
Displaced Emissions from Renewables and Efficiency in the Northeast United States

Bruce Biewald and Geoff Keith Presentation to CEC Meeting in Washington, DC July 17, 2003

22 Pearl Street Cambridge, MA 02139 617.661.3248 bbiewald@synapse-energy.com www.synapse-energy.com

Synapse Project for OTC

Ozone Transport Commission web site has available:

- OTC Emission Reduction Workbook 2.1 (Excel file).
- OTC Emission Reduction Workbook 2.1: Description and User's Manual.
- Multi-Pollutant Approaches in Certain OTR States.
- Predicting Avoided Emissions from Policies that Encourage Energy Efficiency and Clean Power.

http://www.sso.org/otc/Publications/pub2.htm

Goals of the OTC Project

- Advance the understanding of emission reductions from energy efficiency and renewables in quantitative terms.
- Move toward a methodology robust enough to stand behind SIP credit, if desired.
 - -Review models and methods for calculating avoided emissions from energy efficiency and renewables
 - -Develop a tool for calculating avoided emissions
 - -Tool should be able to assess energy efficiency, renewables, EPSs and multi-pollutant proposals

- Be able to predict, with reasonable accuracy, how reduced load or new generation will affect the operation of other generators
 - Highly dependent on time (day, season)
 - All generating units in a region are dispatched in order of (increasing) operating costs (or bids)
 - Changes in load and generation in one region affect generation in neighboring regions
 - There are region and unit-specific constraints

- Collect data on the "profile" of the energy saved or clean energy generated
 - -When?
 - -Where?
 - -How much?
 - –What emissions?
- Develop assumptions about how the regional energy system(s) will react
 - -A system dispatch model is key.

Short Term and Long Term

- Assessing avoided emissions over the short term requires different analytic methods than assessing this over the long term.
- In the short term, you know about the generating units in the system; the task is to model accurately how they interact.
- Over the long term, answering the question of what generating units will be built and retired becomes the key challenge.
- Tradeoffs...

- There are "dispatch models," that simulate in great detail the operation of a regional electricity system (PROMOD, PROSYM, etc.)
 - Use very detailed information on load levels, generating units, forced outages, and transmission capabilities – Do not predict the future capacity mix.
- There are "forecasting models," that predict how energy systems will evolve (NEMS, IPM, E2020)
 - Use more aggregated and simplified dispatch simulations – Do attempt to predict what will get built and retired.

- Can calculate predicted emission reductions from energy efficiency, renewables, EPSs and multipollutant proposals
- Based in MS Excel. Simple, quick, good for scenario analysis
- Has default data in it users can use this or enter their own input assumptions
- Default data were developed using a system dispatch model. The workbook itself is simple only adds, subtracts, multiplies and divides.
- Does *not* forecast additions and retirements. Designed for scenario analysis.

Synapse Energy Economics