Estimating the Emissions Impacts of Renewable Generators using an Hourly Dispatch Model

Jeff King

Northwest Power and Conservation Council

Portland, Oregon

Charting the Path

Washington, D.C. November 4, 2004

Objective

Using an hourly dispatch electricity price forecasting model, forecast the CO2 offset effects of a 100 MW increment of new windpower added in 2006.

Approach is applicable to other air emissions; other types and quantities of resources.

Approach – Two tests

- A. Fixed capacity expansion:
 - 1. Add 100 MW increment of wind to base case 20-year capacity expansion (adds & retirements)
 - 2. Run 20-year hourly dispatch (2005–24)
 - 3. Calculate effect on system-wide CO2 production
- B. New capacity expansion following forced addition:
 - 1. Force in 100 MW of wind in 2006
 - 2. Run new 20-year capacity expansion
 - 3. Run 20-year hourly dispatch on resulting capacity expansion.
 - 4. Calculate effect on system-wide CO2 production.

The AURORA^{xmpTM} Electric Market Model

Proprietary hourly dispatch electricity price forecasting model from EPIS, Inc. (www.epis.com)

WECC in scope (NPCC setup)

- 16 load-resource zones defined by transmission
- ~ 3000 generating units
- zonal fuel price forecasts
- zonal load forecasts
- zonal load curtailment blocks
- zonal new resource options

Typical long-term forecasting process

Some assumptions

(Constant 2000 dollar values)

- Natural gas (US wellhead): \$5.30/MMBtu in 2005, declining to \$4 by 2010, then stable through 2025.
- Coal (Western mine-mouth): \$0.51/MMBtu through 2025.
- PTC expires at end of 2005 (Change from NPCC base).
- Green tags: \$6/MWh in 2005, declining to \$2/MWh in 2024.
- CO2 penalty: zero through 2007, then increasing to ~ \$6.70/tonCO2 by 2025.
- Wind modeled with seasonal (monthly) shape but otherwise flat output.
- Average hydro conditions.

Base case WECC capacity expansion

Base case WECC CO2 production

Annual net change in CO2 production 100 MW wind added in 2006

Change in CO2 production by resource 100 MW wind added in 2006

New WECC capacity expansion w/100 MW wind forced in 2006

Conclusions re: These tests

• Incremental block of wind w/no other change in capacity expansion:

Anomalous 2005 dispatch clouds otherwise intuitively satisfying result.

Problem may be related to model's difficulty in meeting initial hydro constraints.

Worth discussion w/vendor.

If initial dispatch issue can be resolved, approach can be used with smaller-scale resource additions.

Validity of results will decline in out-years or with larger-scale additions. Possibility of introducing limited stochastic variables, e.g., wind output.

• Incremental block of wind w/new capacity expansion:

Unsatisfying results – premature death of butterfly produces new ice age. Possibly related to anomalous initial dispatch observed above.

Best approach w/larger scale additions, but would need testing.

Alternative would be to develop capacity expansion using portfolio risk modeling, but likely would be limited to smaller system.

Conclusions: Our experience with hourly dispatch models

- Temperamental; often produce unexpected results needing considerable analysis and multiple runs to refine and confirm.
- Data, computing power and computing time hogs.
- Set ups can be complex, helps to build off an existing base case price forecast.
- Compilation and analysis of results can be complex and timeconsuming, often require post-processing.
- Simplification of hydro dispatch capability may overestimate benefits in hydro-dominated systems.
- However, remain a promising approach to estimating the effects of resource additions on emissions.

