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The majority of earthquakes are aftershocks1, yet aftershock physics is not well understood. Most studies suggest that
static stress changes2, 3 trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may play a role4, 5.
We measure the decay of aftershocks as a function of distance from M 2–6 mainshocks in order to clarify the aftershock
triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for
good aftershock visibility, the decay is well fit by a single inverse power law over distances of 0.2 km – 50 km. The
consistency of the trend indicates the same triggering mechanism is working over the entire range. Since static stress
changes at the more distant aftershocks are negligible (< 10 Pa) this suggests that dynamic stresses are triggering all of
these aftershocks. If the linear density of potential hypocenters is constant in space, the observed aftershock density is
consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data
is not well-fit by models that combine static stress change with the evolution of frictionally locked faults3.

Previous studies of how aftershock density decays with distance from the mainshock have found a range of functions, in-
cluding power laws and combinations of power laws with constants and exponentials 6, 7, 8. The ability to study the decay with
improved clarity has recently been provided by the publication of large catalogs with precise earthquake locations. We use
the Shearer et al. relocated 1984-2002 Southern California catalog9. Standard location error is on the order of tens of meters,
similar to that obtained in more localized studies using similar relocation techniques10, 11. For most of the analysis we use
M 2–4 mainshocks and M ≥ 2 aftershocks. We prefer small mainshocks because their large number allows for good statis-
tical averaging and for the use of a small difference between mainshock and aftershock magnitude, which improves catalog
completeness12. For near field measurements, where larger mainshocks are necessary for appropriate range and precision, we
use M 5–6 mainshocks and M ≥ 3 aftershocks. Earthquakes are used as mainshocks if they are sufficiently isolated from larger
earthquakes in time and space (see Methods). To improve statistics we combine the aftershocks of each unit magnitude range
of mainshocks (Figure 1).

The spatial density of a point process can be measured in any dimension. For instance, a density could be the number of
points per length, per area, or per volume. We choose to measure linear density, i.e., the number of aftershocks per length.
This is done by collapsing all of the aftershocks onto a single line with their position on the line equal to their distance from
the mainshock. The number of aftershocks per unit length can then be measured at different positions using standard statistical
tools (See Methods).

We first study earthquakes occurring within 5 min and 50 km of M 2–4 mainshocks. The short time window minimizes
the amount of background seismicity13, i.e., earthquakes not aftershocks of the designated mainshocks. We approximate the
mainshocks as point sources and measure the distance, r, between mainshock and aftershock hypocenters. From 0.2 to 50 km
the data is well fit by

ρ(r) = cr−n, (1)

where n = 1.37 ± 0.1 for the 3 ≤ M < 4 mainshocks and 1.35 ± 0.12 for the 2 ≤ M < 3 mainshocks, and c is a constant
that varies with the number of aftershocks (Figure 2). The error is the 98% confidence interval based on 5000 bootstraps. For
r < 0.2 km the point source approximation is no longer accurate (Supplementary Figures 1 and 2).

We also check the applicability of Equation 1 to longer times. For 30 minutes of post mainshock data the time window is
still short, and an inverse power law, with n = 1.36 ± 0.07, fits the 3 ≤ M < 4 mainshocks. For 2 ≤ M < 3 mainshocks
background seismicity begins to level the decay around 16 km, but a clear inverse power law with n = 1.37 ± 0.15 is evident
at shorter distances (Supplementary Figure 3). Background interference is worse for smaller mainshocks because of lower
aftershock productivity per mainshock. For 30 minutes–25 days of post-mainshock earthquakes there is universal deviation
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Figure 1: Combined aftershocks of M 3-4 mainshocks. To create a composite aftershock data set we move all of the mainshocks to the origin
in space and time and move their aftershocks with them. Data here is for the first 30 min of aftershocks of M 3-4 mainshocks. The gray star
gives the locations of the mainshocks, at the origin.

from a pure power law, but we find that a combined power law/background function fits the data well, at 95% and 65%
confidence (Supplementary Figure 4). This suggests that the rate of aftershock decay with distance does not change with time.

To study the densities of aftershocks within one fault length of the mainshock we use M 5–6 mainshocks that have a Harvard
CMT focal mechanism solution and aftershock distributions that clearly delineate the preferred fault plane. We estimate the
length and width of the faults from empirical relationships14, and center the fault planes at the median aftershock location. We
measure aftershock density from 0.2 km to 12 km from the fault plane, (∼0.05 fault lengths of an M 5 earthquake to 1 fault
length of an M 6 earthquake). As before, we recover an inverse power law, with n = 1.34± 0.25 (Figure 3). The decay levels
out at r < 0.2 km due to error in fault plane location and catalog incompleteness in the very near field.

To verify that the decay we observe is due to aftershock physics we repeat the analysis for the M 2–4 mainshocks with a
time-randomized catalog. This produces a large scatter of points (Figure 4), indicating that the pattern in Figure 2 is aftershock
related. To verify that a pure inverse power law is a good functional fit to the aftershocks we use the Kolmogorov-Smirnoff test
(see Methods). We also test the fit of a composite power law of the form ρ(r) = a1r

−n1 + a2r
−n2 . The Bayesian Information

Critierion15, 16 prefers the single power law fit. To check if our results are catalog dependent we verify that aftershocks in
unrelocated Japanese and Northern California catalogs also follow an inverse power law decay (Supplementary Figure 6).

The consistent aftershock decay relationship observed from distances of 0.2 km to 50 km — from within 0.05 fault lengths
of M 5 mainshocks to over 100 fault length of M 2–3 mainshocks — implies that static stress change is not triggering the
aftershocks. Static stresses decay rapidly. At 3 km from a M 4 earthquake the static stress change is at most 4 kPa, comparable
to tidal stresses that have not been found to trigger earthquakes17; at 10 km from a M 3 the static stress change is 3 orders of
magnitude lower. Triggering by static stress in the near field and dynamic stress in the far field would require a discontinuity
in the aftershock decay. Only uniform triggering by dynamic stress matches the observation of a single, consistent decay that
traverses a wide range of distances.

The hypothesis of aftershock triggering by static stress change has received strong support in part because there is a physical
model, rate and state friction,3 which explains how static stress changes could result in the power law distribution of aftershock
times18. Our observations indicate, however, that this model does not fit the distribution of aftershocks in space. At very short
times, using a point source approximation for the static stress in a whole space, the model predicts that the density of aftershocks
from an earthquake of moment M0 is

ρ(r) = B(r)ec2r−3
(2)

where B(r) is the background seismicity per kilometer per unit time as a function of distance from the mainshock and c2 =
M0/4πAσ where σ is normal stress and A is a frictional constant. At a given distance from a set of mainshocks, the observed
density in a combined dataset is the sum of the individual ones.
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Figure 2: Distance from the mainshock hypocenter vs. aftershock linear density. Aftershocks are M > 2 and occur in the first 5 minutes. (a)
2 ≤ M < 3 mainshocks. The plot uses 7396 mainshocks and 104 aftershocks. (b) 3 ≤ M < 4 mainshocks. The plot uses 2355 mainshocks
and 199 aftershocks. The data is fit with an inverse power law with an exponent of −1.35± 0.12 for the 2 ≤ M < 3 data and −1.37± 0.1
for the 3 ≤ M < 4 data (black lines). The fit is made from 0.2 to 50 km for both plots. For comparison, dashed gray lines give the decay
of maximum seismic wave amplitude, a proxy for dynamic stress, as derived from the standard Richter relationship 22. Data over a wider
distance range is given in Supplementary Figure 1.
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Figure 3: Aftershock density vs. distance from the closest point on the fault planes of M 5–6 mainshocks. The plot uses 9 mainshocks and
104 M > 3 aftershocks that occurred within 2 days of the mainshock. A fit to the data is made from 0.2 to 12 km, or from 0.05 fault lengths
of an M 5 to 1 fault length of an M 6 earthquake. The decay rate shows good agreement with the far field decay found for M 2-4 mainshocks.
Far field aftershocks of these mainshocks is given in Supplementary Figure 5.

Figure 4: Distance vs. earthquake linear density for a time randomized catalog. Distances are measured between 10 random earthquakes from
the mainshock data set and random catalog earthquakes, producing 346 earthquake pairs. Unlike the aftershock data, there is no systematic
decay of density with distance. The sum of squared residuals is lowest when the data is fit with the relationship that linear earthquake density
is constant (solid line), as opposed to linear density equals r (dashed line), which would correspond to hypocenters being located randomly
in 2D, or r2 (dashed-dotted line), which would correspond to random locations in a volume. (See Eq. 3.) The fits are done from 0 to 100 km
which completely covers the range of aftershock data analyzed in this paper.
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The functional form of B(r) can be estimated from distance measurements between random earthquakes (Figure 4). The
scatter is large, but the data can be fit with the same functional form used by others19, 20,

B(r) = c1r
(D−1). (3)

This function describes points randomly scattered on a structure with effective dimension D. We substitute Equation 3 into
Equation 2 and use a gridsearch to find the best fit to the 30 min/16 km aftershocks of M 3-4 mainshocks over a wide parameter
range (see Methods). For the best fit case, with D = 0.1, the summed squared error is 1.4 times worse than for the best
inverse power law fit, and the correlation of the data residuals is high (r = 0.45; 601 data points) (Supplementary Figure 7).
This correlation has less than a 0.01% chance of occurring for a good functional fit. For the residuals of the inverse power
law r = 0.0079. For more realistic values of D=1–2, the fit is much worse (Supplementary Figure 7). The point source
approximation may produce inaccurate representation of the static stress change within one fault length of the source (e.g.
within 1 km for M 4 mainshocks and 0.1 km for M 2 mainshocks), but the functional shape and associated misfit is problematic
at further distances as well.

The poor fit of the data to Equation 2 indicates that the aftershocks are not triggered by static stress change coupled with rate
and state friction, at least at distances beyond one fault length. We also find more model-dependent evidence that the number of
aftershocks triggered varies linearly with dynamic stress change amplitude. Linear aftershock density, ρ(r), can be separated
into geometric and physical terms,

ρ(r) =
Naft
∆r

=
Nhyp
∆r

×
Naft
Nhyp

= cr−1.4 (4)

where Naft is the number of aftershocks in a shell of width ∆r centered at distance r from the mainshock and Nhyp is the
number of potential hypocenters, or places where aftershocks could be triggered, in the same shell. If the background seismicity
is roughly evenly distributed over the active fault population, the functional form of the background earthquake distribution
(Equation 3) can be substituted for the geometric term,

ρ(r) = c1r
D−1c3r

m = cr−1.4. (5)

The trade off between D and m prevents a direct solution for D. We instead estimate D by fitting the data in Figure 4. We find
a better fit with D = 1 than with D = 2 or 3; i.e. the linear density is independent of distance. A D value close to 1 is also
suggested by geometric considerations (see Methods).

If D ≈ 1 the fraction of potential hypocenters triggered decays as r−1.4, i.e. at a rate slightly stronger than 1/r. The
maximum amplitude of seismic waves21 also decay somewhat faster than 1/r. The standard Richter relationship for maximum
short period seismic wave amplitude22, 23 is well-fit by a combination of r−1.2 decay and attenuation with Q=300. Attenuation
is less important at the depth of the aftershocks so the peak amplitude of shaking at depth falls off as r−1.2 (Figure 2). The
power law decay of local seismic amplitude is primarily due to the geometrical spreading of the S-waves, wave focussing, and
surface wave amplitude decay. Given the uncertainty in D, the data is consistent with the probability of triggering an aftershock
being proportional to the amplitude of the seismic wave. Scaling the probability of triggering with the amplitude of the waves
is also consistent with the number of aftershocks triggered increasing by a factor of 10 with each mainshock magnitude unit as
has been observed24, 25, 20.

In summary, the decay of aftershock linear density with distance from M 2–6 mainshocks is well fit by an inverse power
law. The trend exists at least from 0.2 to 50 km for the first 5 minutes of the aftershock sequence. At longer times background
seismicity makes distant aftershocks more difficult to detect, but we can trace the decay trend for at least 16 km for the first
30 minutes, and to at least 10 km for the first 2 days. If the linear density of faults is independent of distance (D ≈ 1) then
the data indicates that the probability of triggering an aftershock is directly proportional to the amplitude of seismic shaking.
Whether or not D = 1, dynamic triggering is preferred by the data. The similarity of aftershock decay from distances of 0.05
to over 100 fault lengths implies a single physical triggering mechanism, and dynamic stress change is the only plausible agent
over most of this range.

Methods
Mainshock and aftershock selection. Earthquakes are used as mainshocks if they are separated from larger earthquakes by at least L km or
by t1 days if the larger earthquake comes first, and t2 days if it comes after. This separation minimizes contamination from aftershocks of
larger earthquakes. L is set at 100 km; larger values (at least up to 500 km) produce the same results. The results are insensitive to the values
of t1 and t2 as long as t1 << t < t2 where t is the time after the mainshock for which we use aftershock data. For t = 5 min and t = 30
min we obtain the same aftershock decay for values of t1 between 3 and 100 days. We use t1 = 3 days, which, within this range, maximizes
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the number of qualified mainshocks, and t2 = 0.5 days. For Supplementary Figure 4, where t can be as large as 25 days, we set t1 = 100
days and t2 = 26 days. For Figure 3, where t = 2 days, we use t1 = 30 days and t2 = 2 days.

We use a uniform distance cutoff for measuring aftershocks of all mainshocks, even though the mainshock magnitudes vary. This is
justified by our observation in agreement with previous authors26, 8 that the distribution of aftershock distances is independent of mainshock
magnitude (Supplementary Figure 8).

Linear density measurement. To measure linear density we use the nearest neighbor method27, in which densities are estimated by
taking the inverse of the width of the box required to contain k neighboring points. The edges of sequential boxes meet between data points.
Smoothing is controlled by k. We find that our results are constant for k = 1–20, although the fitting error increases with k (Supplementary
Figure 9). We use k = 1, which produces the smallest error and minimum bias27. The advantages of the nearest neighbor method are that the
number and location of measurements are determined by the location of the data points, smoothing is uniform, and there are no empty bins.

The definition of linear density averages over all azimuths and is therefore insensitive to radiation pattern.
Catalog completeness. We check catalog completeness by fitting the Gutenberg-Richter magnitude frequency relationship28, with b = 1.

The aftershocks of M 2–3 mainshocks are complete to M 2. For M 3–4 mainshocks 10%– 15% of the smallest aftershocks (M 2.0–2.2)
measured over the first 30 minutes may be missing, but there is no systematic loss with distance and thus no expected effect. Over the first
5 minutes closer to 30% to 40% of the smallest aftershocks of the M 3–4 mainshocks may be missing, but again the loss is not significantly
systematic with distance. Note that this incompleteness results in aftershock productivity appearing to vary as a factor of 6 with mainshock
magnitude in Figure 2, rather than the factor of 10 noted in the literature 24, 25, 20. The M ≥ 3 aftershocks used for the M 5–6 mainshocks
are complete.

Goodness of fit. If the proposed single inverse power law fit is adequate the residuals should have a distribution similar to that of data
drawn from a pure power law distribution via Monte Carlo simulation. We test for similarity between the residuals of simulated data and
the largest robust data set in this study (Southern California 30 min/16 km aftershocks of M3-4 mainshocks) with the Kolmogorov-Smirnoff
test. At 95% and 65% confidence the test indicates that the null hypothesis that the observed and simulated residuals come from the same
distribution cannot be rejected.

We test the composite power law ρ(r) = a1r
−n1 + a2r

−n2 by fitting a1 and a2 with a nonlinear least square algorithm for every value of
n1 and n2 between 0.5 and 3. We find that the single power law is preferred (Bayesian Information Criterion).

Testing rate and state friction. To fit the rate and state friction equation to the aftershock density data we try the parameters: c1:
10−5.72 − 10−1.172, stress drop: 0.1–10 MPa, normal stress 10–1000 MPa, A: 0.005–0.012 3, D: 0.1–2. The resulting range of c2 is
0.008–200 ×(M0/4π) . We achieve a minimum least squared error at D = 0.1, c1 = 0.0034, and c2 = 0.33(M0/4π).

Potential hypocenter distribution effective dimension D. Because of the limited seismogenic depth of Southern California, at length
scales over ∼10 km the system would effectively be 2D if potential hypocenters were randomly scattered throughout the crust. In reality
earthquakes concentrate on planar faults, whose width is also limited by the seismogenic depth. At distances longer than ∼10 km–20 km,
effective D for earthquakes randomly scattered on a fault tends towards 1. Multiple faults increase D, but the concentration of earthquakes in
streaks and clusters on faults decreases it11. Thus we expect D ≈ 1 at large distances, and the lack of any break in the slope of the aftershock
density decay, from 200 m to 100 km, for a wide range of mainshock magnitudes, suggests that D ≈ 1 throughout.
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