questionnaire. As table $5.3-2 b$ shows, the mean design effect is 1.618 , a value that differs little from the analogous figure calculated during the base year.

Tables 5.3-3a and 5.3-3b display standard errors and design effects for changes in 30 proportions and, for sophomores, changes in seven test scores (Table 5.3-3a only). The statistics are based only on those students who participated in both the base year and the first follow-up survey and the changes refer to differences between base year and first follow-up responses.

The change statistics in tables 5.3-3a and 5.3-3b were computed by taking the weighted mean of the changes shown by each respondent who participated in both the base year and first follow-up surveys. The standard errors (and design effects) thus reflect the fact that whether a respondent was, for example, hard of hearing during the base year is correlated with his or her being hard of hearing during the first followup. The change estimates were calculated using individual change scores of sample members who participated in both the base year and first followup. Thus, the standard errors for these estimates take into account the correlation between base year and first follow-up respondents. The change estimates are directional: a negative estimate indicates that fewer respondents fell into the category of interest (e.g., hard of hearing) during the first follow-up survey; a positive estimate indicates that more respondents fell into the category. The mean DEFT in table 5.3-3a are lower than those for tables 5.3-1a and 5.3-2a (1.4 vs 1.8 and 1.6). Similarly mean DEFTs in table 5.3-3b are lower than those for tables 5.31b and 5.3-2b (1.5 vs 1.6). This probably reflects the observed tendency of more complex statistical estimates (such as change estimates, correlation or regression coefficients) to exhibit smaller design effects than simple estimates.

5.3.2 Second Follow-up

Tables 5.3-4a and 5.3-4b display the estimated percentages, standard errors, DEFFs, and DEFTs for variables from the second follow-up survey data. (As oniy ten of the thirty non-test items presented in the preceding tables were included in the second follow-up survey questionnaire, twenty additional items, representing estimated proportions of varying magnitudes, were added to this table). For sophomores, the mean DEFT for the thirty estimated percentages from the second follow-up survey is 1.54 , a smaller figure than observed for the first follow-up and about equal to that for the base year. For seniors, the mean DEFT is 1.68, which is larger than the mean DEFT observed for the first two waves. For both cohorts, the variability of the design effects appears to be somewhat smaller than for either of the previous survey waves.

Table 5.3-3a
Standard Errors and Design Effects Associated with Changes (between Base Year and First Follow-Up) in the Proportions and Averages of First follow-Up Sophomores tho Had Specified Characteristics, Using First Follow-Up Weights

Statistic	Change			
	Estimate	SE	DEFF	DEFT
Proportions				
In yocational progran	0.054	0.004	1.646	1.283
Horked last week	0.977	0.005	1.651	1.285
Werking at clepical job	0.968	0.005	2.033	1.426
Cuprent job is place where people goof off	-0.033	0.004	1.184	1.088
Work more enjoyable than school	-0.046	0.006	1.487	1.220
Job encourages good work habits	0.077	0.005	1.356	1.165
Father non professional	0.002	0.002	0.952	0.976
Father finished college	-0.001	0.002	1.242	1.114
Mother finished college	-0.002	0.002	1.601	1.265
Watch more than one hour of TV per day	-0.116	0.003	1.193	1.092
Career success important	0.009	0.004	1.925	1.387
Having lots of money not important	0.000	0.003	1.577	1.256
Important to be a leader in commmity	-0.057	0.005	1.751	1.323
importent to live close to parents	-0.046	0.005	2.130	1.460
Having leisure tins not important	-0.006	0.002	2.779	1.667
Heve a positive attitude toward self	0.027	0.003	1.801	1.342
cood luek more important than hard work	-0.030	0.004	2.087	1.445
Believe sorreone or something prevents success	-0.047	0.005	1.810	1.345
Believe plant hardly ever work out	-0.026	0.004	1.413	1.189
Have little to be proud of	-0.036	0.004	1.833	1.354
Working to correct inequalities important	0.033	0.005	1.608	1.268
No serious trouble with law	0.007	0.002	1.405	1.185
Expect to finish full-time ecucation	-0.029	0.004	1.728	1.315
Hould be satisfied with less than college ed.	-0.059	0.004	1.937	1.392
Seen by others as physically unattractive	-0.063	0.004	2.081	1.443
Married	0.035	0.002	2.198	1.483
Expect first child by age 25	-0.037	0.005	1.613	1.270
Expect to have own home or apt. by age 24	-0.008	0.003	1.655	1.286
Expect to have no children	-0.020	0.004	3.026	1.740
Hard of hearing	-0.004	0.002	3.338	1.827
Averages				
Vocabulary score	2.070	0.040	2.816	1.678
Reading score	1.177	0.026	1.145	1.070
Math, part 1 score	1.352	0.053	2.541	1.594
Math, part 2 score	0.317	0.024	1.926	1.388
Science score	0.884	0.033	2.064	1.430
Writing score	1.603	0.044	2.871	1.695
Civies score	1.056	0.035	3.451	1.858
Mean (Proportions only)			1.801	1.330
Mean (All statistics)			1.945	1.368
Minimum	-		. 952	. 976
Mexinum			3.459	1.858
Standard Deviation			. 611	. 213

Standard Errors and Design Effects Associated with Changes (between Base Year and First Follow-Up) in the Proportion of First Follow-Up Seniors tho Had Specified Characteristics

Statistic	Change Estimate	SE	DEFF	DEFT
Hared of hearing	-.006	. 002	2.060	1.4335
Heving leisure time not important	-.009	. 002	1.408	1.187
Have physical handicap	+0015	. 005	2.435	1.560
Heve little to be prosd of	- 026	. 005	1.520	1.233
Expect to have no children	-. 004	. 005	1.978	1.407
Two or more siblings in high school	-. 043	. 005	1.844	1.358
Good luck more important than hard work	- 022	. 005	1.588	1.260
Expect to get married	+.095	. 005	2.676	1.636
Expect to finish full-time education	+. 116	. 005	1.949	1.396
Mother finished college	-. 001	. 004	2.988	1.729
Believe plens hardly ever work out	$\therefore .047$. 006	1.578	1.256
Havire lots of meney not important	-0030	. 008	4.978	2.044
Cuprent job is place where people goof off	\$. 015	. 008	1.693	1.301
Believe soneone or scamthing prevents success	-. 026	. 008	2.316	1.522
Father finished college	+002	. 004	2.894	1.701
Plaming professiondl career	-010	. 006	1.395	1.181
sibling in college	+0067	. 010	3.323	1.823
Have stapted first job	+. 267	. 008	1.977	1.406
Important to be a leader in community	$\bigcirc 040$. 008	2.955	1.468
Plan to finish college	-. 005	. 006	1.998	1.414
Expect first child by age 25	-. 032	. 007	1.433	1.197
Work more enjoyable than school	-. 010	. 010	1.653	0.126
Hould be satisfied with less than college ed.	$\therefore .079$. 006	1.720	1.312
Horking to correct inequalities important	*.062	. 010	2.945	1.707
Watek more than one hour of TV per day	- 087	. 007	2.207	1.486
Career success important	-. 047	.007.	2.613	1.617
Job encourages good work habits	+.060	. 008	1.892	1.376
Have ability to finish college	+.066	. 006	2.354	1.534
Expect to have oun hone or apt. by age 24	+. 003	. 006	2.690	1.640
Have positive attitude toward self	+.043	. 005	2.445	1.554
Mean			2.195	1.468
Minimum			1.395	1.181
Mжximm			4.178	2.044
Stanclard Deviation			0.640	0.207

Estimated Percentages, Standard Errors and Design Effects in the Percentages of the Second Follow-Up Sophomores Who Had Specified Characteristics (Weight=FU2WT)

Statistic	§ ten Number	Estimate	SE	DEFF	DEF
Horking full time, Feb ' 84	SY3A	58.51	0.67	2.53	1.59
Taking academic courses, Feb '84	sr36	33.61	0.81	4.00	2.00
Looking for work, Feb '84	5731	9.96	0.35	1.86	1.36
Currently married	SY56	12.31	0.47	2.77	1.66
Have one or more children	SY65A	11.80	0.43	2.18	1.48
Expect to have 3 or more children	SY64	33.92	0.55	1.78	1.33
Have served on military active duty	SY43	6.21	0.35	2.80	1.67
If in PSE '82-184: Earned no degree	SY18i,J-201, J	70.40	0.64	1.35	1.16
If in PSE '82-184: Earned vocational degree	SY181, J-201, J	1.11	0.14	1.23	1.11
if in PSE '82-184: Earned 4-year college degree	3Y18i, J-20\%, ${ }^{\text {d }}$	1.47	0.21	2.14	1.46
Enrolled in postsecondary education, oct '82	PSEOC82	44.68	0.70	2.67	1.63
Enrolled in postsecondary education, oct ${ }^{\text {d }}$ g	PSECCE3	42.78	0.79	3.43	1.85
If Employed: In clerical occupation, oct '83	SY46A-49A	24.65	1.33	2.02	1.42
Employed, 0ct 183	J0850c83	66.57	0.63	2.37	1.54
Have used pocket calculator	SY8A2-A4	90.71	0.39	2.42	1.56
Have used computer terminal	SY8B2-84	47.49	0.74	2.77	1.66
Have used mainframe computer	SY8E2-E4	23.33	0.60	2.51	1.59
Have used video tape recorder	SY8F2-F4	53.82	0.59	1.76	1.33
Have used audio cassette deck	SY8H2-H4	88.26	0.40	1.97	1.40
Have used word processor	SY812-14	9.09	0.40	2.56	1.60
Currently registered to vote	SY69	53.72	0.70	2.61	1.62
Heve voted in election since turning 18	SY70	33.38	0.72	3.08	1.76
Being successful in job very important	sy71a	85.27	0.45	2.11	1.45
marrying the right person very important	SY78	87.63	0.41	2.03	1.43
Having lots of money very important	SY716	29.40	0.64	2.61	1.61
Being a community leader very important	S479F	10.04	0.40	2.34	1.53
Better opportunities for children very important	SY79G	72.66	0.56	2.05	1.43
Correcting inequalities very important	SY71d	14.08	0.50	2.78	1.67
Having children very important	sy7ik	49.19	0.65	2.25	1.50
Heving leisure time very important	58712	72.14	0.67	2.95	1.72
Mean				2.40	1.54
Minimum				1.23	1.11
Maximum				4.00	2.00
Standard Deviation				0.56	0.18

Table 5.3-4b

Estimated'Percentages, Standard Errors and Design Effects in the Percentages of the Second Follow-Up Seniors Who Had Specified Characteristics (Weightefu2WT)

Statistic	Item Number	Estimete	SE	DEFF	DEFT
Working full time, Feb 184	SE3A	65.49	0.61	1.80	1.34
Takin academic courses, Feb ' 84	SE3C	38.63	0.88	3.84	1.96
Looking for work, Feb '84	SE3I	6.45	0.37	2.47	1.57
Currently married	SE5?	24.17	0.77	3.52	1.88
Have one or more children	SE66	16.68	0.72	3.65	1.91
Expect to have 3 or more children	SE65	34.10	0.77	2.76	1.66
Have served on military active duty	SE44	6.86	0.31	1.64	1.28
If in PSE 182-184: Earned no degree	SE18i, J-20i, d	160.46	0.92	2.46	1.57
If in PSE 182-184: Earned vocational degree	SEl81, ${ }^{\text {d-20t, }} \mathrm{J}$	J 8.62	0.25	2.72	1.65
$1 f$ in PSE 182-984: Earned 4-Year college degree	SET81, J-201, d	J 10.94	0.74	3.90	1.98
Enfolled in postsecondary education, oct 182	PSESOC82	42.82	0.97	4.16	2.04
Enrolled in postsecondary adveation, oct ${ }^{183}$	PSESOC83	39.21	0.97	4.27	2.07
If employed: In clerical occupation, oct '83	SE47A-50A	27.24	1.00	2.18	1.48
Employed, oct 183	Jobsoces	73.92	0.63	2.21	1.49
Have used pocket calculator	SE9A2-84	91.88	0.37	1.36	1.17
Have used computer terminal	SE982-84	55.78	0.97	3.85	1.96
Have used mainframe computer	SE9E2-E4	29.06	0.73	2.49	1.58
Have used video tape recorder	SE9F2-F4	54.75	0.92	3.39	1.84
Have used audio cassette deck	SE9H2-H4	89.08	0.52	2.84	1.69
Have used word processor	SE912-14	12.55	0.52	2.58	1.60
Currently registered to vote	SE70	66.30	0.85	3.43	9.85
Have voted in election within last two years	SE79	46.80	0.88	3.28	1.81
Being successful in job very important	SET2A	88.00	0.55	3.17	1.47
Marrying the right person very important	SET2B	88.32	0.44	1.98	1.49
Having lots of money very important	SE72C	26.08	0.77	3.24	8.80
Being cormunity leader very important	SE72F	10.21	0.44	2.22	1.49
Better opportunities for children very important	SETEG	67.05	0.84	3.34	1.83
Correcting inequalities very important	SET2s	13.83	0.46	1.87	1.37
Haying children very important	se7zk	49.69	0.92	3.57	1.89
Heving leisure time very important	sE72L	73.93	0.72	2.84	1.69
Hean				2.87	1.68
Minimum				1.36	1.17
Maximam				4.27	2.07
Stendard Deviation				0.78	0.24

5.3.3 Third Follow-up

Standard errors, DEFFs, and DEFTs for 30 third follow-up survey items are shown in tables 5.3-5a and 5.3-5b. The mean DEFT for the sophomore cohort is 1.48 and that for the seniors is 1.51 , which are close to (just slightly below) the mean DEFTs for the second follow-up. The variability of the DEFT's is much lower for the third follow-up than it was for the second follow-up. Indeed, the standard deviation of the DEFTs for the third follow-up items is calculated to be less than 0.1. One tentative explanation for the greatly reduced standard deviation of the estimated DEFTs is that the BRR estimates of standard exror for individual items have larger coefficients of variation than do the Taylor Series estimates. Hence the observed variability of the BRR estimated DEFTs across the 30 items from the second follow-up is greater than the variability for the Taylor Series estimates from the third follow-up.

Tables 5.3-6a and 5.3-6b present selected distributional statistics for the DEFFs and DEFTs for the same 30 third follow-up items contained in tables 5.3-5a and 5.3-5b, for the total population and for 11 selected domains.

With the exception of Hispanics, the DEFTs for subgroups were generally 10 percent smaller (1.5 versus 1.7) than that for the total population. The relative efficiency of the Hispanic subsample continued to be affected by the somewhat greater clustering of the Hispanic sample members in specific schools and relatively few geographical areas; the average DEFT for the Hispanic subsample was 1.9. Furthermore, the variability of the DEFTs for Hispanics was over twice that observed for most other subgroups (standard deviation of .4 versus less than . 2). Thus, for analysis of third follow-up data from Hispanics, the use of a single generalized design effect to inflate simple random sample estimates of sampling errors involves a greater amount of approximation.

For both cohorts, the mean DEFT for all the subgroups except Hispanics were comparable to or smaller than the mean DEFT for all domains combined (1.5). The mean DEFT for Hispanics, 1.75 for the sophomores and 2.0 for the seniors, is somewhat higher. The variability of the DEFT for the Hispanic sample across different items was also somewhat larger than for the other domains for the third follow-up, but the variability by itself was not that great, as the standard deviation was only 0.21 for sophomores and 0.25 for semiors. The standard deviation for Hispanic sophomores is not much greater than the standard deviation of the DEFTs for all the domains combined in the second follow-up survey of the sophomore cohort, and the standard deviation for the Hispanic seniors is essentially the same as the standard deviation DEFTs for all the domains combined in the second follow-up.

The preceding data and discussion lead to the conclusion that the analyst seeking an appropriate value to use for a root design effect to inflate simple random sampling-based estimates of sampling errors for either cohort may simply use 1.5. If the statistic is based largely on the Hispanic subsample, a root design effect of 1.75 for sophomores and 2.0 for seniors will be more appropriate. If the statistic is more complex than a simple proportion or mean, the DEFTs just recommended will probably be conservative in that they will tend to overestimate the true standard errors.

Table 5.3-5a

Estimated Percentages, Standard Errors and Design Effects in the Percentages of the Third Follow-Up Sophomores Who Had Specified Characteristies (Weight = FUBUT)

Statistic				

Table 5.3-5b

Estimated Percentages, Standard Errors and Design Effects of the Third follow-Up Seniors who Had Specified Characteristics

(Weight $=$ FUSWT)

Statistic	Iten Munber	Estimate	SE	DEFF	DEFT
Horking at full or part Time Job, Feb 186	TE3A	77.50	0.57	1.98	1.41
Taking Academic Courses, Feb 186	TE3C	11.32	0.48	2.37	1.54
Looking For Hork, Feb 186	TE3I	8.02	0.39	2.13	1.46
Currently Married	TE4 4	36.33	0.74	2.48	1.57
Currently Divorced	TE41	2.78	0.25	2.46	1.57
Currently Have One or More Children	TE49	26.76	0.73	2.86	1.69
Expect to Have Three or More Children	TE48	32.70	0.72	2.40	1.55
In PSE 84-86: Earned No Degree	TE211-221	7.61	0.80	2.13	1.46
In PSE 84-86: Received Vocational Degree	TE29H-22H	18.44	1.20	2.23	1.49
In PSE 84-86: Received 4 Year Degree	TE21H-22H	67.13	1.44	2.20	1.48
Enrolled in PsE, Oct ${ }^{\text {P4 }}$	TE296-22C	22.92	0.63	2.31	1.52
Enrolled in PSE, Oct ${ }^{\text {a }} 8$	TE216-22C	17.01	0.58	2.45	1.57
In PSE 84-86: V. Dissat W/Career Couns	TE28E	6.55	0.57	2.20	1.48
in PSE 84-86: Some Sat With Curriculum	TE281	51.27	1.10	2.03	1.42
Applied for Grad/Professional School	TE39	6.22	0.38	2.50	1.58
If Employed 84-86, 1st Job Clerical	TEBA	23.07	0.63	2.22	1.49
Had Any Job Between $84-86$	TE7	94.75	0.32	2.95	1.47
Did Not Receive Unemployment-'85	TE17085	82.71	1.08	2.35	1.53
Currently Registered to Vote	TE56	72.34	0.74	2.77	1.66
Have Voted Since 1984	TE57	60.66	0.77	2.50	1.58
Active Participant in Service Org	TE5\%	2.02	0.20	1.93	1.39
Job Security Very Important	TE16C	72.85	0.72	2.56	1.60
Suecess in Job Very Important	TE684	75.76	0.58	1.87	1.37
Maprying the Right Person Very Important	TE688	87.06	0.50	2.23	1.49
Heving Lots of Money Very Important	TE6BC	20.95	0.61	2.26	1.50
Being a Community Leader Very Important	TE68F	5.35	0.31	1.93	1.39
Providing setter Opp for Kids Very Inp	TE68G	65.69	0.73	2.35	1.53
Correcting Social Inequalities Very Imp	TE68.	9.73	0.44	2.20	1.48
Havine children Very Important	TE68K	48.58	0.77	2.40	1.55
Having Leisure lime Very Inportant	TE68.	68.86	0.66	2.07	1.44
Mex				2.28	1.51
Minimum				1.87	1.37
Maximen				2.86	9.69
Standard Deviation				0.23	0.08

Table 5.3-6a
Distributional Statistics for Design Effects and Root Design Effects for 30 Survey Measures for 12 Domains, Sophomore Cohort

domain		DEFF	deft
Total Population	Mean	2.99	1.48
	Minimem	1.40	1.48
	Meximun	2.68	1.64
	Standard Deviation	0.29	0.10
Hispanic	Mean	3.11	1.75
	Minimum	1.69	1.30
	Maximum	5.40	2.32
	Standard Deviation	0.76	0.21
Black	meen	2.19	4.47
	minimem	1.24	1.11
	Maximm	2.92	1.71
	Standard Deviation	0.36	0.13
Whites and Others	Mean	1.92	1.38
	Minimen	1.32	1.15
	Maximum	2.38	1.54
	Standard Deviation	0.23	0.08
Female	Mean	2.06	1.43
	minimum	1.51	1.23
	Maximam	2.42	1.55
	Standard Deviation	0.21	0.07
Mate	Meen	2.07	1.64
	Minsmum	1.37	1.17
	Meximan	2.59	1.61
	Standard Deviation	0.24	0.09
Lowest Quartile ses	Mean	1.83	8.35
	Minimen	. 1.22	1.10
	Maximusm	2.31	1.52
	Standard Deviation	0.26	0.10

Table 5.3-6a

Distributional Statistics for Design Effects and Root Design Effects for 30 Survey Measures for 12 Donains, Sophomore Cohort .- Continued

domain		deff	dEFT
Middte Ouartiles SES	Meas	2.06	1.43
	Minimman	9.43	1.20
	Maximum	2.41	1.55
	Standard Deviation	0.25	0.09
Highest Quartile SES	Mean	1.92	1.38
	Minimem	1.31	1.14
	Maximum	2.48	1.57
	Standerd Deviation	0.28	0.10
Received No PSE	mean	1.98	1.40
	Minimum	1.25	1.12
	Maximum	2.82	4.68
	Standard Deviation	0.34	0.12
Received Some PSE	Mean	2.09	1.44
	Minimum	1.46	1.21
	Maximm	2.53	1.59
	Standard Deviation	0.19	0.07
Four-Year Degree	Mean	1.63	1.36
	Minimun	0.16	0.39
	maximum	2.14	1.46
	Standard Deviation	0.42	0.21

Table 5.3-6b
Distributional Statistics for Design Effects and Root Design Effects for 30 Survey Measures for 12 Domains, Senior Cohort

domain		deff	DEFT
Total Population	Mean	2.28	1.51
	ตimimum	1.87	1.37
	Masimum	2.86	1.69
	Scandard Deviation	0.23	0.08
Hispanics	Mean	4.06	2.00
	Minimum	1.54	1.24
	Maximum	5.75	2.40
	Standard Deviation	0.93	0.25
Blacks	\%an	2.40	1.54
	(6insmam	1.36	1.17
	Maximur	. 6.63	2.15
	Standard Deviation	0.61	0.18
Whites and others	Mean	1.70	1.30
	Mînimum	1.38	1.17
	Maximum	2.06	1.43
	Standard Deviation	0.15	0.06
Fenale	Mean	2.26	1.50
	Minimam	1.83	1.35
	Meximum	2.59	1.61
	Standard Deviation	0.17	0.06
Male	Mem	2.13	1.46
	Minimem	1.76	1.33
	Maximem	2.65	1.63
	Standard Deviation	0.20	0.07
Bottom SES	Meen	2.31	1.52
	Minimum	1.61	1.27
	Maximum	3.06	1.74
	Standard Deviation	0.36	0.12

Table 5.3-6b

Distributional Statistics for Design Effects and Root Design Effects for 30 Survey Measures for 12 Domains, Senior Cohort -- Continued

domain		DEFF	deft
Middle SES	Mean	2.02	1.42
	Minimem	1.76	1.33
	Maximum	2.35	1.53
	Standard Deviation	0.16	0.06
Top SES	Mean	1.71	1.31
	Minimum	1.46	1.21
	Maximum	1.97	1.40
	Standard Deviation	0.14	0.05
No PSE Attendance	Mean	. 1.99	1.41
	minimm	1.59	1.26
	Maxinum	2.34	1.53
	Standard Deviation	0.17	0.06
Some PSE Attendance	Mean	2.25	1.50
	Minimum	1.73	1.32
	Maximum	2.72	1.65
	Standard Deviation	0.23	0.07
Four-Year Degree	Meen	2.07	1.44
	Minimum	1.79	1.34
	Maximum	2.67	1.57
	Standard Deviation	0.17	0.06

NOTES TO CHAPTER 5

$1_{\text {Kish, L. and Frankel, M. (1974) "Inference From Complex Samples, }}$ " Journal of the Royal Statistical Society: Series B (Methodological), 36:2-37.
${ }^{2}$ Kish, L. (1965) Survey Sampling Kew York: John Wiley, 206-208.
${ }^{3}$ Hansen, M., Hurwitz, W. and Madow, W. (1953)
Sample Survey Methods and Theory, vol. II. New York: John Wiley:
${ }^{4}$ Deming, W. E. (1956) On Simplification of Sampling Design Through Replication With Equal Probablilities and Without Stages," Journal of the American Statistical Association, 31:24-53.
$5_{\text {Frankel, M. (1971) Inference from Survey Samples: An Empirical }}$ Investigation. Ann Arbor: Institute for Social Research, University of Michigan, p. 35.

Wrankel. M. (1971) Inference from Survey Samples: An Empirical Investigation. Ann Axbor: Institute for Social Research, University of Michigan, p. 40 ff.
${ }^{7}$ Frankel,M., Kohnke, L., Buonamno, D., and Tourangeau, R. (1981) Sample Design Report, Chicago: NORC; Chapter 3.
${ }^{8}$ The BRR program is available through CES. The public use data tapes include the computing strata and pseudo-primary selection codes.
${ }^{9}$ Frankel, M. (1971) Inference from Survey Samples: An Empirical Investigation. Ann Arbor: Institute for Social Research, University of Michigan, p. 111 ff.
${ }^{10}$ Tourangeau R., McWilliams H. Jones C. Frankel M., and 0^{\prime} Brien F. (1983) High School and Beyond First Follow-Up (1982) Sample Design Report. Chicago: NORC, Chapeer 5, Tables 5.1, 5.2.
11_{1} Franke1, M., Kohnke, L., Buonanno, D., and Tourangeau, R. (1981) Sample Design Report, Chicago: NORC, P. A-4.

Appendix A: Sophomore Weights and Nonresponse Adjustments
hSB SOPhomores - fus nonresponse adjustments por each cell

				. .	TOTAL N OF CASES	TOTAL Sum Of WTS	FU3PA SUM OF WTS	THENT
DROPSTAT	SEX	\|RACE	\|SChtype	bytesta				
RON-DROPOUT	male	HISPANIC	$\begin{aligned} & \text { REG PUB AND } \\ & \text { ARTER } \end{aligned}$	UNAVAILABLE	106	26476.4850	21507:4160	1.2310
				LOWEST OUARTILE	114	26198.01701	23176.6510	1.1303
				SECOND QUARTILE	. 631	15839.7210	14282.0170	8. 1090
				THIRO QUARTILE	67	81171.9090	10700.4900	1.0440
				HIGHEST MUARTILE	44	6757.7080	6484.5260	1.0421
			HISPANIC PUE	URNAVAILABLE\|	891	$8638.2110 \mid$	8278.76901	1.0434
				ROWEST GUARTIAE	92	7058.6840	6273.9980	1.1251
				SECOAO QUARTIRE	66	4358.4890	3661.7400	1.1903
				THERD QUARTHLE	73	4437.5380	4304. 1110	1.0310
				HIGHEST OUARTIEE	60.	2216.5120	2015.8340	1.0995
		- $\quad \therefore$	CATHOLS	$\begin{aligned} & \text { BELOW } \\ & \text { MEDIAN } \end{aligned}$	74	2314.0680	2070:4630	1.1176
		- .		THIRD QUARTILE		1839.6430	1779.9530	1.0334
	-			HIGHEST guartile	38	874.0840	863.6340	1.0121
			PRIV RONCATHALIC	AMSLL	19	3044.5370	2758.4470\|	1. 1037
		NON-HISP BEACK	$\left\lvert\, \begin{aligned} & \text { REG PRB AND } \\ & \text { ALTER } \end{aligned}\right.$	UNAYAILABLE	1201	43046. 41601	37916.93101	1.1353
	-			LOUEST ounrtile	217	78888.6990	63350.4440	1.1348

(CONTINUED)

HSB SOPHOMORES - FU3 NONRESPDNSE ADUUSTMENTS FDR EACH CERL

(CONTINUED)

HSB SOPHOMORES - FUS NOARESPONSE ADJUSTMENTS FOR EACH CELL

HSB SOPHDMORES - FU3 NDNRESPONSE ADJUSTMENTS FOR EACH CERL

1					$\|$TOTAL N OF CASES	TOTAL	FUSP SUM OF WTS	TMENT
DROPSTAT \|	\|SEX	\|RACE	\| SCHTYPE	-BYTESTO				
NON-DROPOUT	FEMALE	NON-HI SP BLACK	$\left\|\begin{array}{l} \text { REG PUB AND } \\ \text { ALTER } \end{array}\right\|$	SECOND QUARTILE	156	42928.3180\|	39703.7650	1.0811
				THIRD QUARTILE	- 102	21033.3450	20440.8940	1.0290
				HI GHEST QUARTILE	. 63	8884.3680	8163.5400	1.0882
			$\left\lvert\, \begin{aligned} & \text { HISPANIC } \\ & \text { PUB } \end{aligned}\right.$	NULL	41	7484.0030	7449.3470	1.0046
			CATHOLIC	UNAVAILABLE	361	841.46001	826. 1690	8.0185
				LOWEST QUARTILE		1559.0810	1517.4970	1.0274
				SECDND QUARTILE	73	2191.0590	2134.9540	1.0262
				THIRD QUARTILE	33	1457.1930\|	1310.6950	1.1117
				HIGHEST OUARTILE	26	1693.6550	1680.1520	1.0080
			PRIV NONCATHOLIC	MULL	71	1152.0070	1152.0070	1.0000
		NON-HISP WHITE. OTHER	REG PUPB AND\| ALTER	UNAVAILABLE	$342 \mid$	159791.97001	143177.64601	1.1160
				LOWEST QUARTILE	426	152308.5480	143414.0770	1.0620
				SECOND QUARTILE	698	254560.9730	242711.5450	1.0487
				THIRD QUARTILE	843	282812.8360	274112.7870	1.0317
				HIGHEST quartile	966	320320.3240	311271.5240	1.0290

HSE SOPHOMORES - FUS RONRESPDNSE ADUUSTMENTS FOR EACH CELL

					$\left\lvert\, \begin{gathered} \text { TOTAL } \\ \hdashline \text { R. OF } \\ \text { CASES } \end{gathered}\right.$	total SUM DF WTS	FU3P SUN OF WTS	Thent
OROPSTAT	\|SEX	\|RACE	\| SChtype	frytesto				
NON-DROPOUT	FEMALE	NON-HISP WHITE . OTHER	$\begin{aligned} & \text { HBSPANIC } \\ & \text { PUB } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { BELOW } \\ & \text { PIODIAN } \end{aligned}\right.$	71	9659.2310	8981.2670	1.0755
				$\left\lvert\, \begin{aligned} & \text { ABOVE } \\ & \text { MAEDIAN } \end{aligned}\right.$	63	7766.7730	7214.7910	1.0765
			CATHDLIC	UNAVAILAB	59	4154.33901	3740.5760	1. 1106
				LOWEST quartile	64	5160.0370	4895.2940	1.0540
				SECOMD quARTILE		20760.4270	20596.8020	1.0079
				THIRD quartile	272	31652.5780	30056.8050	1.0530
				HIGHEST OUARTILE	343	41168.0660	39777.6760	1.0349
			PREV NON CATHOLIC	$\begin{aligned} & \text { BELOW } \\ & \text { PUEDIAN } \end{aligned}$	68	27220.7320	24204.3220	1. 1246
				$\left\lvert\, \begin{aligned} & \text { ABOVE } \\ & \text { MEDSAN } \end{aligned}\right.$		27159.1350	26162.8050	8.0380
DROPOUR	MALE	HISPANIC	\| NULL		214	$38364.9670 \mid$	30457.0330	1.1940
		NON-HISP BLACK	\|NULL	prule	215	48657.4590	36094.2970	1.3480
		NON-HISP WHITE. OTHER	NuLI	MJLL	730	192297.5000	128798.9790	1.4929
	FEMale	HISPANIC	\| NULL	Pmul	227	$33426.7310 \mid$	24204.8910	0.3810
		NON-HISP BLACK	PMUL	Melel	88	39509.7090	32475.5830	1.2165
		NON-HESP WHITE. OTHER	Pruel	PRULL	. 618	15092 1. 2080	114948.0490	0.3222

(CONTIRUED)

HSB SOPHOMORES - PAAELA. TEST NONRESPONSE ADUUSTMENTS FOR EACH CELL

UNIVARIATE

VARIABLE=RAWWT

WT FOR FU2 SELECTION

MOMENTS OUANTILES(DEF=4)							
				100\% MAX	3098. 14	99\%	1264.23
N	14825	SUM WGTS	14825	75\% Q3	436.375	95\%	530.728
MEAN	255.037	SUM	3780928	50\% MED	147.865	90\%	463.396
STD DEV	240.215	VARIANCE	57703.2	25\% O1	102.798	10\%	21.8632
SKEWNESS	2.37723	KURTOSIS	11.8637 855392021	O\% MIN	1.449	5\%	14.68
USS	1819669595	CSS	855392021			1\%	5.296
CV	94.1881	STD MEAN	1.97289 0.0001	RaNge	3096.7		
T: MEAN=0	129.271		0.0001	Q3-Q1	333.577		
SGN RANK	54948863	PROB> ${ }^{\text {S }}$ I	0.0001	QMODE	436.375		
NUM $7=0$	14825						

EXTREMES

LOWEST	HIGHEST
1.449	2229.2
1.449	2239.24
1.449	2239.24
1.449	2627.14
1.449	3098.14

sas
URARVARIATE

VARIABLE $=F U 3 W T$

 WT FOR THIRD FOLLOWUP PARTECEPANATS| MDMENTS | | | | QUANTILES (DEF=4) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | 13481 | SUM WGTS | 13481 | 100\% RAX | 3350.11 | 99\% |
| MEAN | 280.463 | SUM | 3780928 | 75\% Q3 | 463.439 | 95\% |
| STD DEV | 266.438 | VARIANCE | 70989.3 | 50\% MED | 166.899 | 90\% |
| SKEWNESS | 2.65544 | KURTOSIS | 14.4557 | 25\% 01 | 113.076 | 10\% |
| USS | 2017348708 | CSS | 956936427 | 0\% MRN | 1.619 | 5\% |
| CV | 94.9993 | STD MEAN | 2.29475 | | | 1\% |
| T: MEAN=0 | 122.22 | PROB> \mid T | 0.0001 | RANGE | 3348.49 | |
| SGN RANK | 45437711 | PROB> \mid S | 0.0001 | Q3-91 | 350.363 | |
| NUM $\rightarrow=0$ | 13481 | | | MDDE | 449.061 | |

1378.54	LOWEST	HIGHEST
594.488	1.619	2560.31
516.443	1.619	2588.94
25.282	1.619	2661.61
15.791	1.619	3000.26
5.481	1.619	3350.11

WT FOR FU3 R'S WITH BY AND FUI TEST DATA

EXTREMES

LOWEST	HIGHEST
f.738	2736.2
1.738	2774.64
1.775	2922.36
1.775	2969.27
1.775	3446.29

UNIVARIATE

VARIABLE:PANEEWT4 WT FOR PARTICIPANTS IN ALE FOUR WAVES

MOMENTS					QUANTILES(DEF=4)		
N	11708	SUM WGTS	11708	100\% MAX	3969.68	99\%	1231.85
MEAN	322.935	SUM	3780927	75\% 03	550.373	95\%	677.056
STD DEV	280.962	VARI ANCE	78939.8	50\% MED	198.685	90\%	605.994
SKEWNESS	1.96794	KURTOSIS	10.4893	25\% ©1	130.206	10\%	31.1153
USS	2145142994	CSS	924147787	0\% MiN	1.803	5\%	17.055
CV	87.0026	STD MEAN	2.59661			1\%	5.85843
T: ME AN=0	124.368	PROB> \mid \| \mid	0.0001	Range	3967.88		
SGN RANK	34272243	PROB> \mid S \mid	0.0001	Q3-01	420.167		
NUM $7=0$	17708			PODE	518.348		

EXTREMES

LOWEST	HIGHEST
1.803	2837.02
2.025	2842.7
2.025	2842.7
2.025	3109.21
2.025	3969.68

Appendix B: Senior Weights and Nonresponse Adjustments
hSB SENIORS - fU3 NONRESPONSE ADJUSTMENTS FOR EACH CELL

(CONTINUED)

HSB SENIORS - FU3 NONRESPONSE ADJUSTMENTS FOR EACH CELL

(CONTINUED)

hisb seniors - fus nonpesponse adjustments for each cell

(CONTINUED)

HSB SENIORS - FUZ NONRESPONSE ADJUSTMENTS FOR EACH CELL

. .					$\|$TOTAL N OF CASES	$\left\|\begin{array}{c}\text { total } \\ \hdashline \text { SUM OF WTS }\end{array}\right\|$		PART ADJUSTMENT
BYPART	\|SEX	\|race	\| SCHTVPE	\|BYTESto				
PARTICIPANT	fermale	NON-HI SP BLACK	$\begin{aligned} & \text { REG PUB AND } \\ & \text { ALTER } \end{aligned}$	SECOND QUARTILE	315	32671.5600	29825.5450	1.0954
				THIRD QUARTILE	135	13114.3590)	11940.6400	1.0982
				HIGHEST QUARTILE	56	6657.7360	5443. 1770	1.2230
			HISPANIC PUB	NULL	80	4242.6230)	3709.1320\|	1.1437
			all privatel	NULL	125	7495.70001	6361.24501	1.1782
		NON-HISP WHITE. OTHER	$\left\lvert\, \begin{aligned} & \text { REG PUE AND } \\ & \text { ALTER } \end{aligned}\right.$	UNAVAILABLE	187	92711.27101	83877.9680\|	1. 1053
				LOWEST QUARTILE	455	168062 . 6690	852285.7310	1. 1036
				SECOND QUARTILE	583	227347.7910	214747.9480	1.0586
				THIRD QUARTILE	669	245218.4430	229681.0030	1.0676
				HIGHEST QUARTILE	713	210480.3300\|	202281.9820	1.0405
			HISPANIC PUB	$\begin{aligned} & \text { BELOW } \\ & \text { MEDIAN } \end{aligned}$	75	6234.9920	5433.2340	1.1475
				ABOVE MEDIAN	68	6641.5490	5437.3600	1.2214
			CATHOLIC	$\begin{aligned} & \text { BELOW } \\ & \text { MEDIAN } \end{aligned}$	104	34969,2700	32328.9450	1.0816
				ABOVE MEDIAN	184	53584.1730	52373.4050	1.0231
			PRIV NONCATHOLIC	NuLL	147	41308.0220	37225.8820	1. 1096

UNIVARIATE

MOMENTS

QUANTILES(DEF=4)

100\% MAX	1080.84	99%
75% O3	594.622	95%
50% MED	109.279	90%
25\% Q1	83.69	10%
O\% MIN	1.094	5%
		8%
RANGE	1079.75	
Q3-Q1	510.932	
MODE	594.622	

SAS

UNI VARI ATE

903.268 630.075
594.622 594.622
27.087 27.087
16.09 16.09 . 485

EXTREMES
LOWEST HIGHEST
1.0941080 .84
1.0941080 .84
$\begin{array}{ll}.094 & 1080.84 \\ 1.094 & 1080.84\end{array}$
$\begin{array}{ll}1.094 & 1080.84 \\ 1.094 & 1080.84\end{array}$
$\begin{array}{ll}1.094 & 1080.84 \\ 1.094 & 1080.84\end{array}$

EXTREMES

L.OWEST HIGEST

MOMENTS				QUANTILES (DEF=A)			
N	9149	SUM WGTS	9149	100\% max	1081.9	99\%	955.724
MEAN	332.246	SUM	3039714	75\% 03	824.074	95\%	912.333
STO DEV	334.114	VARIANCE	111632	50\% MEO	163.055	90\%	912.333
SKEWNESS	0.935866	KURTOSIS	-0.920926	25\% 01	118.836	10\%	36.94
USS	2031142091	CSS	1021210673	0\% 㬉IN	1.669	5\%	22.593
cV	100.562	STD MEAN	3.49307			1\%	7.379
T:MEAN $=0$	95.1155	PROB ${ }^{\text {P }} \mid$	0.0001				
SGN RANK	20928338	PROB> $/ 5$	0.0001	$03-01$ MODE	705.238		

EXTREMES

LOWEST	HIGHEST
1.669	1034.59
1.669	1081.9
1.791	1081.9
1.991	1081.9
1.991	1081.9

SAS
B
UNGVARIATE
VARIABLE=PANELWT4 WT FOR PARTICIPANTS IN ALL FOUR WAVES

	MOMENTS			QUANT ILES (DEF $=4$)				EXTREMES	
N	9389	SUM WGTS	9389	100\% MAX	1045.54	99\%	913.458	LOWEST	HIGHEST
MEAN	323.753	SUM	3039712	75\% Q3	786.601	95\%	876.564	1.572	973.949
MEAN STO DEV	323.753 323.22	VARIANCE	104471	50\% MED	155.665	90\%	876.564	1.572	973.949
SKEWNESS	0.895201	KURTOSIS	-1.01992	25\% Q1	116.788	10\%	39.463	1.755	973.949
USS	1964890499	css	980776008	0\% MIN	1.572	5\%	22.893	1.792 1.792	1040.99 1045.54
CV	99.8356	STD MEAN	3.33571			1\%	7.987		1045.54
T:MEAN=0	97.0565	PROR $>$ I 1	0.0001						\cdots
SGN RANK	22040678.	PROB> $\|5\|$	0.0001	O3-61	669.812 786.601				
NUM $\rightarrow 0$	9389			MODE	786.601				

Appendix C: Design Effects and Sampling Errors

> High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Sophomore Cohort - Total Population

Survey Item (or Composite Variable)		Estimate	SE	OEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TY3A	67.47	0.58	2.02	1.42	13383	0.40
Taking Acadenic Courses, Feb 986	TY3C	26.88	0.63	2.68	1.64	13383	0.38
Laoking For Work, Feb ' 86	TY3I	9.58	0.36	2.05	1.43	13383	0.25
Currently Married	TY41	23.14	0.56	2.36	1.54	13342	0.37
Currently Divorced	TY41	1.85	0.17	2.00	1.42	13342	0.12
Currently Have One or More Children	TY49	22.33	0.58	2.55	1.60	13337	0.36
Expect to Have Three or More Children	TY48	31.72	0.60	2.16	1.47	12881	0.41
In PSE 84-86: Earned No Degree	TY211-221	21.36	1.15	2.05	1.43	2612	0.80
In PSE 84-86: Received Yocational Degree	TY21H-22H.	27.98	1.42	2.60	1.61	2602	0.88
In PSE 84-86: Received 4 Year Degree	TY21H-22H	38.36	1.35	2.22	1.49	2602	0.91
Enrolled in PSE, Dct ${ }^{\text {g }} 84$	TY21C-22C	32.11	0.66	2.64	1.63	13225	0.41
Enrolled in PSE, Oct '85	TY21C-22C	28.36	0.61	2.45	1.56	13225	0.39
In PSE 84-86: V. Dissat W/Career Couns	TY28E	5.52	0.41	2.07	1.44	6363	0.29
In PSE 84-86: Some Sat With Curriculum	TY28I	50.41	0.84	1.78	1.33	6368	0.63
Applied for Grad/Professional School	TY39	4.46	0.28	2.23	1.49	12573	0.18
If Employed 84-86, Ist Job Clerical	TY8A	24.83	0.53	1.88	1.37	12435	0.39
Had Any Job Between 84-86	TY7	93.81	0.30	2.10	1.45	13395	0.21
Did Not Receive Unemployment-' 85	TY17085	86.41	0.82	2.16	1.47	3769	0.56
Currently Registered to Vote	TY56	66.40	0.67	2.58	1.60	12803	0.42
Have Voted Since 1984	TY57	51.13	0.70	2.47	1.57	12784	0.44
Active Participant in Service Org	TY59K	1.49	0.13	1.40	1.18	12689	0.11
Job Security Very Important	TY16C	75.74	0.56	2.13	1.46	12532	0.38
Success in Job Very Important	TY68A	79.88	0.51	2.03	1.43	12800	0.35
Marrying the Right Person Very Important	TY688	86.36	0.44	2.14	1.46	12774	0.30
Having Lots of Money Very Important	TY686	22.68	0.52	1.94	1.39	12806	0.37
Being a Community Leader Very Important	TY68F	6.65	0.31	1.97	1.40	12793	0.22
Providing Better Opp for Kids Very Imp	TY686	69.65	0.65	2.54	1.59	12757	0.41
Correcting Social Inequalities Very Imp	TY68,	11.02	0.42	2.32	1.52	12744	0.28
Haying Children Very Important	TY68K	47.85	0.64	2.08	1.44	12789	0.44
Having Leisure Time Very Important	TY68L	68.21	0.59	2.05	1.43	12811	0.41
Mean				2.19	1.48		
minimum				1.40	1.18		
Maximum				2.68	1.64		
Standard Deviation				0.29	0.10		
Median				2.14	1.46		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Sophomore Cohort - Hispanic

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TY3A	71.28	1.79	3.36	1.83	2141	0.98
Taking Academic Courses, Feb ' 86	TY3C	14.04	1.12	2.23	1.49	2141	0.75
Looking For Work, Feb ' 86	TY3I	11.06	1.43	4.42	2.10	2141	0.68
Currently Married	TY41	22.51	1.56	2.98	1.73	2129	0.91
Currently Divorced	TY41	1.60	0.35	1.69	1.30	2129	0.27
Currently Have One or More Children	TY49	28.88	1.92	3.84	1.96	2132	0.98
Expect to Have Three or More Children	TY48	32.19	1.74	2.82	1.68	2033	1.04
In PSE 84-86: Earned No Degree	TY211-22I	20.76	3.69	2.73	1.65	330	2.23
In PSE 84-86: Received Vocational Degree	TY21H-22H	44.06	6.37	5.40	2.32	328	2.74
In PSE 84-86: Received 4 Year Degree	TY21H-22H	11.66	2.63	2.20	1.48	328	1.77
Errolled in PSE, Oct '84	TY21C-22C	19.26	1.42	2.74	1.66	2116	0.86
Enrolled in PSE. Oct '85	TY21C-22C	17.34	1.30	2.51	1.58	2116	0.82
. In PSE 84-86: V. Dissat w/Career Couns	TY28E	5.02	1.16	2.50	1.58	893	0.73
In PSE 84-86: Some Sat with Curriculum	TY28I	46.26	3.10	3.45	1.86	894	1.67
Applied for Grad/Professional School	TY39	3.47	0.81	3.80	1.95	1948	0.41
If Employed 84-86, 1st Job Clerical	TY8A	25.92	1.67	2.83	1.68	1947	0.99
Had Any Job Between 84-86	TY7	92.71	0.92	2.66	1.63	2140	0.56
Did Not Receive Unemployment-'85	TY17085	85.73	2.32	2.79°	1.67	632	1.39
Currently Registered to Vote	TY56	61.34	2.15	3.88	1.97	1994	1.09
Have Voted Since 1984	TY57	44.54	2.17	3.80	1.95	1990	1.11
Active Participant in Service Org	TY59k	0.74	0.27	1.89	1.38	1976	0.19
Job Security Very Important	TY16C	76.17	1.80	3.48	1.87	1950	0.96
Success in Job Very Important	TY68A	82.54	1.42	2.80	1.67	1996	0.85
Marrying the Right Person Very Important	TY68B	86.50	1.49	3.79	1.95	1995	0.77
Having Lots of Money Very Important	TY68C	28.07	1.77	3.11	1.76	2001	1.00
Being a Community Leader Very Important	TY6BF	9.28	1.15	3.12	1.77	2000	0.65
Providing Better Opp for Kids Very Imp	TY68G	84.78	1.33	2.71	1.65	1992	0.80
Correcting Social Inequalities Very Imp	TY68.	13.01	1.31	3.00	1.73	1986	0.75
Having Children Very Important	TY68K	45.67	2.08	3.49	1.87	1995	1.12
Having Leisure Time Very Important	TY68L	62.77	2.00	3.41	1.85	2003	1.08
Mean				3.11	1.75		
Minimum				1.69	1.30		
Maximum				5.40	2.32		
Standard Deviation				0.76	0.21		
Median				2.99	1.73		

> High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Sophomore Cohort - Black

Survey Iteri (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job. Feb ' 86	TY3A	63.05	1.53	1.97	1.40	1954	1.09
Taking Acadenic Courses, Feb ${ }^{\text {8 }} 86$	TY3C	16.86	1.10	1.70	1.30	1954	0.85
Looking For Work, Feb '86	TY3I	15.19	1.19	2.13	1.46	1954	0.81
Currently Married	TY41	13.98	1.17	2.19	1.48	1938	0.79
Currently Divorced	TY41	0.92	0.31	2.07	1.44	1938	0.22
Currently Have One or More Children	TY49	38.22	1.67	2.28	1.51	1933	1.11
Expect to Have Three or More Children	TY48	29.10	1.50	2.05	1.43	1873	1.05
In PSE 84-86: Earned No Degree	TY211-221	17.71	3.01	2.02	1.42	326	2.11
In PSE 84-86: Received Vocational Degree	TY21H-22H	53.58	4.63	2.79	1.67	324	2.77
In PSE 84m86: Received 4 Year Degree	TY21H-22H	15.88	2.76	1.85	1.36	324	2.03
Enrolled in PSE, Oct ! 84	TY21C-22C	24.60	1.42	2.07	1.44	1911	0.99
Enrolied in PSE, Oct '85	TY21-6-22C	18.02	1.20	. 1.85	1.36	1911	0.88
In PSE 84-86: V. Oissat W/Career Couns	TY88E	9.74	1.55	2.43	1.56	886	1.00
In PSE 84-86: Some Sat With Curriculum	TY281	46.55	2.46	2.15	1.47	882	1.68
Applied for Grad/Professional School	TY39	5.01	0.88	2.92	1.71	1812	0.51
If Employed $84-86$, ist Job Clerical	TY8A	27.35	1.69	2.49	1.58	1738	1.07
Had Any Job Between 84-86	TY7	89.50	1.04	2.24	1.50	1947	0.69
Did Not Receive Unemplayment-'85	TY17085	90.83	1.56	2.23	1.49	760	1.05
Currently Registered to Vote	TY56	74.82	1.62	2.59	1.61	1860	1.01
Have Voted Since 1984	TY57	54.53	1.84	2.52	1.59	1854	1.16
Active Participant in Service Org	TY59K	1.65	0.33	1.24	1.11	1837	0.30
Job Security Very Important	TY16C	79.41	1.39	2.14	1.46	1820	0.95
Success in Job Very Important	TY68A	87.19	1.21	2.44	1.56	1855	0.78
Marrying the Right Person Very Important	TY688	84.44	1.25	2.20	1.48	1849	0.84
Having Lots of Money Very Important	TY68C	33.03	1.54	2.00	1.41	1855	1.09
Being a Community Leader Very Important	TY68F	10.93	1.17	2.61	1.62	1852	0.73
Providing Better Opp for Kids Very Imp	TY68G	87.04	1.27	2.64	1.62	1852	0.78
Correcting Social Inequalities Very Imp	TY68J	23.26	1.48	2.25	1.50	1845	0.98
Having Children Very Important	TY68K	37.20	1.40	1.56	1.25	1854	1.12
Having Leisure Time Very Important	TY68L	63.06	1.62	2.09	1.45	1855	1.12
Mean				2.19	1.47		
Minimum				1.24	1.11		
Maximum				2.92	1.71		
Standard Deviation				0.36	0.13		
Median				2.17	1.48		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Sophomore Cohort - Whites and Others

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TY3A	67.83	0.68	1.95	1.40	9288	0.48
Taking Acadenic Courses, Feb ' 86	TY3C	29.81	0.73	2.38	1.54	9288	0.47
Looking For Work, Feb ' 86	TY3I	8.48	0.39	1.83	1.35	9288	0.29
Currently Married	TY41	24.73	0.66	2.14	1.46	9275	0.45
Currently Divorced	TY41	2.03	0.20	1.89	1.37	9275	0.15
Currently Have One or More Children	TY49	19.03	0.59	2.07	1.44	9272	0.41
Expect to Have Three or More Children	TY48	32.11	0.70	2.01	1.42	8975	0.49
In PSE 84-86: Earned No Degree	TY21I-22I	21.83	1.27	1.84	1.36	1956	0.93
In PSE 84-86: Received Vocational Degree	TY21H-22H	24.10	1.40	2.09	1.45	1950	0.97
In PSE 84-86: Received 4 Year Degree	TV21H-22H	34.26	1.51	1.97	1.81	1950	1.07
Enrolled in PSE, Oct ' 84	TY216-22C	3 Q. 62	0.76	2.36	1.54	9198	0.50
Enrolled in PSE, Oct ' 85	TY21C-22C	31.16	0.72	2.20	1.48	9198	0.48
In PSE 84-86: V. Dissat H/Career Couns	TY28E	5.01	0.43	1.81	1.35	4584	0.32
In PSE 84-86: Some Sat With Curriculum	TY28I	51.18	0.93	1.57	1.25	4592	0.74
Applied for Grad/Professional School	TY39	4.46	0.30	1.87	1.37	8813	0.22
If Employed 84-86, 1st Job Clerical	TY8A	24.33	0.58	1.59	1.26	8750	0.46
Had Any Job Between 84-86	TY7	94.64	0.32	1.87	1.37	9308	0.23
Did Not Receive Unemployment-'85	TY17085	85.38	1.02	1.98	1.41	2377	0.72
Currently Registered to Vote	TY56	65.48	0.75	2.21	1.49	8949	0.50
Have Voted Since 1984	TY57	51.19	0.76	2.06	1.44	8940	0.53
Active Participant in Service Org	TY59K	1.53	0.15	1.32	1.15	8876	0.13
Job Security Very Important	TY16C	75.09	0.64	1.92	1.39	8762	0.46
Success in Job Very Important	TY68A	78.42	0.58	1.80	1.34	8949	0.43
Marrying the Right Person Very Important	TY688	86.65	0.49	1.88	1.37	8930	0.36
Having Lots of Money Very Important	TY68C	20.45	0.55	1.68	1.30	8950	0.43
Being a Community Leader Very Important	TY68F	5.69	0.31	1.62	1.27	8941	0.24
Providing Better Opp for Kids Very Imp	TY686	65.33	0.72	2.06	1.43	8913	0.50
Correcting Social Inequalities Very Imp	TY68.J	8.80	0.41	1.87	1.37	8913	0.30
Having Children Very Important	TY68k	49.82	0.74	1.94	1.39	8940	0.53
Having Leisure Time Very Important	TY68L	69.58	0.66	1.84	1.36	8953	0.49
Mean		-		1.92	1.38		
Minimum				1.32	1.15		
Maximum				2.38	1.54		
Standard Deviation				0.23	0.08		
Median				1.91	1.38		

High School and Beyond Third Follow-ip Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data

Sophomore Cohort - Female

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS	
Working at Full or Part Time Job, Feb ' 86	TY3A	64.65	0.85	2.16	1.47	6917	0.57	
Taking Academic Courses, Feb ' 86	TY3C	27.13	0.77	2.05	1.43	6917	0.53	
Looking For Work, Feb '86	TY3I	9.49	0.51	2.09	1.45	6917	0.35	
Currently Married	TY41	29.70	0.86	2.42	1.55	6899	0.55	
Currently Divorced	TY41	2.48	0.25	1.73	1.31	6899	0.19	
Currentiy Have One or More Children	TY49	29.31	0.82	2.26	1.50	6906	0.55	
Expect to Have Three or More Children	TY48	32.72	0.81	2.00	1.41	6723	0.57	
In PSE 84-86: Earned No Degree	TY211-22I	19.95	1.54	2.25	1.50	1508	1.03	
In PSE 84-86: Received Vocational Degree	TY21H-22H	28.65	1.81	2.41	1.55	1504	1.17	
In PSE 84-86: Received \& Year Degree	TY21H-22H	30.90	1.62	1.84	1.36	1504	1.19	
Enrolled in PSE, Oct "84	TY216-22C	33.80	0.84	2.15	1.47	6833	0.57	
Enrolled in PSE, Oct ' 85	TY216-226	28.90	0.79	2.05	1.43	6833	0.55	
In PSE 84-86: V. Dissat W/Career Couns	TY28E	5.12	0.52	1.89	1.38	3404	0.38	
In PSE 84-86: Some Sat With Curriculum	TY28I	49.64	1.15	1.81	1.35	3411	0.86	
Applied for Grad/Professional School	TY39	4.18	0.37	2.21	1.49	6538	0.25	
If Employed 84-86, 1st Job Clerical	TY8A	39.76	0.89	2.06	1.44	6259	0.62	
Had Any Job Between 84-86	TV7	90.91	0.52	2.24	1.50	6922	0.35	
Did Not Receive Unemployment-'85	TY17085	91.32	0.84	1.86	1.36	2117	0.61	
Currently Registered to Vote	TY56	65.57	0.87	2.24	1.50	6669	0.58	
Have Voted Since 1984	TY57	51.42	0.93	2.32	1.52	6659	0.61	
Active Participant in Service Org	TY59K	1.26	0.17	1.51	1.23	6600	0.14	
Job Security Very Important	TY16C	76.15	0.80	2.27	1.51	6496	0.53	
Success in Job Very important	TY68A	76.52	0.73	1.99	1.41	6666	0.52	
Maprying the Right Person Very Important	TY68B	86.65	0.61	2.13	1.46	б658	0.42	
Having Lots of Money Very Important	TY686	17.38	0.64	1.92	1.38	6676	0.46	
Being a Community Leader Very Important	TY68F	4.47	0.36	1.98	1.41	6665	0.25	
Providing Better Opp for Kids Very Imp	TY68G	69.32	0.82	2.10	1.45	6653	0.57	
Correcting Social Inequalities Very Imp	TY683	11.04	0.54	2.00	1.41	6638	0.38	
Haying Children Very Important	TY68\%	54.59	0.83	1.85	1.36	6663	0.61	
Heving Leisure Time Very Important	TY68L	67.20	0.78	1.82	1.35	6674	0.57	
Meam				2.06	1.43			
Minimum				1.51	1.23			
Meximum				2.42	1.55			
Standard Deviation				0.21	0.07			
Median				2.06	1.44			

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Sophomore Cohort - Male

Survey Item (or Composite Variable)		Estimate	SE	deff	DEFT	N	SE-SRS
Working at Full or Part Time Job. Feb '86	TY3A	70.32	0.74	1.69	1.30	6466	0.57
Taking Acadernic Courses, Feb '86	TY3C	26.54	0.85	2.38	1.54	6466	0.55
Looking For Work, Feb '86	TY3I	9.67	0.53	2.08	1.44	6466	0.37
Currently Married	TY41	16.45	0.68	2.15	1.47	6443	0.46
Currently Divorced	TY41	1.21	0.22	2.59	1.61	6443	0.14
Currently Have One or More Children	TY49	15.19	0.69	2.38	1.54	6431	0.45
Expect to Have Three or More Children	TY48	30.68	0.85	2.10	1.45	6158	0.59
In PSE 84-86: Earned No Degree	TY21I-22I	23.17	1.69	1.77	1.33	1104	1.27
In PSE 84-86: Received Vocational Degree	TY21H-22H	27.13	1.97	2.15	1.47	1098	1.34
In PSE 84-86: Received 4 Year Degree	TY21H-22H'	31.96	1.98	1.97	1.40	1098	1.41
Enrolled in PSE, Oct 'g4	TY21C-22C	30.39	0.87	2.28	1.51	6392	0.58
Enrolled in PSE, Oct '85	TY21C-22C	27.81	0.82	2.16	1.47	6392	0.56
In PSE 84-86: V. Dissat W/Career Couns	TY28E	5.97	0.65	2.22	1.49	2959	0.44
In PSE 84-86: Some Sat With Curriculum	TY28I	51.27	1.28	1.95	1.40	2957	0.92
Applied for Grad/Professional School	TY39	4.75	0.41	2.19	1.48	6035	0.27
If Employed 84-86, ist Job Clerical	TYBA	10.54	0.54	1.89	1.37	6176	0.39
Had Any Job Between 84-86	TY7	96.75	0.29	1.73	1.32	6473	0.22
Did Not Receive Unemployment-'85	TY17085	80.47	1.50	2.35	1.53	1652	0.98
Currently Registered to Vote	TY56	67.26	0.87	2.10	1.45	6134	0.60
Have Voted Since 1984	TY57	50.82	0.93	2.11	1.45	6125	0.64
Active Participant in Service Org	TY59k	1.72	0.20	1.37	1.17	6089	0.17
Job Security Very Important	TV16C	75.32	0.77	1.94	1.39	6036	0.55
Success in Job Very Important	TY68A	83.38	0.67	2.01	1.42	6134	0.48
Marrying the Right Person Very Important	TY688	86.06	0.65	2.17	1.47	6116	0.44
Having Lots of Money Very Important	TY68C	28.19	0.81	2.00	1.41	6130	0.57
Being a Community Leader Very Important	TY68F	8.91	0.49	1.81	1.34	6128	0.36
Providing Better Opp for Kids Very Imp	TY68G	69.99	0.88	2.25	1.50	6104	0.59
Correcting Social Inequalities Very Imp	TY68J	10.99	0.58	2.11	1.45	6106	0.40
Having Children Very Important	TY68k	40.82	0.94	2.22	1.49	6126	0.63
Having Leisure Time Very Important	TY68L	69.25	0.83	1.99	1.41	6137	0.59
Mean				2.07	1.44		
Ninimum				1.37	1.17		
Maxinum				2.59	1.61		
Standard Deviation				0.24	0.09		
Median				2.11	1.45		

High School and Beyond Third Follow-Up Estimated Percentages. Standard Errors and Design Effects, Using Third Follow-Up Data Sophomore Cohort - Lowest Quartile SES

Survey Item (or Composite Variable)		Estimate	SE	DEFF	deft	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TY3A	66.49	1.14	2.09	1.44	3555	0.79
Taking Academic Courses. Feb :86	TY3C	9.78	0.63	1.57	1.25	3555	0.50
Leoking For Work, Feb '86	TY3I	14.00	0.75	1.67	1.89	3555	0.58
Currently Married	TY41	31.39	1.18	2.28	1.51	3536	0.78
Currently Divorced	TY41	1.88	0.27	1.43	1.19	3536	0.23
Currently Have One or More Children	TY49	33.60	1.07	1.81	1.35	3541	0.79
Expect to Have Three or More Children	TY48	27.34	1.03	1.83	1.35	3422	0.76
In PSE 84-86: Earned No Degree	TY211-221	11.91	1.99	1.55	1.25	413	1.59
In PSE 84-86: Received Vocational Degree	TY21H-22H	59.56	3.47	2.04	1.43	407	2.43
In PSE 84-86: Received 4 Year Degree	TY21H-22H	9.18	1.65	1.33	1.15	407	1.43
Enrolled in PSE, Oct '84	TY216-22C	13.70	0.74	1.61	1.27	3508	0.58
Enrolled in PSE. Oct ${ }^{\text {OS }}$	TY216-22C	12.59	0.76	1.82	1.35	3508	0.56
In PSE 84-86: V. Dissat W/Career Couns	TY28E	5.22	0.91	1.76	1.33	1064	0.68
In PSE 84-86: Some Sat with Curriculum	TY281	48.62	2.16	1.98	1.41	1060	1.54
Applied for Grad/Professional School	TY39	2.96	0.43	2.16	1.47	3298	0.30
[f Employed 84-86, Ist Job Clerical	TY8A	23.47	1.04	1.92	1.39	3178	0.75
Had Any Job Between 84-86	TY7	90.95	0.62	1.68	1.30	3556	0.48
Did Not Receive Unemployment-'85	TY17085	83.42	1.46	1.92	1.38	1246	1.05
Currently Registered to Vote	TY56	58.44	1.27	2.27	1.51	3391	0.85
Have Voted Since 1984	TY57	41.10	1.29	2.31	1.52	3389	0.85
Active Participant in Service Org	TY59k	0.59	0.15	1.22	1.10	3355	0.13
Job Security Very Important	TY16C	79.32	0.93	1.74	1.32	3293	0.71
Success in Job Very Important	TY68A	78.29	0.96	1.84	1.36	3382	0.71
Marrying the Right Person Very Important	TY688	88.16	0.74	1.79	1.34	3379	0.56
Having Lots of Money Very Important	TY68C	23.23	1.01	1.94	1.39	3387	0.73
Being a Community Leader Very Important	TY68F	5.75	0.56	1.92	1.39	3381	0.40
Providing Better Opp for Kids Very Imp	TY68G	82.17	0.94	2.04	1.43	3379	0.66
Correcting Social Inequalities Very Imp	TY68J	10.90	0.70	1.67	1.29	3367	0.54
Having Children Very Important.	TY68K	45.14	1.17	1.87	1.37	3383	0.86
Having Leisure Time Very Important	TY68L	63.10	1.12	1.83	1.35	3387	0.83
Mean				1.83	1.35		
Minimum				1.22	1.10		
Maximum				2.31	1.52		
Standard Deviation				0.26	0.10		
Median				1.83	1.35		

High School and Beyond Third Follow-Up Estimated Percentages. Standard Errors and Design Effects, Using Third Follow-Up Data Sophomore Cohort - Two Middle Quartiles SES

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TY3A	70.76	0.79	1.99	1.41	6588	0.56
Taking Academic Courses, Feb '86	TY3C	22.54	0.67	1.68	1.30	6588	0.51
Looking For Work, Feb ' 86	TY3I	8.88	0.52	2.22	1.49	6588	0.35
Currentiy Married	TYA1	23.92	0.79	2.24	1.50	6574	0.53
Currently Divorced	TYA1	2.12	0.26	2.10	1.45	6574	0.18
Currently Have One or More Children	TY49	23.17	0.80	2.38	1.54	6568	0.52
Expect to Have Three or More Children	TY48	30.29	0.86	2.24	1.50	6339	0.58
In PSE 84-86: Earned No Degree	TY21I-221	19.33	1.60	1.95	1.39	1179	1.15
In PSE 84-86: Received Vocational Degree	TY21H-22H	31.04	1.94	2.07	1.44	1175	1.35
In PSE 84-86: Received 4 Year Degree	TY21H-22H	24.57	1.66	1.75	1.32	1175	1.26
Enrolled in PSE, Oct ' 84	TY21C-22C	28.23	0.75	1.81	1.35	6508	0.56
Enrolled in PSE, Oct ${ }^{\text {8 }} 85$	TY21C-22C	24.65	0.70	1.73	1.32	6508	0.53
In PSE 84-86: V. Dissat H/Career Couns	TY28E	5.93	0.64	2.18	1.48	2964	0.43
In PSE 84-86: Some Sat With Curriculuri	TY281	50.44	1.27	1.93	1.39	2968	0.92
Applied for Grad/Professional School	TY39	3.65	0.37	2.41	1.55	6179	0.24
If Employed 84-86, 1st Job Clerical	TY8A	24.87	0.73	1.78	1.33	6176	0.55
Had Any Job Between 84-86	TY7	94.23	0.43	2.28	1.51	6599	0.29
Did Not Receive Unemployment-'85	TY17085	85.29	1.24	2.21	1.49	1820	0.83
Currently Registered to Vote	TY56	65.47	0.92	2.33	1.53	6296	0.60
Have Voted Since 1984	TY57	50.07	0.95	2.24	1.50	6281	0.63
Active Participant in Service Org	TY59K	1.46	0.18	1.43	1.20	6245	0.15
Job Security Very Important	TY16C	77.66	0.77	2.11	1.45	6178	0.53
Success in Job Very Important	TY68A	79.44	0.75	2.16	1.47	6303	0.51
Marrying the Right Person Very Important	TY688	86.03	0.67	2.35	1.53	6289	0.44
Having Lots of Money Very important	TY68C	22.57	0.70	1.74	1.32	6303	0.53
Being a Community Leader Very Important	TY68F	6.47	0.47	2.31	1.52	6300	0.31
Providing Better Opp for Kids Very Imp	TY68G	70.29	0.79	1.88	1.37	6280	0.58
Correcting Social Inequalities Very Imp	TY683	10.55	0.58	2.24	1.50	6270	0.39
Having Children Yery Important	TY68\%	47.78	0.89	2.00	1.42	6294	0.63
Having Leisure Time Very Important	TY68L	68.16	0.85	2.10	1.45	6308	0.59
Mean				2.06	1.43		
Minimum				1.43	1.20		
Maximum				2.41	1.55		
Standard Deviation				0.25	0.09		
Median				2.11	1.45		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects. Using Third Follow-Up Data Sophomiore Cohort - Highest Quartile SES

Survey Iten (or Composite Variable)		Estimate	SE	OEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TY3A	61.00	1.30	2.29	1.51	3240	0.86
Taking Academic Courses, Feb ${ }^{\text {P }} 86$	TY3C	53.65	1.29	2.17	1.47	3240	0.88
Looking For Work. Feb '86	TY31	6.73	0.63	2.03	1.42	3240	0.44
Currently Married	TY41	13.11	0.90	2.30	1.52	3232	0.59
Currently Divorced	TY41	1.21	0.27	1.90	1.38	3232	0.19
Currently Have One or More Children	TY49	9.12	0.70	1.89	1.38	3228	0.51
Expect to Have Three or More Children	TY48	39.37	1.12	1.64	1.28	3120	0.87
In PSE 84-86: Earned No Degree	TY211-22I	27.07	2.01	2.08	1.44	1020	1.39
In PSE 84-86: Received Vocational Degree	TY21H-22H	13.48	1.53	2.05	1.43	1020	1.07
In PSE 84-86: Received \& Year Degree	TY21H-22H	47.08	2.23	2.04	1.43	1020	1.56
Enrolled in PSE, Oct "84	TY21C-22C	59.20	1.37	2.48	1.57	3209	0.87
Enrolled in PSE, Oct '85	TY21C-22C	52.46	1.34	2.30	1.52	3209	0.88
In PSE 84-86: V. Dissat W/Career Couns	TY28E	5.11	0.67	2.16	1.47	2335	0.46
In PSE 84-86: Some Sat With Curriculum	TY281	51.01	1.33	1.66	$1 . .29$	2340	1.03
Applied for Grad/Professional School	TY39	7.72	0.64	1.79	1.34	3096	0.48
If Employed 84*86, 15t Job Clerical	TYBA	26.04	1.07	1.83	1.35	3081	0.79
Had Any Job Between 84-86	TY7	95.70	0.43	1.48	1.22	3240	0.36
Did Not Receive Unemployment-'85	TY17085	94.61	1.03	1.46	1.21	703	0.85
Currently Registered to Vote	TY56	76.47	1.06	1.94	1.39	3116	0.76
Have Voted Since 1984	TY57	63.56	1.23	2.02	1.42	3114	0.86
Active Participant in Service Org	TY59K	2.44	0.32	1.36	1.17	3089	0.28
Job Security Very Important	TY16C	67.92	1.23	2.13	1.46	3061	0.84
Success in Job Very Important	TY68A	82.46	0.95	1.95	1.40	3115	0.68
Marrying. the Right Person Very Important	TY688	85.29	0.87	1.85	1.36	3106	0.68
Having Lots of Money Very Important	TY68C	22.37	0.99	1.74	1.32	3116	0.75
Being a Cammunity Leader Very Important	TY68F	7.95	0.56	1.31	1.14	3112	0.48
Providing Better Opp for Kids Yery Imp	TY68G	55.74	1.25	1.97	1.40	3098	0.89
Correcting Social Inequalities Very Imp	TY683	12.17	0.80	1.85	1.36	3107	0.59
Having Children Very Important	TY68K	50.68	1.25	1.94	1.39	3112	0.90
Having Leisure Time Very Important	TY68L	73.39	1.08	1.86	1.36	3116	0.79
Mean				1.92	1.38		
Minimum				1.31	1.14		
Maximum				2.48	1.57		
Standard Deviation				0.28	0.10		
Median				1.94	1.39		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Sophomore Cohort - Received No Post-Secondary Education

Survey Iten (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Jab, Feb '86	TY3A	71.41	0.90	1.91	1.38	4793	0.65
Taking Academic Courses, Feb ${ }^{\circ} 86$	TY3C	0.36	0.10	1.39	1.18	4793	0.09
Looking For Work, Feb '86	TY31	11.90	0.66	1.96	1.40	4793	0.47
Currently Married	TY41	34.76	0.97	1.99	1.41	4792	0.69
Currently Divorced	TY41	2.52	0.27	1.42	1.19	4792	0.23
Currently Have One or More Children	TY49	35.85	1.03	2.21	1.49	4793	0.69
Expect to Have Three or More Children	TY48	26.49	0.91	1.95	1.40	4614	0.65
In PSE 84-86: Earned No Degree	TY211-22I	n/a	π / a	n/a	n/a	n / a	n/a
In PSE 84-86: Received Vocational Degree	TY21H-22H	n/a	n/a	n / a	n/a	n/a	n/a
In PSE 84-86: Received 4 Year Degree	TY21H-22H	n/a	n/a	π / a	n/a	n/a	n/a
Enrolled in PSE, Oct '84	TY21C-22C	n/a	n/a	n/a	n/a	n/a	n/a
Enrolled in PSE, Oct '85	TY21C-22C	n/8	n/a	n/a	π / a	n/a	n/a
- In PSE 84-86: V. Dissat W/Career Couns	TY28E	n/a	n / a	n/a	n / a	n/a	n/a
In PSE 84-86: Some Sat With Curriculum	TY281	n/a	n/a	n/a	n/a	n/a	n/a
Applied for Grad/Professional School	TY39	1.94	0.35	2.82	1.68	4444	0.21
If Employed 84-86, 1st Job Clerical	TY8A	18.82	0.77	1.69	1.30	4323	0.59
Had Any Job Between 84-86	TY7	91.31	0.59	2.09	1.45	4811	0.41
Did Not Receive Unemployment-'85	TY17085	81.82	1.44	2.05	1.43	1472	1.01
Currently Registered to Vote	TY56	55.69	1.10	2.23	1.49	4557	0.74
Have Voted Since 1984	TY57	38.32	1.05	2.13	1.46	4551	0.72
Active Participant in Service Org	TY59K	0.64	0.13	1.25	1.12	4512	0.12
Job Security Very Important	TY16C	78.94	0.84	1.87	1.37	4423	0.61
Success in Job Very Important	TY68A	75.49	0.91	2.02	1.42	4543	0.64
Marrying the Right, Person Very Important	TY688	87.00	0.72	2.05	1.43	4533	0.50
Having Lots of Money Very Important	TY68C	23.96	0.86	1.83	1.35	4548	0.63
Being a Community Leader Very Important	TY68F	5.59	0.50	2.13	1.46	4542	0.34
Providing Better Opp for Kids Very Imp	TY68G	78.23	0.96	2.43	1.56	4532	0.61
Correcting Social Inequalities Very Imp	TY68J	9.07	0.64	2.26	1.50	4516	0.43
Having Children Very Important	TY68K	46.24	0.99	1.79	1.34	4540	0.74
Having Leisure Time Very Important	TY68L	63.13	. 1.03	2.05	1.43	4552	0.72
Mean				1.98	1.40		
Minimum				1.25	1.12		
Maximum				2.82	1.68		
Standard Deviation				0.34	0.12		
Median				2.02	1.42		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Oesign Effects, Using Third Follow-Up Data Sophomore Cohort - Received Some Post-Secondary Education

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TY3A	67.82	0.76	2.03	1.43	7675	0.54
Taking Academic Coupses. Feb ' 86	TY3C	39.97	0.81	2.11	1.45	7675	0.56
Looking For Work, Feb ${ }^{\text {c }}$ G6	TY3I	7.95	0.44	2.05	1.43	7675	0.31
Currently Married	TY41	16.56	0.59	1.92	1.39	7635	0.43
Currently Divorced	TY41	1.55	0.23	2.53	1.59	7635	0.14
Currently Have One or More Children	TY49	14.58	0.60	2.18	1.48	7631	0.40
Expect to Have Three or More Children	TY48	34.36	0.80	2.09	1.45	7378	0.55
In PSE 84-86: Earned No Degree	TY21I-221	30.87	1.64	2.20	1.48	1753	1.10
In PSE 84-86: Received Vocational Degree	TY21H-22H	40.86	1.81	2.36	1.53	1743	1.18
In PSE 84-86: Received \& Year Degree	TY21H-22H	n/a	π / a	n/a	п/a	n/a	n/a
Enroiled in PSE. Oct '84	TY21C-22C	49.66	0.83	2.08	2.948	7499	0.58
Enrolled in PSE, Oct '85	TV21C-22C	43.99	0.82	2.05	1.43	7499	0.57
In PSE 84-86: V. Dissat W/Career Couns	TY28E	5.67	0.46	2.12	1.46	5483	0.31
Ir PSE 84-86: Sone Sat With Curriculum	TY28i	51.20	0.93	1.91	1.38	5484	0.67
Applied for Grad/Professional School	TY39	4.42	0.36	2.21	1.49	7225	0.24
If Employed 84-86. lst Job Glerical	TY8A	28.97	0.78	2.16	1.47	7832	0.53
Had Any Job Eewween 84-86	TY7	95.26	0.35	2.05	1.43	7667	0.28
Did Not Receive Unemployment-' 85	TY17085	89.14	0.99	2.16	1.47	2125	0.68
Currently Registered to Vote	TY56	72.48	0.77	2.20	1.48	7345	0.52
Have Voted Since 1984	TY57	58.37	0.81	1.99	1.41	7331	0.58
Active Participant in Service Org	TY59K	1.90	0.19	1.46	1.21	7285	0.16
Job Security Very Important	TY16C	74.77	0.76	2.23	1.49	7215	0.51
Success in job Very Important	TY68A	82.43	0.63	2.01	1.42	7354	0.44
Marrying the Right Person Very Important	TY688	85.78	0.61	2.22	1.49	7339	0.41
Having Lots of Money Very Important	TY68C	22.12	0.68	2.00	1.41	7355	0.48
Being a Community Leader Very Important	TY68F	6.68	0.39 .	1.77	1.33	7349	0.29
Providing Better Opp for Kios Very Imp	TY68G	65.62	0.82	2.16	1.47	7325	0.55
Correcting Social Inequalities Very Imp	TY68J	11.73	0.55	2.13	1.46	7327	0.38
Having Children Very Important	TY68K	48.46	0.86	2.19	1.48	7346	0.58
Having Leisure Time Very Important	TY681	71.39	0.76	2.06	1.44	7357	0.53
Mean				2.09	1.44		
Mimimum				1.46	1.21		
Maximum				2.53	1.59		
Standard Oeviation				0.19	0.07		
Median				2.11	1.45		

Hign School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Sophomore Cohort - Received a Four-Year Degree

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS	
Working at Full or Part Time Job, Feb ' 86	TY3A	44.15	2.32	2.00	1.41	915	1.64	
Taking Academic Courses, Feb ' 86	TY36	84.13	1.66	1.89	1.37	915	1.21	
Looking For Work, Feb '86	TY31	8.62	1.36	2.14	1.46	915	0.93	
Currently Married	TY41	4.53	0.91	1.74	1.32	915	0.69	
Currently Divorced	TY41	0.02	0.02	0.16	0.39	915	0.04	
Currently Have One or More Children	TY49	1.57	0.55	1.79	1.34	913	0.41	
Expect to Have Three or More Children	TY48	42.63	2.12	1.64	1.28	889	1.66	
In PSE 84-86: Earned No Degree	TY211-221	1.34	0.41	1.08	1.04	859	0.39	
In PSE 84-86: Received Vocational Degree	TY21H-22H	1.02	0.45	1.72	1.31	859	0.34	
In PSE 84 86: Received 4 Year Degree	TY21H-22H	97.05	0.69	1.44	1.20	859	0.58	
Enrolled in PSE, Oct '84	TY21C-22C	93.37	1.02	1.54	1.29	911	0.82	
Enrolled in PSE, Oct '85	TY21C-22C	81.33	1.82	1.99	1.41	911	1.29	
- In PSE 84-86: V. Dissat H/Career Couns	TYZ8E	4.59	0.80	1.29	1.14	880	0.71	
In PSE 84-86: Some Sat With Curriculum	TY281	45.48	2.32	1.91	1.38	884	1.67	
Applied for Grad/Professional School	TY39	20.09	1.77	1.77	1.33	904	1.33	
If Employed 84-86, 1st Job Clerical	TY8A	26.34	1.88	1.60	1.27	880	1.48	
Had Any Job Between 84-86	TY7	97.42	0.59	1.28	1.13	917	0.52	
Did Not Receive Unemployment-'85	TY17085	99.65	0.35	0.60	0.78	172	0.45	
Currently Registered to Vote	TY56	82.24	1.68	1.74	1.32	901	1.27	
Have Voted Since 1984	TY57	70.36	2.04	1.81	1.34	902	1.52	
Active Participant in Service Org	TY59K	3.31	0.72	1.45	1.20	892	0.60	
Job Security Very Important	TY16C	64.06	2.10	1.71	1.31	894	1.60	
Success in Job Very Important	TY68A	85.91	1.64	2.01	1.42	903	1.16	
Marrying the Right Person Very Important	TY688	87.23	1.48	1.76	1.33	902	1.11	
Having Lots of Money Very Important	TY68C	19.41	1.77	1.81	1.35	903	1.32	
Being a Community Leader Very Important	TY68F	13.04	1.43	1.62	1.27	902	1.12	
Providing Better Opp for Kids Very Imp	TY68G	49.98	2.21	1.76	1.33	900	1.67	
Correcting Social Inequalities Very Imp	TY68.	17.13	1.74	1.92	1.39	901	1.26	
Having Children Very Important	TY68k	52.66	2.31	1.94	1.39	903	1.66	
Having Leisure Time Very Important	TY68L	73.15	1.96	1.77	1.33	902	1.48	
Mean				1.63	1.26			
Minimum				0.16	0.39			
Maximum				2.14	1.46			
Standard Deviation				0.42	0.21			
Median				1.75	1.33			

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Senior Cohort - Total Population

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TE3A	77.50	0.57	1.98	1.41	10492	0.41
Taking Academic Courses, Feb ' 86	TE3C	11.32	0.48	2.37	1.54	10492	0.31
Looking For Work, Feb '86	TE3!	8.02	0.39	2.13	1.46	10492	0.27
Currently Married	TEA1	36.33	0.74	2.48	1.57	10473	0.47
Currently Divorced	TEA1	2.78	0.25	2.46	1.57	10473	0.16
Currently Have One or More Children	TE49	26.76	0.73	2.86	1.69	10445	0.43
Expect to Have Three or More Children	TE48	32.70	0.72	2.40	1.55	10150	0.47
In PSE 84-86: Earned No Degree	TE211-22I	7.61	0.80	2.13	1.46	2360	0.55
In PSE 84-86: Received Vocational Degree	TE21H-22H	18.48	1.20	2.23	1.49	2347	0.80
In PSE 84-86: Received 4 Year Degree	TE21H-22H	67.13	1.44	2.20	1.48	2347	0.97
Enrolled in PSE, Oct ' 84	TE21C-22C	22.92	0.63	2.31	1.52	10370	0.41
Enrolled in PSE, Oct ' 85	TE21C-22C	17.02	0.58	2.45	1.57	10370	0.37
In PSE 84-86: V. Dissat W/Career Couns	TE28E	6.55	0.57	2.20	1.48	4184	0.38
In PSE 84-86: Some Sat With Curriculum	TE281	51.27	1.10	2.03	1.42	4184	0.77
Applied for Grad/Professional School	TE39	6.22	0.38	2.50	1.58	9917	0.24
If Employed 84-86, ist Job Clerical	TEAA	23.07	0.63	2.22	1.49	9795	0.43
Had Any Job Between 84-86	TE7	94.75	0.32	2.15	1.47	10509	0.22
Did Not Receive Unemployment-' 85	TE17085	82.71	1.08	2.35	1.53	2860	0.71
Currently Registered to Vote	TE56	72.34	0.74	2.77	1.66	10110	0.44
Have Voted Since 1984	TE57	60.66	0.77	2.50	1.58	10098	0.49
Active Participant in Service Org	TE59k	2.02	0.20	1.93	1.39	10029	0.14
Job Security Very Important	TE16C	72.85	0.72	2.56	1.60	9887	0.45
Success in Job Very Important	TE68A	75.76	0.58	1.87	1.37	10123	0.43
Marrying the Right Person Very Important	TE688	87.06	0.50	2.23	1.49	10102	0.33
Having Lots of Money Very Important	TE68C	20.95	0.61	2.26	1.50	10111	0.40
Being a Community Leader Very Important	TE68F	5.35	0.31	1.93	1.39	10107	0.22
Providing Better Opp for Kids Very Imp	TE68G	65.69	0.73	2.35	1.53	10065	0.47
Correcting Social Inequalities Very Imp	TE68J	9.73	0.44	2.20	1.48	10089	0.29
Having Children Very Important	TE68K	48.58	0.77	2.40	1.55	10101	0.50
Having Leisure Time Very Important	TE68L	68.86	0.66	2.07	1.44	10123	0.46
Mean				2.28	1.51		
Minimum				1.87	1.37		
Maximum				2.86	1.69		
Standard Deviation				0.23	0.08		
Median				2.25	1.50		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Weights Senior Cohort - Hispanic

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb '86	TE3A	76.53	1.98	4.24	2.06	1941	0.96
Taking Academic Courses, Feb '86	TE3C	13.48	1.35	3.05	1.75	1941	0.78
Looking For Work, Feb '86	TE3I	8.74	1.43	4.97	2.23	1941	0.64
Currently Married	TE41	38.05	2.31	4.37	2.09	1934	1.10
Currently Divorced	TE41	3.90	0.90	4.14	2.04	1934	0.44
Currently Have One or More Children	TE49	35.89	2.40	4.82	2.19	1932	1.09
Expect to Have Three or More Children	TE48	32.48	2.38	4.80	2.19	1853	1.09
In PSE 84-86: Earned No Degree	TE21I-22I	9.80	1.98	1.54	1.24	346	1.60
In PSE 84-86: Received Vocational Degree	TE21H-22H	40.85	6.26	5.53	2.35	341	2.66
In PSE 84-86: Received 4 Year Degree	TE21H-22H	41.63	5.25	3.86	1.97	341	2.67
Enrolled in PSE, Oct ' 84	TE21C-22C	20.44	1.65	3.21	1.79	1916	0.92
Enrolled in PSE, Oct ' 85	TE21C.22C	16.77	1.45	2.87	1.69	1916	0.85
In PSE 84-86: V. Dissat W/Career Couns	TE28E	8.71	2.51	5.75	2.40	726	1.05
In PSE 84-86: Some Sat With Curriculum	TE285	50.70	3.70	3.97	1.99	724	1.86
Applied for Grad/Professional School	TE39	3.41	0.79	3.32	1.82	1768	0.43
If Employed 84-86, 1st Job Clerical	TE8A	26.95	2.26	4.63	2.15	1791	1.05
Had Any Job Between 84-86	TE7	91.55	1.46	5.32	2.31	1943	0.63
Did Not Receive Unemployment-' 85	TE17085	87.76	2.32	2.56	1.60	511	1.45
Currently Registered to Vote'	TE56	70.27	2.11	3.86	1.96	1817	1.07
Have Voted Since 1984	TE57	52.78	2.44	4.33	2.08	1816	1.17
Active Participant in Service Org	TE59K	1.15	0.46	3.37	1.84	1808	0.25
Job Security Very Important	TE16C	78.24	2.08	4.50	2.12	1771	0.98
Success in Job Very Important	TE688	79.25	1.94	4.17	2.04	1821	0.95
Marrying the Right Person Very lmportant	TE688	86.45	1.66	4.27	2.07	1818	0.80
Having Lots of Money Very Important	TE68C	24.22	2.08	4.30	2.07	1816	1.01
Seing a Community Leader Very Important	TE68F	7.78	1.01	2.56	1.60	1818	0.63
Providing Better Opp for Kids Very Imp	TE68G	78.47	2.07	4.61	2.15	1816	0.96
Correcting Social Inequalities Very Imp	TE68J	14.14	1.78	4.75	2.18	1813	0.82
Having Children Very Important	TE68K	49.89	2.36	4.04	2.01	1817	1.17
Having Leisure Time Very Important	TE68L	66.23	2.24	4.07	2.02	1820	1.11
Mean				4.06	2.00		
Hin imum				1.54	1.24		
Maximum				5.75	2.40		
Standard Deviation				0.93	0.25		
Median				4.21	2.05		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Weights Senior Cohort - Black

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS	
Working at Full or Part Time Job, Feb ' 86	TE3A	74.10	1.25	2.21	1.49	2708	0.84	
Tking Academic Courses, Feb '86	TE3C	10.06	0.91	2.50	1.58	2708	0.58	
Looking For Work, Feb '86	TE3I	12.29	1.00	2.49	1.58	2708	0.63	
Currently Mapried	TEA1	22.65	1.25	2.41	1.55	2699	0.81	
Currently Divorced.	TE41	1.95	0.57	4.63	2.15	2699	0.27	
Currently Have One or More Children	TE49	42.65	1.51	2.52	1.59	2687	0.95	
Expect to Have Three or More Children	TE48	29.68	1.28	2.06	1.43	2633	0.89	
In PSE 84-86: Earned No Degree	TE21I-22I	9.96	2.57	3.62	1.90	491	1.35	
In PSE 84-86: Received Vocational Degree	TE21H-22H	29.03	3.23	2.47	1.57	488	2.05	
In PSE 84-86: Received 4 Year Degree	TE21H-22H	51.09	3.71	2.69	1.68	488	2.26	
Enrolled in PSE. Oct '84	TE216-22C	16.71	0.97	1.82	1.35	2663	0.72	
Enrolled in PSE, Oct ' 85	TE21C-22C	13.02	0.93	2.04	1.43	2663	0.65	。
In PSE 84-86: V. Dissat W/Gareer Couns	TE2BE	6.97	1.32	2.58	1.61	956	0.82	
In PSE 84-86: Some Sat with Curriculun	TE28I	51.53	2.29	2.00	1.42	955	1.62	
Applied for Grad/Professional School	TE39	4.37	0.55	1.81	1.35	2548	0.40	
If Employed 84-86, 1st Job Clerical	TE8A	28.59	1.31	2.06	1.44	2454	0.91	
Had Any Jab Between 84-86	TE7	90.46	1.06	3.55	1.88	2718	0.56	
Did Not Receive Unemployment-'85	TE17085	87.55	1.76	2.58	1.61	905	1.10	
Currently Registered to Vote	TE56	77.79	1.21	2.23	1.49	2619	0.81	
Have Voted Since 1984	TE57	62.47	1.38	2.12	1.45	2608	0.95	
Active Participant in Service Org	TE59K	2.19	0.34	1.36	1.17	2583	0.29	
Job Security Very Important	TE16C	83.28	1.16	2.43	1.56	2542	0.74	
Success in Job Very Important	TE68A	81.97	1.08	2.08	1.44	2623	0.75	
Marrying the Right Person Very Important	TE68B	85.33	0.98	2.00	1.41	2618	0.69	
Having Lots of Money Very Important	TE6BC	29.80	1.43	2.55	1.60	2622	0.89	
Being a Conmunity Leader Very Important	TE68F	11.29	0.97	2.46	1.57	2619	0.62	
Providing Better Opp for Kids Very Imp	TE68G	87.80	0.94	2.15	1.47	2614	0.64	
Correcting Social Inequalities Very Imp	TE68J	22.71	1.26	2.35	1.53	2613	0.82	
Having Children Very Important	TE6BK	37.74	1.35	2.04	1.43	2617	0.95	
Hawing Leisure Time Very Important	TE68L	65.93	1.39	2.24	1.50	2623	0.93	
Mean				2.40	1.54			
Minimum				1.36	1.17			
Maximum				4.63	2.15			
Standard Deviation				0.61	0.18			
Median				2.30	1.52			

> High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Senior Cohort - Whites and Others

Survey Item (or Composite Variable)		Estimate	SE	DEFF	OEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TE3A	78.05	0.66	1.50	1.23	5843	0.54
Taking Academic Courses, Feb '86	TE3C	11.34	0.53	1.61	1.27	5843	0.41
Looking For Work, Feb ' 86	TE3I	7.36	0.43	1.57	1.25	5843	0.34
Currently Married	TEA1	38.16	0.83	1.70	1.30	5840	0.64
Currently Divorced	TE41	2.82	0.29	1.78	1.33	5840	0.22
Currently Have One or More Children	TE49	23.85	0.80	2.06	1.43	5826	0.56
Expect to Have Three or More Children	TE48	33.15	0.84	1.80	1.34	5664	0.63
In PSE 84-86: Earned No Degree	TE21I-22I	7.28	0.90	1.81	1.34	1523	0.67
In PSE 84-86: Received Vocational Degree	TE21H-22H.	$16.41{ }^{\text { }}$	1.25	1.74	1.32	1518	0.95
In PSE 84-86: Received 4 Year Degree	TE21H-22H	69.86	1.56	1.75	1.32	1518	1.18
Enrolled in PSE, Oct '84	TE21C-22C	23.98	0.73	1.67	1.29	5791	0.56
Enrolled in PSE. Oct ' 85	TE21C-22C	17.59	0.67	1.77	1.33	5791	0.50
In PSE 84-86: V. Dissat W/Career Couns	TE28E	6.39	0.64	1.72	1.31	2502	0.49
In PSE 84-86: Some Sat With Curriculum	TE28I	51.26	1.25	1.55	1.25	2505	1.00
Applied for Grad/Professional School	TE39	6.67	0.45	1.86	1.36	5601	0.33
If Employed 84-86, 1st Job Clerical	TEBA	22.06	0.72	1.67	1.29	5550	0.56
Had Any Job Between 84-86	TE7	95.59	0.34	1.64	1.28	5848	0.27
Did Not Receive Unemployment-'85	TE17085	81.39	1.32	1.66	1.29	1444	1.02
Currently Registered to Vote	TE56	71.70	0.85	2.02	1.42	5674	0.60
Have Voted Since 1984	TE57	60.95	0.88	1.84	1.36	5674	0.65
Active Participant in Service Org	TE59K	2.06	0.23	1.51	1.23	5638	0.19
Job Security Very Important	TE16C	71.02	0.81	1.76	1.33	5574	0.61
Success in Job Very Important	TE68A	74.64	0.68	1.38	1.17	5679	0.58
Marrying the Right Person Very Important	TE68B	87.35	0.57	1.65	1.29	5666	0.44
Having Lots of Manèy Very Important	TE68C	19.46	0.69	1.70	1.31	5673	0.53
Being a Community Leader Very Important	TE68F	4.33	0.34	1.55	1.25	5670	0.27
Providing Better Opp for Kids Very Imp	TE68G	61.63	0.81	1.56	1.25	5635	0.65
Correcting Social Inequalities Very Imp	TE68J	7.57	0.47	1.76	1.33	5663	0.35
Having Children Very Important	TE68K	50.04	0.89	1.80	1.34	5667	0.66
Having Leisure Tine Very Important	TE68L	69.46	0.76	1.55	1.25	5680	0.61
Mean				1.70	1.30		
Minimum				1.38	1.17		
Maximum				2.06	1.43		
Standard Deviation				0.15	0.06		
Median				1.70	1.31		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects. Using Third Follow-Up Data

Senior Cohort - Female

Survey Iter (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb '86	TE3A	74.29	0.80	1.88	1.37	5677	0.58
Taking Academic Courses, Feb '86	TE3C	9.97	0.59	2.17	1.47	5677	0.40
Looking For Work, Feb '86	TE3I	7.96	0.52	2.07	1.44	5677	0.36
Currently Married	TE41	42.42	1.02	2.42	1.55	5660	0.66
Currently Divorced	TE41	2.97	0.35	2.45	1.56	5660	0.23
Currently Haye One or More Children	TE49	32.30	1.00	2.59	1.61	5650	0.62
Expect to Have Three or Mare Children	TEA8	32.90	0.95	2.27	1.51	5521	0.63
In PSE 8A-86: Earned No Degree	TE211-22!	6.58	1.02	2.20	1.48	1293	0.69
In PSE 84-86: Received Vocational Degree	TE21H-22H	19.71	1.68	2.28	1.51	1284	1.11
In PSE 84-86: Received 4 Year Degree	TE21H-22H	66.55	1.98	2.26	1.50	1284	1.32
Enrolled in PSE, Oct ' 84	TE216-22C	22.23	0.86	2.41	1.55	5618	0.55
Enrolled in PSE. Oct ${ }^{\circ} 85$	TE21C-22C	16.04	0.76	2.40	1.55	5618	0.49
In PSE 84-86: V. Dissat $\mathrm{W} / \mathrm{Career}$ Couns	TE28E	6.08	0.76	2.28	1.51	2269	0.50
In PSE 84m86: Some Sat with Curriculum	TE281	49.12	1.49	2.01	1.42	2273	1.05
Applied for Grac/Professional School	TE39	6.63	0.52	2.38	1.54	5389	0.34
If Employed 84-86, 1st Job Clerical	TE8A	37.60	1.03	2.31	1.52	5154	0.67
Had Any Job Between 84-86	TE7	91.76	0.55	2.27	1.51	5686	0.36
Did Not Receive Unemployment-'85	TE17085	88.79	1.16	2.26	1.50	1690	0.77
Currently Registered to Vote	TE56	72.87	0.96	2.56	1.60	5500	0.60
Have Voted Since 1984	TE57	61.45	1.01	2.35	1.53	5492	0.66
Active Participant in Service Org	TE59\%	1.47	0.24	2.23	1.49	5465	0.16
Job Security Very Important	TE16C	73.35	0.93	2.37	1.54	5367	0.60
Success in Joo Very Important	TE68A	71.08	0.89	2.11	1.45	5509	0.61
Marrying the Right Person Very Important	TE688	87.63	0.65	2.14	1.46	5505	0.44
Having Lots of Money Very Important	TE68C	15.91	0.76	2.36	1.54	5504	0.49
Being a Community Leader Very Important	TE68F	3.79	0.35	1.83	1.35	5500	0.26
Providing Better Opp for Kids Very Imp	TE68G	66.75	0.94	2.19	1.48	5489	0.64
Correcting Social Inequalities Very Imp	TE68.	9.77	0.61	2.29	1.51	5489	0.40
Having Children Very Important -	TE68K	54.55	1.01	2.25	1.50	5500	0.67
Having Leisure Time Very Important	TE6BL	68.44	0.94	2.27	1.51	5509	0.63
mean				2.26	1.50		
Minimum				1.83	1.35		
Maximum				2.59	1.61		
Standard Deviation				0.17	0.06		
Median				2.27	1.51		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Senior Cohort - Male

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb '86	TE3A	80.87	0.83	2.16	1.47	4815	0.57
Taking Academic Courses, Feb '86	TE3C	12.74	0.68	2.01	1.42	4815	0.48
Looking For Work, Feb '86	TE3I	8.08	0.57	2.08	1.44	4815	0.39
Currently Married	TEA1	29.94	1.00	2.29	1.51	4813	0.66
Currently Divorced	TE41	2.58	0.33	2.12	1.46	4813	0.23
Currently Have One or More Children	TE49	20.93	0.89	2.28	1.51	4795	0.59
Expect to Have Three or More Children	TE48	32.49	1.05	2.32	1.52	4629	0.69
In PSE 84-86: Earned No Degree	TE211-221	8.77	1.26	2.12	1.46	1067	0.87
In PSE 84-86: Received Vocational Degree	TE21H-22H	17.03	1.61	1.94	1.39	1063	1.15
In PSE 84-86: Received 4 Year Degree	TE21H-22H	67.78	2.08	2.11	1.45	1063	1.43
Enrolled in PSE, Oct ' 84	TE21C-22C	23.65	0.86	1.93	1.39	4752	0.62
Enrolled in PSE, Oct '85	TE21C-22C	18.02	0.75	1.83	1.35	4752	0.56
In PSE 84-86: V. Dissat W/Career Couns	TE28E	7.06	0.82	1.97	1.40	1915	0.59
In PSE 84-86: Some Sat With Curriculum	TE28I	53.59	1.67	2.13	1.46	1911	1.14
Applied for Grad/Professional School	TE39	5.77	0.51	2.18	1.48	4528	0.35
If Employed 84-86, 1st Job Clerical	TE8A	8.69	0.60	2.09	1.45	4641	0.41
Had Any Job Between 84-86	TE7	97.88	0.29	2.00	1.41	4823	0.21
Did Not Receive Unemployment-'85	TE17085	75.66	1.86	2.20	1.48	1170	1.25
Currently Registered to Vote	TE56	71.79	1.08	2.65	1.63	4610	0.66
Have Voted Since 1984	TE57	59.83	1.11	2.37	1.54	4606	0.72
Active Participant in Service Org	TE59K	2.61	0.32	1.87	1.37	4564	0.24
Job Security Very Important	TE16C	72.33	1.04	2.43	1.56	4520	0.67
Success in Job Very Important	TE68A	80.74	0.81	1.93	1.39	4614	0.58
Marrying the Right Person Very Important	TE688	86.45	0.75	2.21	1.49	4597	0.50
Having Lots of Money Very Important	TE68C	26.31	0.96	2.21	1.49	4607	0.65
Being a Community Leader Very Important	TE68F	6.99	0.50	1.76	1.33	4607	0.38
Providing Better Opp for Kids Very Imp	TE68G	64.56	1.05	2.20	1.48	4576	0.71
Correcting Social Inequalities Very Imp	TE68J	9.67	0.61	1.93	1.39	4600	0.44
Having Children Very Important	TE68K	42.23	1.13	2.39	1.54	4601	0.73
Having Leisure Time Very Important	TE68L	69.31	1.00	2.16	1.47	4614	0.68
Mean				2.13	1.46		
Minimum				1.76	1.33		
Maximum				2.65	1.63		
Standard Deviation				0.20	0.07		
Median				2.13	1.46		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Senior Cohort - Lowest Quartile SES

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TE3A	74.01	1.09	2.25	1.50	3650	0.73
Taking Academic Courses, Feb '86	TE3C	7.52	0.63	2.06	1.44	3650	0.44
Looking For Work, Feb '86	TE3I	8.98	0.70	2.21	1.49	3650	0.47
Currently Married	TE41	43.87	1.33	2.63	1.62	3644	0.82
Currently Divorced	TE41	3.31	0.50	2.86	1.69	3644	0.30
Currently Have One or More Children	TE49	41.55	1.32	2.62	1.62	3636	0.82
Expect to Have Three or More Children	TE48	29.54	1.18	2.35	1.53	3533	0.77
In PSE 84-86: Earned No Degree	TE215-221	8.58	1.82	2.24	1.50	532	1.21
In PSE 84-86: Received Vocational Degree	TE21H-22H	27.97	2.86	2.13	1.46	526	1.96
In PSE 84-86: Received 4 Year Degree	TE21H-22H	49.76	3.21	2.17	1.47	526	2.18
Enrolled in PSE, Oct '84	TE21C-22C	13.47	0.82	2.07	1.44	3601	0.57
Enrolled in PSE, Oct '85	TE21C-22C	11.26	0.80	. 2.28	1.51	3601	0.53
In PSE 84-86: V. Dissat W/Career Couns	TE28E	4.76	0.82	1.63	1.28	1093	0.64
In PSE 84-86: Some Sat with Curriculum	TE28[55.29	2.25	2.23	1.49	1092	1.50
Applied for Grad/Professional School	TE39	2.78	0.39	. 1.96	1.40	3423	0.28
If Employed 84-86, 1st Job Clerical	TE8A	26.39	1.20	. 2.46	1.57	3346	0.76
Had Any Job Between 84-86	TE7	91.86	0.74	2.65	1.63	3655	0.45
Did Not Receive Unemployment-'85	TE17085	79.96	1.88	2.38	1.54	1076	1.22
Currently Registered to Vote	TE56	66.26	1.34	2.80	1.67	3513	0.80
Have Voted Since 1984	TE57	51.80	1.42	2.82	1.68	3508	0.84
Active Participant in Service Org	TE59K	1.04	0.22	1.67	1.29	3483	0.17
Job Security Very Important	TE16C	78.29	1.11	2.46	1.57	3407	0.71
Success in dob Very Important	TE68A	73.50	1.14	2.34	1.53	3517	0.74
Marrying the Right Person Very Important	TE68B	88.38	0.78	2.10	1.45	3511	0.54
Having Lots of Money Very Important	TE68C	20.47	1.04	2.33	1.52	3507	0.68
Being a Community Leader Very Important	TE68F	5.22	0.50	1.81	1.34	3515	0.38
Providing Better Opp for Kids Very Imp	TE686	75.92	1.26	3.04	1.74	3506	0.72
Correcting Social Inequalities Very Imp	TE68J	10.47	0.66	1.61	1.27	3502	0.52
Having Children Very Important	TE68K	47.96	1.35	2.56	1.60	3511	0.84
Having Leisure Time Very Important	TE68L	65.23	1.30	2.62	1.62	3517	0.80
Mean				2.31	1.52		
Minimum				1.61	1.27		
Maximum				3.04	1.74		
Standard Deviation				0.36	0.12		
Median				2.31	1.52		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Senior Cohort - Two Middle Quartiles SES

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb '86	TE3A	78.13	0.82	1.93	1.39	4949	0.59
Taking Academic Courses, Feb '86	TE3C	10.57	0.62	2.01	1.42	4949	0.44
Looking For Work, Feb '86	TE3I	7.95	0.52	1.86	1.36	4949	0.38
Currently Married	TE41	36.81	0.94	1.89	1.37	4936	0.69
Currently Divorced	TE41	3.08	0.38	2.35	1.53	4936	0.25
Currently Have One or More Children	TE49	26.26	0.95	2.31	1.52	4925	0.63
Expect to Have Three or More Children	TE48	32.61	0.97	2.07	1.44	4787	0.68
In PSE 84-86: Earned No Degree	TE211-22I	8.68	1.27	2.16	1.47	1072	0.86
In PSE 84-86: Received Vocational Degree	TE21H-22H	22:38	1.84	2.09	1.44	1066	1.28
In PSE 84-86: Received 4 Year Degree	TE21H-28H	62.49	2.08	1.96	1.40	1066	1.48
Enrolled in PSE, Oct ' 84	TE216-226	21.38	0.83	1.99	1.41	4894	0.59
Enrolled in PSE, Oct ' 85	TE21C-22C	15.78	0.75	2.09	1.44	4894	0.52
In PSE 84-86: V. Dissat W/Career Couns	TE28E	7.70	0.81	1.78	1.33	1936	0.61
In PSE 84-86: Some Sat With Curriculum	TE281	49.61	1.69	2.22	1.49	1940	1.14
Applied for Grad/Professional School	TE39	5.23	0.47	2.12	1.46	4686	0.33
If Employed 84-86, 1st Job Clerical	TE8A	24.00	0.89	2.00	1.41	4638	0.63
Had Any Job Between 84-86	TE7	94.99	0.44	2.00	1.41	4957	0.31
Did Not Receive Unemployment-'85	TE17085	80.54	1.61	2.13	1.46	1283	1.11
Currently Registered to Vote	TE56	71.23	1.00	2.32	1.52	4767	0.66
Have Voted Since 1984	TE57	58.78	1.03	2.07	1.44	4763	0.71
Active Participant in Service Org	TE59K	2.44	0.30	1.84	1.36	4739	0.22
Job Security Very Important	TE16C	74.39	0.94	2.15	1.47	4674	0.64
Success in Job Very Important	TE68A	75.23	0.84	1.80	1.34	4782	0.62
Marrying the Right Person Very Important	TE68B	86.86	0.67	1.87	1.37	4774	0.49
Having Lots of Money Yery Important	TE68C	20.80	0.84	2.03	1.42	4783	0.59
Being a Comsunity Leader Very Important	TE68F	4.61	0.40	1.76	1.33	4773	0.30
Providing Better Opp for Kids Very Imp	TE68G	66.28	0.95	1.92	1.39	4756	0.69
Correcting Social Inequalities Very Imp	TE68J	8.90	0.59	2.07	1.44	4766	0.41
Having Children Very Important	TE68\%	47.47	1.03	2.02	1.42	4772	0.72
Having Leisure Time Very Important	TE68L	68.30	0.91	1.85	1.36	4783	0.67
Mean				2.02	1.42		
Minimum				1.76	1.33		
Maximum				2.35	1.53		
Standard Deviation				0.16	0.06		
Median				2.02	1.42		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Data Senior Cohort - Highest Quartile SES

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TE3A	79.15	1.26	1.82	1.35	1893	0.93
Taking Academic Courses, Feb '86	TESC	17.10	1.16	1.78	1.34	1893	0.87
Looking For Work, Feb '86	TE31	7.27	0.75	1.57	1.25	1893	0.60
Currently Married	TEA	27.65	1.35	1.71	1.31	1893	1.03
Currently Divorced	TE41	1.45	0.33	1.48	1.22	1893	Q. 27
Currently Have One or More Children	TE49	13.70	1.04	1.73	1.31	1884	0.79
Expect to Have Three or More Children	TE48	36.07	1.41	1.59	1.26	1830	1.12
In PSE 84-86: Earned No Degree	TE211-221	5.86	1.10	1.66	1.29	756	0.85
In PSE 84-86: Received Vocational Degree	TE21H-22H	10.38	1.46	1.73	1.32	755	1.11
In PSE 84-86: Received \% Year Degree	TE21H-22H	78.33	1.94	1.67	1.29	755	1.50
Enrolled in PSE, Oct 'B4	†E21C-22C	36. 41	1.48	1.76	1.33	1875	1.11
Enrolled in PSE, Oct ' 85	TE21C-28C	25.99	1.40	1.90	1.38	1875	1.01
In PSE 84-86: V. Dissat W/Career Couns	TE28E	5.36	0.93	1.95	1.40	1155	0.66
In PSE 84-86: Some Sat With Curriculum	TE281	52.43	1.78	1.46	1.21	1152	1.47
Applied for Grad/Professional School	TE39	12.30	1.03	1.77	1.33	1808	0.77
If Employed 84-86, 1st Job Clerical	TEBA	17.44	1.18	1.55	1.24	1811	0.89
Had Any Job Between 84-86	TE7	96.90	0.89	1.50	1.23	1897	0.40
Did Not Receive Unemployment-'85	TE17085	91.44	1.68	1.80	1.34	501	1.25
Currently Registered to Vote	TE56	81.46	1.21	1.77	1.33	1830	0.91
Have Voted Since 1984	TE57	74.68	1.41	1.92	1.39	1827	1.02
Active Participant in Seryice Org	TE59K	1.81	0.39	1.52	1.23	1807	0.31
Job Security Very Importanc	TEI6C	63.43	1.55	1.87	1.37	1806	1.13
Success in Job Very Important	TE68A	79.49	1.23	1.68	1.30	1824	0.95
Marrying the Right Person Very Important	TE688	86.32	1.09	1.84	1.35	1817	0.81
Having Lots of Money Very Important	TE68C	21.83	1.29	1.76	1.33	1821	0.97
Being a Community Leader Very Important	TE68F	7.53	0.82	1.74	1.32	1819	0.62
Providing Better Opp for Kids Very Imp	TE68G	53.84	1.52	1.68	1.30	1803	1.17
Correcting Social Inequalities Very Imp	TE683	11.31	0.94	1.60	1.26	1821	0.74
Haying Children Very Important	TE68\%	52.31	1.64	1.97	1.40	1818	1.17
Heying Leisure Time Very Important	TE68L	74.04	1.31	1.64	1.28	1823	1.03
Mean				1.71	1.31		
Minimum				1.46	1.21		
Maximum				1.97	1.40		
Standard Deviation.				0.14	0.05		
Median				1.73	1.32		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Weights

Senior Cohort - Received No Post-Secondary Education

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb ' 86	TE3A	75.29	1.02	1.97	1.40	3515	0.73
Taking Academic Courses, Feb '86	TE3C	0.32	0.13	1.96	1.40	3515	0.09
Looking For Work. Feb '86	TE3I	8.25	0.63	1.85	1.36	3515	0.46
Currently Married	TE41	46.45	1.22	2.09	1.45	3523	0.84
Currently Divorced	TE41	4.13	0.51	2.34	1.53	3523	0.34
Currently Have One or More Children	TE49	41.13	1.24	2.22	1.49	3520	0.83
Expect to Have Three or More Children	TE48	30.50	1.14	2.10	1.45	3415	0.79
In PSE 84-86: Earned No Degree	TE21I-22I	n/a	n/a	n/a	n/a	n/a	n/a
In PSE 84-86: Received Vocational Degree	TE21H-22H	n/a	n/a	n/a	n/a	n/a	n/a
In PSE 84-86: Received 4 Year Degree	TE21H-22H	n/a	n/a	n / a	n/a	n / a	n/a
Enrolled in PSE, Oct '84	TE21C-22C	n/a	n/a	$n / 2$	n/a	n/a	n/a
Enrolled in PSE, Oct ' 85	TE216-22C	n/a	n/a	n/a	n/a	n/a	n/a
In PSE 84-86: V. Dissat W/Career Couns	TE28E	n/a	n/a	n / a	n / a	n/a	n/a
In PSE 84-86: Some Sat With Curriculun	TE281	n/a	n/a	n/a	n/a	n/a	n/a
Applied for Grad/Professional School	TE39	0.78	0.19	1.59	1.26	3291	0.15
If Employed 84-86, 1st Job Clerical	TE8A	22.88	1.08	2.12	1.45	3202	0.74
Had Any Job Between 84-86	TE7	91.93	0.63	1.87	1.37	3526	0.46
Did Not Receive Unemployment-'85	TE17085	73.71	2.19	2.28	1.51	924	1.45
Currently Registered to Vote	TE56	61.26	1.18	2.00	1.41	3387	0.84
Have Voted Since 1984	TE57	47.17	1.24	2.09	1.45	3388	0.86
Active Participant in Service Org	TE59K	1.35	0.27	1.88	1.37	3359	0.20
Job Security Very Important	TE16C	78.23	1.02	2.00	1.42	3254	0.72
Success in Job Very Important	TE68A	72.19	1.03	1.80	1.34	3391	0.77
Marrying the Right, Person Very Important	TE688	88.62	0.77	1.98	1.41	3381	0.55
Having Lots of Money Very Important	TE68C	21.45	1.00	2.01	1.42	3385	0.71
Being a Community Leader Very Important	TE68F	3.48	0.41	1.73	1.31	3384	0.31
Providing Better Opp for Kids Very Imp	TE68G	73.62	1.06	1.94	1.39	3381	0.76
Correcting Social Inequalities Very Imp	TE68J	7.03	0.60	1.85	1.36	3373	0.44
Having Children Very Important	TE68K	48.97	1.19	1.93	1.39	3382	0.86
Having Leisure Time Very Important	TE68L	65.24	1.17	2.06	1.43	3391	0.82
Mean				1.99	1.41		
Minimum				1.59	1.26		
Maximum				2.34	1.53		
Standard Deviation				0.17	0.06		
Median				1.98	1.41		

High School and Beyond Third follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Weights Senior Cohort - Received Sone Post-Secondary Education

Survey Item (or Composite Yariable)		Est imate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Jab, Feb ' 86	TE3A	77.87	0.86	2.18	1.48	5124	0.58
Taking Academic Courses, feb ' 86	TE3C	21.18	0.92	2.59	1.61	5124	0.57
Looking For Work, Feb '86	TE3I	7.68	0.54	2.08	1.44	5124	0.37
Currently Married	TEA1	33.27	1.01	2.32	1.52	5098	0.66
Currently Divorced	TEA1	2.59	0.37	2.72	1.65	5098	0.22
Currently Have One or More Children	TE49	23.92	0.94	2.47	1.57	5074	0.60
Expect to Have Three or More Children	TEA8	32.35	1.02	2.34	1.53	4927	0.67
In PSE 84-86: Earned No Degree	TE211-221	24.00	2.37	2.83	1.56	790	1.52
In PSE 84-86: Received Vocational Degree	TE21H-22H	54.97	2.63	2.17	1.47	777	1.78
In PSE 84-86: Received 4 Year Degree	TE21H-22H	n/a	n/a	n/a	n/a	n / a	n/a
Enrolled in PSE, Oct ' 84	TE21C-226	28.53	0.93	2.13	1.46	4989	0.64
Enrolled in PSE, Oct 'B5	TE21C-22C	26.81	0.96	2.32	1.52	4989	0.63
In PSE 84-86: V. Dissat w/Career Couns	TE28E	6.03	0.69	2.15	1.47	2561	0.47
In PSE 84-86: Sone Sat with Curriculum	TE281	52.76	1.43	2.11	1.45	2560	0.99
Applied for Grad/Professional School	TE39	3.71	0.40	2.11	1.45	4811	0.27
If Employed 84-86, 1st Job Clerical	TEBA	26.33	0.90	1.99	1.41	4806	0.64
Had Any Job Between 84-86	TE].	95.97	0.39	2.01	1.42	5128	0.27
Did Not Receive Unemployment-'85	TE17085	83.83	1.58	2.50	1.58	1354	1.00
Cisprently Registered to Vote	TE56	75.44	1.01	2.71	1.65	4901	0.61
Have Voted Since 1984	TE57	63.68	1.03	2.22	1.49	4888	0.69
Active Participant in Service Org	TE59K	1.82	0.27	2.04	1.43	4863	0.19
Job Security Very Important	TE16C	72.63	0.99	2.37	1.54	4829	0.64
Success in Job Very Important	TE68A	75.99	0.88	2.07	1.44	4913	0.61
Marrying the Right Person Very Important	TE68B	86.09	0.76	2.34	1.53	4910	0.49
Having Lots of Money Very Important	TE68C	20.71	0.83	2.04	1.43	4907	0.58
Being a Community Leader Very Important	TE68F	5.35	0.42	1.73	1.32	4906	0.32
Providing Better Opp for Kids Very Imp	TE68G	64.91	1.08	2.49	1.58	4881	0.68
Correcting Social Inequalities Very Imp	TE683	10.31	0.63	2.10	1.45	4898	0.43
Having Children Very [mportant	TE6BK	47.92	1.08	2.30	1.52	4903	0.71
Having Leisure Time Very Important	TE68L	70.08	0.99	2.29	1.51	4913	0.65
Mean				2.25	1.50		
Minimum				1.73	1.32		
Maximum				2.72	1.65		
Standard Deviation				0.23	0.07		
Median				2. 22	1.49		

High School and Beyond Third Follow-Up Estimated Percentages, Standard Errors and Design Effects, Using Third Follow-Up Weights Senior Cohort - Received a Four-Year Degree

Survey Item (or Composite Variable)		Estimate	SE	DEFF	DEFT	N	SE-SRS
Working at Full or Part Time Job, Feb '86	TE3A	80.89	1.26	1.91	1.38	1853	0.91
Taking Acadenic Courses, Feb '86	TE3C	8.79	0.91	1.89	1.38	1853	0.66
Looking For Work, Feb '86	TE3I	8.38	0.89	1.93	1.39	1853	0.64
Currently Married	TE41	23.98	1.41	2.01	1.42	1852	0.99
Currently Divorced	TEA1	0.62	0.29	2.47	1.57	1852	0.18
Currently Have One or More Children	TE49	5.54	0.78	2.15	1.46	1851	0.53
Expect to Have Three or More Children	TE48	37.79	1.64	2.06	1.43	1808	1.14
In PSE 84-86: Earned No Degree	TE21I-22I	0.62	0.31	2.37	1.54	1570	0.20
In PSE 84-86: Received Vocational Degree	TE21H-22H	3.13	0.68	2.37	1.54	1570	0.44
In PSE 84-86: Received 4 Year Degree	TE21H-22H	95.29	0.79	2.15	1.47	1570	0.53
Enrolled in PSE, Oct 'g4	TE21C-22C	54.53	1.63	1.98	1.41	1847	1.16
Enrolled in PSE, Oct ${ }^{\text {e }} 85$	TE21C-22C	27.07	1.54	2.23	1.49	1847	1.03
In PSE 84-86: V. Dissat W/Career Couns	TE28E	7.26	0.93	2.10	1.45	1623	0.64
In PSE 84-86: Some Sat With Curriculuin	TE28I	49.25	1.70	1.88	1.37	1624	1.24
Applied for Grad/Professional School	TE39	22.14	1.44	2.20	1.48	1815	0.97
If Employed 84-86, 1st Job Clerical	TEBA	15.61	1.25	2.13	1.46	1787	0.86
Had Any Job Between 84-86.	TE7	97.27	0.51	. 1.82	1.35	1855	0.38
Did Not Receive Unemployment-'85	TE17085	94.99	1.29	2.03	1.42	582	0.90
Currently Registered to Vote	TE56	86.32	1.13	1.96	1.40	1822	0.81
Have Voted Since 1984	TE57	79.47	1.35	2.02	1.42	1822	0.95
Active Participant in Service Org	TE59K	3.77	0.65	2.10	1.45	1807	0.45
Job Security Very Important	TE16C	63.46	1.69	2.21	1.49	1804	1.13
Success in Job Very important	TE68A	82.11	1.25	1.95	1.40	1819	0.90
Marrying the Right Person Very Important	TE688	86.37	1.12	1.94	1.39	1811	0.81
Having Lots of Money Very Important	TE68C	20.55	1.43	2.28	1.51	1819	0.95
Being a Community Leader Very Important	TE68F	8.92	0.92	1.89	1.37	1817	0.67
Providing Better Opp for Kids Very Imp	TE686	52.13	1.57	1.79	1.34	1803	1.18
Correcting Social Inequalities Very Imp	TE68J	13.52	1.16	2.08	-1.44	1818	0.80
Having Children Very Important	TE68K	49.39	1.73	2.16	1.47	1816	1.17
Having Leisure Time Very Impartant	TE68L	72.93	1.51	2.09	1.45	1819	1.04
Mean				2.07	1.44	,	
Minimuca				1.79	1.34		
Maximum				2.47	1.57		
Standard Deviation				0.17	0.06		
Median				2.07	1.44		

[^0]: * First follow-up questionnaire number

[^1]: * Base year spss variable name

