
The Gutenberg-Richter magnitude frequency relationship
1976-2005 Global CMT catalog

$\log (N)=a-b M$

Common Errors in b value Calculation

1. Fitting data with linear least squares (LSQ) rather than the simple maximum likelihood (MLE) method (read Aki (1965))
2. Data set is too small
3. Using earthquakes smaller than the catalog completeness threshold
4. Using data with magnitude errors

Error: Data set too small

Error: Using earthquakes smaller than the catalog completeness threshold

Setting the catalog completeness threshold by eye can lead to b value underestimation by 0.1 to 0.2 .

Error: Using data with magnitude errors

- Larger magnitude errors for smaller earthquakes inflate b
- b is best fit at the largest reasonable minimum magnitude

Two Important Questions

- Does b value vary with location? (Wiemer and Wyss, 1997; Schorlemmer and Wiemer, 2004...)
- Does the magnitude-frequency distribution vary on and off of major faults? (Wesnousky et al. 1983; Schwartz and Coppersmith, 1984...)

Location: We calculate b values in $1^{\circ} \times 1^{\circ}$ bins throughout California

Assuming no magnitude error and uniform catalog completeness to M 2.6 , all values are $0.9 \leq b \leq 1.1$.
Same for $0.5^{\circ} \times 0.5^{\circ}, 0.25^{\circ} \times 0.25^{\circ}, 0.1^{\circ} \times 0.1^{\circ}$ bins

Is the magnitude-frequency distribution different on and off of major faults?

Quiz!

Identify the distributions taken from major fault zones*

*Fault zone: +-2 km from entire surface trace of mapped fault. All data from California, 1984-2004

Identify the distributions taken from major fault zones*

*Fault zone: +-2 km from entire surface trace of mapped fault All data from California, 1984-2004

Quiz \#2!

Identify the distributions taken from major fault zones

All distributions are purposely chosen around a large earthquake. All data from California, 1984-2004

Identify the distributions taken from major fault zones

All of these earthquake distributions are purposely centered around a large earthquake in the catalog

But isn't the San Andreas clearly characteristic?

M 6 Parkfield earthquakes are simply an expected part of the G-R distribution (Jackson and Kagan, 2006)

The historic record along the full SAF

Catalog is too incomplete, short, and error-prone, but Gutenberg-Richter is suggested

Conclusions

- Calculating an accurate b value is critical for hazard analysis, physical understanding.
- b value should be solved for with MLE and >2000 quality earthquakes above the catalog completeness threshold.
- There is no evidence for significant b value variation with location or on/off of major faults in California.

Error \#1: Fitting with least squares rather than MLE

b value solved from 100 trials with 500 simulated earthquakes each; true $b=1.0$.

- MLE solutions are closer to the true value of b

Why the value of b is important

Hazard Analysis: Small changes in b => large changes in projected numbers of major earthquakes

Example

$$
\begin{aligned}
& b=1.0,10 \mathrm{M} \geq 7 \text { eqs } \\
& b=0.9-20 \mathrm{M} \geq 7 \text { eqs }
\end{aligned}
$$

$10,000 \mathrm{M} \geq 4$ earthquakes

Earthquake Physics: The magnitude distribution reflects fundamental properties of how earthquakes grow and stop.

Error \#1: Fitting with linear least squares (LSQ) rather than MLE

- LSQ is disproportionately influenced by the largest earthquakes
- MLE weighs each earthquake equally

