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Land Cover in a Managed Forest Ecosystem: Mexican Shade Coffee 

Allen Blackman, Heidi Albers, Beatriz Ávalos Sartorio, Lisa Crooks  

Abstract 
Managed forest ecosystems—agroforestry systems in which crops such as coffee and bananas are 

planted side-by-side with woody perennials—are being touted as a means of safeguarding forests along 
with the ecological services they provide. Yet we know little about the determinants of land cover in such 
systems, information needed to design effective forest conservation policies. This paper presents a first-
ever spatial regression analysis of land cover in a managed forest ecosystem—a shade coffee region of 
coastal Mexico. Using high-resolution land cover data derived from aerial photographs, along with data 
on the institutional, geophysical, socioeconomic, and agronomic characteristics of the study area, we find 
that plots in close proximity to urban centers are less likely to be cleared, all other things equal. This 
finding contrasts sharply with the literature on natural forests. In addition, we find that membership in 
coffee marketing cooperatives, farm size, and certain soil types are associated with forest cover, while 
common property, proximity to small town centers, and the prevalence of indigenous peoples are 
associated with forest clearing.  

Key Words:  deforestation, managed forest ecosystem, agroforestry, shade-grown coffee, 
Mexico, spatial econometrics, land cover. 
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Land Cover in a Managed Forest Ecosystem: Mexican Shade Coffee 

Allen Blackman, Heidi Albers, Beatriz Ávalos Sartorio, Lisa Crooks ∗ 

1. Introduction 

To preserve forests and the ecological services they provide, policymakers in developing 

countries have traditionally relied on establishing protected areas, a strategy that has significant 

limitations. For economic and political reasons, only a small percentage of natural forests can be 

legally protected (Miller 1996). Also, prohibitions on forest clearing are difficult to enforce in 

countries with weak regulatory institutions (Repetto 1988). Given these drawbacks, alternative 

forest conservation strategies have begun to receive considerable attention. One such strategy is 

encouraging private agents to establish or retain “managed forest ecosystems”—agroforestry 

systems in which crops such as coffee, cocoa, and bananas are planted side-by-side with woody 

perennials (Szaro and Johnston 1996; Pagiola et al. 2002; Scherr and McNeely 2002). These 

systems generally provide more environmental services than monocultures. In addition, they can 

serve as corridors between existing patches of natural forest, and can mitigate adverse “edge 

effects” that degrade natural forests bordering on cleared areas (Gajaseni et al. 1996). 

Although increasingly popular in policy circles, managed forest ecosystems have thus far 

received limited attention in the economics literature. As a result, we know little about the 

factors that drive spatial patterns of land clearing in such systems—information needed to design 

effective forest conservation policies. Does clearing mainly occur in certain geophysical 

settings—for example, on plots close to urban centers? Or does it mainly occur in certain 

institutional settings, such as where land is held in common?   

                                                 
∗ We are grateful to the Tinker Foundation and the Commission for Environmental Cooperation for financial 
assistance. Thanks—but no blame—are due to Walter Chomentowski and his staff at the BSRI laboratory at 
Michigan State University for their assistance in constructing our land cover maps, and to Jim Sanchirico, Richard 
Newell, Kris Wernstedt, and William Pizer for helpful comments and suggestions. 
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Spatial regression models—that is, models that explicitly account for location within 

administrative units such as counties and towns—are increasingly being used to explain patterns 

of land clearing in natural forests (for a review, see Kaimowitz and Angelsen 1998). These 

analyses almost invariably find that land clearing is associated with proximity to urban centers, 

proximity to roads, and land deemed more suitable for conventional agriculture because it is flat 

and has adequate drainage and relatively high soil fertility (Deininger and Minten 2002; Cropper 

et al. 2001; Nelson and Hellerstein 1997; Mertens and Lambin 1997; Chomitz and Gray 1996). 

There is less consensus about the impacts of socioeconomic characteristics (such as population 

density and poverty) which may be confounded by endogeneity and spatial autocorrelation 

(Deininger and Minten 2002; Rosero-Bixby and Palloni 1998).   

Intuition suggests, however, that the findings from spatial regression analyses of natural 

forests may not apply to managed forest ecosystems. For example, most analysts agree that in 

natural forests, clearing tends to occur near urban areas mainly because the costs of transporting 

inputs and outputs associated with conventional agriculture, logging, and ranching are lower in 

such areas. But in managed forest ecosystems, proximity to urban centers also reduces the costs 

of transporting inputs and outputs associated with nontimber agroforestry, a factor that would 

encourage the preservation of forest cover.   

This paper presents a first-ever econometric analysis of spatial patterns of land cover in a 

managed forest ecosystem. We analyze patterns of land clearing in 1993 in a coastal region of 

southern Mexico dominated by shade coffee—an agroforestry system in which coffee is grown 

under a forest canopy.1 From the perspective of forest conservation policy, Mexican shade coffee 

is a particularly pertinent case study of a managed forest ecosystem for two reasons: it generates 

important ecological services, and it is increasingly touted as a bulwark against deforestation. 

Regarding ecological services, shade coffee harbors biodiversity, sequesters carbon, facilitates 

aquifer recharge, and prevents soil erosion and the siltation of irrigation facilities in low-lying 

                                                 
1 This system, which generates three-quarters of Mexico’s coffee, provides a number of private benefits for coffee 
farmers: leaf litter and organic matter in the forest provide fertilizer for the coffee plants, tree roots break up the soil, 
and birds provide pest management (Rice and Ward 1996). 
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areas (Perfecto et al. 1996; Rice and Ward 1996).2 As for shade coffee’s role as a bulwark, 

Mexican deforestation rates are among the highest in Latin America, with over 1% of the 

country’s forests disappearing annually (World Bank 2002). Shade coffee growing regions are 

especially threatened: ranchers and conventional farmers are placing increasing pressure on 

forests in the coastal mountain ranges where most of Mexico’s shade coffee is grown.3 

To identify the determinants of land cover in a Mexican shade coffee system, we develop 

a dichotomous choice model of land clearing in coastal Oaxaca, one of Mexico’s top shade 

coffee states (Figure 1). The data that underpin this analysis are notable for two reasons. First, 

while most land cover maps are derived from satellite images, ours are derived from high-

resolution aerial photographs and, therefore, are unusually detailed. As a result, we are able to 

account for the relatively small patches of cleared land characteristic of our study area. Also, we 

employ spatially explicit institutional data (on membership in marketing cooperatives and land 

tenure) along with the geophysical and socioeconomic data commonly used in spatial regression 

models.    

We find that, at altitudes where shade coffee grows, plots closer to large coffee market 

towns and other sizable urban centers are less likely to be cleared, all other things equal, a 

pattern of land clearing not observed in natural forests. In addition, we find that membership in 

coffee marketing cooperatives, farm size, and certain soil types are associated with forest cover, 

while common property, proximity to small town centers, and the prevalence of indigenous 

peoples are associated with forest clearing.  

                                                 
2 Shade coffee’s biodiversity benefits are particularly notable. The crop generally grows at altitudes where tropical 
and temperate climates overlap—areas that are extremely rich in biodiversity. Indeed, the 14 main coffee growing 
regions in Mexico have all been designated biodiversity “hotspots” by the country’s national commission on 
biodiversity (Moguel and Toledo 1999). 
3 Although we analyze land cover in the early 1990s, it is noteworthy that beginning in the late 1990s, deforestation 
in shade coffee regions has been exacerbated by precipitous declines in the international price of coffee. Faced with 
falling revenues, shade coffee growers themselves are increasingly felling trees on and around their plantations to 
harvest the timber and grow subsistence crops requiring direct sunlight (Ávalos and Becerra 1999). This recent 
phenomenon underscores the need to develop an improved understanding of the determinants of land cover in shade 
coffee systems. 
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The remainder of the paper is organized as follows. Section 2 provides additional 

background on shade coffee and our study area. Section 3 presents a model of land cover 

decisionmaking. Section 4 discusses our data, and Section 5 presents our regression results. 

Finally, Section 6 discusses policy prescriptions.   

2. Study area: definition, coffee production, and land uses 

The Sierra Sur y Costa region in the state of Oaxaca produces about one-fifth of 

Mexico’s coffee. Three-quarters of its coffee acreage is managed by poor, small-scale farmers 

using shaded systems (Nestel 1995). Our study area consists of a 634,000 hectare subset of this 

region (Figures 1 and 2). Within our study area, coffee grows in a 254,000 hectare “coffee 

range” lying 400–1,600 meters above sea level (m.s.l.). The entire study area comprises 1,155 

towns in 43 municipios (counties), while the coffee range comprises 427 towns in 33 municipios. 

The entire study area includes nine cities with populations exceeding 2,000, the largest of which 

are Puerto Escondido, Zicatela, Pochutla, Santa María Huatulco, and La Crucecita—all located 

on the coast. The 7,214 hectare Parque Nacional Huatulco, located just west of La Crucecita, is 

the only protected area in the larger study area. It lies well below the coffee range.4 

Coffee grows on small tropical evergreen trees that produce fruit resembling cherries. In 

shaded systems, this fruit is picked by hand, typically with the assistance of hired labor. After 

harvest, the pulp of the coffee fruit is removed and the beans are sorted and dried to produce an 

intermediate product called pergamino. In our study area, growers transport their pergamino by 

donkey or truck to the nearest cabecera (municipio capital), where they sell it to middlemen or 

marketing cooperatives. From there, the middlemen and cooperatives ship the pergamino by 

truck to one of two large coffee market towns—Oaxaca City or Pochutla—where they sell it to 

large-scale buyers and exporters. Roads in our mountainous study are quite poor and, therefore, 

transportation is costly. Because they have to cover the costs of transporting pergamino to 

Oaxaca City or Pochutla, middlemen and cooperatives pay significantly lower prices for 

                                                 
4 Although this park was officially established in July 1998, it has been protected from deforestation by government 
agencies since at least 1990. 
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pergamino in cabeceras that are relatively far from these two cities (Ávalos and Becerra 1999). 

Hence, coffee growers in such areas earn a lower return on their coffee. None of the shade coffee 

in our study area is certified as such and, as a result, neither growers nor middlemen receive a 

premium related to this attribute.    

In 1991, the most recent year for which data are available, there were 6,700–8,200 coffee 

farms in our study area, producing approximately 39,000 tons of coffee cherry annually. These 

farms—all of which employ shade coffee systems exclusively—covered 37,000–53,000 hectares, 

about 6–8% of the land in the entire study area, and 15–21% of the land in the coffee range. In 

the same year, 43,305 hectares of the entire study area was planted in noncoffee agriculture. 

These farms covered approximately 15% of the entire study area and about 7% of the coffee 

range. Over two-thirds of this agricultural land was planted in corn, about a sixth in bananas, and 

a sixth in beans. 

Under Mexican law, all persons wishing to clear forested land must obtain a federal 

permit, and in some cases a local permit, regardless of the scale of the clearing (NACEC 2003). 

However, persons clearing small plots for agriculture frequently ignore these requirements. 

Enforcement of forestry laws mainly depends on citizen denunciations of violators and, as a 

result, is haphazard, especially in remote areas. Within the coffee range, most forest clearing 

appears to result from shifting agriculture. According to local stakeholders, rural households 

often clear small plots in order to market the timber and grow subsistence crops. However, the 

poor soils on these cleared plots—which are typically steeply sloped—are quickly eroded by 

rainfall. As a result, subsistence farmers typically abandon them and move on to new locations 

within a few years. Our data support this anecdotal evidence. A comparison of agricultural 

survey data and our land cover data (discussed below) suggests that, within the coffee range, less 

than half of the nonurban cleared land was being used for agriculture in the early 1990s. Also, 

within the coffee range, the majority of the cleared plots are smaller than 1.5 hectares. 
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3. Model  

We model land use decisions using a conventional “land rent” model (Nelson and 

Hellerstein 1997; Chomitz and Gray 1996). Following von Thunen, the model is premised on the 

simple idea that any given plot of land may be devoted to a number of competing uses, each of 

which earns a rent that depends on the characteristics of the plot (e.g., soil quality and proximity 

to markets). Land owners devote plots to the uses that generate the highest rents. More formally, 

the rent an agent receives from devoting plot i to land use k is given by 

 

ikikikikik XCQPR −=  (1) 

 

where R is rent, P is price of output, Q is quantity of output, C is price of inputs, X is quantity of 

inputs, and  

 

10 <<= kikikik withXSQ ββ . (2) 

 

Thus, the output from plot i is determined by a Cobb-Douglass production function where 

S is a plot-specific shifting parameter. This shifting parameter may be expressed as a product of 

geophysical and agronomic variables, si, having to do with, for example, soil type, slope, and 

plot size. Equations (1) and (2) imply a rent-maximizing demand for X 
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Furthermore 

 

)exp( 0 ikikkik ZP γγ +=  (4) 

 

)exp( 0 ikikkik ZC δδ +=  (5) 

 

where Z is a vector of location-specific variables such as distance to markets.  Substituting 

equations (3), (4), and (5) into (1), taking logs, simplifying and adding a stochastic error  

term yields 

 

ikikik uVR ++= χαln  (6) 

 

where V is a vector of parameters and χ is a vector of plot-specific variables associated with Z 

and S.  

We assume that each plot is devoted to the land use that generates the highest rent. 

Empirically, we distinguish between two land uses: those such as shade coffee requiring forest 

cover (k = 0), and those such as agriculture and logging requiring forest clearing (k = 1). Thus, if 

we define  

 

Ri* = ln Ri1 - ln Ri0  (7) 

 

 

 

 



Resources for the Future Blackman, Albers, Sartorio, and Crooks 

8 

then plot i will be cleared if Ri* > 0 and will remain forested otherwise. Substituting equation (6) 

into equation (7), we have 

 

Ri* = γi - ψW + ui (8) 

 

where W is a vector of parameters and ψ is a vector of plot-specific variables associated with Z 

and S. Although R*i is latent and unobserved, we observe an indicator variable, Li, such that 

 

Li = 1 if R*i > 0  

Li = 0 if R*i ≤ 0. 

 

Using this dichotomous dependent variable, equation (8) may be estimated as a probit 

or logit.  

4. Data 

Our land cover data are derived from digitized, distortion-corrected, 1993 aerial 

photographs. We used geographic imaging software (ERDAS Imagine) calibrated by 

groundtruthing to convert these photographs into digital land cover maps with a two-meter 

resolution. The maps distinguish among four land uses: forest (including shade coffee), cleared 

land (including conventional agriculture), urban, and water. They also include locations of paved 

roads and major unpaved roads, the boundaries of municipios, and the locations of town centers.5  

                                                 
5 Data on roads and municipio boundaries were supplied by the Instituto Nacional de Estadística Geografía e 
Informática (INEGI). Formal boundaries for the towns in our study area do not exist. Therefore, we constructed 
artificial boundaries using Thiessian polygons, that is, we assigned each pixel in the data set to the closest town 
center. 
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From the (two-billion plus) pixels in our land cover data, we constructed a sample using a 

500-meter rectangular grid. Next, we eliminated all pixels classified as either “urban” or “water,” 

as well as pixels for which data are missing. The resulting sample contains 20,283 pixels, of 

which 7,156 are in the 400–1,600 m.s.l. coffee range. 

Table 1 presents detailed information on the variables used in the econometric analysis, 

including units, sources, scale, date, and mean values. The variables are grouped into five 

categories: land cover, institutional, geophysical, socioeconomic, and agronomic. The table 

presents means for the two samples used in our econometric analysis—one drawn from the entire 

study area (n = 20,283), and the other drawn from our managed forest ecosystem: the 400–1,600 

m.s.l. coffee range (n = 7,156). The remainder of this section describes each of the variables in 

Table 1, and indicates our a priori expectation as to the correlation of each variable with the 

probability of clearing inside the coffee range.   
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Table 1. Variables in the econometric analysis: description and summary statistics 

aInstituto Nacional de Estadística Geografía e Informática (Mexico); bConsejo Estatal del Café de Oaxaca (Mexico); cEjido census; dSecretaría de Medio Ambiente y Recursos Naturales 
(Mexico); eNational Imagery and Mapping Agency (USA); fApproximately 1 kilometer; gComisión Nacional para el Conocimiento y Uso de la Biodiversidad (Mexico); hPopulation census

Variable Description Units Source Scale Date Mean entire study area Mean coffee range 
      All Forest Cleared All Forest Cleared 
      n=20,283 n=15,344 n= 5,131 n=7,156 n=5,635 n=1,521 

Land use            
CLEAR land cleared?   (0/1) INEGIa/ERDAS 2 m pixels 1993 0.24 0 1 0.21 0 1 
Institutional            
COOP % coffee growers in coops. % CECAFEb municipio 1991 n/a n/a n/a 55.74 56.18 54.10 
EJI_COM % ejido land in common % INEGIc municipio 1991 53.18 54.98 47.31 49.14 49.23 48.82 
PARK plot in protected area? (0/1) SEMARNATd 1:1,000,000 1998 0.01 0.01 0 0 0 0 
Geophysical            
COF altitude 400-1,600 m? (0/1) NIMAe 30 arc secondsf  -- 0.35 0.37 0.37 1 1 1 
N_FACE plot north-facing? (0/1) NIMA 30 arc seconds -- 0.21 0.22 0.17 0.18 0.20 0.14 
ALTIT altitude m NIMA 30 arc seconds --  1,058.11 1,092.09 949.21 936.29 931.23 955.05 
SLOPE slope degrees NIMA 30 arc seconds -- 7.11 7.27 6.66 8.52 8.49 8.65 
MTNS terrain mountainous? (0/1) CONABIOg 1:4,000,000 1992 0.81 0.82 0.80 1 1 1 
HILLS terrain hilly? (0/1) CONABIO 1:4,000,000 1992 0.10 0.11 0.04 0 0 0 
PLAINS terrain plains? (0/1) CONABIO 1:4,000,000 1992 0.09 0.07 0.16 0 0 0 
DIST_CMKT travel time to n./s. paved road hours ARCINFO 10 m pixels -- 2.26 2.38 1.88 2.57 2.56 2.57 
DIST_TWN travel  time to nearest town ctr. hours ARCINFO 10 m pixels -- 0.50 0.55 0.34 0.45 0.46 0.41 
DIST_CITY travel  time to nearest big city hours ARCINFO 10 m pixels -- 2.59 2.65 2.43 2.38 2.30 2.67 
SOILC_1 soil type: humic acrisol (0/1) CONABIO 1:1,000,000 1995 0.35 0.36 0.34 0.33 0.31 0.40 
SOILC_2 soil  type: eutric cambisol (0/1) CONABIO 1:1,000,000 1995 0.21 0.18 0.31 0.18 0.17 0.23 
SOILC_3 soil type: rendzina (0/1) CONABIO 1:1,000,000 1995 0.01 0.00 0.01 0.00 0.00 0.00 
SOILC_4 soil type: haplic phaeozem (0/1) CONABIO 1:1,000,000 1995 0.03 0.03 0.01 0.07 0.08 0.02 
SOILC_5 soil type: lithosol (0/1) CONABIO 1:1,000,000 1995 0.01 0.01 0.01 0.01 0.02 0.00 
SOILC_6 soil type: eutric regosol (0/1) CONABIO 1:1,000,000 1995 0.39 0.41 0.32 0.41 0.42 0.34 
SOILT_1 soil texture: coarse (0/1) CONABIO 1:1,000,000 1995 0.26 0.24 0.28 0.02 0.02 0.01 
SOILT_2 soil texture: medium (0/1) CONABIO 1:1,000,000 1995 0.57 0.60 0.47 0.84 0.85 0.78 
SOILT_3 soil texture: fine (0/1) CONABIO 1:1,000,000 1995 0.17 0.15 0.24 0.14 0.12 0.22 
SOILF_0 soil physical characteristic: none (0/1) CONABIO 1:1,000,000 1995 0.57 0.55 0.62 0.50 0.50 0.53 
SOILF_5 soil physical  characteristic: rock (0/1) CONABIO 1:1,000,000 1995 0.40 0.42 0.37 0.43 0.42 0.45 
SOILF_6 soil physical  characteristic: stony (0/1) CONABIO 1:1,000,000 1995 0.03 0.03 0.01 0.07 0.08 0.02 
Socioeconomic            
POP population n/a INEGIh    town 1995 303.23 309.04   283.50 288.35 288.69 287.10 
POVERTY marginality index   n/a INEGI   town 1995 0.79 0.76 0.92 0.88 0.85 0.98 
INDIG % population indigenous % INEGI   town 1995 4.32 3.78 6.38 7.37 6.49 10.66 
Agronomic            
FSIZE % coffee land on farms > 10 has. % CECAFE municipio 1991 n/a n/a n/a 46.66 48.55 39.65 
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4.1 Land cover variable 

 The independent variable, CLEAR, is a dummy variable that takes the value of 1 if the 

plot is cleared and 0 otherwise.  

 

4.2 Institutional variables  

COOP is the percentage of the coffee growers in the municipio who belong to marketing 

cooperatives. Cooperative members generally obtain a higher return on coffee than nonmembers 

for two reasons. First, they receive higher prices for their pergamino than nonmembers because 

cooperatives tend to control quality better than independent growers and have more bargaining 

power vis-à-vis middlemen than do independent growers—in fact, some sell directly to 

exporters. Second, cooperative members typically pay lower prices for inputs than nonmembers 

because cooperatives typically subsidize post-harvest processing, quality control, and 

agricultural extension. Hence, we expect COOP to be negatively correlated with the probability 

of clearing within the coffee range, all other things equal.  

EJI_COM is the percentage of ejido land in the municipio that is held in common.6 Group 

land holding institutions, ejidos, have traditionally controlled most of the forested land in Mexico 

(Yates 1981). Within ejidos, some land is typically parceled out to individual members, and 

some is held in common. Some economics research has linked communal land tenure to natural 

resource degradation (Baland and Platteau 1996). The usual explanation is that where institutions 

governing common property are weak, agents are more likely to degrade it because they do not 

fully internalize either the benefits of conservation investments or the costs of degradation. Thus, 

shifting agriculture, logging, and other cleared land uses with short-term payoffs may be more 

widespread on communal ejido land than on parceled ejido land or privately held land. In terms 

                                                 
6 Many, if not most, of the communal land holding institutions in our study area are comunidades agrarias, 
institutions very similar to, but legally distinct from, ejidos. For our purposes, the two types of institutions are 
identical and, therefore, for simplicity’s sake, we ignore this distinction and refer to both as “ejidos.” 
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of the land rent model in Section 3, one can think of this effect as operating through? the cost of 

inputs into production—the cost of communal land is relatively low because those using it do not 

fully internalize the costs. Hence, within the coffee range, we expect EJI_COM to be positively 

correlated with the probability of clearing, all other things equal. 

PARK is a dummy variable that indicates whether or not the plot is located in the one 

protected area in our study region. As noted above, this park is located on the coastal plain, well 

outside of the coffee range (Figure 2).   

 

4.3 Geophysical variables 

 Aspect (directional orientation), altitude, slope, terrain, and soil characteristics can be 

considered arguments of the production function shift parameter in the land rent model. 

N_FACE is a dummy that takes the value of 1 if the plot faces north, and 0 otherwise. Because 

Mexico is north of the equator, north-facing plots receive less direct sunlight and are relatively 

ill-suited to conventional agriculture. Such plots also tend to be more humid, a characteristic that 

makes them particularly well-suited to shade coffee. Hence, we expect N_FACE to be negatively 

correlated with the probability of clearing, all other things equal.  

In our study area—as in most coastal mountain ranges—altitude is highly correlated with 

both temperature and precipitation. Therefore, ALTIT, our altitude variable, is essentially a 

proxy for weather conditions. The best grades of coffee grow at higher altitudes where lower 

temperatures cause the beans to mature more slowly. As a result, coffee farmers at higher 

altitudes in the coffee range earn higher rents on their crop. By contrast, conventional agriculture 

is generally less productive at higher altitudes. Thus, we expect ALTIT to be negatively 

correlated with the probability of clearing, all other things equal. 

We include four topographical variables: SLOPE, a continuous variable measured in 

degrees, and three terrain dummy variables—MOUNTAINS, PLAINS, and HILLS. Of these 

topographical variables, only slope varies within the coffee range: all of the land above 400 

meters in our study area—including the entire coffee range and the land north of it—is classified 
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as mountains, while the coastal area is split between plains in the west and hills in the east. We 

have no strong expectation about the sign of SLOPE inside the coffee range.  

We use data on three different soil attributes: type (SOILC_1 through SOILC_6), texture 

(SOILT_1 through SOILT_3), and physical characteristics (SOILF_0, SOILF_5, and SOILF_6). 

The meaning of each variable is listed in Table 1. For a more extensive discussion of these 

variables, see Appendix 1. Because many soils that are well-suited to agriculture are also well-

suited to coffee, we do not have a strong expectation as to how the soil variables affect the 

probability of clearing inside the coffee range.  

Finally, we use three impedance-weighted distance variables that are determinants of 

input and output prices: distance to the nearest town center (DIST_TWN), distance to the nearest 

city with a population greater than 2,000 (DIST_CITY), and distance from the nearest cabecera 

to the nearest coffee market town (DIST_CMKT). We have parameterized our weighting 

algorithm so that these distances approximate travel times in hours. For a description of this 

algorithm, see Appendix 2. The DIST_CMKT variable requires a brief explanation. As noted in 

Section 2, because middlemen and cooperatives must cover the costs of transporting pergamino 

from cabeceras to one of the two coffee market towns in the state—Oaxaca City and Pochutla—

the prices they pay to individual growers depend on the distance from the relevant cabecera to 

the relevant coffee market town. Cabeceras are not associated with specific coffee market towns. 

In any given year in any given cabecera, middlemen and cooperatives may ship pergamino to 

both of these towns, depending on market conditions and the availability of transportation. 

Regardless of which market town they use, however, middlemen and cooperatives always first 

ship pergamino from the cabecera to the one paved road connecting Oaxaca City in the north 

with Pochutla in the south (Figure 2). This first leg of the trip over rugged dirt roads typically 

accounts for the lion’s share of the cost of transporting coffee to market. Hence, our plot-specific 

proxy for distance to coffee markets is the weighted distance from the nearest cabecera to the 

north-south paved road.  

Of the three distance variables, we only have an unambiguous expectation about the sign 

of one. Within the coffee range, we expect DIST_CMKT to be positively correlated with the 

probability of land clearing because the growers located far from coffee market towns receive 
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relatively low prices for their pergamino and, therefore, earn relatively low rents on coffee 

farming.    

By comparison, the expected effect of DIST_CITY on the probability of land clearing is 

complex. DIST_CITY affects the probability of land clearing through at least two channels: one 

has to do with transportation costs and the second with the effective cost of cleared land. 

DIST_CITY has countervailing impacts on the probability of clearing through the first channel. 

On one hand, proximity to a relatively big city boosts the return to shade coffee because some 

coffee inputs are purchased there—most notably the labor used to harvest coffee. Indeed, during 

the off-season, itinerant coffee laborers tend to live in cities where nonfarm job opportunities are 

relatively plentiful. On the other hand, proximity to the nearest big city also boosts the return to 

conventional agriculture because cities are markets for both agricultural inputs and outputs. The 

first effect implies that, all other things equal, shade coffee—and therefore forest—is more likely 

to be found near big cities. The second effect implies that, all other things equal, agriculture—

and therefore cleared land—is more likely to be found near big cities.  

DIST_CITY may also affect relative returns to alternative land uses by changing the 

effective cost of cleared land. Plots cleared without required permits that are closer to big cities 

are more likely to attract citizen denunciations and, therefore, the attention of regulatory 

authorities, in part simply because such authorities are located in big cities. Hence, the effective 

cost of cleared land may be higher near big cities. This implies that, all other things equal, 

cleared plots are less likely to be found near cities. Thus, DIST_CITY may have varied 

countervailing effects on the probability of clearing. Its net effect is an empirical question.   

The same complex relationship between DIST_CITY and the probability of clearing 

applies to DIST_TWN, but with one caveat. As noted above, big cities—not smaller towns— 

are the primary repository for seasonal coffee labor. Hence, proximity to town centers may have 

less impact on the return to coffee—and on the probability of forest cover—than does proximity 

to cities.  
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4.4 Socioeconomic variables. 

 Each of our socioeconomic variables may be considered a determinant of input and 

output prices associated with different land uses. Population (POP) affects the supply of and 

demand for outputs from different land uses, as well as the supply of and demand for agricultural 

labor, a key input. The effect of population on the probability of land clearing is difficult to 

predict a priori because it depends on the elasticities of supply and demand for various outputs 

with respect to population, and the elasticities of supply and demand for agricultural labor with 

respect to population. Note that, as other researchers have argued, causation between population 

and land use may run in the opposite direction as well: people may settle in locations where 

coffee is productive and relatively profitable.    

Calculated by INEGI, the Mexican statistical agency, and ranging from -1.6 to +2.6 

(higher = greater poverty), POVERTY is an index of a number of underlying statistics, including 

the average number of occupants per room, the percentage of population that is literate, and the 

percentages of homes with access to various types of infrastructure, including tubed drinking 

water, drainage, electricity, and nonearthen floors. As with POP, the impact of POVERTY on the 

probability of land clearing is difficult to predict a priori. POVERTY affects the supply of and 

demand for output as well as the supply of and demand for labor. Also, as with POP, 

endogeneity may be an issue.  

Finally, INDIG is the percentage of population over the age of five speaking an 

indigenous language but not Spanish. In Mexico, heavily indigenous populations do not have 

equal access to public sector goods and services, including education, technical extension, 

agricultural marketing, credit, and infrastructure. Hence, such populations likely pay higher 

prices for coffee inputs and receive lower prices for their pergamino. Therefore, we expect this 

variable to be positively correlated with the probability of clearing. 

4.5 Agronomic variable 

 FSIZE is the percentage of coffee acreage in the municipio found on farms larger than 10 

hectares. Anecdotal evidence suggests that the production and (especially) the marketing of 

shade coffee entail economies of scale. Hence, in terms of our model, FSIZE can be thought to 
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affect the productivity of shade coffee. We expect it to be negatively correlated with the 

probability of clearing, all other things equal. 

 

5. Results  

To identify the determinants of forest clearing in our study area, we employ three 

different econometric models. Each has a distinct purpose and each corrects for an econometric 

complication. Models 1 and 2 purport to identify the determinants of forest clearing inside the 

coffee range. Therefore, they use the 7,156 plots in our sample located between 400 and 1,600 

meters in altitude. The specification and procedures used for the two models differ. Model 1 uses 

instrumental variable estimators appropriate for probit for two potentially endogenous regressors: 

POP and POVERTY (Newey 1987). The standard errors are corrected to account for the use of 

predicted values as independent variables. Model 2 omits insignificant instrumental variables and 

corrects for spatial autocorrelation using a Bayesian heteroskedastic spatial autoregressive 

procedure for logit (LeSage 2000). Model 3 tests whether the determinants of land clearing are 

the same inside the coffee range versus outside of it. Therefore, it uses the entire sample of all 

20,283 plots in the study area. Like Model 2, it omits the instrumental variable estimators and 

corrects for spatial autocorrelation.   

5.1 Determinants of forest clearing inside the coffee range  

Table 2 presents our regression results. In Model 1, the instrumental variable estimators 

for POP and POVERTY are both insignificant.  

In Model 2, all but seven of the 18 independent variables are significant at the 1% level. 

The exceptions are DIST_CITY, which is significant at the 10% level; DIST_CMKT, which is 

significant at the 5% level; and four of the soil variables—SOILC_2, SOILC_6, SOILT_2, and 

SOILT_3—which are not significant at all. The signs of most coefficients are as expected. The 

remainder of this subsection discusses the results from Model 2 in more detail.  
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Table 2. Regression results 
(dependent variable = CLEAR) 

 

** significant at 1% level two tailed test 
* significant at 5% level two tailed test 
† significant at 10% level two tailed test 
a AGLS estimator 

  Model 1  Model 2  Model 3 
  n=7,156  n=7,156  n=20,283 

Variable Description Coeff.  (s.e.) Coeff.  (s.e.) E Coeff.  (s.e.) 
Constant  -0.3263 (0.2709) -0.1762 (0.2154) -0.118 -0.3479** (0.0943) 

COF 400-1,600 m?      -0.8613** (0.2239) 
Institutional         
COOP growers in coops. -0.2683** (0.0843) -0.2408** (0.0675) -0.0877   
EJI_COM common land 0.2871** (0.0681) 0.2204** (0.0674) 0.0708 -0.1298** (0.0511) 
EJI_COM*COF       0.3622** (0.0806) 
PARK in national park?      -0.2900* (0.1508) 
Geophysical         
N_FACE north-facing? -0.2560** (0.0529) -0.2352** (0.0550) -0.0223 -0.1370** (0.0324) 
N_FACE*COF       -0.1146* (0.0620) 
ALTIT altitude -0.0941 (0.0832) -0.1176* (0.0709) -0.0720 -0.1232** (0.0357) 
ALTIT*COF       0.0878 (0.0798) 
SLOPE slope 0.1537** (0.0500) 0.1232** (0.0492) 0.0687 0.0251 (0.0377) 
SLOPE*COF       0.0816† (0.0634) 
HILLS hills      -0.4830** (0.0577) 
PLAINS plains      0.1639** (0.0475) 
DIST_CMKT time to cof. mkt. 0.0426* (0.0202) 0.0288* (0.0141) 0.0483 -0.0222* (0.0110) 
DIST_CMKT*CF       0.0607** (0.0179) 
DIST_TWN time to twn. ctr. -0.6569** (0.0831) -0.5246** (0.0739) -0.1549 -0.5111** (0.0381) 
DIST_TWN*COF       -0.0242 (0.0801) 
DIST_CITY time to big city 0.0277 (0.0280) 0.0310† (0.0216) 0.0483 0.0915** (0.0174) 
DIST_CITY*CF       -0.0264 (0.0255) 
SOILC_2 eutric cambisol 0.1861 (0.1180) 0.1227 (0.1046) 0.0145 0.1920* (0.0858) 
SOILC_2*COF       -0.1411 (0.1354) 
SOILC_3 rendzina 1.4729** (0.3810) 1.1587** (0.3969) 0.0015 0.8444** (0.1303) 
SOILC_3*COF       -0.2335 (0.4138) 
SOILC_4 haplic phaeozem -0.5182** (0.1097) -0.3869** (0.1010) -0.0164 -0.0360 (0.1728) 
SOILC_4*COF       -0.3156† (0.2146) 
SOILC_5 lithosol -1.3920** (0.3877) -0.7703** (0.2357) -0.0058 -0.1583† (0.1084) 
SOILC_5*COF       -0.6883** (0.2752) 
SOILC_6 eutric regosol -0.0523 (0.0912) -0.0524 (0.0753) -0.0139 0.1442* (0.0841) 
SOILC_6*COF       -0.2177* (0.1115) 
SOILT_2 medium texture 0.1581 (0.1837) 0.1147 (0.1732) 0.062 -0.0260 (0.0447) 
SOILT_2*COF       0.4320* (0.1914) 
SOILT_3 fine texture 0.3099 (0.1966) 0.2191 (0.1788) 0.0211 0.2040** (0.0736) 
SOILT_3*COF       0.4178* (0.2107) 
SOILF_5 rock -0.4180** (0.0980) -0.3186** (0.0834) -0.0885 -0.0266 (0.0416) 
SOILF_5*COF       0.0549 (0.0816) 
Socioeconomic         
POPa population -0.1906 (0.3457)      
POVERTYa marginality index 0.0316 (0.0778)      
INDIG pop. indigenous 0.8623** (0.2682) 0.6108** (0.1635) 0.0295 0.5554** (0.1723) 
INDIG*COF       0.0318 (0.2247) 
Agronomic         
FSIZE farms > 10 hs. -0.8637** (0.1129) -0.6531** (0.0870) -0.1989   

         
 Pseudo-R2 0.0688  0.0697   0.1029  
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5.1.1 Institutional variables 

 As expected, COOP is negatively correlated with the probability of clearing, all other 

things equal, and EJI_COM is positively correlated with the probability of clearing, all other 

things equal.  

 

5.1.2 Geophysical variables 

Of the regression results for the geophysical variables, the most interesting concern 

distance. As expected, DIST_CMKT is positively correlated with the probability of clearing. In 

other words, plots closer to coffee market towns are less likely to be cleared, all other things 

equal. This finding is the opposite of the standard result for natural forests. DIST_CITY is 

(weakly) positively correlated with the probability of land clearing. As noted in Section 4, this 

relationship likely stems from the fact that proximity to cities lowers transportation costs for 

coffee inputs (especially labor) and raises the effective cost of cleared land. DIST_TWN, 

however, is negatively correlated with the probability of clearing. Here, the conventional 

relationship between distance to urban areas and clearing holds.     

With regard to the remaining geophysical variables, as expected, both N_FACE and 

ALTIT are negatively correlated with the probability of clearing. SLOPE is positively correlated 

with the probability of clearing. This last result contrasts with the typical finding for natural 

forests—in such forests, conventional agriculture is usually found on flat land.7  

Five of the soil dummies are significant. SOILF_5, the soil physical characteristics 

dummy for rock, is negatively correlated with the probability of clearing, as is SOILC_5, the soil 

type dummy for lithosol, a particularly shallow soil. Presumably, neither coffee nor conventional 

crops are found on these soils. Both SOILC_2, the soil type dummy for eutric cambisol, and 

                                                 
7 But note that our result jibes with Chomitz and Gray (1996) which finds that in Belize, semisubsistence agriculture 
is more likely to be found on land that is not flat, all other things equal.  
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SOILC_3, the soil type dummy for rendzina, are positively correlated with the probability of 

clearing. This may reflect the fact that although both conventional crops and coffee can be grown 

on these soils, they are better suited to the former than the latter—eutric cambisol has a high clay 

content that inhibits coffee root growth, and rendzina is high in calcium carbonate, which can 

interfere with coffee nutrient uptake. Finally, SOILC_4, the soil type dummy for haplic 

phaeozem—generally considered the best soil type for both coffee and conventional 

agriculture—is negatively correlated with the probability of clearing. Presumably, in the coffee 

range, such soils are typically planted in coffee. Thus, conventional thinking about the types of 

soils that promote clearing in natural forests do not necessarily hold in our study area. As in 

natural forests, particularly poor (e.g., rocky soils and shallow) soils are not associated with 

clearing. However, the “best” soils (e.g., haplic phaeozem) appear to attract coffee rather than 

conventional agriculture. Therefore, in contrast to natural forests, such soils are associated with 

forest, not clearing.       

 

5.1.3 Socioeconomic and agronomic variables 

As expected, INDIG is positively correlated with the probability of clearing. In other 

words, clearing is more likely in heavily indigenous towns. Also, as expected, FSIZE is 

negatively correlated with the probability of clearing.    

 

The elasticities (E) in the third column from the right in Table 2 provide some insight into 

which of our independent variables are most important economically.8 In order of absolute 

                                                 
8 For the continuous variables, this elasticity is the percent change in the probability of clearing due to a one unit 
increase in the independent variable. For example, the elasticity for SLOPE is the percent change in the probability 
of clearing due to a one degree increase in slope, all other things equal. For dummy variables, the elasticity is the 
percent change in the probability of clearing when the dummy is 1 instead of 0. For example, the elasticity for 
N_FACE is the percent change in the probability of clearing when a plot is north-facing, all other things equal. 
Because the elasticities for continuous variables are calculated using a marginal change in the independent variable 
while the elasticities for the dummy variables are calculated using a nonmarginal change, caution must be exercised 
when comparing the two types of elasticities. 
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magnitude, the highest elasticities among the continuous variables are for FSIZE, DIST_TWN, 

and COOP. 

5.2 Determinants of forest clearing inside versus outside the coffee range  

Model 3 uses a sample of 20,283 plots drawn from the entire study area (including plots 

located above and below the coffee range) to test whether the determinants of land clearing 

inside the coffee range are the same as those outside of it. The model includes a dummy variable, 

COF, that identifies plots located inside the coffee range, as well as COF interaction terms for 

each regressor. Significance tests for the individual interaction terms indicate the extent to which 

each regressor has a different effect on the probability of clearing inside the coffee range versus 

outside this range. 

Interaction terms aside, the specification of Model 3 differs slightly from that of Model 2. 

Model 3 omits COOP and FSIZE, which are not meaningful outside of the coffee range where 

there are no coffee farms, and includes three new dummy variables—PARK, HILLS, and 

PLAINS—which describe institutional and geophysical characteristics not found inside the 

coffee range.9 Table 2 presents the regression results for Model 3. First, note that COF is 

negatively correlated with the probability of clearing, all other things equal. Thus, as expected, 

shade coffee is associated with forest cover.    

 

5.2.1 Institutional variables 

 EJI_COM is negatively correlated with the probability of clearing. However, 

EJI_COM*COF is positively correlated with the probability of clearing, and its coefficient is 

approximately three times that for EJI_COM. Thus, inside the coffee range, common ejido land 

is associated with clearing, while outside of the coffee range it is associated with forest cover. 

                                                 
9 These differences in specification prevent us from using interaction terms to imbed Models 2 and 3. The omission 
of COOP and FSIZE in Model 3 may give rise to specification bias. However, if Model 2 is run without COOP and 
FSIZE, the magnitude and significance of the remaining coefficients change very little, with the exception of several 
of the soil variables and ALTIT. This finding suggests the omitted variables bias is not severe. 
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The reason may be that inside the coffee range, ejido land parceled out to individual members 

(versus held in common) tends to be devoted to shade coffee. Therefore, inside the coffee range, 

nontimber forest products and ecological services generated by forests are relatively plentiful and 

the opportunity cost of clearing common ejido land is relatively low. Outside the coffee range, 

however, land parceled out to individual ejido members is often cleared for conventional 

agriculture and pasture, so that nontimber forest products and forest ecological services are 

relatively scarce. As a result, outside the coffee range, the opportunity cost of clearing common 

ejido land is higher.   

 

5.2.2 Geophysical variables 

DIST_CMKT is negatively correlated with the probability of clearing. However, 

DIST_CMKT*COF is positively correlated with the probability of clearing, and its coefficient is 

almost three times that for DIST_CMKT. Thus, DIST_CMKT has a different effect inside the 

coffee range than it does outside of it. Inside the coffee range, plots closer to coffee markets tend 

to be forested, while outside the coffee range, such plots tend to be cleared—the conventional 

result for natural forests.  

Unlike DIST_CMKT, both DIST_TWN and DIST_CITY have the same effect on the 

probability of clearing inside and outside the coffee range. DIST_TWN is negatively correlated 

with the probability of clearing, while the coefficient on DIST_TWN*COF is insignificant. 

DIST_CITY is positively correlated with the probability of clearing, while the coefficient on 

DIST_CITY*COF is insignificant. Thus, regardless of whether they are located inside the coffee 

range or outside of it, plots closer to town centers are more likely to be cleared, all other things 

equal, while plots close to big cities are less likely to be cleared, all other things equal.  

DIST_CITY merits a brief discussion. As noted above, DIST_CITY affects the 

probability of land clearing through transportation costs and through the effective cost of cleared 

land. Inside the coffee range, proximity to cities boosts the return to shade coffee by lowering the 

cost of seasonal agricultural labor, and it raises the effective cost of cleared land because 

restrictions on clearcutting are more likely to be enforced close to big cities. Both of these factors 

imply that, all other things equal, inside the coffee range one would expect to find forest in close 
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proximity to cities. Outside the coffee range, the transportation costs effect does not come into 

play, but the enforcement effect does. Presumably, this second effect explains the effect of 

DIST_CITY outside the coffee range.  

Of the remaining geophysical variables, some have different effects on the probability of 

clearing inside the coffee range, and others do not. The coefficient on N_FACE is negative and 

significant, as is the coefficient on N_FACE*COF. Thus, the negative correlation between 

N_FACE and the probability of clearing is stronger inside the coffee range than outside of it, a 

result that may stem from the relatively high opportunity costs of clearing inside the coffee 

range.  

The coefficient on SLOPE is positive and insignificant. However, the coefficient on 

SLOPE*COF is positive and (weakly) significant. Thus, while SLOPE has no discernible impact 

on the probability of clearing outside the coffee range, it has a positive impact inside the coffee 

range. 

 ALTIT is negatively correlated with the probability of clearing, all other things equal, 

while the coefficient on ALTIT*COF is insignificant. Thus, the effect of ALTIT is the same 

inside and outside the coffee range—plots at higher elevations are less likely to be cleared, all 

other things equal. Outside the coffee range, this effect likely stems from the fact that low-lying 

plots are better suited to conventional agriculture and ranching.  

Of the eight soil variables, our results suggest that four—SOILC_4, SOILC_5, SOILC_6, 

and SOILT_2—have different effects on the probability of clearing inside the coffee range than 

they do outside it. For example, SOILC_6, a dummy indicating the presence of eutric regosol, is 

positively correlated with the probability of clearing. However, the coefficient on 

SOILC_6*COF is negative, significant, and larger than the coefficient on SOILC_6. These 

results suggest that eutric regosol is associated with clearing outside the coffee range, but is 

associated with forest cover inside this range. Given that many of the soil types and 

characteristics that promote agriculture also promote shade coffee, explanations for these 

differential effects are necessarily somewhat speculative. The general result is useful, however—

soil characteristics may have different impacts on land cover in a managed forest ecosystem than 

in a natural forest. 
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5.2.3 Socioeconomic variables 

Finally, INDIG has the same effect on the probability of land clearing inside the coffee 

range and outside of it. INDIG is positively correlated with the probability of clearing, all other 

things equal, but the coefficient on INDIG*COF is not significant.  

6. Conclusion 

We have used a set of spatial regression models to identify the determinants of forest 

cover in a region dominated by a managed forest ecosystem. Our results suggest that in such 

systems, the determinants of land cover differ from those in natural forests in a number of ways. 

In natural forests, proximity to urban centers as well as price and cost advantages for agricultural 

goods have been repeatedly linked to forest clearing. However, we find that in a managed forest 

ecosystem, these factors reduce the probability of land clearing when the urban centers in 

question are also key markets for a nontimber agroforestry crop, and when the price and cost 

advantages in question are associated with that crop. Also, we find that soil types and certain 

topographical features linked with clearing in natural forests are instead associated with forest 

cover in a managed forest ecosystem. Several of our other findings jibe with the literature on 

land cover in natural forests. We find that forest clearing is associated with common property, 

proximity to small town centers, and the directional orientation of land.    

These findings suggest that at least two “conventional” policy prescriptions for 

preserving forest cover—i.e., policy prescriptions based on studies of natural forests—may not 

hold in managed forest ecosystems. First, in natural forests, transportation investments that 

improve access to markets are generally thought to exacerbate deforestation. Our results suggest 

that in managed forest ecosystems, however, such investments could help to stem deforestation 

by raising the net return to agroforestry systems that preserve forest cover. The impact on forest 

cover of road building is likely to be complex, however. More and better roads will inevitably 

improve access to output and input markets for conventional agricultural goods and timber, as 

well as to markets for nontimber agroforestry crops. The net effect on forest cover is uncertain. 

Other means of improving market access such as subsidizing or improving transportation 
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services targeted specifically at producers of nontimber agroforestry crops may have less 

ambiguous impacts.  

Second, in natural forests, “pro-agriculture” policies such as promoting marketing 

cooperatives and subsidizing inputs are generally thought to promote forest clearing. Our results 

suggest that in a managed forest ecosystem, however, such policies may help to preserve forest 

cover when the agricultural good in question is a nontimber agroforestry crop. 
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Appendix 1. Soil variables 

Of the six soil types, haplic phaeozem (SOILC_4) is generally considered the best for all 

types of agriculture (including coffee) because it is characterized by high organic content, high 

base saturation, and low levels of calcium carbonate. Lithosol (SOILC_5), on the other hand, is 

generally considered the worst for all types of agriculture because it is characterized by 

extremely shallow soils. This feature makes it especially unsuitable for coffee, which has 

relatively deep roots requiring up to three meters of soil. The remaining four soil types are 

considered usable—although less than ideal—for both conventional agriculture and coffee. Both 

humic acrisol (SOILC_1) and eutric cambisol (SOILC_2) are high in clay, which can stunt root 

growth, a feature that makes them particularly problematic for deep-rooted plants like coffee. 

Rendzina (SOILC_3) is also viewed as poor soil for coffee because of high levels of calcium 

carbonate, which inhibits nutrient uptake. Eutric regosol (SOILC_6) is considered poor for 

coffee due to low levels of organic matter. Of the three soil textures in our study area, fine 

(SOILT_3) is generally considered best for all types of agriculture. Of the three soil physical 

characteristics, no characteristics (SOILF_0) is generally considered the best for all types of 

agriculture, and rock (SOILF_5) the worst (Eswaran 2002, FAO 1998, Wilson 1985 and 1999 

and Wellman 1961). 

Appendix 2. Impedance-weighted distances   

Impedance-weighted distances were calculated in ARCINFO by the following method. 

First, impedances were assigned to each pixel in our study area to account for slope and whether 

or not a road was present. More specifically, we used the following formulas: for pixels on paved 

roads, impedance is equal to 1 plus the square root of slope (in degrees); for pixels on secondary 

roads, impedance is equal to 3 plus the square root of slope; and for all other pixels, impedance is 

equal to 10 plus three times the square root of slope. Calculated in this manner, impedance in our 

study area ranges from 1 to 105, and can be interpreted as the inverse ratio of the rate of travel in 

hundredths of a kilometer per hour. Thus, the rate of travel on a perfectly flat paved road is 100 

kilometers per hour, and the rate of travel on a steep pixel with no road is 0.95 kilometer per 
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hour. Having assigned impedances to each pixel, we used standard iterative techniques to plot 

the minimum impedance routes from each pixel to the town center, from each pixel to the nearest 

city with a population greater than 2,000, and from each cabecera to the one north-south paved 

road in our study area. Finally, we divided each of these weighted distances by the constant 

needed to convert them into travel times in hours. (Our assumptions imply a linear relationship 

between impedance-weighted distance and the time needed to travel that distance). Thus, the 

variables DIST_TWN, DIST_CITY, and DIST_MKT may be interpreted as total travel times  

in hours. 




