

Mercury Control Requirements Under the Massachusetts Multi-Pollutant Power Plant Regulations

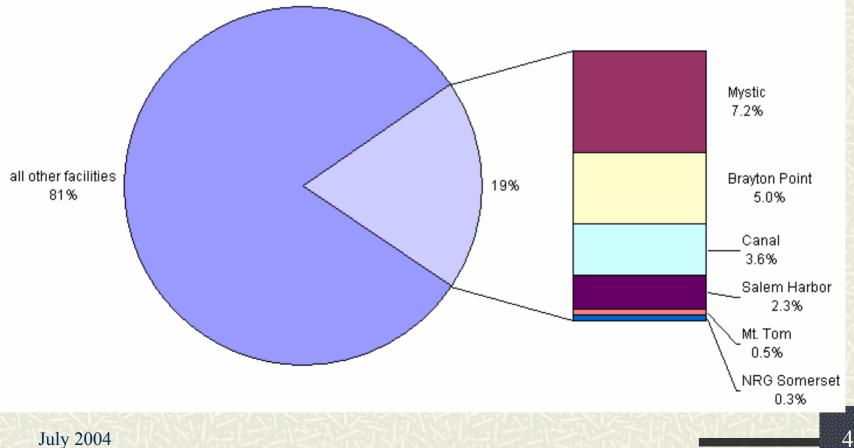
C. Mark Smith PhD, MS

Massachusetts Department of Environmental Protection; New England Governors and Eastern Canadian Premiers Mercury Action Plan CoChair

IJC Meeting – July, 2004

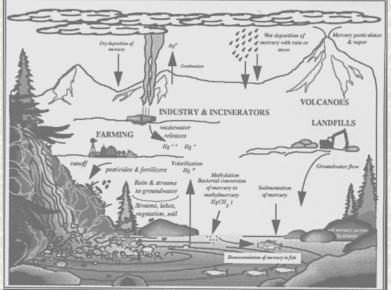
Presentation Overview

- **#** Background
- **#** Summary of multi-pollutant aspects of the MA regulations:
 - SOx/NOx/CO2/Hg
 - http://www.state.ma.us/dep/bwp/daqc/files/regs/7c.h tm#29
- **#** Mercury components:
 - Why mercury is a priority in MA
 - Baseline testing
 - Control feasibility report
 - Hg standards


July 2004

Environmental Concerns Relating to Power Plants

Acid Deposition Climate Change Mercury Nitrification, Eutrophication Ozone **PM 2.5 Regional Haze** Visibility


Affected Units' Contribution to New England ISO (% of total 2003 megawatt capacity)

Basis for Multi-pollutant Approach

#Efficiency: industry/agency

- reg. development; capacity planning; implementation
- **#**Regulatory certainty
- #Integration:
 - Technology assessment
 - Cost assessment

Major Provisions of MA Power Plant Regulations

SO₂ Standard

- Phase 1: 6.0 lb/MWh; 2004-2006
- Phase 2: 3.0 lb/MWh; 2006-2008

NO_x Standard

■ 1.5 lb/MWh; 2004-2006

#CO₂ Standard

- annual facility cap (2004-2006)
- facility rate of 1800 lb CO₂/MWh; 2006-2008

SO₂/NO_x/CO₂Implementation

#Compliance Flexibility

- Two compliance options standard and repowering
- Averaging within facility
- Early reduction credit for SO₂ and use of SO₂ allowances
- Off-site reductions for CO₂
- Greenhouse gas banking and trading in development

July 2004

Mercury

#2001 Regulations did not set specific Hg standard. Established steps/timeline to develop standard. Collection of data on emissions: May 2001-August 2002 Completion of a Control Feasibility Report in 2002

Draft standards by 2003

Heller's view

Why Target Mercury? (1)

1. Very Toxic

Children: 600,000 U.S. newborns per year at riskDamages developing brain

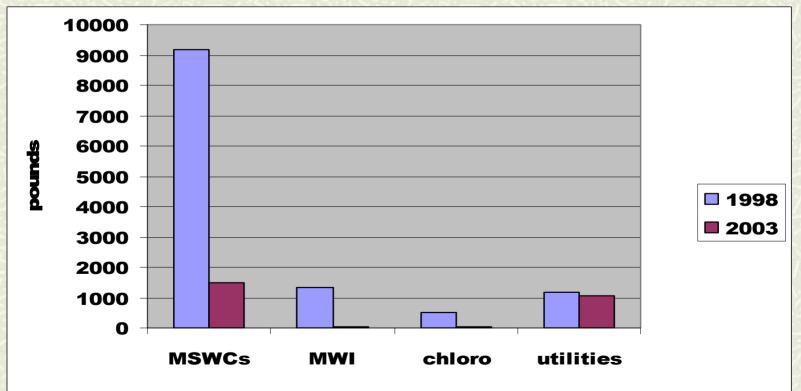
Control Brain

Mercury brain

Horizontal section of right hemisphere of cerebrum Japan National Institute of Minamata Disease

Why Target Mercury? (2)

2. High levels in fish across New **England: MA statewide advisory for** children and pregnant women; 60% of lakes/ponds eted 3. Persistent 4. Wildlife impacts 5. Preventable sources


July 2004

Policy Context and Commitments: Regional

INEG-ECP Regional Mercury Action Plan political lines ■ 50% reduction target by 2003; 75% reduction by 2010; Long-term goal: virtual <u>elimination</u> Commitment to maximum feasible reductions

NEG-ECP Regional Mercury Action Plan: Progress

$\ddagger >50\%$ reduction achieved since 1998

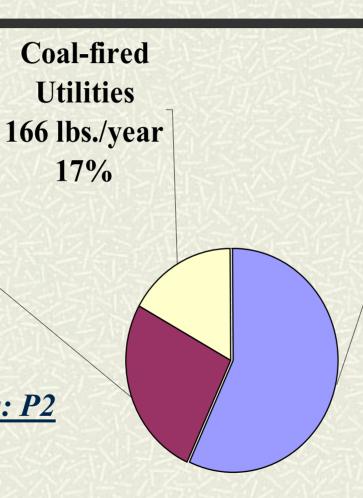
NEG-ECP Utility Boiler Status

♯ Coal units about 10% overall regional capacity

- baseline emissions estimates: 1,200 pounds per year (revised baseline vs. 1998 report (1,400))
- **#** 03/04 Status:
 - Provincial reductions in NB/NS: fuel switching
 - Canada-wide Standards
 - MA regulations: announced May 24, 2004; 85% control 2008; 95% control 2012
 - CT legislation: 90% control, 2008; 2012 review
- NH: caps proposed to legislature, Phase 1 (2008): 60% and Phase 2 (2011): 80% reduction in emissions from baseline

Policy Context and Commitments: State

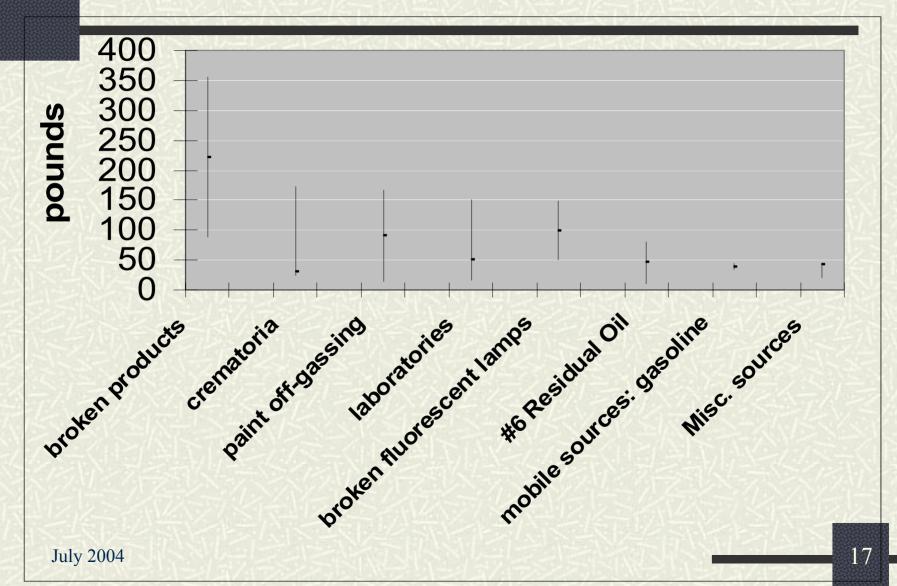
#MA Zero Mercury Strategy


- Adopted in 2000 to advance state progress
- Long-term goals: virtual elimination of discharges and use
- Milestones as in regional plan
- **#** Status: Overall state reductions >60%

MA 02 Hg Emission Estimates: Point Sources

Sewage Sludge Incinerators 260 lbs./year 26%

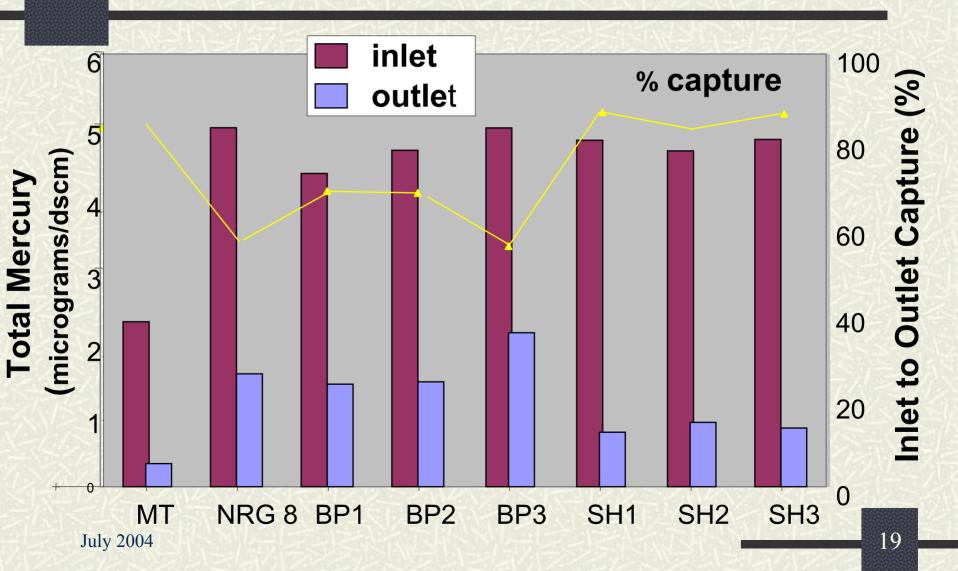
Control efforts: P2


- Health care
- Products

Municipal Waste **Combustors** 558 lbs./year 57% **Control efforts** •2000 regs. 3X more stringent vs. federal •90-95% control achieved

•Source separation requirements.

MA Hg 02 Emission Estimates: Area Sources



MA Utility Hg Status

#Emissions Testing

- Sampling for concentration of mercury at inlet (pre-ESP) and outlet (stack) of 8 coal-fired units
- Round 1: summer 2001
- Round 2: winter 2001-2002
- Round 3: summer 2002

Average Baseline Mercury Control by Unit: 60-90%

Mercury Control Feasibility Report – December 2002 (1)

#Major conclusion: 85-90+% removal of flue gas Hg is feasible

 "Evaluation of the Technological and Economic Feasibility of Controlling and Eliminating Mercury Emissions from the Combustion of Solid Fossil Fuel" at http://www.state.ma.us/dep/bwp/daqc/ daqcpubs.htm#other

Control Feasibility Report: Technology Conclusions (2)

#Hg controls are technologically feasible

- Some existing US power plant units are achieving up to 98% Hg removal
- Some MA power plant units are already removing close to 90% of Hg
- Controls to meet MA SO₂ and NO_x standards are expected to achieve Hg reduction co-benefits

Control Feasibility Report: Technology Conclusions (3)

- DOE field testing shows >90% Hg removal
- MA Municipal Waste Combustors are removing 90% of Hg; some ≥ 95% removal
- Extensive funding for research has resulted in Hg control technologies and promise of further advances

Control Feasibility Report: Economic Conclusions (4)

Hg controls are economically feasible

- Sorbent-based Hg controls costs are similar to historically accepted NOx control costs (mills/kMWh)
- Multi-pollutant regs (like MA's) improve costeffectiveness
- Minor estimated added cost per typical household: \$0.09-0.81 per year in MA
- Enhance regulatory certainty and improve longterm capital planning

Standard Setting Process

- **#** Stakeholder meetings: Aug/Sep/Oct 2002
- **#** Feasibility Report: December 2002
- Stakeholder feedback on Feasibility Report and input: January 2003
- Release of proposed regulation for public comment & hearing: Fall 2003
- Revised Rule adopted: May 2004

Major Elements of Standards (1)

CAPs 2001-2002 emissions and late **1990s heat input Emission** limits **#O**utput-based and % control efficiency options ■ Phase 1: 85% or 0.0075 lb/GWh by 1/1/2008■ Phase 2: 95% or 0.0025 lb/GWh by 10/1/2012 July 2004

Baseline, Phase 1 and Phase 2 Mercury Emissions

566 production	bunds atrolled 185 pounds emitted = baseline (late 1990s average) = 67% capture	86 pounds emitted = 54% reduction = 85% capture	29 pounds emitted = 85% reduction = 95% capture
Today		Phase 1 January 1, 2008	Phase 2 October 1, 2012

Major Elements of Standards (2)

Demonstrating Compliance. #Semi-quarterly stack tests until 1/1/2008**#**CEMs required beginning 1/1/2008 **#**Averaging time of the standard Rolling 12 month basis

Major Elements of Standards (3)

Compliance flexibility: alternative reduction options.

- **#** Until 2010 for facilities shutting down
- Until Phase 2 for facilities that emitted less than 5 pounds in 2001
- Early and offsite (within same state region) reduction offsets allowed
 - 1:1: for air emissions
 - 10:1 for mercury collection programs

Major Elements of Standards (4)

Waste Issues.

- Facility mercury caps include mercury emissions due to on-site re-burn of ash and any off-site high temperature processing in Massachusetts (e.g., use of ash in cement kiln or asphalt batching plants)
- Standard: Emissions due to on-site re-burn of ash included

- **#** Hg controls are technologically feasible
- Costs comparable or lower vs. other pollutants
- Phase 1: likely to be achievable via cobenefits
- **#** Phase 2: targeted controls likely needed
 - sufficient lead time/ further technology innovation and optimization likely
- **#** EPA proposal: inadequate

Credits

The following staff played important roles in developing the MA mercury standards for power plants:

 Sharon Weber (lead technical staff); C. Mark Smith; Nancy Seidman; Susan Ruch; Sue Ann Richardson; Gary Moran; Regina McCarthy; Marilyn Levenson; Barbara Kwetz; Azin Kavian; Eileen Hiney; Sonia Hamel; Jim Colman; Marc Cohen.

MA Regulations For Power Plants (310 CMR 7.29)

Final Regulations; Response to Comments; Fact Sheet

- http://www.state.ma.us/dep/bwp/daqc/daqcp ubs.htm#regs
- Evaluation of the Technological and Economic Feasibility of Controlling and Eliminating Mercury Emissions from the Combustion of Solid Fossil Fuel
 - http://www.mass.gov/dep/bwp/daqc/files/mer cfeas.pdf