
Steelmaking Electric Arc Furnaces (EAFs): Canadian Experience in Measurement, Standards Development and Reduction of Emissions

Case Study - Gerdau Ameristeel, Cambridge, Ontario, Canada

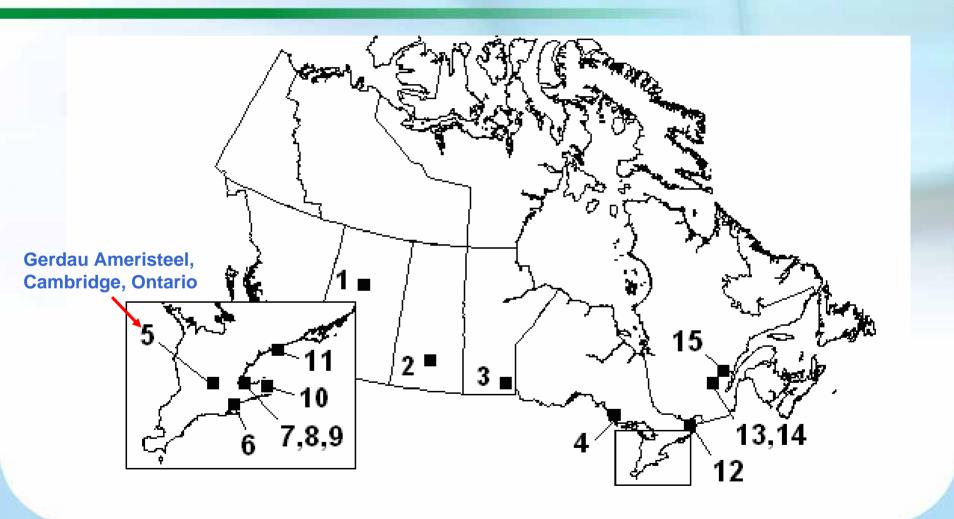
Presented by
Patrick Finlay, Environment Canada
at

Workshop on Emissions Reductions
North American Commission for Environmental
Cooperation (NACEC)

Monterrey, Mexico January 31st and February 1st, 2007

Contents

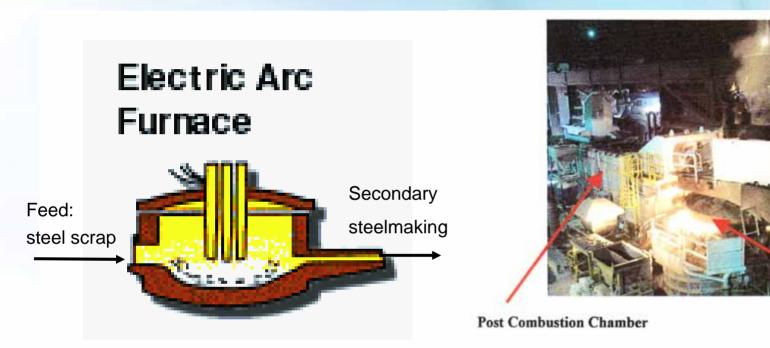
- Contexts
- Existing and Modified Facilities
- Performance Data
- Lessons Learned
- Conclusions
- References
- Acknowledgments



Contexts

- Canadian Environmental Protection Act (CEPA 1999) Virtual Elimination of Persistent Bioaccumulative Toxics (PBTs)
- Canadian Council of Ministers of Environment (CCME), Canada-wide Standards (CWS) for Dioxins and Furans Emissions from Steel Manufacturing Electric Arc Furnaces (EAFs)
- United Nations Environment Programme (UNEP)
 Stockholm Convention and Unintentionally produced
 Persistent Organic Pollutants (UPOPs) National Action
 Plan (NAP) requirements

Canadian Iron and Steel Facilities


Environnement Canada

Company Profile

- Gerdau Ameristeel, Cambridge, Ontario (The Gerdau Group (Brazil) is the majority shareholder)
- Electric Arc Furnace, 43 ton capacity
- Recycles post-consumer and industrial metal to produce steel squares, rounds, angles, unequal angles, flats, channels, rebar
- Operates on a seven day, 24 hour basis employing approximately 280 hourly and salaried staff

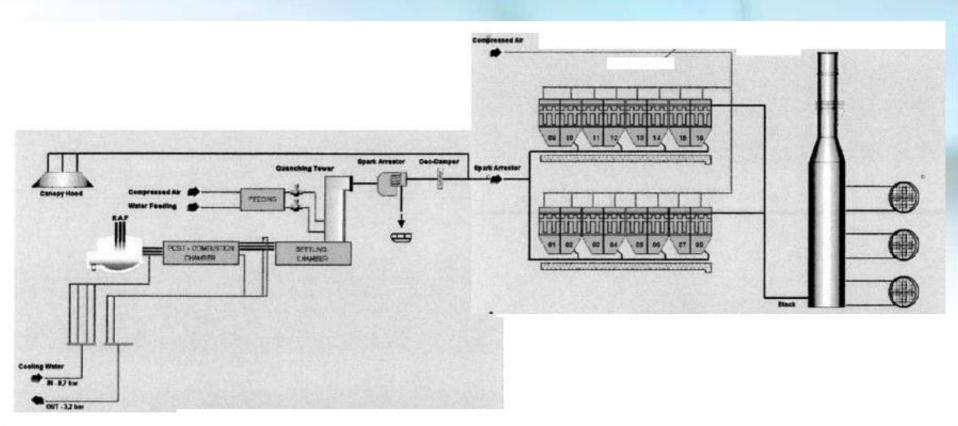
Electric Arc Furnace (EAF)

Air emissions: Particulate Matter (PM),

Nitrogen Oxides (NOx), Volatile Organic Compounds (VOCs),

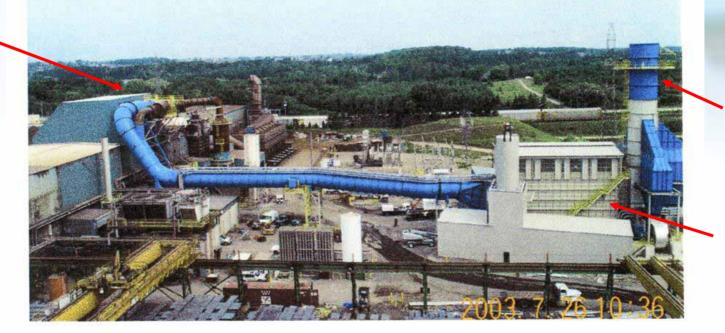
Carbon Monoxide (CO), Carbon Dioxide (CO₂),

Dioxins/Furans (PCDDs/PCDFs)



Furnace

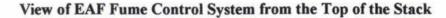
Previous Emissions Management System

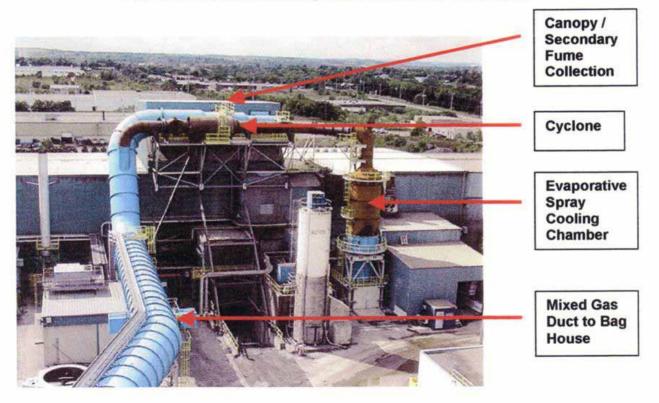

Figure 1: Schematic of EAF Emission Control System

New Emissions Management System

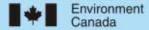
Overview of the New Emissions Management System (1)

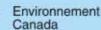
Melt Shop




Stack

Baghouse




Overview of the New Emissions Management System (2)

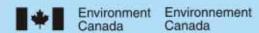
EAF: Electric Arc Furnace

Sampling and Analyses

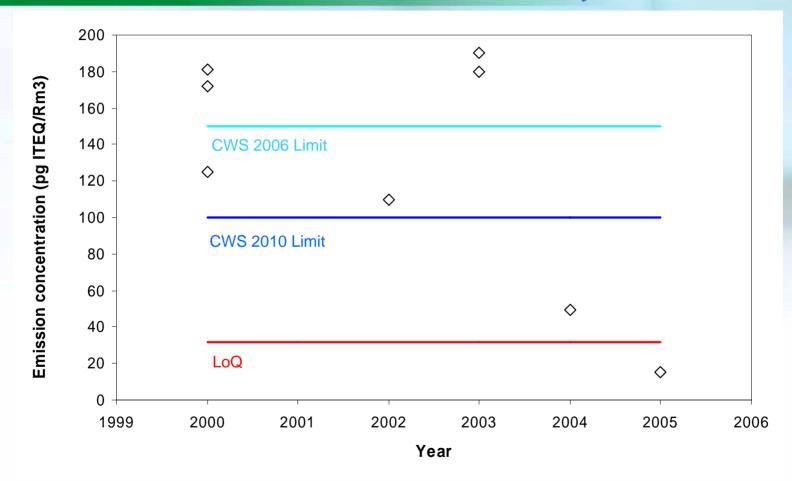
- Test program teams (2005)
 - Plant Environmental Manager (1)
 - Local Ontario Ministry of the Environment (MOE) Abatement Officer (1)
 - MOE Source Assessment Officer (1)
 - Sampling company staff (LEHDER Environmental Services Ltd.) (5)
 - Analytical laboratory (1)
- Reference methods
 - Sampling: Environment Canada (EC) report EPS 1/RM/2, June 1989
 - Analysis: EC report EPS 1/RM/3, May 1990
 - Quality Assurance: EC report EPS 1/RM/23, October 1992
 - Test Protocols: Ortech Environmental Report #30121
- Procedures

Develop test protocol → Determine concentration and mass rate → Analysis → Report

EAF Baghouse and Exhaust Stack


Source: LEHDER Environmental Services Ltd.

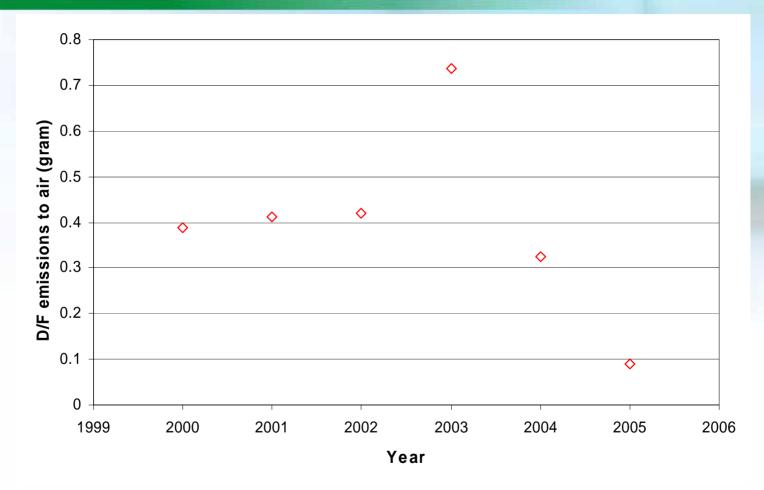
Tests Conducted in Recent Years


- Sampling company LEHDER Environmental Services Ltd.
- Test dates
 - November 2005 (new baghouse)
 - April 2004 (new baghosue, after system adjustment)
 - December 2003 (new baghosue, performance test #2)
 - September 2003 (new baghosue, performance test #1)
 - May 2002 (old baghouse)
 - August 2000 (two tests, old baghouse)
 - April 2000 (old baghouse)
- Data assistance

Emissions Research and Measurement Division (ERMD), Environmental Technology Center (ETC), Environment Canada

Emissions Performance Data: Dioxins/Furans Concentrations (2000-2005)

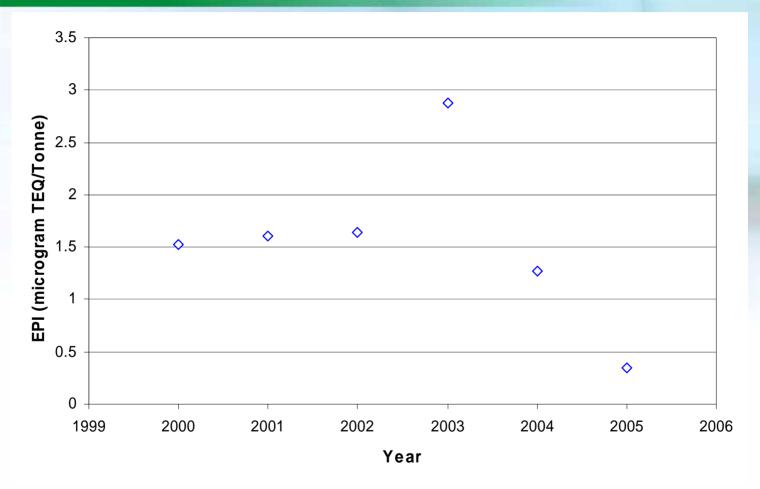
CWS: Canada-wide Standards LoQ: Level of Quantification



Environnement Canada

Emissions Performance Data: Dioxins/Furans Emissions to Air (2000-2005)

Data source: Environment Canada, National Pollutant Release Inventory (NPRI), http://www.ec.gc.ca/pdb/npri/npri_home_e.cfm

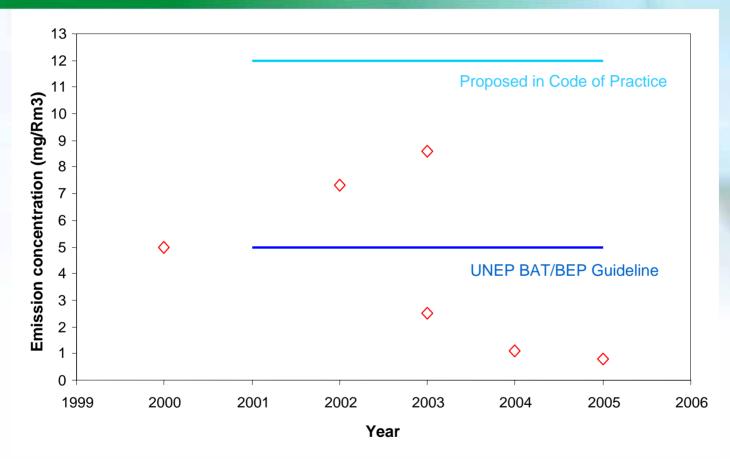


Environnement

Canada

Emissions Performance Data: Dioxins/Furans Environmental Performance Indicators (EPI)(2000-2005)

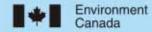
Data source: Environment Canada, National Pollutant Release Inventory (NPRI), http://www.ec.gc.ca/pdb/npri/npri_home_e.cfm



Environnement

Canada

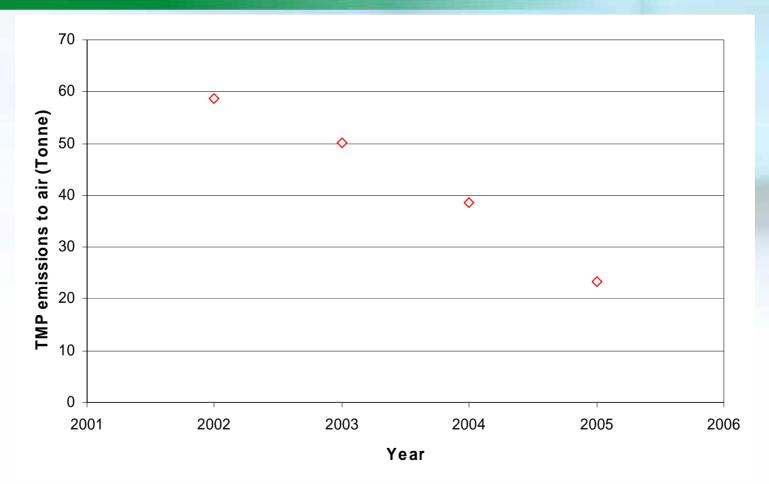
Emissions Performance Data: Total Particulate Matter (TPM) Concentrations (2000-2005)



UNEP: United Nations Environment Programme

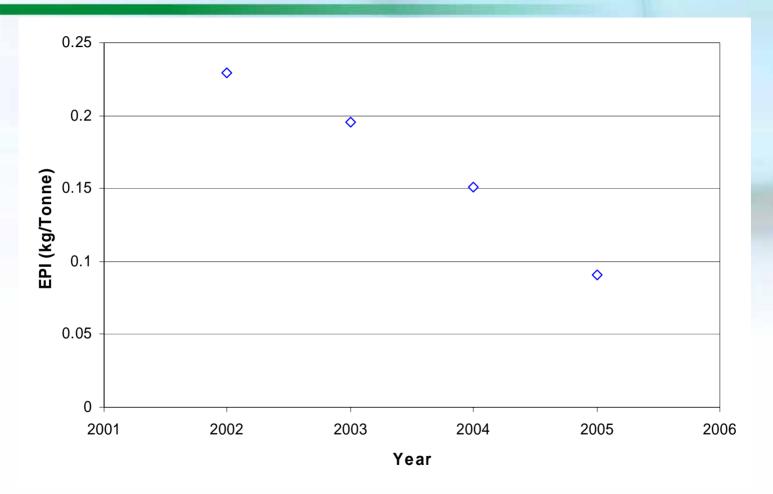
Environnement

Canada


BAT: Best Available Techniques BEP: Best Environmental Practices

Emissions Performance Data: Total Particulate Matter (TPM) Emissions to Air (2002-2005)

Data source: Environment Canada, National Pollutant Release Inventory (NPRI), http://www.ec.gc.ca/pdb/npri/npri_home_e.cfm

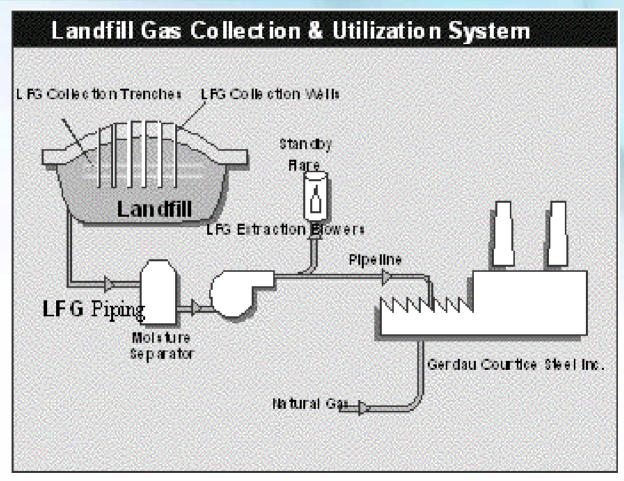


Environnement

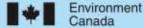
Canada

Emissions Performance Data: Total Particulate Matter (TPM) Environmental Performance Indicators (EPI) (2002-2005)

Data source: Environment Canada, National Pollutant Release Inventory (NPRI), http://www.ec.gc.ca/pdb/npri/npri_home_e.cfm



Environnement


Canada

Landfill Gas Fuel Use

Source: Environment Canada, http://www.environment-canada.ca/nopp/lfg/en/issue9.cfm

Landfill Gas Fuel Use

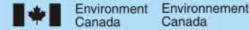
A view of the landfill gas collection facility and the flare at the Cambridge landfill. The flare is not actually burning the gas, but it is required as a backup.

Canada

This photograph shows the Cambridge landfill gas collection building in the foreground and the Gerdau Ameristeel plant in the background behind the trees.

- LGF provided about 32% of the reheat furnace energy use in 2000
- Reduced GHG emissions by 118,000 tonnes of eCO₂ per year,
 - equivalent of taking 17,000 cars off the road per year

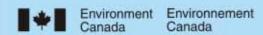
Source: Natural Resources Canada. http://www.canren.gc.ca/renew_ene/index.as p?CaID=47&PqID=1136



Lessons Learned (1)

- Design specifications (performance guarantees)
 - Dioxins/Furans: < 100 pg/Rm³ (I-TEQ*)
 - Total Particulate Matter: < 5 mg/Rm³
- Awarded contract to DECOS (Italy), Division of Voest Alpine (Austria)
- Design included
 - Improved EAF hood capture (doubled fan capacity)
 - Post combustion chamber
 - Cooling tower rapid quench
 - Induced draft fans (Three 50% capacity)
 - High efficiency filter fabric bag houses (16 units)
 - Broken bag detectors
 - Stack sampling deck and jib
 - 35 m stack

^{*} I-TEQ: International Toxic Equivalent



Lessons Learned (2)

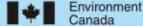
- Commissioning was challenging
 - Baghouse temperature now controlled to 80 Degrees C (was higher and DF vaporized)
 - Increased cakes on fabric filters
- EAF dust sent to secure hazardous waste disposal site (Trials to pelletize and reuse in EAF)
- Costs
 - Air Pollution Control System \$10 million
 - Dioxins and Furans Stack Tests \$25 k
 - Dioxins and Furans Dust test \$900

Other Best Environmental Practices

- Paved yard for feed and waste storage with drains, and oily water separators
- Covered building for slag cooling to control fugitive dusts
- Dispersion modeling for all sources for Ontario Point of Impingement predictions
- Acoustic Enclosure buildings, Silencers etc for noise sources - good neighbours
- Ultra clean baghouse building!

Baghouse (Cleanest place in plant!)

16 units in total


Dust conveyor

Conclusions

- Co-benefits of Canada wide Standards (CWS) implementation
 - Surpassing CWS requirements
 - Reduced process fugitives and worker exposure in EAF melt shop
 - Improving understanding of D/F formation, prevention and control
- Factors to consider
 - Feed quality
 - Temperatures
 - Residence times
 - Filter fabric performance
 - System design, operation and maintenance
- Achievable Performance Levels (APL)
 - 100 pg/Rm³ I-TEQ* achievable
 - 32 pg/Rm³ I-TEQ Level of Quantification achieved

^{*} I-TEQ: International Toxic Equivalent

Acknowledgements

- Gerdau Ameristeel
- Bob Downie

Corporate Environmental Manager

Hopkins Street South

Whitby, Ontario

L1N 5T1

bdownie@gerdauameristeel.com

Further Information

- Hui Peng, Program Engineer, Metals, Cement and Byproduct Organics Section, Pollution Prevention Directorate, Environment Canada
 - hui.peng@ec.gc.ca
- Patrick G. Finlay, P.Eng., Senior Advisor, Industrial Sectors Environmental Performance, Environment Canada
 - patrick.finlay@ec.gc.ca

References (1)

- Canadian Council of Ministers of the Environment (CCME), Canada-wide Standards for Dioxins and Furans: Steel Manufacturing Electric Arc Furnaces, March 2003, www.ccme.ca.
- Canada's National Implementation Plan (NIP) under the Stockholm Convention on Persistent Organic Pollutants, Part II: Canada's National Action Plan (NAP) on Unintentionally produced Persistent Organic Pollutants (UPOPs), May 2006, http://www.pops.int/documents/implementation/nips/submissions/default.htm
- Canadian ORTECH Environmental Inc., "A Review of Dioxin/Furan Test Results from Canadian EAFs for Canadian Steel Producers Association", Report 30121.
- Environment Canada, "Reference Method for Source Testing, Measurement of Release of Selected Semi-Volatile Organic Compounds from Stationary Sources", Report EPS 1/RM/2, June 1989.
- Environment Canada, "A Method for the Analysis of Polychlorinated Dibenzo-para-Dioxins (PCDDs), Polychlorinated Dibenzofurans (PCDFs) and Polychlorinated Biphenyls (PCBs) in Samples from Incineration of PCB Waste", Report EPS 1/RM/3, May 1990.
- Environment Canada, "Internal Quality Assurance Requirements for the Analysis of Dioxins in Environmental Samples", Report EPS 1/RM/23, October 1992.

References (2)

- Environment Canada, National Pollutant Release Inventory (NPRI), http://www.ec.gc.ca/pdb/npri/npri_home_e.cfm
- Environment Canada, http://www.environment-canada.ca/nopp/lfg/en/issue9.cfm
- LEHDER Environmental Services Limited, "Evaluation of Dioxins and Furans from the EAF Baghouse Stack at the Gerdau Ameristeel Mill in Cambridge, Ontario", Project number 052314, February 2006.
- Multi-pollutant Emission Reduction Analysis Foundation (MERAF) for the Iron and Steel Sector, Final report, September 2002.
- Natural Resources Canada, http://www.canren.gc.ca/renew_ene/index.asp?CaID=47&PgID=1136
- United Nations Environment Programme (UNEP) draft guidelines on best available techniques and best environmental practices (BAT/BEP) under the Stockholm Convention on Persistent Organic Pollutants, http://www.pops.int/documents/batbep_advance/intersessional_work/draft_guide.htm

