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Secondary Aftershocks and Their Importance for Aftershock Forecasting

by Karen R. Felzer, Rachel E. Abercrombie, and Göran Ekström

Abstract The potential locations of aftershocks, which can be large and damag-
ing, are often forecast by calculating where the mainshock increased stress. We find,
however, that the mainshock-induced stress field is often rapidly altered by after-
shock-induced stresses. We find that the percentage of aftershocks that are secondary
aftershocks, or aftershocks triggered by previous aftershocks, increases with time
after the mainshock. If we only consider aftershock sequences in which all after-
shocks are smaller than the mainshock, the percentage of aftershocks that are sec-
ondary also increases with mainshock magnitude. Using the California earthquake
catalog and Monte Carlo trials we estimate that on average more than 50% of after-
shocks produced 8 or more days after M �5 mainshocks, and more than 50% of all
aftershocks produced by M �7 mainshocks that have aftershock sequences lasting
at least 15 days, are triggered by previous aftershocks. These results suggest that
previous aftershock times and locations may be important predictors for new after-
shocks. We find that for four large aftershock sequences in California, an updated
forecast method using previous aftershock data (and neglecting mainshock-induced
stress changes) can outperform forecasts made by calculating the static Coulomb
stress change induced solely by the mainshock.

Introduction

It has long been observed that aftershocks may produce
their own aftershocks, commonly known as secondary af-
tershocks (Richter, 1958). The essential definition of sec-
ondary aftershocks is that they are primarily or entirely trig-
gered by a previous aftershock and show pronounced spatial
and temporal clustering around this aftershock. The fraction
of aftershocks that are secondary is often assumed to be
small. There is good reason to question this assumption,
however, with important implications for aftershock fore-
casting. If secondary aftershock production is indeed low,
then the best way to forecast aftershock locations should be
by calculating the stress changes produced by the mainshock
(e.g., Rybicki, 1973; Das and Scholz, 1981; Harris and
Simpson, 1992; King et al., 1994; Stein et al., 1997; Taylor
et al., 1998; Zeng, 2001; Kilb, 2003). If secondary after-
shocks are common, however, many aftershocks might not
be predictable without using the locations and times of pre-
vious aftershocks. Indeed, for general seismicity, many au-
thors have successfully used the locations of previous earth-
quakes to predict the distribution of future ones (e.g., Kagan
and Jackson, 1991; Cao et al., 1996; Woo, 1996; Jackson
and Kagan, 1999; Kafka and Levin, 2000; Kagan and Jack-
son, 2000; Wiemer, 2000; Kafka, 2002).

In this article we use statistical tests to demonstrate that
secondary aftershocks are a common phenomenon and then
use Monte Carlo modeling to quantify how many after-
shocks are secondary in the average California aftershock

sequence. We also show that while the exact factors that
determine aftershock location may be many and complex,
using only the locations and times of previous aftershocks
can produce a more precise forecast of aftershock locations
than using the calculations of the static Coulomb stress
changes induced solely by the mainshock.

Evidence for Secondary Aftershocks

The Aftershock Production Rate of Small Earthquakes

Most aftershocks are small. Therefore secondary after-
shocks may be common only if small earthquakes, as a
group, are capable of producing a substantial number of af-
tershocks. It has been recognized that the volumetric static
stress change produced by small aftershocks (when inte-
grated over a finite volume) is essentially negligible in com-
parison to that produced by the mainshock (e.g., Hardebeck,
1998). The relative ability of two earthquakes to induce
volumetric static stress change is not, however, equal to
their relative ability to produce aftershocks. The Gutenberg–
Richter relationship states that the total number of earth-
quakes in a population that are larger than or equal to some
magnitude M varies as 10�bM (Ishimoto and Iida, 1939;
Gutenberg and Richter, 1944). Volumetric static stress
change varies with earthquake moment, which varies with
earthquake magnitude, M, as 101.5M (Kanamori, 1977). In
contrast, aftershock productivity varies much more slowly
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with mainshock magnitude, as 10bM (Reasenberg and Jones,
1989; Yamanaka and Shimazaki, 1990; Kagan, 1991; Felzer
et al., 2002), where b is the parameter from the Gutenberg–
Richter relationship for the aftershock population, and is typ-
ically found to be close to 1. The physical reason why af-
tershock production varies as 10bM rather than with volu-
metric static stress change is not presently known, although
we note that other seismic properties that vary as 10M are
dynamic displacement, velocity, and acceleration in the far
field (Richter, 1958) and mainshock faulting area, if we as-
sume a constant stress drop (Kanamori and Anderson, 1975).

To solve for the relative aftershock productivity of small
and large earthquakes we need to multiply the expression
giving the number of aftershocks as a function of mainshock
magnitude by the number of potential mainshocks in each
magnitude range. The latter is given by the Gutenberg–
Richter relationship. We assume that the b-value for after-
shocks is the same as the b-value for the general population
(Ranalli, 1969). We note that the assumption of identical b-
values is additionally supported by the mathematical dem-
onstration of Woo (1996) that subpopulations of earthquakes
cannot have different b-values if the population as a whole
adheres to the Gutenberg–Richter relationship. Assuming
equal b-values, the product of the aftershock production re-
lationship and Gutenberg–Richter relationship is given by
10�bM � 10bM � a constant. That is, the total number of
aftershocks produced by each magnitude range is the same,
regardless of the magnitude range being considered (Michael
and Jones, 1998; Felzer et al., 2002). Thus the total number
of aftershocks produced by small earthquakes, and hence the
total number of secondary aftershocks produced by small
aftershocks, is expected to be significant.

Secondary Aftershocks and Omori’s Law

Utsu (1962) and Page (1968) have argued that few af-
tershocks are secondary because most aftershock sequences
decay smoothly with time after the mainshock in accordance
with the modified Omori law (Utsu, 1961). This law is given
by

�pR � A(t � c) , (1)

where R is the aftershock rate, t is time after the mainshock,
and A, p, and c are constants. It is usually found that p is
slightly larger than 1 and c is on the order of a fraction of a
day (e.g., Reasenberg and Jones, 1989). The smooth adher-
ence of most aftershock sequences to the modified Omori
law is taken by Utsu (1962) and Page (1968) to indicate a
paucity of secondary aftershocks because secondary after-
shocks should cluster close in time to the aftershock that
triggered them, creating sharp peaks in the aftershock decay
time series. Utsu (1962) and Page (1968) were correct that
such temporal peaks should occur, but they erred in their
implicit assumption that the peaks should rise higher than
the average noise level. In fact, if secondary aftershocks are
continuously being triggered by small aftershocks, then most

of them should occur in small sequences that constitute small
and frequent temporal peaks that blend into one another.

That it is possible for an aftershock sequence adhering
well overall to Omori’s law to in fact be made up of many
different overlapping aftershock sequences, each individu-
ally adhering to Omori’s law, has been demonstrated theo-
retically (Sornette and Sornette, 1999; Helmstetter and Sor-
nette, 2002). In order to test these results for individual
aftershock sequences we generate synthetic sequences using
the statistical aftershock production model of Felzer et al.
(2002). In this model earthquakes are generated to either
follow a modified Omori decay rate initiating at the time of
the mainshock (direct aftershocks) or initiating at the time
of a previous aftershock (secondary aftershocks). The other
rules of the model are that aftershock magnitudes are se-
lected randomly from the Gutenberg–Richter distribution,
aftershock productivity varies as 10bM, and aftershocks pro-
duce aftershocks at the same rate that other earthquakes do
(for rationalization of the assumptions, see Felzer et al.
[2002]).

This general method for the statistical generation of syn-
thetic aftershocks is similar to that used by Ogata (1988),
Kagan (1991), Console and Murru (2001), and Helmstetter
and Sornette (2002). Models of this type have been found
to produce synthetic aftershock sequences that are in excel-
lent agreement with real aftershock time series (Ogata, 1988;
Guo and Ogata, 1997; Felzer et al., 2002). We generate a
trial sequence with this model, using a mainshock of M 7
and the average California modified Omori parameters (see
the Variation of Secondary Aftershocks with Time section).
Forty-seven percent of the aftershocks in our trial synthetic
sequence are secondary. Yet the time series of the sequence
shows no excursion beyond the 95% confidence intervals
for Poissonian variation around the modified Omori law
(Fig. 1). Thus by counterexample we have proven that the
absence of significant deviation from the modified Omori
law does not imply a rarity of secondary aftershocks.

Testing for the Existence of Secondary Aftershocks

We propose that a better test for the existence of sec-
ondary aftershocks is to search for temporal correlations
between aftershocks on a local scale. We test this idea on
a sample of nine large California aftershock sequences
(Fig. 2). The epicentral information for the mainshocks and
the spatial limits used for the aftershock zones, which are
rectangles selected by visual inspection, are given in Table
1. The data are taken from the Council of the National Seis-
mic System catalog. All of the mainshocks are M �6, except
for the Oceanside and Palm Springs earthquakes (M 5.4 and
M 5.6, respectively), which we observe had unusually large
aftershock sequences for their magnitudes. The half-widths
of the aftershock zones are between one and two times the
fault length of the mainshock. We use all M �2 aftershocks
that occurred from the time of the mainshock through De-
cember 2001, with the exception of the Joshua Tree after-
shock sequence, which we use only until the time of the
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Figure 1. Time series of a simulated aftershock
sequence of an M 7 California mainshock (dots) (us-
ing average California parameters; see Table 3), fit
with the modified Omori law (solid line) and plotted
with the 95% confidence intervals for expected Pois-
sonian random fluctuation (dashed lines). Although
none of the data points lie outside of the 95% confi-
dence intervals, 47% of the aftershocks are secondary.
We conclude from this counterexample that the ab-
sence of significant deviation from the modified
Omori law need not indicate that few aftershocks are
secondary. Note that each data point represents the
total number of aftershocks to occur on the day in
question, rather than the instantaneous aftershock rate
at a particular time (for example, the first data point
gives the total of all aftershocks that occurred in the
first 24 hr of the sequence.) This accounting system
in combination with the small c parameter value of
the total aftershock sequence (c � 0.05) causes the
graph to curve upward at small times on the log–log
plot. For aftershock sequences in which c is larger
than about 0.2, or aftershock recording on the first
day is incomplete, upward concavity on plots of this
type should be negligible.
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Figure 2. California aftershock sequences used in
this study. The aftershock zone boundaries were de-
termined using all aftershocks recorded in each se-
quence, but only M �4 aftershocks are plotted on the
figure. The mainshocks are C, Coalinga; MH, Morgan
Hill; NPS, North Palm Springs; O, Oceanside; LP,
Loma Prieta; JT, Joshua Tree; L, Landers; N, North-
ridge; and HM, Hector Mine. The cities of Los An-
geles and San Francisco are also labeled for reference.

Landers mainshock, and the Landers aftershock sequence,
which we use only through the time of the Hector Mine
mainshock. We draw “influence zone” boxes around each
aftershock epicenter with the half-widths of the influence
zones equal to two times the estimated fault length. The
influence zones are not expected to contain all of the sec-
ondary aftershocks of a given aftershock, since there is pres-
ently no known physical limit on how far away a secondary
aftershock can be. Nor are the earthquakes in a given influ-
ence zone expected to be exclusively secondary aftershocks
of the target aftershock, as secondary aftershock zones un-
doubtedly intersect and direct aftershocks may be scattered
throughout. The influence zones are chosen to encompass
an area that is large enough such that we expect to capture
many secondary aftershocks if they exist, while at the same
time small enough such that any signal of secondary after-

shock temporal clustering can be seen. To draw the influence
zones, mainshock fault length is estimated from the equa-
tions of Kanamori and Anderson (1975), assuming a circular
fault and a constant stress drop of 30 bars, and using the
earthquake moment that is calculated from M0 �
101.5M�10.73 (Kanamori, 1977). The resulting fault length is
similar to that estimated empirically by Wells and Copper-
smith (1994). We draw the boxes for the influence zones in
map view and do not use depth in our calculation. This is
done for simplicity and because depths are more poorly con-
strained than epicenters.

To test for the presence of temporal clustering within
the influence zones we measure the percentage of all after-
shocks that occur less than 24 hr after and within the influ-
ence zone of a previous aftershock. We call this percentage
the spatiotemporal correlation index. To test whether the
value of the spatiotemporal correlation index indicates actual
interaction between aftershocks rather than just coincidental
correlation, we remeasure the index after shuffling the af-
tershock times and locations. In this process all of the after-
shock times and locations are preserved, but they are ran-
domly recombined with one another. We then test the null
hypothesis that the real and recombined catalogs come from
a base population with the same spatiotemporal correlation
index (i.e., there is no real correlation between the after-
shocks). If multiple data samples are taken from a single
large population, the differences between the percentages of
events in each sample satisfying a given criterion should be
normally distributed. We thus compute z statistics to deter-
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Table 1
Epicentral Information and the Aftershock Zones Used for Mainshocks in This Study

Earthquake
Date

(mm/dd/yy) Magnitude Epicenter
Aftershock Zone,

N–S
Aftershock Zone,

E–W

Coalinga 05/02/83 6.7 36.23, �120.32 35.91/36.47 �120.58/�119.90
Morgan Hill 04/24/84 6.2 37.31, �121.68 37.02/37.54 �121.88/�121.38
N. Palm Springs 07/08/86 5.6 34.0, �116.61 33.89/34.1 �116.73/�116.51
Oceanside 07/13/86 5.4 32.97, �117.87 32.82/33.12 �117.93/�117.63
Loma Prieta 10/18/89 7.0 37.04, �121.88 36.68/37.44 �122.35/�121.37
Joshua Tree 04/23/92 6.1 33.96, �116.32 33.74/34.28 �116.50/�115.98
Landers 06/28/92 7.3 34.20, �116.44 33.79/35.00 �117.01/�116.00
Northridge 01/17/94 6.7 34.21, �118.54 34.06/34.56 �118.97/�118.28
Hector Mine 10/16/99 7.1 34.59, �116.27 34.28/35.07 �116.45/�116.01

mine whether the real and recombined catalogs might come
from the same statistical population (null hypothesis). Using
this procedure we find that for every sequence the null hy-
pothesis can be rejected at a confidence level of over
99.99%, with the higher spatiotemporal correlation occur-
ring in the real catalog. This indicates that there is real tem-
poral-spatial clustering between the aftershocks. Therefore,
in the absence of any plausible alternative explanation for
the correlation, we can infer that secondary aftershocks are
present in all of the aftershock sequences.

Secondary Aftershock Rates in the Average
California Aftershock Sequence

In the previous section we demonstrated with high like-
lihood that secondary aftershocks are routinely and signifi-
cantly present in aftershock sequences, but we have not
quantified how many there are. The synthetic aftershock
generation model described earlier can be used to solve for
the percentage of aftershocks that are secondary after partic-
ular mainshock magnitudes and elapsed times. It is also pos-
sible to write several equations such that the number of after-
shocks that are secondary can be easily estimated for any
time and mainshock magnitude. In this section we will de-
rive these equations and the parameters necessary to solve
them.

Variation of Secondary Aftershocks with Time

Both direct and total aftershock sequences follow the
modified Omori law, where the total aftershock sequence is
the sum of the direct and secondary sequences. Therefore,
the general equation for the fraction, S0(t), of ongoing after-
shocks at time t that are secondary is given by

�pDA (t � c )D DS (t) � 1 � , (2)0 �pTA (t � c )T T

where AD, cd, pD, AT, cT, and pT are the modified Omori
parameters for the direct and total aftershock sequences, re-
spectively.

To solve for the fraction of cumulative aftershocks oc-
curing from the time of the mainshock until some end time,
t, that are secondary, we first calculate the cumulative num-
ber of direct aftershocks, CD, and total aftershocks, CT, by
integrating the modified Omori law (equation 1) over time
from 0 to t:

AD 1�p 1�pD DC � (t � c ) � cD D D� �1 � pD (3a)

and

AT 1�p 1�pT TC � (t � c ) � c ,T T T� �1 � pT

p � 1, p � 1.D T (3b)

The fraction of cumulative aftershocks that are sec-
ondary, Sc(t), is then given by

S (t) � 1 � C /C . (4)c D T

To find the average parameters for these equations for Cali-
fornia, we count the cumulative number of M �4.8 after-
shocks that occurred at intervals from 0.02 to 180 days after
M �5.0 California mainshocks. The cutoff of M 4.8 is used
because we determine using the Gutenberg–Richter relation-
ship that this is the smallest magnitude to which all of the
data are complete (in particular there is potentially very low
reporting of small aftershocks immediately after M �7
mainshocks in the data set [K. Hutton, personal comm.,
1999]). Using a cutoff below the completeness magnitude
would reduce the statistical accuracy of the results. We use
all mainshocks that occurred between 1975 and 2000, except
for mainshocks in the Mammoth Lakes volcanic area, be-
cause volcanic and tectonic earthquakes may be governed
by different processes and have different parameters. We
also omit (1) mainshocks that occurred as such early after-
shocks of previous earthquakes that their own aftershocks
could not be reliably determined and (2) mainshocks that
had aftershocks larger than themselves before 180 days had
elapsed. This leaves a total of 73 M �5 earthquakes. We
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determine the aftershock region of each earthquake by vi-
sually selecting the area with highly clustered earthquakes
after the mainshock. In the vast majority of cases, the half-
lengths of these regions are between one and two times the
fault length of the mainshock. After defining the regions we
find a total of 80 recorded M �4.8 aftershocks, for all of the
mainshocks, over 180 days.

Since some of the individual aftershock sequences con-
tain few earthquakes we stack the aftershock data to form a
single average sequence, from which we solve for the mod-
ified Omori parameters. In stacking the data we follow the
premise of Dieterich (1994) and assume that aftershock se-
quences triggered by mainshocks of different magnitudes
have the same duration. In order to normalize the parameters
from the stacked sequence we first divide the number of
aftershocks in the stack by the total number of mainshocks
and then determine the magnitude of the equivalent main-
shock that would produce a sequence of this size. Finding
the magnitude of the equivalent mainshock is done using the
magnitudes of the mainshocks of the individual sequences.
First we note that since aftershock production varies with
mainshock magnitude as 10bM, and since the aftershocks fol-
low the Gutenberg–Richter relationship, we expect that at
any given time the accumulated number of aftershocks
should be equal to , where C(t) is a value thatb(M�C(t)�mc)10
decreases with time and mc is the smallest magnitude after-
shock counted. We find that an appropriate b-value for Cali-
fornia is 1.0 � 0.01, using a least-squares algorithm in
which each data point is weighted by the number of earth-
quakes it represents (Bender, 1983). To solve for this b-value
we use a magnitude completeness cutoff of M 2.6 for south-
ern California and M 2.2 for northern California and elimi-
nate data in the Mammoth Lakes region and north of the
triple junction, both places where we find the completeness
magnitudes to be larger than M 3. We solve for the cutoff
magnitudes by using a v2 test to find the lowest magnitude
for which the Gutenberg–Richter function still adequately
describes the data at the 95% confidence level. For compar-
ison, other authors have found b-values of 0.99 (Wiemer and
Wyss, 2002) and 1.0 (Stein and Hanks, 1998) for southern
California. Using a b-value of 1.0 we then combine all of
the mainshock magnitudes to solve for the equivalent main-
shock magnitude, me,

i�73
m �C�4.8 m(i)�C�4.8e10 � (1/73) 10�

i�1

i�73
m m(i)e10 � (1/73) 10 (5)�

i�1

m � 6.04 ,e

where the m(i)s are the magnitudes of the individual main-
shocks. This means that we expect the average M 6.04 Cali-
fornia mainshock to produce the average number of M �4.8
aftershocks in our stack, which is 80 aftershocks/73 main-

shocks � 1.2 aftershocks, over 180 days. The parameters
that we solve for from the average sequence should then give
us the fraction of aftershocks that are secondary in the av-
erage aftershock sequence that follows an M 6.04 mainshock
and contains no aftershocks larger than the mainshock.

Solving for the Direct Sequence Omori’s Law Parameters.
We solve for the direct Omori parameters AD, cD, and pD for
the average California aftershock sequence by using the sta-
tistical aftershock-generating model described earlier to per-
form a grid search. In this process, a range of parameter
values are tested (0.087–0.11 for AD, 0.01–0.15 for cD, and
1.05–1.4 for pD), then the averaged results of multiple model
runs are compared with the data. We search for the set of
parameters that minimizes the least-squares error between
the synthetic sequences and the data. A set b-value of 1.0 is
also used as input to the aftershock-generating model. The
model also requires one more parameter, Mmin, the magni-
tude of the smallest existing earthquake. We chose to set
Mmin � 0 based on the results of Abercrombie (1995), that
earthquakes at least as small as M 0 have stress drops com-
parable to those of other earthquakes, and on the results of
Richardson and Jordan (2002), that M 0 may be the mini-
mum magnitude for traditional shear-failure earthquakes. If
the true Mmin is less than 0, then more aftershocks are sec-
ondary than the parameters we solve for would predict; con-
versely, if Mmin � 0, fewer aftershocks are secondary. The
effect of a particular change in Mmin depends on the mag-
nitude of the mainshock (if we only consider aftershocks
smaller than the mainshock) and is proportional to (Mmin �
DMmin)/(M � Mmin), where M is the magnitude of the main-
shock. That is, since each magnitude range produces an
equal number of aftershocks, the change in secondary after-
shocks due to a change in Mmin is proportional to the frac-
tional change of magnitude ranges.

Our resulting best-fit direct sequence parameters for
California are AD � 0.0921 daysp�1, pD � 1.37, and cD �
0.085 days (Table 3). This value of AD specifically gives the
number of M �4.8 aftershocks produced by an M 6.04 main-
shock. The value may be adjusted for some other aftershock
magnitude cutoff mc by multiplying it by and ad-4.8�mc10
justed to describe an aftershock sequence initiated by an-
other mainshock with magnitude M by multiplying it by
10M�6.04.

Solving for the Total Sequence Omori’s Law Parameters.
We use a nonlinear least-squares fit to solve for the total
sequence modified Omori law parameters directly from our
average California aftershock sequence data. Sornette and
Sornette (1999) demonstrated that stacking direct and sec-
ondary aftershock sequences actually causes the total after-
shock sequence to have modified Omori law parameters that
vary with time. Specifically, if pD is equal to 1.0 � h, then
pT should vary smoothly with time from 1.0 � h to 1.0 �
h, where h is a value between 0 and 1. AT should also in-
crease with time. This temporal parameter variation is the
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Table 3
Average Modified Omori Law Parameters for California

Aftershock Sequences

Parameter Type Days A, 1�pdays p c, days

Direct sequence All 0.0921 1.37 0.085
Total sequence All 0.116 1.08 0.014
Total sequence 0–1 0.151 0.75 10�5

Total sequence 2–10 0.191 1.27 0.076
Total sequence �10 0.222 1.34 10�5

The parameters are solved for an M 6.04 mainshock and aftershocks M
�4.8. The first row gives parameters for direct aftershock sequences. The
remaining rows give parameters for total aftershock sequences (made up
of direct and secondary aftershocks). Total sequence parameters are given
as a single parameter set that averages over all times and as separated
parameter sets that give more accurate solutions for shorter time periods.

Table 2
Comparison of Probability Map and Coulomb Stress Change Predictions of M �5 Aftershocks

Mainshock
Aftershock Date

(mm/dd/yy)
Aftershock
Magnitude

Real-time
Prob. Map

24-hr
Prob. Map

Coulomb
Map

Joshua Tree 05/18/92 5.0 5 6 2
Joshua Tree 06/28/92 7.3 1 378 108
Landers 06/28/92 5.1 576 NA 213
Landers 06/28/92 5.0 576 NA 229
Landers 06/29/92 5.0 19 NA 57
Landers 06/29/92 5.5 6 NA 66
Landers 07/01/92 5.3 89 15 18
Landers 07/05/92 5.4 2090 2090 1337
Landers 07/24/92 5.0 107 23 393
Landers 08/17/92 5.0 78 88 182
Landers 09/15/92 5.1 50 290 103
Landers 11/27/92 5.4 1 217 471
Landers 12/04/92 5.2 5 301 840
Landers 08/21/93 5.0 72 102 138
Landers 06/16/94 5.0 161 141 1965
Landers 03/18/97 5.1 1 288 413
Landers 10/16/99 7.1 1 291 1262
Hector Mine 10/21/99 5.0 241 27 72
Hector Mine 10/21/99 5.0 230 21 92
Hector Mine 10/22/99 5.0 3 265 92

The first three columns give the mainshock and the date and magnitude of the aftershock. The next three
columns give the ranking of the cell that the aftershock occurred in on the real-time probability map, the 24-hr
probability map, and the Coulomb static stress change map, respectively. A number 1 ranking indicates that the
cell was predicted to be the most likely one to contain an aftershock. “NA” indicates that the aftershock occurred
too early to be eligible for a 24-hr probability map prediction.

likely explanation for the observations of Mogi (1962) and
Gross and Kisslinger (1994) that the later parts of many af-
tershock sequences are not well fit with the same parameters
that describe the initial activity. For simplicity, however, we
first solve for a single set of Omori parameters that best fits
the entire sequence (Table 3; Fig. 3). Our best-fit pT param-
eter is 1.08, the same average pT that was found by Reasen-
berg and Jones (1989) in a study of 62 California aftershock
sequences. Our best-fit AT parameter is lower than that found
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Figure 3. Cumulative number of M �4.8 after-
shocks recorded in the average aftershock sequence
of an M 6.04 California mainshock, as calculated
from the aftershock sequences of 73 M �5 California
mainshocks that occurred between 1976 and 2000.
The data are fit with a single modified Omori law
(dashed line) and a modified Omori law that under-
goes parameter changes at days 2 and 10 (solid line).
The change in Omori parameters with time is caused
by the presence of secondary aftershocks. Parameters
are given in Table 3.
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Figure 4. (A) The percentage of cumulative after-
shocks of an average M 6.04 California mainshock that
should be secondary, as a function of time, as calculated
from equation (4) using the single best-fit modified Omori
law parameter set (dashed line) and best-fit triple set of
total sequence modified Omori law parameters (solid line).
Both fits produce similar results. (B) The percentage of
ongoing aftershocks of an average M 6.04 California
mainshock that should be secondary as a function of time,
as calculated by equation (2) using the best-fit modified
Omori law single parameter set (dashed line) and the best-
fit modified Omori law triple parameter set (solid line). In
this case, the two solutions diverge by nearly 20% after
100 days. The calculation using the triple parameter set is
much closer to results from model simulations (black
dots). Each model data point represents the average of
1000 Monte Carlo trials. Error bars on the black dots in-
dicate the 95% range of values observed with the Monte
Carlo trials.

by Reasenberg and Jones (1989) (0.1163 versus 0.2873).
The AT parameter solved for by Reasenberg and Jones
(1989) is now known to have been biased upward by about
a factor of 2 because they solved for parameters from indi-
vidual aftershock sequences instead of a stack and thus only
used the more active sequences, for which parameters could
be solved for most robustly (L. M. Jones, personal comm.,
2002).

Using the best-fit direct and total parameters and equa-
tion (4), we solve for the fraction of cumulative aftershocks
that are secondary. We obtain reasonable agreement between
these results and the predictions made by Monte Carlo trials
with our synthetic aftershock model (Fig. 4A). Our agree-
ment with the simulation results deteriorates, however, when
we use the same parameters to predict what fraction of on-
going aftershocks should be secondary (equation 2; Fig. 4B).
This is because equation (2) is particularly sensitive to the
temporal changes of the total Omori parameters.

To answer this difficulty we approximate the smooth
change in total sequence Omori parameters by fitting the
total sequence with three different sets of modified Omori
parameters, with the changeover between parameter sets oc-
curring at days 2 and 10 of the sequence. These changeover
days give the best least-squares fit to the data (Fig. 3). We
find that the least-squares error between the modified Omori
law function and the data decreases by 14% when we use
two parameter sets rather than one and decreases by 57%
when we use three parameter sets rather than one. An alter-
native mathematical solution to breaking the sequence into
three parts is derived by Helmstetter and Sornette (2002).

Even with the three sets of parameters the predictions
of equation (2) and the simulation results agree poorly for
durations less than about 0.3 days. This is because the c-
value, which is important at short times, is quite different
for the two sequences, with cD � 0.085 days and cT � 10�5

days. This value for cT holds even if we only look at the first
few data points in the sequence. The problem may be intrin-
sic with the c parameter itself. The parameter is used to
correct for the fact that the power law becomes infinite as t
goes to zero; but is not really a true fix since the modified
Omori law with a nonzero c parameter has a nonzero after-
shock rate even at t � 0. This implies that the mainshock
and aftershock should happen at precisely the same moment,
which, under laws of cause and effect, is clearly nonphysical.
One potential solution is to introduce a Heaviside function
such that there are simply no aftershocks before some time
t0 and a pure power law afterward (Kagan and Knopoff,
1981). The c-parameter problem should not be important
over time periods longer than about half a day.

In general our results indicate that the fraction of after-
shocks that are secondary after an M 6.04 mainshock is not
insignificant, especially for ongoing aftershocks occurring at
least several days after the mainshock. For additional insight
into the solution we also plot separate time series of the
direct, secondary, and total aftershock rates (Fig. 5).

Variation of the Fraction of Aftershocks that are
Secondary with Mainshock Magnitude

In all of our secondary aftershock calculations we are
concerned only with aftershock sequences in which no af-
tershock is larger than the initial mainshock. This restriction
is made because if an aftershock larger than the mainshock
occurs, it is obvious that most aftershocks will be secondary.
Using this restriction, however, causes secondary aftershock
production to vary with mainshock magnitude.
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Figure 6. The average percentage of cumulative
and ongoing aftershocks that are secondary as a func-
tion of mainshock magnitude, after 10 years, for Cali-
fornia aftershock sequences in which no aftershock is
larger than the mainshock.

As noted earlier, each unit magnitude range of earth-
quakes contributes equally to aftershock production, so each
magnitude unit of direct aftershocks is expected to generate
equal fractions of the secondary aftershock population. Thus
if we eliminate all aftershocks larger than the mainshock,
and their progeny, we will eliminate few direct aftershocks,
but the fraction of secondary aftershocks eliminated will be
equal to the fraction of magnitude ranges eliminated. That
is, the fraction of total aftershocks that are secondary will be
proportional to the number of magnitude units that are
smaller than the mainshock. Therefore if we have a mini-
mum magnitude Mmin and a mainshock magnitude M, the
average fraction of aftershocks that are secondary if we only
consider sequences in which all aftershocks are smaller than
M is given by

M � MminS(M) � � S(6.04), (6)
6.04 � Mmin

where S(M) is the fraction of aftershocks that are secondary
after a mainshock of magnitude M and S(6.04) is the average
fraction of earthquakes that are secondary in the aftershock
sequence of an M 6.04 mainshock, which we have already
calculated. (Any other reference mainshock magnitude may
also be used for which the fraction of secondary aftershocks
is known.) Using this equation with Mmin set to 0, we solve
for the average fraction of aftershocks that are secondary for
average California sequences 10 years after the mainshock
as a function of mainshock magnitude. We find that over

50% of aftershocks produced after the eighth day of the se-
quence are secondary for M �5 mainshocks and over 50%
of all aftershocks are secondary for M �7.0 mainshocks that
have aftershock sequences lasting for at least 15 days
(Fig. 6).

Predicting Aftershock Locations

We have shown that many aftershocks are secondary,
especially following large mainshocks. It does not automat-
ically follow, however, that the common practice of calcu-
lating only mainshock-induced stress changes to predict fu-
ture aftershock locations (e.g., Papadimitriou and Sykes,
2001) could be significantly improved by including after-
shock-induced stress changes. This is because the after-
shocks might primarily reinforce, rather than modify, the
mainshock-induced stress change pattern.

One way to determine whether including aftershock-
induced stress changes is important would be to model stress
changes produced by a mainshock and its suite of after-
shocks and then see if the areas of stress increase changed
significantly as the sequence progresses. It would be ex-
tremely difficult to do such a calculation, however, because
many aftershocks are missing from catalogs, especially near
the beginning of sequences; focal mechanisms are often un-
certain and the correct fault plane difficult or impossible to
select; and aftershock rupture inversions may be quite dif-
ficult to calculate. Alternatively, we might carry out the cal-
culation with synthetic mainshock and aftershocks, but such
a model would also be extremely difficult to build. There
are too many modeling unknowns, one of the most important
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being how to set up a realistic fault network with numerous
small faults that is kinematically stable.

It is possible to approach the problem from a different
angle. Namely, if we can demonstrate that a prediction
scheme, any prediction scheme, that neglects mainshock-
induced stress change and uses only information from pre-
vious aftershocks performs significantly better than a stan-
dard prediction scheme using only mainshock-induced stress
changes, then it is clear that the presence of secondary af-
tershocks is of practical importance for the purpose of fore-
casting. Or at least it is clear that the tendency of aftershocks
to cluster with each other in time and space gives quite useful
forecasting information.

Toward this end we compare the predictive abilities of
mainshock-induced static Coulomb stress change calcula-
tions and a time-updated method of our own design, called
the probability map method, that uses no information about
the mainshock but calculates the probability of new after-
shocks occurring in different locations based on the timing,
location, and magnitudes of previous aftershocks. These two
methods do not, of course, exhaust the possibilities of what
we could compare. For the stress change induced directly by
the mainshock, we could also, for example, use dynamic
stress (e.g., Kilb, 2003), viscoelastic stress (e.g., Zeng, 2001;
Freed and Lin, 2002) or pore pressure change (e.g., Bosl and
Nur, 1997). We chose static Coulomb stress change because
it is commonly used and easy to calculate. In addition, static
stress changes can often be used as an estimate for dynamic
and viscoelastic stress changes. Alternative schemes for pre-
dicting aftershock locations based on previous aftershock
parameters include methods proposed by Wiemer (2000)
and Jackson and Kagan (1999). Both of these methods are
more complex and refined than our probability maps and
require a number of additional calculations. In addition, the
method of Wiemer (2000) is based on the idea that the
Gutenberg–Richter b-value and modified Omori p-value
vary spatially over the aftershock zone, which is not a uni-
versally accepted concept; the idea of b-value variation in
particular runs counter to the findings of Woo (1997). So for
simplicity we do not include the Wiemer (2000) and Jackson
and Kagan (1999) methods at this time.

The results of our comparison will be specific to our
study area of California since the quality of aftershock catalog
and mainshock slip inversion data varies from place to place.
We do our comparison for the North Palm Springs, Joshua
Tree, Landers, and Hector Mine sequences, for which we have
gridded static Coulomb stress change data from Stein et al.
(2003). For all of the aftershock sequences we use the after-
shock zone boundaries given in Table 1 and consider as
aftershocks all earthquakes occuring within these boundaries
through the end of December 2001, except for Joshua Tree
aftershocks, which can no longer be independently identified
and are thus truncated at the time of the Landers mainshock,
and Landers aftershocks, which are similarily truncated at
the time of the Hector Mine mainshock.

The Coulomb stress change calculations from Stein et

al. (2002) are done at 7 km depth and resolved onto vertical,
optimally oriented strike-slip fault planes, which are calcu-
lated using regional N7�E maximum compression.

Aftershock Probability Maps

The probability map method is based on the premise
that the location of future aftershocks is significantly influ-
enced by the timing, concentration, and magnitude of pre-
vious aftershocks. The method uses no information about
the fault or slip parameters of the mainshock. We find that
the probability map method works best for sequences with
at least 50 recorded aftershocks.

The essence of the probability map method is that each
point in the aftershock zone is assigned to one of several
predefined regions based on the point’s proximity in time
and space to previous aftershocks. The specific probability
of a particular point hosting a future aftershock is then de-
termined based on the percentage of the preceding group of
N aftershocks that located in the same region. This purely
empirical method of solving for probabilities is not common
with other techniques (e.g., Jackson and Kagan, 1999; Wie-
mer, 2000) but has the significant advantage that unknown
factors such as unrecorded aftershocks and the degree of
location and magnitude assignment error are taken into ac-
count automatically as long as the new set of aftershocks is
affected by these factors to a similar degree as the preceding
N set of aftershocks was.

To define the different aftershock regions we first draw
square influence zones around each aftershock epicenter, as
described earlier. Region 1 is defined as the map area that
is not contained within any influence zone. The other regions
are within the influence zones and are based on the timing
and concentration of previous aftershocks. We take into ac-
count whether an influence zone is older or younger than a
cutoff age t (where the age of an influence zone is defined
as the time elapsed since the aftershock that created it) and
whether the number of influence zones overlapping at a par-
ticular point are above or below a cutoff number L. This
gives us four additional mutually distinct regions. In total
the five regions cover the entire aftershock zone. A given
point in the aftershock zone is in region 1 if it is not in any
influence zone; region 2 if it is in 1 to L � 1 influence zones,
all of which are more than t days old; region 3 if it is in 1
to L � 1 influence zones, at least one of which is less than
t days old; region 4 if it is in L or more influence zones, all
of which are more than t days old; and region 5 if it is inside
of L or more influence zones, at least one of which is less
than t days old.

We limit our number of regions to five in order to main-
tain statistical robustness in the empirical measurement of
the probabilities. The boundaries of the regions will vary
with time, and the regions are noncontiguous. As mentioned
previously, at forecast time the probability of a new after-
shock occurring in any region is set equal to the percentage
of the preceding N aftershocks that occurred in the same
region. It is important that N not be too large, because the
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distribution of aftershocks between the different regions may
change with time. By definition, for example, there are no
aftershocks in regions 2 or 4 before time t has elapsed, so
there is a significant readjustment after time t. In addition,
after a large aftershock there is a sharp, transitory increase
in the probability of aftershocks occurring in regions 3 or 5.
N must be small enough, therefore, to capture these temporal
changes, while at the same time be large enough to produce
reliable statistics. Through trial and error we find that N �
50 is optimal for the nine sequences listed in Table 1. For
smaller aftershock sequences smaller N values may be nec-
essary, but we find that N values smaller than about 25
should not be used.

Similarily to N, the values of L and t must be chosen to
strike a balance. If L is too large then the very densest clus-
ters will be clearly highlighted, but the medium-size and
smallest clusters will all be combined together in the same
region, so the higher probability associated with the medium-
size clusters will not be differentiated. Likewise, making L
too small means the combination of large, medium, and
small clusters in a single region, causing the larger proba-
bility associated with both the large and medium clusters to
be missed. The choice of t is subject to similar constraints.
Through trial and error with the nine aftershock sequences
listed in Table 1, we find that the best balance can be
achieved with L � 5 and t � 0.5 days. For individual se-
quences with fewer aftershocks than average, we find that
even better results may be acheived with L set equal to 3 or
4. The best L and t values for a particular aftershock se-
quence cannot really be determined until the sequence is
over, however, making the values irrelevant for forecasting
purposes. Thus we feel that the most appropriate way to test
the forecasting power of the probability maps against the
Coulomb stress change maps is to use uniform, preset values
of L and t for all of the sequences.

Once we define the regions and estimate the probability
of each region containing aftershocks, we can make a prob-
ability map for the location of future aftershocks. This is
done by first covering the entire aftershock zone with a dense
grid. The smallest earthquake that we use to make our maps
is M 2, which has an influence zone half-length of about
0.11 km, so we use a grid spacing of 0.1 km. The probability
of the next aftershock occurring at each grid point is then
set equal to the probability of an aftershock occurring in the
region that the grid point is in, divided by the total number
of grid points in that region. We choose M 2 as our magni-
tude cutoff for making the maps after finding that smaller
earthquakes have such small influence zones in comparison
to their location error that the very marginal information
gained from using them is not worth the extra calculation
time.

The grid points are so closely spaced that making in-
dividual forecasts for each grid point is practically meaning-
less given location error on the order of 2 km. Therefore we
next cover the map with square cells with dimensions of 2.5
by 2.5 km. A summation is done over all of the grid points

in each cell to get the total probability of the next aftershock
occurring within it.

One disadvantage of our method is that since the re-
gional boundaries change with the occurrence of each new
aftershock, new forecasts have to be issued each time an
aftershock occurs. In practice, it could be difficult to calcu-
late aftershock parameters quickly enough to do this in real
time, especially during the early, active part of an aftershock
sequence. Thus we also make and test probability maps that
are only updated at midnight and used to forecast the next
24 hr of activity. We refer to these as “24-hr probability
maps” and to the maps that are continuosly updated as “real-
time probability maps.”

Evaluating the Aftershock Probability Maps and
Coulomb Stress Change

We next compare how well the probability map and the
static Coulomb stress change map methods predict after-
shock locations. We use the Wilcoxon signed-rank test for
correlated samples (Weiss and Hassett, 1982; Kilb and
Rubin, 2002) to determine whether one method is signifi-
cantly better than the other. To use this test, we first rank
the cells on the probability and Coulomb stress change maps
with a rank of 1 assigned to the cell with the highest assigned
probability or the largest positive stress change, and so on.
If two or more cells on a given map have the same proba-
bility or stress change we assign them the same rank, which
is equal to the rank the lowest cell would have had if they
were unequal. The rank of the cell that an aftershock occurs
in then tells us how well the aftershock was predicted. If an
aftershock occurs in the cell ranked 1 or 2, for example, then
the prediction map did an excellent job at pinpointing the
most likely aftershock location.

For each aftershock in our sample we record the rank
of the cell that it occurred in on the probability map and on
the static Coulomb stress change map. Our sample of after-
shocks excludes the first 50 aftershocks of each sequence
because these are needed to initialize the probability map,
but it includes every other M �2.5 aftershock of the North
Palm Springs, Joshua Tree, and Hector Mine sequences and
every other M �3.5 aftershock of the considerably larger
Landers sequence. A histogram of the static Coulomb stress
change map ranks minus the real-time probability map ranks
(Fig. 7) is made for each sequence. Note that more after-
shocks on the right-hand side indicates that the probability
map is performing better, and vice versa. It can be observed
that all of the histograms contain more aftershocks on the
right-hand side, and the Wilcoxon signed-rank test confirms
with over 99.9% confidence that for each aftershock se-
quence the real-time probability map makes more precise
predictions than the static Coulomb stress change map. That
is, for each case the null hypothesis that differences in cell
ranks are due to simple random fluctuations rather than sys-
tematic differences can be confidently rejected.
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Figure 7. Comparing the aftershock location prediction
precision of the static Coulomb stress change map and prob-
ability map. To do the comparison the cells on each map are
ranked according to their predicted likelihood of containing
an aftershock, with a rank of 1 corresponding to the highest
probability. When an aftershock occurs, the rank of the cell
that it occurred in on the probability map is subtracted from
the rank of the same cell on the static Coulomb stress change
map. A positive answer means that the probability map pre-
dicted the location of the aftershock more accurately, while
a negative answer means that the Coulomb stress change
map made the better prediction. The right-handed skewness
of all of the histograms indicates that the probability map is
performing better overall. Peaks on the right-hand side of
the graphs for the North Palm Springs and Joshua Tree se-
quences indicate where large secondary aftershock clusters
caused concentrated deviations from the Coulomb stress
change predictions.

We also use the Wilcoxon signed-rank test to compare
the predictive ability of the Coulomb stress change map with
the 24-hr updated probability map. The contrast between the
predictive ability of these two maps is on the order of 25%
smaller, but we can still say with over 99.9% confidence that
the 24-hr probability map predicts more precisely than the
static Coulomb stress change map for each of the sequences.

An additional way to compare the two prediction meth-
ods is to plot the total number of cells that need to be iden-
tified by each method in order to forecast the locations of a
given percentage of the aftershocks. As an example, consider
an aftershock zone that is covered by 100 cells. At each
forecast time we want to identify a set of cells such that 50%
of all of the aftershocks in our forecast interval will occur
within some cell that we have identified, but such that the
number of extraneous cells included in our set is kept to a
minimum. The smaller the number of cells that we can iden-
tify and still capture 50% of the seismicity, the better our
forecasting method is performing.

The number of cells that are needed to locate different
percentages of the aftershocks with the different methods
(static Coulomb stress change map, real-time probability
map, and 24-hr probability map) are given in Figure 8. For
reference, each figure also contains a line that indicates the
best prediction that could have been made and a line that
indicates the average prediction that would have resulted
from random guessing. The best-prediction-possible line is
calculated from the completed aftershock sequence by retro-
spectively ranking each cell according to the number of fore-
shocks it ended up containing. The random-guess line and
corresponding 95% confidence intervals are calculated from
1000 Monte Carlo trials.

Figure 8 indicates that in general both the static Cou-
lomb stress change maps and probability maps provide pre-
dictions significantly better than random guessing, and the
general ability of both methods to identify the most densely
populated cells, where about 20%–40% of the aftershocks
will occur, is comparable. The probability maps, however,
are uniformly better than the Coulomb stress change maps
at selecting the cells in which most of the remaining after-
shocks will occur. The only exception is the most scattered
1%–10% of the aftershocks, which neither method shows
any significant ability to anticipate (Fig. 8). We also note
that the shapes of the probability map forecast curves in
Figures 8 and 13 are quite similar to curves that describe
how well the spatial distribution of the small earthquakes in
a catalog measured over a limited time period can predict
the locations of large earthquakes for years afterward (Kafka
and Levin, 2000; Kafka, 2002).

One surprising result is that while the static Coulomb
stress change map performs better than random guessing for
nearly all of the aftershocks in the Landers and Hector Mine
sequences, for some of the Joshua Tree and North Palm
Springs aftershocks the static Coulomb stress change map
actually performs worse than random guessing (Fig. 8, left-
hand side). This is probably due to the near-fault presence
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Figure 8. Comparison of aftershock loca-
tion forecasts made by the probability maps
and by Coulomb stress change calculations. On
the left are calculations done for the entire af-
tershock sequence; on the right are calculations
done for only those aftershocks located away
from the main fault plane. For the Joshua Tree,
Landers, and Hector Mine earthquakes this is
done by eliminating all cells experiencing
more than an absolute value of 8 bars of stress
change from the mainshock; for the smaller
North Palm Springs earthquake we eliminate
all cells experiencing more than 5 bars of stress
change. The percentage of aftershocks are plot-
ted versus the number of (2.5 by 2.5 km) cells
that need to be identified by each forecasting
method in order to have this percentage of af-
tershocks contained. Squares give results for
the real-time probability map forecasts, stars
for the 24-hr probability map forecasts, and tri-
angles for the Coulomb stress change calcula-
tions. For reference, the filled circles give the
best prediction that would have been possible,
measured from the minimum number of cells
needed to cover different percentages of after-
shocks in the completed sequence, and the
empty diamonds give the results that would be
obtained if the likelihood of each cell having
aftershocks were guessed randomly. The ran-
dom-guess results and accompanying 95%
confidence intervals are calculated from 1000
Monte Carlo trials with each aftershock se-
quence. For each sequence, the overall best
forecasting is provided by the real-time prob-
ability maps, with the next best forecasts pro-
vided by the 24-hr probability maps.

of some cells with highly negative static Coulomb stress
changes. These cells will be ranked as the least likely to
contain aftershocks, but since they are in the near-fault re-
gion they may contain many secondary aftershocks. The as-
signments of negative stress change to these cells may also
be in error due to inaccuracies in determining the mainshock
slip distribution; calculated near-fault stress changes are ex-
tremely sensitive to the slip distribution and background
stress orientation used (e.g., Kilb et al., 1997). Thus we
make new graphs for only those aftershocks occurring in
cells experiencing less than an absolute value of 8 bars of
stress change for the Joshua Tree, Landers, and Hector Mine
earthquakes and less than 5 bars of stress change for the
North Palm Springs mainshock (Fig. 8; right-hand side).
This eliminates most of the near-fault aftershocks of each
mainshock. Toda et al. (1998) similarily used an 8-bar cutoff
to eliminate near-fault aftershocks of the 1995 Kobe earth-

quake. We find that the Coulomb map predictions indeed
improve when the near-fault area is eliminated, but remain
worse than the real-time and 24-hr probability map predic-
tions (Fig. 8), with the exception of the 24-hr prediction for
the Hector Mine aftershocks, for which the two predictions
appear comparable. This may be because an unusually large
proportion (2/3) of aftershocks in the Hector Mine sequence
occured in near-fault cells and were eliminated. We also in-
vestigate whether the relative predictive ability of the static
Coulomb stress change and probability maps varies with af-
tershock location and aftershock magnitude. We find that
location is important; even with the near-fault stress change
calculation errors, the static Coulomb stress change map has
a definite advantage in the near-fault region (Fig. 9). This is
not surprising since the mainshock fault location is a primary
input to the Coulomb stress change calculation, while it is
neglected in the probability map calculation.
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Figure 9. Black dots indicate the 50 aftershocks
of the Landers and Hector Mine earthquakes best pre-
dicted by the Coulomb stress change calculations;
open squares indicate the 50 aftershocks best pre-
dicted by the probability map calculations. There is
some overlap between the two data sets, but, as ex-
pected, the Coulomb stress change is better at pre-
dicting aftershocks lying near the mainshock fault
plane (presumably direct aftershocks) while the prob-
ability map is better at predicting the more distributed,
(and presumably secondary), aftershocks. The epicen-
ters of the Landers and Hector Mine earthquakes are
denoted by a large star and circle, respectively.
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Figure 10. Comparison of the 5% of cells iden-
tified to be the most likely to contain the next Joshua
Tree aftershock by the mainshock-induced static Cou-
lomb stress change calculation (black dots) and prob-
ability map method (gray squares) right before the
Landers earthquake occurred. (Note that some of the
circles and squares overlap.) Small and large stars de-
note the epicenters of the Joshua Tree and Landers
earthquakes, respectively.

The relative ability of the two methods to predict an
aftershock does not vary with aftershock magnitude at the
95% confidence level. Just as the probability map method
predicts aftershock locations more precisely than the static
Coulomb stress change map in general, it also more precisely
predicts the locations of the largest aftershocks. Specifically,
it is interesting to note that the real-time probability maps
do a much better job than the Coulomb stress change map
at pinpointing the locations of the Landers (Fig. 10) and
Hector Mine epicenters, primarily a result of the fact that
both of these earthquakes nucleated at some distance from
their respective mainshock faults (hence low Coulomb stress
change) but had active foreshock sequences (hence the
strong identification by the probability map method.) We
note that the actual static stress change at the Hector Mine
epicenter does remain controversial (Harris and Simpson,

2002). Specific comparisons of the two methods for all
M �5 aftershocks are given in Table 2.

One caveat for our results is that we may not have used
the best method to rank cells on the static Coulomb stress
change map. We rank the cells simply according to the
amount of positive Coulomb static stress change they ex-
perience, which is in keeping with how static Coulomb stress
change is often applied to predict aftershock locations. When
Coulomb stress change is applied in conjunction with rate
and state friction theory, however, a stress step changes the
rate of ongoing seismicity by a given multiple, so the prob-
ability of having an aftershock in a given cell actually be-
comes a combined function of the stress change and the pre-
existing seismicity rate. Yet we note that static Coulomb
stress change studies that incorporate the effect of pre-
existing seismicity rates do not appear to show any large
predictive improvement over studies that use static Coulomb
stress changes by themselves (compare Hardebeck et al.
[1998] and Toda et al. [1998]). So we feel justified for now
in simply ranking the cells according to the amount of posi-
tive static Coulomb stress change they experience, with the
idea that this might be refined in future studies.

In addition to the better performance we find here, there
are also other benefits to be gained from using a probability-
map-type method for aftershock prediction rather than, or in
addition to, static Coulomb stress change maps. For one, the
probability map method is potentially faster; it can be used
as soon as 50 aftershocks have been located—there is no
need to wait for a mainshock slip inversion. For another, the
probability maps not only identify which cells are most
likely to contain an aftershock but also assign a specific af-
tershock probability to each cell. We evaluate how well these
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Figure 11. Error distribution of how well the
probability maps predict the actual probability that a
given set of cells will contain the next aftershock. For
each aftershock sequence in Table 1 we measure what
percentage of aftershocks occurs in the sets of prob-
ability map cells that add up to 5%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, and 95% of the
total probability. The sets are specifically chosen such
that the target probability is obtained with the smallest
possible total number of cells. The histogram gives
the differences between the measured percentages and
predicted probabilities. The distribution is skewed to
the right, meaning that the cells assigned the highest
probability of having an aftershock actually contain
slightly more aftershocks than expected and cells as-
signed the lowest probabilities have somewhat fewer
aftershocks than expected. For nearly 90% of the
trials the difference between the predicted probability
and percentage of aftershocks measured is less than
10%.
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Figure 12. Results of using the probability map
to forecast the aftershocks of the Coalinga, Morgan
Hill, Oceanside, Loma Prieta, and Northridge earth-
quakes. The percentage of aftershocks is plotted
against the percentage of the cells covering each af-
tershock zone that need to be identified by the prob-
ability map method in order to forecast them. Results
are given for (A) real-time probability map forecasts
and (B) 24-hr probability map forecasts. Forecasts for
all five of the aftershock sequences show similar suc-
cess rates, suggesting that the probability map method
provides forecasts of a consistent quality.

specific probabilities are estimated by measuring what per-
centage of the aftershocks occur in the sets of cells that add
up to 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90%, and 95% of the total predicted probability. The sets of
cells are chosen such that each set contains as few cells as
possible. We calculate the differences between the predicted
probabilities and the actual aftershock percentages (Fig. 11).
We find that the error distribution is skewed to the right,
meaning that the cells with the highest probabilities tend to
contain a slightly larger percentage of aftershocks than pre-
dicted, and vice versa. Overall nearly 90% of the probability
map probability forecasts are correct to within 10%. We also
find that the probability map method produces predictions
that are consistent in quality for different aftershock se-
quences (Fig. 12).

Finally it is important to note that both the Coulomb
stress change calculations and the probability map method
provide information only on the most likely location of af-
tershock epicenters. They provide no information about how
many aftershocks are likely to occur, about the magnitude
of those aftershocks, or about the extent of area that may be

affected by the aftershocks. Estimates of these properties can
best be made by combining a local Omori’s law with sec-
ondary activity accounted for with the Gutenberg–Richter
relationship and ground-motion calculations. An example of
such a forecasting method is given by Gerstenberger et al.
(2001).

Conclusions

We find that many triggered earthquakes are actually
secondary aftershocks—aftershocks of previous after-
shocks—and are thus not constrained to occur where the
mainshock increased stress. The percentage of aftershocks
in a sequence that are secondary increases with time and
mainshock magnitude. For the average California aftershock



Secondary Aftershocks and Their Importance for Aftershock Forecasting 1447

sequence of an M 6 mainshock with no aftershocks larger
than the mainshock, we find that over 35% of all aftershocks
and over 50% of ongoing aftershocks are secondary 10 days
after the mainshock. For the average M 7 mainshock over
40% of the total and nearly 70% of ongoing aftershocks are
secondary over the same time period.

Because secondary aftershocks are common we should
expect many aftershocks to occur near previous, recent af-
tershocks. We find that a simple method for forecasting the
distributions of aftershock epicenters based solely on pre-
vious aftershock locations, times, and magnitudes predicts
aftershocks better than static Coulomb stress change calcu-
lations. We conclude that the effect of aftershock-induced
stresses on the locations of future triggered earthquakes is
significant.
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