

ProForm: A Tool for Pre-Feasibility Analysis of Renewable Energy and Energy Efficiency Projects

William (Bill) Golove WHGolove@lbl.gov Lawrence Berkeley National Laboratory Technical Meeting on Approaches to Estimating Environmental Benefits of Renewable Energy and Energy Efficiency USEPA/CEC/CCA/CCE Washington, DC July 17 – 18, 2003

What is **ProForm**?

- A computational tool that:
 - Quantifies emission reductions
 - Calculates the financial impact of the sale of carbon credits on a project

- Designed to evaluate renewable energy, fuel switching, co-generation, landfill methane and energy efficiency projects
- Available in English and in Spanish

Rationale for the Development of ProForm

- Need for a common framework to conduct assessment of clean energy projects (i.e., projects with greenhouse gas reduction benefits)
- Lack of familiarity among small entrepreneurs in developing countries with financial analysis/pro-formas
- Lack of access among local developers to expensive project analysis software
- Requirement for evaluation of the impact of potential revenue from carbon credits under alternative project financing arrangements (additionality)

Who Should Use ProForm?

- Small entrepreneurs in developing countries
- National climate change/energy and regulatory agencies
- Individual/multi-lateral investors and financial institutions
- Consultants

- Simple, transparent and precise methodology
- Lowers project preparation costs
- Reduces complexity and subjectivity in the process of estimating financial and environmental benefits.
- Can be used both for preparing project proposals and for evaluating project proposals

Types of Projects

- Energy efficiency projects that:
 - Reduce electricity consumption
 - Reduce fuel consumption
 - Reduce electricity and fuel consumption
- Renewable energy projects that:
 - Generate and sell electricity to the grid
 - Generate and use electricity internally
- Renewable non-electric projects that displace the use of fuel
- Fuel switching projects
- Landfill methane gas capture projects
- Cogeneration projects

Pre-Feasibility Analysis

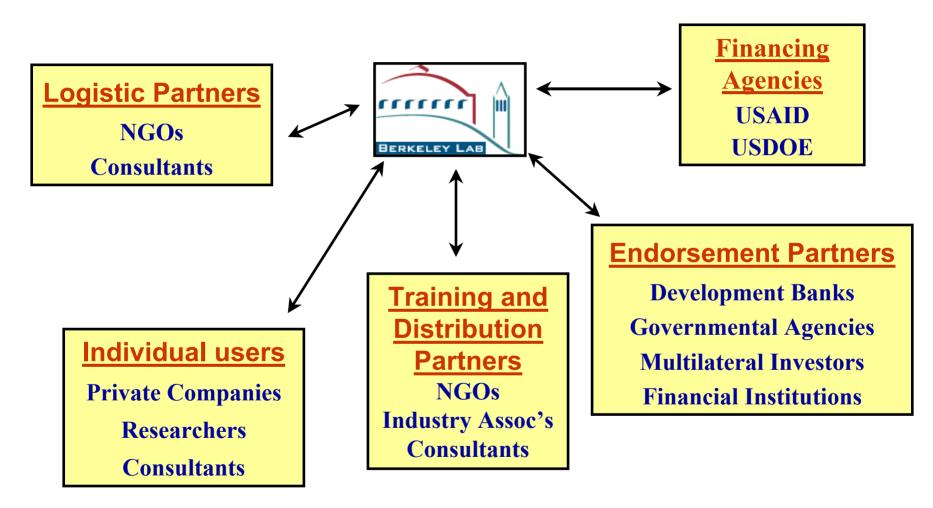
- ProForm aids the user in evaluating a variety of scenarios
 - Unlimited, user-defined baseline scenarios
 - 3 scenario capability built-in
 - Values for carbon credits
 - Discount rates
 - Other financial and technical variables, such as
 - Loan terms
 - Electricity price
 - Capacity factor, etc.

Results

• Financial:

- Net Present Value
- Internal Rate of Return
- Cash Flow
- Debt Service Coverage Ratio

•Emissions reductions: – C, NOx, SOx, PM



- ProForm is a tool in development for a market in development
- Financing ProForm
 - Seed money from the U.S. Department of Energy
 - Continuing development, distribution, and training funds from USAID
- ProForm is distributed free of charge
- Training in the use of ProForm will be offered if there is sufficient interest and funding; also customized versions

Types of Partnerships

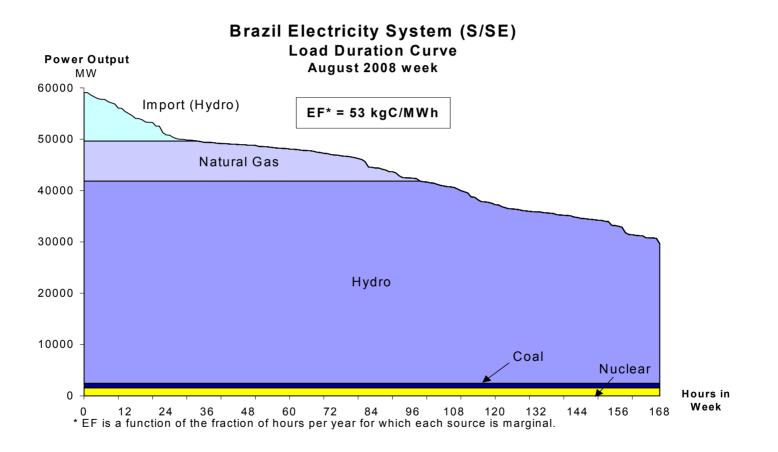
ProForm – Baseline Methodology

Profile of Baseline Electricity Generation

Baseline Technology	Baseline Technology Type	Fuel	
Generation Technology 1		None Selected	• *
Generation Technology 2		None Selected	-
Generation Technology 3		None Selected	•
Generation Displaced By Project (% Of Total) Baseline Technology Type 1 (None Selected) Baseline Technology Type 2 (None Selected)	* % %		*
Baseline Technology Type 3 (None Selected) TOTAL - <i>Must Total 100%</i>	%		0%
Transmission And Distribution Grid Losses	`		*
Baseline Technology Type 1 (None Selected) Energy Conversion Efficiency Environmental Emissions	%		*
None Selected - Fuel Carbon Intensity None Selected - Fuel SOx Intensity – Optional None Selected - Fuel NOx Intensity – Optional None Selected - Fuel Particulate Intensity – Optional	Ton C/GJ000 Ton SOx/GJ000 Ton NOx/GJ000 Ton PM/GJ000		
Renewable Non-Electric Replaces Baseline Electric	or <mark>%</mark>		*
Baseline Technology Energy Conversion Efficiency Factor		JRATORY —	^

Project: Small Hydro in Central America

Three Baseline Scenarios:


-Carbon intensity of current marginal dispatch

-Retired diesel brought out of mothballs

-Development of Central American grid

Baseline Scenarios	Avoided Carbon Emissions (tonnes/y)	Net Present Value (US\$ 000)	IRR (without carbon credits)	IRR (with carbon credits)
I. Current marginal				
dispatched power	3,560	418	12.2%	14.5%
II. Retired diesel				
plants added	5,560	638	12.2%	15.9%
III. Interconnected				
regional grid	2,780	332	12.2%	14.0%

Electricity Grid Carbon Baselin

LAWRENCE BERKELEY NATIONAL LABORATORY

- ProForm version 3.2 is distributed free of charge at:
 - http://poet.lbl.gov/Proform
- Other tools and related publications are available at:

– http://eetd.lbl.gov/ea/EA_C_I.html

• ProForm v. 4.0 will be available soon!