Environmental Implications of Trade Liberalization on North American Transportation Services:

The Case of the Trucking Sector

Linda Fernandez UC Riverside

Research funded by the Environment and Trade Program, Commission for Environmental Cooperation, Montreal

Thanks to Ken Small (Transportation Econ), UCI

Trucking

1. Contributes to NAFTA growth

- 2. 6.7 million truck crossings on U.S.-Canada border and 5.7 million truck crossings on U.S.-Mexico border
- 3. Diesel fuel-significant source of air pollution in non-attainment border areas
- (1 diesel engine yields PM=112 cars, Nox=131 cars)

Goal of Study

Assess whether policies work to address truck delays at the border and related air pollution with econometric analysis and data from the U.S.-Canada and U.S.-Mexico borders.

Policies to Evaluate

- (1)Customs and Trade Partnership Against Terrorism: Free and Secure Trade (FAST) Preclearance to reduce commercial congestion at ports (idling, wait time)
- (2)Fuel Policy, (3) Diesel Technology Policy
- In all cases, the policies were not uniformly implemented in time nor location

Model Outline

Air Quality at border ports as a function of traffic flow volume, border city characteristics, policy (trade, transportation or environmental policy)

Empirical Approach

- Reduced form for econometric estimation
- Ports indexed by i
- Time indexed by t
- Log of Air Quality as function of log terms
- Transportation (trucks, buses, cars, containers)

$$AQ_{it} = \beta_0 + \beta_1 AQ_{base,t}$$
$$+ \beta_2 T_{it} + \beta_3 X_{it} + \varepsilon_t$$

Data

Panel Set from 1993-2007 of Transportation flows (trucks, passenger vehicles, containers (empty, loaded), buses-95% of traded flow

Air quality at ports, and border cities on each side of both U.S.-Canada and U.S.-Mexico borders (O3,NOx,SO2,PM)

Data

Trade flow value

- Border wait times -Customs &Border Patrol
- Ports in study represent 95% of traded transportation flow

Variable	Label		Parameter	Standard	t Valu e	Pr > t
			Estimate	Error		
Intercept	Intercept	1	-13.70753	17.97578	-0.76	0.449
air_us	Concentrat ion	1	0.53467	0.3984	1.34	0.106
air canada	[]	1	2.612	4.61225	0.57	0.057
value	trade	1	-7.68E-07	0.00000169	-0.45	0.051
COV	wait	1	-0.00816	0.03033	-0.27	0.082
POV	wait	1	0.04647	0.05527	0.84	0.009
FAST	FAST	1	-0.27305	0.5647	-0.48	0.031
monthly_avg_truck	TRUCKS	1	-0.22621	2.1711	-0.1	0.017
monthly_avg_BUSES	BUSES	1	0.73333	0.28932	2.53	0.014
monthly_avg_PV	PERSONA L_VEHICL ES	1	-0.48149	1.32807	-0.36	0.018
month_avg_EMPTY_CONTAIN		1	0.1731	1.85434	0.09	0.026
month_avg_LOAD_CONTAIN		1	2.10726	2.11627	1	0.324

Fuel Policy

Where low sulfur was available for more than just trucks (late 2006) along U.S.-Canada border, gas variable has negative and not statistically significant variable. Other variables: Canadian baseline, empty containers yield positive and significant coefficients

Diesel Technology

- NOx: U.S.-Canada border has negative and significant coefficient on trucking and loaded containers
- NOx: U.S.-Mexico border has negative and stat. significant coefficient on trucking and empty containers
- PM and So2 have negative and statistically significant coefficient on trucking for both borders

Policy Impacts

Policy	U.SCanada Border	ports	U.SMexico Border	ports
FAST	CO,O3,PM,NO	6	CO,O3,PM,NO	8
Fuel	SO2	4	-	0
Diesel Tech	Nox, PM	6	PM	2
Port/roads	CO, PM	1	CO, PM	2

Conclusions

- Scale increase (trade transport volume) has positive impact on air pollution
- Policies from trade, transportation and environmental policies can reduce particular air pollutants in specific ports
- Extending time series to include recent programs such as the Diesel Elimination Retrofit Collaborative (2007) would augment analysis

Conclusions

Variation between El Paso 1 and 2 ports suggests role of fee (\$10) to reduce congestion for peak hours (formal congestion pricing could make a difference).