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[1] We test the hypothesis that accelerating moment release (AMR) is a precursor to
large earthquakes, using data from California, Nevada, and Sumatra. Spurious cases of
AMR can arise from data fitting because the time period, area, and sometimes
magnitude range analyzed before each main shock are often optimized to produce the
strongest AMR signal. Optimizing the search criteria can identify apparent AMR even
if no robust signal exists. For both 1950–2006 California-Nevada M � 6.5
earthquakes and the 2004 M9.3 Sumatra earthquake, we can find two contradictory
patterns in the pre–main shock earthquakes by data fitting: AMR and decelerating
moment release. We compare the apparent AMR found in the real data to the apparent
AMR found in four types of synthetic catalogs with no inherent AMR. When
spatiotemporal clustering is included in the simulations, similar AMR signals are found
by data fitting in both the real and synthetic data sets even though the synthetic data sets
contain no real AMR. These tests demonstrate that apparent AMR may arise from a
combination of data fitting and normal foreshock and aftershock activity. In principle,
data-fitting artifacts could be avoided if the free parameters were determined from scaling
relationships between the duration and spatial extent of the AMR pattern and the
magnitude of the earthquake that follows it. However, we demonstrate that previously
proposed scaling relationships are unstable, statistical artifacts caused by the use of a
minimum magnitude for the earthquake catalog that scales with the main shock
magnitude. Some recent AMR studies have used spatial regions based on hypothetical
stress loading patterns, rather than circles, to select the data. We show that previous tests
were biased and that unbiased tests do not find this change to the method to be an
improvement. The use of declustered catalogs has also been proposed to eliminate the
effect of clustering but we demonstrate that this does not increase the statistical
significance of AMR. Given the ease with which data fitting can find desired patterns in
seismicity, future studies of AMR-like observations must include complete tests against
synthetic catalogs that include spatiotemporal clustering.
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1. Introduction

[2] This study examines whether or not accelerating
moment release (AMR) [e.g., Bowman et al., 1998; see
also Mignan et al., 2006a, and references therein] is a
statistically significant precursor to large earthquakes in
California and Nevada. While a number of studies of the
AMR hypothesis have reported positive results, our study is
motivated by concerns that the existence of a number of free
parameters in this hypothesis could lead to false positive
results if the effects of data fitting are not considered
carefully. In particular, Bowman et al. [1998] adjust the

region and time that they inspect before each main shock to
optimize AMR, although theoretically, if a gradual elastic
build up of strain is the true cause of the acceleration, as
claimed by Bowman et al. [1998], the AMR signal should
not be very sensitive to the space and time window.
[3] Searching seismicity catalogs for precursors to large

earthquakes has been an active avenue of research for many
years. This course of research is reasonable because the
obvious temporal and spatial clustering of earthquakes
demonstrates that events interact with each other. This line
of inquiry is also appealing because earthquake catalogs
cover the entire globe, and, although their quality varies as
both a function of space and time, these catalogs are
generally easy to obtain. However, it should be noted that
seismicity represents only part of the deformation processes
involved in plate tectonics and seismogenesis and thus
provides only a limited view into possible precursory
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behavior. Proposed seismicity precursors range from simple
changes in the rate of seismicity such as quiescence and
activation, to those that include spatial patterns such asMogi-
doughnuts [for overviews, see Kanamori, 1981; Reyners,
1981], to complex systems such as M8 [Keilis-Borok and
Kossobokov, 1990] and Pattern Informatics [Tiampo et al.,
2006].
[4] AMR is a more sophisticated version of the activation

hypothesis based on the concept that earthquakes are an
example of a critical point phenomena. According to the
activation hypothesis one expects a precursory increase in
the rate of earthquakes before a large event. In the AMR
hypothesis as formalized by Bowman et al. [1998], the rate
of seismicity increases such that the cumulative Benioff
strain (square root of the seismic moment or energy) [Benioff,
1951] follows a power-law function until the time of an
eventual main shock. Thus it falls under the broad category
of seismicity rate changes. Reasenberg and Matthews
[1988] looked for rate changes before 32 M � 5.3 earth-
quakes in central California (from 1974 to 1986) and Japan
(from 1926 to 1984). If the statistics of each of the
32 sequences they studied are considered separately, then
they found statistically significant (at the 90% confidence
level) activation before 4 of the sequences, statistically
significant quiescence before 3 of the sequences, and no
significant rate changes before the remaining 25 sequences.
Thus, if each sequence were considered as an individual
case study, 7 of them could contribute to the literature on
either activation or quiescence. However, taken as an
ensemble the result is clearly that there is no consistent,
precursory pattern of seismicity rate changes before earth-
quakes. The lesson of Matthews and Reasenberg [1988] is
clear: case studies are not sufficient and we must test such
hypotheses by looking at an entire catalog of data.
[5] Given the results ofMatthews and Reasenberg [1988],

it is reasonable to ask why one should continue to study the
possibility that there are precursory rate changes before
large earthquakes. There are two differences between AMR
and the method used by Matthews and Reasenberg. First,
AMR quantifies the seismicity by the cumulative Benioff
strain while Matthews and Reasenberg used the number of
earthquakes over a given magnitude. This difference is
important if the magnitude-frequency relationship has tem-
poral variations so that the count of earthquakes over a
given magnitude is not proportional to the Benioff strain.
Temporal variations in the magnitude-frequency relation-
ship are certainly possible and some have argued that there
are precursory variations in the b-value from the Gutenberg-
Richter relationship [Reyners, 1981]. The second difference
is that AMR hypothesizes a gradual change in the seismicity
while Matthews and Reasenberg used a method optimized
for sudden changes in the rate. While the method of
Matthews and Reasenberg should detect clear examples of
AMR, it is possible that it could miss some borderline cases.
Thus it is reasonable to do a study specifically of the AMR
hypothesis.
[6] Our study will focus on the AMR hypothesis as

presented by Bowman et al. [1998]. This frequently cited
paper is an important underpinning to current research
because it clearly formalized the AMR concept into a
testable hypothesis and introduced tests to estimate the

statistical significance of the results. These tests used
synthetic seismicity catalogs to determine how often AMR
could be observed by random chance. Thus the paper of
Bowman et al. [1998] was an important step forward. Our
study is motivated by concerns that their tests may have
underestimated the importance of data fitting by treating
each main shock in isolation (rather than considering a
complete catalog of events) and lacked sufficient statistical
power because too few sequences were analyzed. Also,
Bowman et al. [1998] tested their results using synthetic
catalogs that did not include spatiotemporal clustering.
[7] To test the AMR hypothesis, we first investigate the

effects of data fitting by searching for both AMR and
decelerating moment release (DMR) in both the Califor-
nia-Nevada catalog and before the 2004 M9.3 Sumatra-
Andaman Islands earthquake. Second, we compare the
frequency of AMR before large earthquakes in the actual
California-Nevada earthquake catalog with results obtained
using synthetic seismicity catalogs that contain no AMR.
Multiple methods will be used to synthesize these catalogs
to ensure that the results are robust and not dependent on
details of how the synthetic catalog is produced. Third, we
test the stability of scaling relationships between the dura-
tion and spatial extent of apparent AMR patterns and the
magnitude of the earthquakes that follow.
[8] Our tests are more rigorous than the tests done by

Bowman et al. [1998] and other AMR literature in several
ways. Most importantly, we analyze the real data and
synthetics identically, which has not been done in any
prior study of AMR of which we are aware. The data and
synthetics must be treated exactly the same, so that any
differences in the observed AMR behavior are clearly
differences in the catalogs rather than differences in the
analysis. In order to make sure that the analysis is done
uniformly, we use clearly defined search parameters and
avoid ad hoc decisions when determining the amount of
AMR in the data and synthetics. We also compare AMR in
the real catalogs with AMR in synthetic catalogs contain-
ing spatial-temporal clustering and multiple main shocks.
Synthetics used in prior work have considered only one
main shock, and have not included earthquake clustering.
Because our synthetics contain spatial-temporal clustering,
they more closely resemble real seismicity than the uni-
form random seismicity considered by Bowman et al.
[1998] and other prior studies.
[9] In the years since the paper of Bowman et al. [1998]

was published, various authors have proposed changes to
the AMR method. Thus, if we focus only on the paper of
Bowman et al. [1998], our conclusions could be outdated.
For instance, Bowman et al. [1998] searched for AMRwithin
circular regions around the large earthquakes. Bowman and
King [2001] introduced search regions based on the Coulomb
stress transfer pattern from a backslip model of the main
shock, based on the hypothesis that AMR would occur in the
regions that are being loaded by the deformation that loads
the main shock fault plane. The utility of this hypothesis was
tested using California seismicity by Mignan et al. [2006a]
and we will further examine this hypothesis. Mignan et al.
[2006a] also used declustered earthquake catalogs to try to
reduce the effect of clustering and we will test whether or not
this affects the statistical significance of the results. By doing
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so we ensure that our conclusions are applicable to the current
state of the art.

2. Methods of Measuring AMR and Statistical
Significance

[10] Bowman et al. [1998] formalized the search for AMR
by developing a measure of whether the cumulative Benioff
strain before an earthquake is better fit by a power-law
function or a linear function with respect to time (Figure 1).
The cumulative Benioff strain, e(t), is determined for a given
radius around, and during a time period before, a main shock:

e tð Þ ¼
XN tð Þ

i¼1

Ei tð Þ1=2 ð1Þ

where Ei is the energy of the ith event at time t and N(t) is
the number of events up to time t. We assume that log10(E)
is proportional to 1.5 times the magnitude [e.g., Kanamori
and Anderson, 1975] but our results do not depend on the
specific empirical relationship.
[11] Two temporal functions are then fit to the cumulative

Benioff strain curve: a linear function and a power-law
function. The power-law function is:

e tð Þ ¼ Aþ B tc � tð Þm ð2Þ

where tC is the time of the main shock, B is negative, and
0 < m < 1 for the power-law to be concave upward. To fit
equation (2) to equation (1), the parameter A is set to the
cumulative Benioff strain at the time of, and including, the
main shock.
[12] Finally, to produce a measure of the degree of AMR

before a main shock, Bowman et al. [1998] introduced the
parameter C:

C ¼ power law fit root �mean� square error

linear fit root �mean � square error
ð3Þ

If the power-law fits the observed cumulative Benioff strain
better than the linear function, C will be less than 1.

Bowman et al. [1998] require m � 0.8 so that the power-law
function will not approximate a linear function. If the
power-law function does not fit the data as well as the linear
function, C will be greater than 1.
[13] The C value depends on the earthquakes used to

determine e(t) and the earthquakes used depend on the size
of the region selected around the main shock, the time
period before the main shock, the magnitude range used to
select the data, and the minimum number of earthquakes
required to define a pattern. The magnitude range used by
Bowman et al. [1998] is 2 units smaller than the main shock
except when they concluded that the catalog was complete
to a lower level. Because such ad hoc decisions cannot be
automated we will use the magnitude range of 2 units
smaller than the main shock. The region around the main
shock is determined by adjusting the radius of the region
until the minimum C value is obtained, although Bowman et
al. [1998] do not use a uniform search criteria. Bowman et
al. [1998] do not discuss how the time period used before
each main shock is chosen, but since the amount of time
used before each main shock varies, presumably these time
periods have also been optimized to maximize AMR. We
want to essentially follow the protocol of Bowman et al.
[1998] but wish to make the optimization procedure more
uniform so that our results are readily reproducible. We find
that we get very similar results to those of Bowman et al.
[1998] if we use an optimization method of varying the
radius of the region around the main shock from 20 km to
1000 km in steps of 20 km, and varying the start time before
the main shock from the beginning of the catalog to the year
before the main shock in steps of 1 year.
[14] Another issue is whether C varies with the minimum

number of earthquakes required for calculating an AMR
solution (Nmin). Bowman et al. [1998] note that acceleration
cannot be measured with fewer than 4 earthquakes and set
Nmin = 4. Mignan et al. [2006a] use Nmin = 5. Bowman
(personal communication) has suggested, however, that
spuriously low C values might be calculated when data sets
of earthquakes are very small and has suggested Nmin = 10.
We measure how C varies in the real catalog when we use
Nmin values of 4, 6, 8, and 10. We observe a small increase
in mean C when Nmin is increased from 4 to 8. The values
for Nmin = 8 and Nmin = 10 are the same, but with a larger
sample we might observe a difference. Thus, to be conser-
vative, we do all of our comparisons between the synthetics
and real data using both Nmin = 4, in accordance with
Bowman et al. [1998], and Nmin = 10, in accordance with
Bowman’s later advice.
[15] Bowman et al. [1998] define a successful AMR

detection if C � 0.7, while other studies [e.g., Mignan et
al., 2006b] use different threshold values of C. When we do
our tests we look at the full distribution of C values for a
catalog of main shocks, so that we are sensitive to the full
range of apparent AMR behavior.
[16] We present the distributions of C values for the real

and synthetic data as cumulative density functions (CDFs).
If the real catalog exhibits more distinct accelerations than
the synthetic catalogs, the distribution for the real data
should be larger for smaller values of C than the distribution
for the synthetics. Then, in the plots, the CDF curve for the
real data should lie above and to the left of the CDF curve
for the synthetics. To visually estimate the uncertainty in

Figure 1. Example of fitting a power-law (red dashed line)
and linear function (black line) to the data (blue circles). For
this example, which is from an ETAS simulation of an
earthquake catalog, C = 0.4.
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these CDFs, we also plot the 95% confidence regions of the
cumulative density functions as determined by bootstrap
resampling of the distributions. The bootstrap resampling
assumes that the individual C values are independent,
although in reality they are not because the data-selection
regions for multiple main shocks can overlap. Thus the
bootstrap resampling slightly underestimates the true vari-
ability in the CDFs and thus this visual representation may
make the distributions of the real and synthetic data look
more distinct than they actually are.
[17] Finally, we use a Kolmogorov-Smirnov (K-S) test to

test the null hypothesis that the distribution of C for the real
main shocks is not biased toward lower values of C than the
distribution of C for the synthetic main shocks. Because the
distribution of C for the synthetic main shocks is an
observation with uncertainty, this K-S test is done as a
two-sample test. Because we test whether the real distribu-
tion is biased in one direction from the synthetic distribution
it is a one-tailed test. We present the results of this test as the
confidence that we can reject the null hypothesis. When this
confidence is over 95% we accept that more AMR is present
in the real data than in the synthetic catalogs. Note that the
K-S test also assumes that the individual C values are
independent and thus also slightly overestimates the statis-
tical significance of AMR in the real data. Therefore our
tests are conservative with respect to falsely rejecting the

AMR hypothesis and could accept it even when it should be
rejected.

3. Data

[18] When we search for AMR before real earthquakes
we use the ANSS catalog for California and Nevada,
available from the Northern California Earthquake Data
Center (www.ncedc.org/anss, last accessed on March 27,
2006) for the time period from 1950 to 2005. We define the
California and Nevada region as from 31.5� to 42�N and
114� to 124�W (Figure 2).
[19] Bowman et al. [1998] studied the 8 M � 6.5 earth-

quakes occurring after 1950 in California as well as the
1986 ML 5.6 Palm Springs earthquake and 3 smaller and
larger global earthquakes. This is a very small data set with
which to do statistical tests since, as we will show later, it is
so easy to find apparent AMR signals in random data sets.
Bowman et al. [1998] only used main shocks in California,
although Nevada was part of their study region and they
included Nevada seismicity in their searches for AMR. No
reason is given for the lack of Nevada main shocks, so we
add in main shocks located in Nevada. A number of papers
have claimed to observe AMR worldwide, and the smaller
Nevada earthquakes are already included in the analysis so
there are no additional concerns about catalog coverage or
completeness, so including Nevada main shocks should
not influence our results. This increases our sample size to
15 M � 6.5 main shocks, but this is still a very small
sample.
[20] One important question is how large an earthquake

has to be to qualify as a ‘‘main shock’’. We can increase the
sample size by including smaller earthquakes as main
shocks, but only if we can demonstrate that the degree of
acceleration before our new main shocks matches what is
seen before the M � 6.5 events. When Bowman et al.
[1998] analyze smaller events they caution that for smaller
main shocks the seismic acceleration might be obscured by
stress redistribution from larger earthquakes. We evaluate
whether it is possible to drop our main shock magnitude to
M 6 by calculating C values before 42 M � 6 California/
Nevada earthquakes. After eliminating two main shocks
with C values that are >1, one of which was M>6.5, we
measure the linear correlation coefficient between main
shock magnitude and C. We find no significant correlation
(the linear correlation coefficient, r2, is 0.02 for the 40
earthquakes), indicating that lowering the main shock
magnitude to M 6 does not change the AMR behavior of
the sample. Using even smaller main shocks could improve
our statistics further but would require us to use earthquakes
smaller than M 4 to search for the AMR, which would dip
below the magnitude completeness threshold of the 1950–
2005 catalog.
[21] The final step in our data selection is that we limit

our entire earthquake catalog to be post-1950. Bowman et
al. [1998] also use primarily post-1950 data, but for the
1952 Kern County and 1989 Loma Prieta earthquakes they
go back to 1910 to search for acceleration. Bowman et al.
[1998] do note that this can be problematic, as one expects
to see apparent seismicity rate accelerations from 1910 to
1949 because of improved detection of earthquakes. Rou-
tine and consistent magnitude determination began in

Figure 2. Map showing the region analyzed with earth-
quakes M � 4 as black dots, earthquakes M � 6 as red stars,
main shocks analyzed by Bowman et al. [1998] as blue
stars, main shocks included in our test of searching for
AMR based on prestress patterns as blue circles, and faults
and state borders as lines.
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Southern California in 1932 and in Northern California in
1948 [Uhrhammer et al., 1996]. Bowman et al. [1998]
attempt to correct for this by using only M� 5.5 earthquakes
from this period, but the statewide completeness magnitude
was actually > M 6 [Toppozada and Branum, 2002], or as
large as the main shocks themselves, and magnitude errors
were high. Further significant improvements to the seismic
network in the 1970s and late 1990s may also create
artificial acceleration in the catalog, but to a lesser extent
since in many areas of the state the improvement affected
detection of earthquakes smaller than the M � 4 shocks that
we use here.
[22] We find that starting the catalog in 1950 rather than

1910 does not bias our results against the AMR hypothesis.
AMR can be found before the Loma Prieta earthquake
without going back to 1950. For the 1952 Kern County
earthquake it is true that a low C value cannot be found
using only post-1950 data. If true acceleration was occur-
ring before this earthquake it seems odd that it should not be
apparent in the two years immediately preceding the main
shock. Nonetheless, we find that we can simply remove the
Kern County earthquake from the database without affect-
ing our statistical results.
[23] We also note that extending the catalog back in time

for some, but not all earthquakes, is a form of special
pleading (changing the rules for specific cases with no set
guidelines) and this makes it difficult to do a proper
statistical test because one would have to consider the
special pleading for each of the main shocks in the synthetic
data sets. The one exception we make is for our DMR tests
(see below), for which we do go back to 1910 for the Kern
County earthquake. However, the DMR tests are done to
demonstrate the power of data fitting and we do not make
statistical tests of these results.

4. Decelerating Moment Release and the Power of
Data Fitting

[24] The value of C is highly sensitive to the search radius
(Figure 3). Increasing the radius adds spatial clusters of

earthquakes that may contribute to or counteract AMR, and
C changes accordingly. C is also sensitive to the catalog
starting time. Temporal clusters of events near the end of the
catalog contribute to AMR, while those near the beginning
counteract it. Because C is unstable with respect to search
radius, we hypothesize that low C may be found in data sets
with no true AMR, and therefore apparent AMR may be the
result of data fitting.
[25] The power of data fitting to find any desired seis-

micity pattern can be demonstrated by searching for a
different pattern, for example a deceleration of seismicity
rate, prior to the same main shocks that are cited as being
preceded by AMR. If significant decelerating moment
release (DMR) is found before many of the main shocks
cited as examples of AMR, then the most plausible expla-
nation is that both patterns are the result of data fitting.
[26] Searches for DMR require just two changes to the

use of equation (2). First the restriction m � 1 is applied to
produce curves that are concave downward. Second, A is
left a free parameter because fixing it to the cumulative
Benioff strain, including that of the main shock, would
destroy any apparent deceleration. We then use the same
parameter C to measure the strength of the DMR.
[27] To find DMR we first study the eight M � 6.5

California main shocks for which Bowman et al. [1998]
reported AMR, and we use the same earthquake catalog to
search for these seismicity trends. DMR is found before all
8 main shocks, and in each case the DMR is significant
according to Bowman et al.’s [1998] criteria of C < 0.7
(Figure 4). The optimal radii and time windows are similar
to those for AMR, so AMR and DMR are not characteristic
of different length or time scales (Table 1).
[28] We next search for both AMR and DMR before all M

� 6 main shocks that occurred after 1950 in the ANSS
catalog for California and Nevada. Figure 5 shows the
cumulative distribution of the observed curvature parameter
C for the optimal AMR and DMR before each main shock.
Although the C value distributions for AMR and DMR are
not directly comparable statistically because of the difference

Figure 3. C versus radius, for the 1992 Landers earthquake, with both 10 and 20 km search steps, using
all events M � 4. The beginning of the time interval is fixed to 1970, which produces the lowest C value
over all start times and radii. The total number of events, N, is also shown.
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in whether A is fixed or treated as a free parameter, it is clear
that there are nearly as many main shocks with well-resolved
DMR signals (low C) as with well-resolved AMR signals.
Many main shocks exhibit both AMR and DMR for different
data-selection choices.
[29] Another example of data fitting is for the December

2004 M9.3 Sumatra earthquake. Two studies [Jiang and
Wu, 2005; Mignan et al., 2006b] report significant AMR

prior to this event beginning around 1980. FollowingMignan
et al. [2006b], we use shallow events (depth �40 km) from
the ANSS global earthquake catalog from 1965 to 2004
(www.ncedc.org/anss, last accessed on February 16, 2007).
We consider a catalog containing all events M � 4.5, and,
because the M � 4.5 catalog is clearly not complete [see
Mignan et al., 2006b, Figure A1], we also consider a catalog
containing all M � 5.5 events. While Mignan et al. [2006b]

Figure 4. Optimal decelerating moment release (DMR) curves for the 8 California M � 6.5 main
shocks for which Bowman et al. [1998] report AMR. C is the curvature parameter, and R is the optimal
radius.
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search for AMR in regions based on Coulomb stress
modeling, we search for AMR and DMR using circular
regions. We show in section 6.3 that the difference in region
shape does not make a significant difference in the identi-
fication of AMR for California and Nevada.
[30] Both significant AMR and significant DMR (C < 0.7)

are found in the pre–Sumatra earthquake catalogs (Figure 6).
The optimal AMR curve for the M � 4.5 catalog (Figure 6a)
is similar to the curve of Mignan et al. [2006b], verifying
that the difference in region shape is not greatly important.
The C value for the M � 4.5 DMR curve is somewhat
higher than for the M � 4.5 AMR curve, which is probably
the result of the incompleteness of the M � 4.5 catalog. An
incomplete catalog will become more complete through
time, producing an artifact of apparently increasing seis-
micity rate. For the more complete M � 5.5 catalog, the C
values for the optimal AMR and DMR curves are more
similar. The optimal AMR curves begin around 1980, while
the optimal DMR curves begin around 2000. Much of the
data fitting in the Sumatra case depends on two M7.9 events
occurring in June 2000 (one in Sumatra, one in the Indian
Ocean). If these events occur near the end of the selected
time window, apparent AMR is observed, while if these
events occur near the beginning, apparent DMR is observed.
Note that the AMR and DMR curves contain a similarly
large number of events, so no argument can be made that the
AMR curve is more real on the basis of the large number of
events that define it.
[31] There is no significance to the longer time scale of

apparent AMR than DMR for the Sumatra example. For the
eight California events studied by Bowman et al. [1998], the
optimal time scales and length scale for DMR overlap with
those for AMR (Table 1). One example of an earthquake
with a longer time scale of apparent DMR is the 1971 San
Fernando earthquake. Optimal DMR is found starting in
1950 (Figure 4 and Table 1) while optimal AMR starts in
1967 [see Bowman et al., 1998, Figure 6]. In this case, the
data fitting involves a period of low seismicity rate during
1956–1968. If the selected window begins during this time,
apparent AMR is observed, while if this time occurs later in
the time window, apparent DMR is observed. This example
and the Sumatra example demonstrate how fluctuations in
the background seismicity rate can be selected to produce
the desired seismicity pattern.
[32] None of these examples should be taken to imply

that DMR is a real precursory process. Instead, these
examples demonstrate that two contrary signals, accelerat-
ing and decelerating seismicity, can often be found in the

same data set. It seems implausible that true acceleration
and deceleration are simultaneously present, strongly sug-
gesting that both signals are found as a result of data fitting.

5. Synthetic Seismicity Tests

[33] We further consider the possibility that AMR is not a
real physical process, and that it is found before many main
shocks because the time and area windows are adjusted to
optimize for acceleration. If this explanation is correct,
AMR should be found at a similar rate in real catalogs
and in synthetic catalogs in which no real AMR is present.
We perform this test by generating suites of synthetic
catalogs and searching them for AMR in the same way as
the real catalogs. The null hypothesis is that the synthetic
catalogs contain as much AMR as the real catalog. A
rejection of this null hypothesis would support AMR as a
real physical phenomenon. If the null hypothesis cannot be
rejected, this would support our theory that AMR is an
artifact of data fitting. As discussed in section 2, we use the

Table 1. Optimal Length Scale and Time Scale for AMR [from Bowman et al., 1998] and DMR (This Study) for 8 California Main

Shocks

Earthquake, d/mo/yr

AMR Length
Scale, km

[Bowman et al., 1998]

AMR Length
Scale, km

[This Study]
DMR Length
Scale, km

AMR Time
Scale, yr

[Bowman et al., 1998]
AMR Time Scale,
yr [This Study]

DMR Time
Scale, yr

Kern County, 21 Jul 1952 325 360 720 42 42 14
Landers, 28 Jun 1992 150 40 120 22 44 49
Loma Prieta, 18 Oct 1989 200 60 300 79 79 7
Coalinga, 2 May 1983 175 180 140 3 4 12
Northridge, 17 Jan 1994 73 380 120 2 38 6
San Fernando, 9 Feb 1971 100 140 420 4 9 21
Superstition Hills, 24 Nov 1987 275 100 160 6 7 9
Borrego Mtn., 9 Apr 1968 240 280 800 10 9 15

Figure 5. Cumulative distribution of the observed curva-
ture parameterC for the optimal AMR (black lines) andDMR
(red dashed lines) before eachM� 6main shock in theANSS
catalog for California and Nevada, since 1950. The thick
lines show the best result and the thin lines show the 95%
confidence region determined by bootstrap resampling.
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95% confidence level as the test of whether or not the null
hypothesis can be rejected.

5.1. Synthetic Seismicity Catalogs

[34] We generate four types of synthetic test catalogs
using different approaches. These catalogs range from
purely random earthquake times and locations to more
complex catalogs based on two epidemic-type aftershock
sequence (ETAS) models [e.g., Ogata, 1988] that include
both spatiotemporal earthquake clustering and a spatial
distribution of background seismicity based on the real
data. Each synthetic catalog is designed to contain approx-
imately the same number of events as the real catalog, and
to span the same spatial area and duration.
5.1.1. Uniform Random Seismicity Catalogs
[35] The first type of synthetic catalog is the simplest,

consisting of uniform random seismicity. The number of
events in each synthetic catalog matches the number in the
real ANSS CA-NV catalog. The synthetic event locations
and times are randomly selected from a uniform distribution
over the spatial and temporal range of the real ANSS
catalog. The magnitudes are selected randomly, without
replacement, from the distributions of magnitudes in the
real catalog. We generate 10 simulated catalogs in this way,
for a grand total of 420 main shocks. This method produces
synthetic seismicity that matches the number of earthquakes

and the magnitude distribution from the real catalog but
does not produce realistic spatial or temporal clustering
behavior (Figures 7c and 7d).
5.1.2. Random Times/Real Locations Catalogs
[36] The next type of synthetic catalog more resembles

real seismicity in that it contains the same spatial clustering
as the real data. The real earthquake locations are used,
while the synthetic earthquake times and magnitudes are
assigned randomly as before. Again we generate 10 simu-
lated catalogs in this way, containing a total of 420 main
shocks. This method produces synthetic seismicity that
matches the number of earthquakes, magnitude distribution,
and spatial pattern of the real catalog but does not include
realistic temporal clustering (Figures 7e and 7f).
5.1.3. ETAS Synthetic Seismicity Catalogs
[37] The third and fourth sets of synthetic catalogs consist

of ETAS simulations [e.g., Ogata, 1988] that include
spatiotemporal earthquake clustering (Figures 7g–7j). The
times of the background earthquakes are chosen randomly,
using a spatially varying (on a 0.5� grid) background
seismicity rate found from the real ANSS catalog using
the technique of Hainzl et al. [2006]. For the magnitude
distribution for the third set of simulations we assign the
magnitude of each earthquake randomly from the Guten-
berg-Richter distribution with a b value of 1.0, following
Felzer et al. [2002]. For the fourth set of simulations we

Figure 6. Optimal AMR and DMR for the December 2004 M9.1 Sumatra earthquake, using minimum
magnitudes of 4.5 and 5.5. C is the curvature parameter, and R is the optimal radius. Note that the data are
not complete to magnitude 4.5; but that level is included for comparison with the study of Mignan et al.
[2006b].
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Figure 7. Maps and time series of the real data from the ANSS catalog and examples of the four
simulation methods used in the paper. The maps show earthquakes M � 4 as black dots, earthquakes
M � 6 as red stars, and faults and state borders as lines. The time series show the number of
earthquakes per month with the occurrence of earthquakes M � 6 as red stars.
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choose magnitudes randomly from the magnitudes listed in
the ANSS catalog. Note that the total number of earth-
quakes in each ETAS simulation and in the ANSS catalog
will not necessarily be the same, and thus some magnitudes
will be randomly omitted or repeated.
[38] Our synthetic ETAS catalogs do not exactly match the

number of earthquakes in the original catalogs, or the sharp-
ness of the fault system, but do produce spatial and temporal
clustering resembling real data. For the purposes of this study,
we believe that these catalogs are adequate. Further details on
the ETAS simulations are presented in the Appendix A.

5.2. Synthetic Seismicity Results

[39] The cumulative density functions (CDF) of the C
values for the real data and the synthetic catalogs are shown
in Figure 8. The CDF curves, with the 95% confidence
regions estimated using a bootstrap approach, provide a
visual comparison between the results from the real data and

the synthetic catalogs while the statistical significance
estimated using a K-S test provides an objective measure
of whether or not the null hypothesis (that the real catalog
does not produce more AMR than the simulated catalogs)
can be rejected.
[40] It is clear that increasing Nmin has only a small effect

on the results. Higher Nmin does increase the statistical
significance of AMR but in no case does the difference
between Nmin = 4 and Nmin = 10 change whether or not the
null hypothesis can be rejected. For most main shocks, the
number of events in the optimal sequence, N, is greater than
Nmin (Figure 9a). Low values of C arise in sequences with a
range of values of N, and hence are not an artifact of small
data sets (Figure 9a).
[41] However, whether or not we reject the null hypoth-

esis is dependent on whether or not the synthetic catalogs
contain spatiotemporal earthquake clustering. The CDFs for
the two types of synthetic catalogs without spatiotemporal

Figure 8. Cumulative distribution of the observed curvature parameter C for the optimal AMR
determined from the real ANSS catalog (black lines) and each of the four simulation methods (red dashed
lines) before each M � 6 main shock. Results for both Nmin = 4 and Nmin = 10 are shown. The thick lines
show the best result and the thin lines show the 95% confidence region determined by bootstrap
resampling. The confidence is the level at which we can reject the null hypothesis that the C values for
the real data are not lower than the C values for the synthetic data, e.g., the confidence of accepting AMR.
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clustering, the uniform random seismicity and the random-
ized earthquake catalog, show significantly less AMR than
the CDF for the real data at above 95% confidence. For the
two ETAS simulations, which contain spatiotemporal clus-
tering, we cannot reject at 95% confidence the null
hypothesis that the CDFs for the synthetics contain as much
AMR as the CDF for the real data.
[42] The cumulative distribution curves for the real and

ETAS catalogs exhibit a steep slope starting at C � 0,
indicating that both data sets include main shocks preceded
by distinct and well-resolved accelerations with small C.
The CDFs for the synthetic data sets without spatiotemporal
clustering have a shallow slope for very small values of C
and become steep only for larger values of C, indicating that
few of the non-ETAS synthetic main shocks are associated
with AMR with very small (less than 	0.2) C values.
[43] The rate and strength of AMR observed in real and

ETAS seismicity catalogs is the same, despite the fact that
no real AMR exists in the ETAS catalogs. The spatiotem-
poral seismicity clustering contributes to the apparent AMR,
because each earthquake may become a foreshock by
directly or indirectly triggering a main shock. When the
rate of seismicity is higher than usual, the probability of a
main shock being triggered is also higher and this may look
like AMR. We conclude that AMR is observed before many
main shocks both because of the clustering process and

because a search is done for the spatial and temporal extent
of the region that optimizes the AMR signal.

6. Scaling Relationships

[44] The size of the region over which AMR is observed
has been reported to scale with the magnitude of the
eventual main shock [e.g., Bowman et al., 1998]. This
apparent scaling is often used as an argument in support
of AMR as the result of a real physical process, since a
critical region of increased loading would reasonably scale
with the size of the eventual rupture. The time period over
which AMR is observed also appears to scale with main
shock magnitude in their results.
[45] We first investigate the robustness of the proposed

scaling relationship between main shock magnitude and the
size of the region exhibiting AMR. Bowman et al. [1998]
proposed a linear scaling relation between the log of the
optimal region size and main shock magnitude based on
8 M � 6.5 California main shocks, and 4 additional
earthquakes that extend the magnitude range. For only 2
of the 8California events, however, does the confidence region
for the optimal radius intersect the scaling relationship curve
(their Figure 7). We test for AMR for the same 8 California
main shocks, using the radius scaling relation given by
Bowman et al. [1998] and a duration scaling relationship
found from a linear fit of the log of the optimal duration

Figure 9. Parameters for optimal AMR for the real California-Nevada catalog, for Nmin = 4 (red)
and Nmin = 10 (black). (a) Number of events in the optimal sequence, N, versus C. Lines connect
points for the same main shock for different Nmin. (b) Cumulative distribution of the power-law
exponent m. (c) N versus m. (d) C versus m.
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reported by Bowman et al. [1998] versus event magnitude
(Figure 10b). Using catalogs with spatial and temporal win-
dows defined by these scaling relations, we find no significant
AMR (C < 0.7) for the 8 California main shocks.
[46] These results imply that the proposed scaling cannot

be strictly applied, and in particular cannot be used predic-
tively to estimate the spatial or temporal region in which
AMR is expected to occur prior to a given main shock or
anticipated future earthquake. The scaling relation is not
robust because apparent AMR is very sensitive to the radius
and duration of the catalog. The value of C can change
dramatically over a small increase in region size (Figure 3),
as additional earthquake clusters are captured in the region,
changing the shape of the cumulative Benioff strain curve.
Thus, while the optimal radii and durations found by
Bowman et al. [1998] roughly scale with magnitude, the
difference between the optimal values and the best fit curve
translates to a significant difference in C value. Therefore
the scaling relationships cannot be used to predict the data-
selection parameters and avoid the problems of data fitting.
[47] The apparent general increase in optimal region size

(Figure 10a) and duration (Figure 10b) could still be used as
an argument for a physical basis for AMR, even though
particular proposed scaling relationships do not strictly
hold. We test whether this apparent scaling is an artifact

of data selection. Bowman et al. [1998] search for AMR
before each main shock using a catalog with a minimum
magnitude cutoff two magnitude units below the main
shock magnitude. Using a minimum magnitude that scales
with the main shock magnitude can affect the apparent
optimal region size and AMR duration. For a larger main
shock, because of the relative infrequency of larger events,
there will be a lower spatial and temporal density of events
within two magnitude units, and hence a larger area and/or a
longer time period may be needed to accumulate enough
events to observe significant AMR. An apparent scaling of
optimal region and duration with magnitude could follow.
[48] We examine the dependence of the apparent scaling

on minimum magnitude using the same 8 California main
shocks studied by Bowman et al. [1998]. First we find
scaling relationships using the optimal radii and durations
reported by Bowman et al. [1998]. Because we do not
include their additional 4 earthquakes (which would intro-
duce more data-selection issues concerning how these
4 events were chosen), we obtain a somewhat different
scaling relationship for radius versus magnitude, but still
with a positive slope (Figure 10a). We also find a positive
slope for the optimal duration versus magnitude (Figure 10b).
For these 8 events, optimal region size and duration weakly
scale with main shock magnitude, when the optimization is

Figure 10. Optimal AMR radius and duration versus main shock magnitude, for eight M � 6.5
California earthquakes. Scaling relations were found by least-squares fit of log-radius or log-duration
versus magnitude. Correlation coefficient (r) and significance of correlation are also shown. (a) Optimal
radii from Bowman et al. [1998], found using catalogs with minimum magnitude 2 units below main
shock magnitude. Solid line, fit to the 8 California earthquakes; dashed line, Bowman et al.’s [1998] fit
including 4 additional main shocks to extend the magnitude range. (b) Optimal AMR durations from
Bowman et al. [1998] (c and d) The optimal radius and duration for each main shock, found using catalogs
with fixed minimum magnitude of M4.0. Optimization was performed by grid search to minimize the
misfit parameter C.
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performed on catalogs with a minimummagnitude that scales
with main shock magnitude.
[49] Next we find the optimal radii and durations for the

8 main shocks using catalogs with a fixed minimum
magnitude of M 4.0. In this case, we find no positive
correlation of optimal region size or duration with main
shock magnitude. The fits to optimal radius versus magni-
tude (Figure 10c) and optimal duration versus magnitude
(Figure 10d) are both essentially flat, with very small
negative slopes. Similar results are obtained for minimum
magnitudes ranging from M3.0 (probably below the mag-
nitude of completeness) to M4.5 (within 2 magnitude units
of the smallest main shocks). There is no scaling of optimal
region size or duration with main shock magnitude when
the optimization is performed on catalogs with a fixed
minimum magnitude. Therefore the apparent radius and
duration scaling in this data set is an artifact of using a
minimum magnitude that scales with main shock magnitude,
and should not be interpreted in terms of physical processes.

7. Tests of Recent Changes in AMR Detection
Efforts

[50] In the years since the paper of Bowman et al. [1998]
was published, several authors have proposed methodolog-
ical changes to make the search for AMR more effective.

7.1. Coulomb Prestress Regions

[51] One important change is that while Bowman et al.
[1998] searched for AMR within circular regions around the
large earthquakes, Bowman and King [2001] used search
regions based on the Coulomb stress transfer pattern from a
backslip model of the main shock, based on the hypothesis
that AMR would occur in the regions that are being loaded
by the deformation that loads the main shock fault plane.
This method was also advocated by King and Bowman
[2003] and Mignan et al. [2006a, 2006b].
[52] The conceptual model is that the eventual main

shock fault patch remains locked, while the rest of the fault
slips aseismically at depth and in earthquakes on either side
of the locked patch. This is equivalent to modeling back slip
on the main shock plane [e.g., Savage and Burford, 1973].
Only events in areas of positive Coulomb stress change
(DCS) in the build up to the main shock are considered
when searching for AMR, down to a minimum stress value
DCSmin, which is chosen to optimize AMR. We test
whether using a region based on this hypothetical model
of stress loading improves the performance of the AMR
model.
[53] We model prestress for nine M � 6.5 main shocks in

the CA-NV ANSS catalog, using simple main shock slip
models with uniform slip on a single fault plane, following
Bowman and King [2001]. We use published slip models for
the San Fernando [Heaton and Helmberger, 1979], Super-
stition Hills [Wald et al., 1990], Loma Prieta [Wald et al.,
1991], Landers [Wald and Heaton, 1994], Northridge [Wald
et al., 1996], Hector Mine [Ji et al., 2002], and San Simeon
[Ji et al., 2004] earthquakes. We simplified the models by
creating a single fault plane of average strike and dip, and
assigning uniform slip to this plane to match the main shock
moment. To model the backslip we model slip in the
opposite direction from the main shock slip model. For

the Fairview Peak main shock, we use the surface rupture
from Caskey et al. [1996] to determine the location, strike,
and length of the rupture, and the moment tensor of Doser
[1986] to constrain the moment, the fault dip and the rake.
For the Borrego Mountain earthquake we use the surface
rupture reported by Allen et al. [1968] and the moment
tensor of Ebel and Helmberger [1982]. Because our tests
require a minimum of 10 earthquakes before the main shock
in both the full and positive prestress regions (Nmin = 10),
we do not use the Kern County, Rainbow Mountain, Still-
water, and Dixie Valley earthquakes, all of which occurred
early in the catalog.
[54] We compute the static stress change tensor due to

each main shock backslip dislocation, assuming an elastic
half-space, using the computer program DLC (R. W. Simp-
son, personal communication, 2006) based on the subrou-
tines of Okada [1992]. We find DCS on optimally oriented
planes at the hypocenter of each earthquake in the ANSS
catalog occurring prior to the main shock. The optimally
oriented planes are found assuming that the maximum
compressive stress axis of the background stress field is at
45� to the fault plane and that the differential stress is 10
bars, following similar assumptions made by Bowman and
King [2001]. We also assume an effective coefficient of
friction m = 0.4.
[55] For each of the nine M � 6.5 main shocks of the

CA-NV ANSS catalog modeled above, we first search for
AMR and find the lowest value of C using only events
inside the positive prestress region with DCS � DCSmin.
As a control, we then separately determine the lowest value
of C using earthquakes in both the positive and negative
prestress zones by selecting all events with jDCSj �
DCSmin. We find the value of DCSmin that optimizes
the AMR by stepping through 100 different stress values for
DCSmin between 0.0001 bars and the largest positive stress
change modeled for the earthquake. As in our other tests we
find the optimal beginning time by stepping in 1-year
increments. If AMR is a real physical process that occurs
primarily in the positive prestress zone, then the earthquakes
in the positive stress zones should produce a significantly
lower C value than the combined shadowed and positive
stressed earthquakes. On the other hand, if AMR is unre-
lated to prestress, for instance if AMR is an artifact of data
fitting, the two C values will be comparable.
[56] We find that using the positive prestress region does

not significantly improve the performance of the AMR
model. Limiting the data set to events with positive prestress
produced a lower value of C for only three of the main
shocks (Table 2). For 5 of the main shocks, using all of the
earthquakes produced a better result, and there was one tie.
Limiting the search for AMR to the positive prestress areas
therefore does not significantly improve the chances of
finding AMR.

7.2. Fixed Curvature Parameter

[57] The approach of Mignan et al. [2006a] also differs
from our work and the work of Bowman et al. [1998] in two
important aspects. First, while we follow Bowman et al.
[1998] and consider the exponent m in equation (2) as a free
parameter allowed to range between 0 and 0.8, Mignan et
al. [2006a] fixed it to m = 0.3 based on the study of Bufe
and Varnes [1993]. Constraining the exponent m reduces
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the power of data fitting when fitting the power-law to the
data and very low C values will only be found when the
data exhibit power-law type behavior with m � 0.3. This is
equally true for the real data and the synthetic catalogs, thus
this modification would improve the statistical significance
of the AMR hypothesis if the m-exponents in the real data
are actually about 0.3.
[58] If the true value of m � 0.3, we would expect to see

the values of m that optimize AMR for the real data to
cluster around 0.3. However, we do not find that m tends to
be about 0.3 in the real data, but rather that it spans the
range of values (Figure 9b). It could be argued that a larger
catalog could more precisely determine m, but we find a

wide range of optimal m even for data sets with large N
(Figure 9c). It is also interesting that the lowest C values
correspond to very low m (Figure 9d). This may be an
artifact of the definition of C, because when m is very low
the power-law is the most different from a line.
[59] When we constrain m to 0.3 and reanalyze the real

data and the ETAS simulations, very low C values become
more rare in both the real data and the synthetics. Setting m =
0.3 does not improve the statistical significance of the AMR
hypothesis (Figure 11). For both Nmin = 4 and Nmin = 10, the
null hypothesis, that the synthetic data contains as much
AMR as the real data, cannot be rejected with 95%
confidence. Because our results show that the m-values
found in the real data do not cluster near 0.3 and constrain-
ing m to 0.3 does not improve the statistical significance of
the AMR signal, our analysis of a larger data set than that of
Bufe and Varnes [1993] rejects their hypothesis that m is
about 0.3.

7.3. Declustering

[60] Second, Mignan et al. [2006a] declustered their
earthquake catalogs (removed aftershocks) before testing
for AMR. The theory behind this change was that after-
shocks are not necessarily part of the AMR acceleration and
so may detract from detection of the underlying AMR

Table 2. Minimum Value of C for Earthquakes in the Positive

Prestress Regions, Compared to Minimum C for All Eventsa

Main Shock, d/mo/yr
C, Positive

Prestress Events C, All Events

Fairview Peak, 16 Dec 1954 0.28 0.43
Loma Prieta, 18 Oct 1989 0.35 0.43
Hector Mine, 16 Oct 1999 0.61 0.68
San Fernando, 9 Feb 1971 0.52 0.52
San Simeon, 22 Dec 2003 0.7 0.6
Borrego Mtn, 9 Apr 1968 1.0 0.53
Landers, 28 Jun 1992 0.42 0.32
Northridge, 17 Jan 1994 0.85 0.27
Superstition Hills, 24 Nov 1987 0.24 0.05

aLowest C value for each main shock in bold.

Figure 11. Cumulative distribution of the observed
curvature parameter C for optimal AMR, fixing m = 0.3.
Distributions are shown for the real ANSS catalog (black
lines) and the ETAS simulation methods with G-R
magnitudes (red dashed lines) before each M � 6 main
shock. Results for both Nmin = 4 and Nmin = 10 are shown.
The thick lines show the best result and the thin lines show
the 95% confidence region determined by bootstrap
resampling. The confidence is the level at which we can
reject the null hypothesis that the C values for the real data
are not lower than the C values for the synthetic data, e.g.,
the confidence of accepting AMR.

Figure 12. (A) Cumulative number of earthquakes with
M � 4.0 in the ANSS catalog and an ETAS simulation
using a Gutenberg-Richter distribution for the magnitudes.
Solid lines show the complete catalogs while the dashed lines
show the result of declustering. (B) Cumulative distribution
of the observed curvature parameter C for the optimal AMR
determined from the real declustered ANSS catalog (black
lines) and the declustered ETAS simulations (red dashed
lines) before each M � 6 main shock. Results for Nmin = 10
are shown. The thick lines show the best result and the thin
lines show the 95% confidence region determined by
bootstrap resampling. The confidence is the level at which
we can reject the null hypothesis that the C values for the real
data are not lower than the C values for the synthetic data,
e.g., the confidence of accepting AMR.
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signal. To test whether declustering improves the perfor-
mance of the AMR model we used the well known
algorithm of Gardner and Knopoff [1974] to decluster both
the real ANSS catalog and ten synthetic ETAS catalogs,
where the synthetic catalogs were produced with magni-
tudes taken from the Gutenberg-Richter distribution. We
then performed new optimizations for AMR, solving for a
new C value for each main shock that survived the declus-
tering process. As could be expected from our earlier
analysis, declustering caused the overall incidence of low
C values to decrease. Furthermore the amount of decrease
was similar in the CDFs for the real and synthetic declus-
tered catalogs, such that a K-S test using the CDFs based on
the declustered data cannot reject the null hypothesis that
the C values of the synthetic data are as low as the C values
of the real data (Figure 12). Therefore we find no evidence
of the existence of real AMR being concealed by aftershock
sequences.

8. Discussion

[61] Determining free parameters from data is often a
necessary part of hypothesis development. Given the hy-
pothesis that seismicity accelerates before large earth-
quakes, it may be reasonable to determine the region and
time period over which the acceleration takes place from the
data. In AMR studies this is done when the size of the
region and length of the time period are determined by
minimizing the C value for each earthquake. This practice,
frequently referred to as data fitting, carries the danger of
identifying patterns that are not real, but are created by
choosing the free parameters so that the selected data
demonstrates the hypothesized pattern. This danger is
particularly high when the results are unstable with respect
to small variations in the free parameters. Given that the C
value is an unstable function of the selection radius
(Figure 3) and time period, the dangers of data fitting with
respect to AMR must be carefully considered. This insta-
bility also implies that the apparent AMR signals are not the
result of a broad regional process but are created by
optimally selecting a series of spatial clusters that create
an apparent acceleration. The dangers of data fitting are also
illustrated by the fact that contrary patterns of accelerating
and decelerating moment release can be found in the same,
real, data sets by choosing selected radii or time periods.
[62] One way to escape the dangers of data fitting would

be to determine these free parameters by some other means.
Bowman et al. [1998] proposed empirical scaling relation-
ships between the magnitude of the impending main shock
and the size of the search region. However, we have
demonstrated that this empirical relationship cannot be used
to avoid data fitting because when it is used to determine the
data-selection area there is no AMR signal. Furthermore, we
have demonstrated that this proposed scaling relationship is
due to the practice of using a minimum magnitude that
scales with the main shock magnitude. Thus the proposed
scaling relationships are a statistical artifact of the design of
the algorithm and are not evidence of a physical process.
[63] Given the danger that spurious patterns may result

from data fitting, it is critical that we test the statistical
significance of AMR. We carry out these statistical tests by
creating simulated seismicity catalogs, subjecting these

simulated catalogs to exactly the same analysis as was
applied to the real data, and then determining the probability
that the distributions of C values for the real data are lower
than the C values for the synthetic catalogs. In this study, we
carry out this process using four types of seismicity simu-
lations that each serve to illustrate the important elements of
these tests.
[64] The first two seismicity simulations are very sim-

plistic and do not include temporal clustering. The first
simulation method creates seismicity that has a random,
uniform distribution in time and space and magnitudes are
drawn from the real catalog with the rate set to match the
rate of earthquakes in the real data. The second simulation
differs only in that it uses the locations from the real catalog
and thus preserves the spatial characteristics of real data.
While many cases of AMR are found in these random
catalogs, more are found in the real data and the K-S test
rejects the null hypothesis that the synthetic catalogs contain
as much AMR as the real catalog. Thus using these simple
random catalogs would lead to accepting AMR as a real
process. Our second two seismicity simulations do include
temporal clustering, however, in the form of aftershocks
modeled with an ETAS simulator. When this clustering is
included the amount of AMR in the real catalog is not
statistically significantly greater than the amount of AMR in
the synthetic catalogs.
[65] Important lessons can be drawn from a comparison

between the results of our tests using seismicity simulations
with the tests done by Mignan et al. [2006a]. Their
simulations produce distributions of C values where low
C values are rare compared to both the real data and to our
ETAS simulations. This is because their simulation methods
are most similar to our uniform random synthetic seismicity
catalogs, which have events uniformly distributed in space
and time. However, there are also important differences
between their methods and our simple synthetic tests. For
instance, our synthetics more realistically represent a full
seismicity catalog that includes multiple main shocks, while
their catalogs consider individual main shocks in isolation.
In their simulations, a cluster of seismicity may only
contribute to an AMR signal preceding one earthquake. In
our synthetic catalogs, as in real data, a cluster of seismicity
exhibiting a rate increase may contribute to the apparent
AMR of multiple main shocks, making apparent AMR more
common. Mignan et al. [2006a] attempt to compensate for
the lack of clustering in their simulations by declustering
their data. However, declustering algorithms are imperfect
and so are unlikely to produce a truly uniform catalog in
both space and time. Also, the number of earthquakes in
their simulations is set to an artificial number in a nondi-
mensional space rather than being based on the number of
earthquakes in the actual catalog with the same spatial size
and temporal duration as the real data. Thus the approach of
Mignan et al. [2006a] does not generate a realistic simula-
tion of the actual data analysis process and this is one of the
deficiencies that leads them to underestimate the rate at
which low C values will be found by random chance.
[66] Bowman et al. [1998] also test the AMR they find

against AMR in synthetic catalogs but like Mignan et al.
[2006a] their synthetics have no spatiotemporal clustering
and contain only one synthetic main shock per catalog.
Most critically, however, Bowman et al. [1998] also eval-
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uate their synthetics differently than the real data; whereas
the time windows are apparently optimized for the real main
shocks and the minimum magnitude is sometimes adjusted
for the real data, a uniform time window and magnitude
range are used for the synthetics. As a result the C values for
the synthetics produce a very different CDF than is found in
either this study or the study by Mignan et al. [2006a].
[67] The problems associated with not acknowledging

that earthquakes may be part of the AMR for multiple main
shocks in the real catalog is also compounded by Bowman
et al. [1998]. From their simulations, Bowman et al. [1998]
find that the probability of obtaining a C value below 0.7 is
0.5 and then calculate the probability of finding 8 C values
below 0.7 by assuming that the C values are independent.
This makes the joint probability of obtaining 8 C values
below 0.7 equal to 0.58 and makes their result for the real
data appear to be significant at over the 99% confidence
level. In fact, because the seismicity catalog is shared
between all of the earthquakes, if one C value less than
0.7 is found then the chances are very good that other like
values will be found as well. Thus the C values in the real
data are not independent and their approach overestimates
the statistical significance of the signal.
[68] The next two simulation methods we use include

spatiotemporal clustering and the general spatial character-
istics of the real data. The difference between the two
simulations is that one uses a Gutenberg-Richter distribution
to produce the magnitudes while the other uses an empirical
distribution drawn from the real data. The simulation
methods with clustering, as compared to those without
clustering, produce distributions of C values that are even
more similar to the one from the real data. Thus, when
clustering is included, the K-S test rejects the AMR hy-
pothesis. The effect of including clustering in the test is
similar to the conclusions of Michael [1997] who studied
the effect of seismicity clustering on a proposed electro-
magnetic precursor. This is because clustering, which
exists in real data, can help artificial data fitting find
unusual behavior. Therefore it is always important to
include the effects of clustering in prediction tests. The
synthetic catalogs of Bowman et al. [1998] and Mignan et
al. [2006a] do not include spatiotemporal clustering, lead-
ing to poor simulation of C values in their synthetic tests.
The fact that only our ETAS simulated catalogs matched
the amount and distribution of AMR seen in the real
catalog may also indicate, perhaps not too surprisingly,
that the sudden rate increases occurring in aftershock and
foreshock sequences of all sizes may accentuate apparent
accelerations.
[69] We have found that spatiotemporal clustering in the

form of aftershock sequences significantly increases the
amount of apparent AMR that is found in a data set. One
or several large aftershock sequences might lead to both a
stronger apparent AMR signal and an increased chance of a
large earthquake simply because larger earthquakes are
more likely to occur during times of higher seismicity rates.
This is because the higher the earthquake rate, the higher the
probability of at least one large earthquake. Thus the
existence of clustering makes AMR appear to be predictive.
However, if the physical factor producing the apparent
acceleration is aftershock clustering, forecasting of the
probability of large earthquakes can be accomplished by

existing applications of aftershock statistics via an ETAS
[Helmstetter et al., 2006] or STEP [Gerstenberger et al.,
2005] type model.
[70] We have focused on the AMR hypothesis as origi-

nally proposed by Bowman et al. [1998] rather than in one
of many later studies that have proposed modifications in
the hypothesis. One major change came when Bowman and
King [2001] proposed using data selection regions based on
Coloumb stress changes rather than circles around the
impending main shock. By comparing the distribution of
C values found for the circles and stress patterns in the real
data, we show that this modification does not result in an
improved AMR signal.
[71] This result is in contrast to those of Mignan et al.

[2006a], who report lower values of C in positive prestress
regions than in negative prestress regions. Their methodol-
ogy was to determine the optimal circular area, and then to
compare the positive and negative prestress regions within
the optimal circle. However, the positive prestress region
fills a larger portion of the circle than the negative prestress
region (see their Figure 5), so the optimization of AMR in
the circular area is weighted toward optimizing AMR in the
positive prestress region, biasing the result. For 2 of the 9
main shocks, the negative prestress region inside the circle
is so small that it contains <5 events. Further bias is
introduced by assigning a value of C = 1 to the negative
regions when less than 5 events are present, which
guarantees that the positive prestress region will have a
lower C value. Our tests do not contain this bias, since we
optimize the positive prestress catalog and the whole
catalog independently.
[72] There are many other proposed modifications and it

is outside the scope of this study to examine each of them.
Instead, the original authors should subject their proposals
to rigorous statistical tests as we did for the paper of
Bowman et al. [1998]. In addition to fully simulating the
analysis process and using more realistic simulations of the
seismicity, including clustering, these tests must include a
large data set so the tests have sufficient statistical power.
Case studies of individual events, or even several events,
may be useful when developing a hypothesis but are
inadequate for testing purposes.

9. Conclusions

[73] We have shown that apparent AMR in California and
Nevada may result from a combination of data fitting and
the spatiotemporal clustering of earthquakes. We compared
real data with synthetic data sets containing no underlying
AMR, including ETAS simulations with spatiotemporal
clustering of earthquakes, and found the rate and strength
of AMR in the real and ETAS catalogs to be indistinguish-
able. The high rate of observed AMR in all types of
synthetic simulations demonstrates how easily apparent
AMR can be found by optimizing the spatial and temporal
windows. Proposed scaling relationships, which could help
avoid artifacts of data fitting, have turned out to be both
unstable and a statistical artifact of using a minimum
magnitude that scales with the main shock magnitude.
[74] The difference between the amount of AMR found

in random simulations and real data on one hand, and the
similar amount found in the ETAS synthetics and real data
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on the other, demonstrates the contribution of spatiotem-
poral earthquake clustering to apparent AMR. Observed
AMR therefore does not imply any new earthquake
behavior or physics, beyond the known occurrence of
aftershocks and foreshocks. Given that AMR in retrospec-
tive tests appears to be an artifact of data fitting and
earthquake-clustering, we speculate that in forward pre-
dictions AMR would have no more predictive power than
clustering-based forecasts [e.g., Gerstenberger et al., 2005;
Helmstetter et al., 2006; Reasenberg and Jones, 1989,
1994]. We prefer the clustering-based methods because
they parameterize the earthquake clustering more directly.
[75] Our study focused on AMR as defined by Bowman

et al. [1998], the foundation of most current AMR research.
We also explored several more recent modifications, includ-
ing spatial regions based on stress loading, removal of
aftershocks before searching for AMR, and constraining
the curvature parameter (m) to 0.3, and demonstrated that
these modifications do not change the results. Other mod-
ifications to AMR are of course possible, and our study
provides a model for testing any revised definition of AMR.
In particular, if there is any true signal, it should be
significantly stronger in real data than in ETAS simulations.
[76] Our results also have broader implications for the

interpretation of other observed seismicity patterns. The
spatiotemporal clustering of earthquakes makes it easy to
find a desired pattern of seismicity rate changes, especially
when there are adjustable parameters. For example, we
found AMR in most random synthetic catalogs, and also
found two conflicting patterns of acceleration and deceler-
ation in many of the same real data sets. Similarly, other
parameterizations of activation or quiescence, or more
complex patterns, may also be easily found.
[77] Because a particular seismicity rate change pattern

may be easy to find, a collection of retrospective case
studies, even a large collection, does not prove the signif-
icance of an observed pattern. Statistical tests must be
performed on a large data set and/or prospective testing
must be undertaken. When testing the significance of
observed seismicity patterns, the null hypothesis must
include comparisons with synthetic catalogs with spatio-
temporal clustering.

Appendix A: CatalogsWith Synthetic Aftershocks

[78] Producing synthetic catalogs with spatiotemporal
clustering resembling real seismicity is a complex task.
We based our simulations on the ETAS model [e.g., Ogata,
1988] which provides temporal clustering based on the
modified Omori relation. To produce the rate and spatial
distribution of seismicity we need to seed the ETAS clusters
with background earthquakes and then spatially distribute
the events within the clusters.
[79] The times of the background earthquakes are chosen

randomly, using a spatially varying background seismicity
rate found from the real ANSS catalog using the technique
of Hainzl et al. [2006]. The overall spatial character is less
distinct in our synthetic ETAS catalogs than for the real data
because of the 0.5�grid used to compute the spatially
varying rate of background earthquakes (Figures 7a, 7g,
and 7i). A smaller grid size would produce more spatially

focused seismicity patterns but at the expense of less stable
estimation of the background rates.
[80] Since it has been found that 60% of the earthquake

catalog is made up of easily identifiable aftershocks
[Gardner and Knopoff, 1974] the background seismicity
rate should be equal to about 40% of the total seismicity
rate. The ANSS earthquake catalog that we use has an
average total seismicity rate of 67.2 M � 4 earthquakes
per year from 1950 to 2005, leading to an estimated
background rate of 26.9 M � 4 earthquakes/year. In
comparison, the method of Hainzl et al. [2006] gives a
total of 21.3 M � 4 background earthquakes/year. The
discrepancy may be because isolated areas with higher
than average aftershock/background ratios contribute
heavily to the total, and because the main shock rate
estimated by the method of Hainzl et al. [2006] tends to
be too low for catalogs with certain aftershock parameters.
We correct for the difference by multiplying the back-
ground seismicity rates across the board by a factor of
1.26. Grid cells with no seismicity were given a small rate
of main shocks such that in each simulation there is a 50%
probability that one or more earthquakes will occur in the
union of these grid cells.
[81] The ETAS simulations are implemented using the

inverse transform method of Felzer et al. [2002]. In these
simulations each earthquake, including each aftershock,
may produce its own aftershocks. The total number of
aftershocks produced per main shock varies as 	10bM,
where M is main shock magnitude and b is the b parameter
in the Gutenberg-Richter magnitude frequency relationship
[Gutenberg and Richter, 1944]. In the temporal domain the
simulated aftershocks follow the modified Omori law [Utsu,
1961] given by R(t) = K(t + c)�p, where t is time since the
main shock, R is the aftershock rate, c and p are constants,
and K is a value that varies with the magnitudes of the main
shocks in question. Using the results of Felzer et al. [2002]
we set K = k10b(M-Maft), where M is main shock magnitude,
Maft is the magnitude of the smallest aftershock counted,
and k is an activity constant that is independent of magnitude.
[82] In Felzer et al. [2002] the smallest magnitude earth-

quake used in simulations, Mmin, was set to M 0. Here we
increase Mmin to 2.5. This is because we are doing a large
simulation, over the entire states of California and Nevada
for 55 years, and increasing Mmin by a few units of
magnitude saves on computational time substantially. The
change in Mmin, however, also requires a corresponding
change in the direct modified Omori law parameters. Note
that the direct modified Omori parameters, which are the
required input for the ETAS simulation, are the parameters
that describe the rate of triggering of direct aftershocks
only; they do not describe the combination of direct and
secondary aftershocks that make up the full aftershock
sequences observed in the field. It is very difficult to tease
apart individual direct aftershock sequences from complete
aftershock sequences observationally, making most direct
parameters difficult to measure. An exception is the direct p
parameter. It can be derived [Sornette and Sornette, 1999]
and observed [Felzer et al., 2003] that the p parameter for
complete aftershock sequences changes with time, such that
the average p value over a full sequence is close to 1.0 but
the p value fit to data at long times is >1 and tends to
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converge to the underlying direct p value. Felzer et al.
[2003] found that California p values converge to about
1.34 at long times. Thus we set our direct p value to 1.34
and then grid search for the direct values of k and c. In the
grid search the ETAS simulation is run with incremented
parameter values, and the results are checked against the
average ten and thirty day aftershock rates of M � 4.7 main
shocks in California. The best fit parameters found for
Mmin = 2.5 are k = 0.008 days(1�p) and c = 0.095 days.
[83] The ETAS simulations of Felzer et al. [2002] are

performed completely in the temporal domain. Here we add
a spatial dimension by modeling each earthquake as a fault
plane in 3D, with rupture dimensions taken from the
relationships of Wells and Coppersmith [1994]. All faults
are given a 90� dip, and 75% are randomly assigned a 303�
strike (clockwise from north) and 25% a 213� strike, in
accordance with our estimate of major fault trends in
California. Aftershocks are placed in space such that their
probability of being a distance, r, from the closest point on
the fault plane of their main shock varies as 	r�1.3, in
accordance with the empirical results of Felzer and Brodsky
[2006]. Aftershock depth is limited to between 0 and 20 km.
To avoid singularity at r = 0 aftershocks are not allowed
closer than 1 meter from the main shock fault plane.
[84] For the magnitude distribution for the first set of

simulations we follow Felzer et al. [2002], and assign the
magnitude of each earthquake randomly from the Guten-
berg-Richter distribution with a b value of 1.0. For the
second set of simulations, we choose magnitudes randomly
from the magnitudes listed in the ANSS catalog. Note that
the total number of earthquakes in each ETAS simulation
and in the ANSS catalog will not necessarily be the same
because there is Poissonian randomness and positive feed-
back in the generation of ETAS aftershock sequences,
leading to some unpredictability in total catalog size. As a
result, some magnitudes will be randomly omitted or
repeated.
[85] The ANSS catalog has some incompleteness at the

smaller magnitudes and magnitude error, both of which bias
the magnitude distribution upward [Tinti and Mulargia,
1985]. Thus, when we use ANSS magnitudes in the ETAS
simulations, the higher values cause more aftershocks to be
produced, and the simulated catalogs end up somewhat
more active than the real catalog. Whereas the real catalog
contains 42 M � 6 main shocks, for example, the ETAS
simulations with ANSS-source magnitudes have a mean of
52, and a median of 49, M � 6 earthquakes per simulated
catalog. When we perform the simulations using magni-
tudes from the pure G-R distribution, on the other hand,
neither input nor output magnitudes are exaggerated and we
end up with fewer than 42 main shocks; a median of 36 and
a mean of 38 M � 6 earthquakes/simulated catalog. The
standard deviation, however, is quite large, with the smallest
ANSS and G-R simulated catalogs having only 19 and
25 M � 6 earthquakes, respectively, and the largest ones
having 54 and 58. Thus our ETAS simulations span the
number of earthquakes in the real catalog. To insure that the
variability in the total number of earthquakes per simulated
catalog itself will not affect our results we perform trials
with purely random catalogs, altering the total earthquake
rate from 0.25 to 4 times that seen in the real ANSS catalog,
and measuring the value of C for random main shocks in

each trial. We find no correlation between C values and the
total number of earthquakes in the catalog over this range.
In total for this test, we perform 20 ETAS simulations with
each of the magnitude assignment methods described above.
Hence our ETAS simulations are sufficiently accurate for
the purposes of the tests done in this study.
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