Commission for Environmental Cooperation Building the Renewable Energy Market in North America Montreal, Canada, 28–29 October 2004

Renewable Energy in Mexico: Is Regulatory Change Enough for Market Entry?

ELECTRICAS

Jorge M Huacuz Non-Conventional Energy Unit ternative Energy Sources Division Electrical Research Institute

Nine premises leading (hopefully) to one conclusion

Premise 1: Oil Fuels the Mexican Economy (Decreasing Trend of Renewables in the Power Sector)

Premise 2: A Growing Need for Power (Expected Electricity Demand 2000-2009)

Fuente CFE

Premise 3: The Mexican Power Sector Still growing, but also ageing

Total Current Generating Capacity: 45,600 MW

Two government-owned utilities serve the whole country: 95% grid coverage

New Power Requirements 2003-2012: 20,399 MW

- Committed: 6,729 MW
- Not Committed: 13,670 MW

Fossil fuels: 73.84% Large-scale hydro: 21.05 % Nuclear: 2.99% Geothermal: 2.1% Wind & other renewables: <<1% Natural gas combined cycle: 27.13% Other fossil-fuelled: 8.5% Large-scale hydro/geothermal: 8.1%

Other renewables (wind): 0.49%

Not defined: 55.78%

Premise 4: Renewable Energy Resources in Mexico Diverse & Abundant, but not fully assessed

Premise 4: Renewable Energy Resources in Mexico Diverse & Abundant, but not fully assessed

Bioenergy:

- •Total potential: N/Q
- •Forest residues & energy plantations: N/Q
- Agriculturations:
 Agriculturations:
 Urban residential
 - •Agricultural residues and cattle dung: N/Q
 - •Urban residues: ca 1,000MW
 •Sugar cane bagasse: ca 250MW

Micro y mini-hydro: •Total potential: N/Q •At least 3,500 MW

Ocean energy Total potential: N/Q 11,000 km coastline

Premise 5: Large number of technology options A hard choice for decision makers

Premise 6: Renewable energy resources are disperse Energy planning is centralized

Premise 7: The concept of the electric system is evolving

Current Concept Centralized, based on cost

Central generating station

Premise 8: Strong emphasis on market creation Too little effort on local capacity building

The realities:

- Limited human resource base
 - >For project identification and development
 - >For systems engineering and construction
- Basically no RE industrial infrastructure
- Very few technological stocks

Premise 9: Growing number of RE promoters in Mexico Less coordination & cooperation than desirable

Current Legal and Regulatory Framework for Renewable Energy in Mexico

Public Electric Service Law

• Self supply

- \checkmark Electricity produced to satisfy the generator's own needs.
- \checkmark No sell to third parties allowed.
- ✓ Creation of self-generating companies with third parties allowed.
- \checkmark Surplus electricity can be sold to the grid
- Electricity swaps with the national utility allowed

• Co-generation

- Joint production of heat and electricity
 Production of electricity from waste heat For self-supply only
- **Independent power production (IPP)** \bullet
 - \checkmark Electricity generation with no capacity limits
 - \checkmark For sell to CFE only
 - \checkmark In compliance with CFE's expansion plans
 - ✓ Bidding for least energy cost (US\$/kWh)
- **Electricity for export**

Legal, Institutional and Policy Issues

- Renewables not considered "national assets" by Constitution
- Direct sales to CFE on \$/kWh basis, not always competitive
- Distributed green power, at odds with "bigger is better" paradigm:

Main concerns

Intermittency Power quality Safety Cost

Regulatory framework needs to improve
Oil availability, a "mental brake" for change
Long administrative red tape for new projects

Interconnection Contract for Intermittent Energy Sources

- **Dispatch**. Subject to energy availability with the following provisions:
- Electricity Swaps. Based on *Total Short Term Cost* (Dispatching Cost)

Between equal hourly periods
Between different hourly periods
Between different months along one year
Payment for energy not consumed

- Emergency Energy. 1.5 times the applicable tariff
- Complementary Energy. Under contract only
- Ancillary Services. Proportional to plant capacity factor

Swapping Rules

One-to-One compensation between homologous hourly periods

Compensation between *different hourly periods* according to:

$$ES_P = X_S ES_S = X_i ES_i = X_b ES_b$$

ES = Surplus Energy

X = *Compensation Factor*

mgen = *month when electricity is generated mcomp* = *month when needed electricity is compensated with surplus electricity*

Source: CRE Mexico

Other pending issues for the short term

- Extension of interconnection contract to nonintermittent RE sources
- Awarding capacity credits to wind farms
- Net-metering for small photovoltaic projects
- Land ownership rights for project development
- Electric wheeling capacity at potential project sites
- Ad hoc regulation and permitting procedures

Niches of Opportunity

		SECTOR OF THE ECONOMY				
	TECNOLOGY	POWER	MUNICIPAL	INDUSTRIAL	WATER	RURAL/AGRO
O P P O R T U N I T I E S	Solar Thermal	Bulk power		Co-generation	Desalination, Cleaning & disinfection	
	Solar Photovoltaics	Peak-shaving & grid support	Public lighting, signaling	Cathodic protection, remote control, alarms, telecommunication.	Weather stations, remote control, telecommunic ations	Rural electrification, tele-education
	Wind	Bulk power, optimal hydroelectric dispatch	Self generation for municipal services	Self generation	Pumping	Water pumping, grain grinding
	Biomass	Bulk power from energy plantations	Trash-to-energy, biogas from water treatment plants	Bulk power from energy plantations	Biogas and electricity from water treatment plants	Biogas and electricity from cattle manure
	Small Hydro	Distributed generation	Self generation for municipal services	Self generation	Retropumping	Mini-grids & productive uses

In conclusion

- Large potential for green power in Mexico
- Technical and non-technical changes required to tap this potential
- Strategies to remove barriers need to be developed and implemented
- Capacities to identify and tap niches of opportunity need to be developed
- Mechanisms to level the playing field for renewables must be introduced
- Effective coordination among stakeholders, necessary
- New energy culture must be fostered.

Electrical Research Institute (IIE)

www.iie.org.mx

