

National Institute for Occupational Safety and Health National Personal Protective Technology Laboratory P.O. Box 18070 Pittsburgh, PA 15236

Procedure No. RCT-APR-STP-0048

Revision: 1.1

Date: 24 August 2005

DETERMINATION OF SULFUR DIOXIDE SERVICE LIFE TEST, AIR-PURIFYING RESPIRATORS STANDARD TESTING PROCEDURE (STP)

1. PURPOSE

This test establishes the standard procedure for ensuring that the level of protection provided by the sulfur dioxide service life requirements on chemical cartridges and gas masks air-purifying respirators submitted for Approval, Extension of Approval, or examined during Certified Product Audits meet the certification requirements set forth in 42 CFR Part 84, Subpart G, Section 84.63(a)(c)(d), Subpart I, Section 84.126, Subpart L, Section 84.207, and Subpart KK, Section 84.1157; Volume 60, Number 110, June 8, 1995.

2. <u>GENERAL</u>

This STP describes the Determination of Sulfur Dioxide Service Life Test, Air-Purifying Respirators test in sufficient detail that a person knowledgeable in the appropriate technical field can select equipment with the necessary resolution, conduct the test, and determine whether or not the product passes the test.

3. <u>EQUIPMENT/MATERIAL</u>

- 3.1. The list of necessary test equipment and materials follows:
 - 3.1.1. Miller Nelson Research Model 401 Flow-Temperature-Humidity Control System or equivalent.
 - 3.1.2. Interscan Corporation Model 1247 Sulfur dioxide detector or equivalent.
 - 3.1.3. Radiometer America Multi-Titration System, Model DTS 800, or equivalent.
 - 3.1.4. "The Gilibrator", Primary Standard Airflow Calibrator or equivalent.
 - 3.1.5. Brooks Rotameter, R 215-D for cartridges and R 215-B for canisters.
 - 3.1.6. Gilian Gil-Air-3 Sampling Pump, or equivalent.
 - 3.1.7. Fisher Scientific Gas washing bottle or bubbler, catalog # 03-036 or equivalent.
 - 3.1.8. Erlenmeyer flasks, 250 ml.

Approvals:	1 <u>st</u> Level	2 <u>nd</u> Level	3 <u>rd</u> Level

- 3.1.9. Pipet, 5 ml.
- 3.1.10. Potassium Iodide (KI) (granular).
- 3.1.11. Potassium Iodate (KIO₃) (granular).
- 3.1.12. Starch, Soluble Potato, Powder.
- 3.1.13. Boric Acid (granular).
- 3.1.14. Sodium Thiosulfate (Na₂S₂O₃) (granular), or 0.025N certified Na₂S₂O₃ solution.
- 3.1.15. Vaisala model HMI 31 humidity indicator.
- 3.1.16. Certified cylinder of 5 parts per million (ppm) SO₂ in Nitrogen.
- 3.1.17. Sulfur dioxide cylinder, 99 percent purity.
- 3.1.18. Electronic balance with accuracy of 0.001 grams (g).
- 3.2. Test fixture for mounting cartridges and canisters. The test fixture used is specific to each manufacturer depending on how the cartridge, canister, or powered air-purifying respirator (PAPR), mouth bit, etc. is mounted to the facepiece. The T-end has a 29/42 ground glass joint glued in place. Canisters are tested with their connections glued into the ground glass joint. In most cases the cartridge cups of the respirator are affixed by hot melt glue to PVC pipe tee of appropriate size. PAPR cartridges and canisters are tested on their blower units if possible, or on suitable substitutions, if the unit is too large for the test chamber.
- 3.3. The test chamber consisting of a 12" x 11½" x 7" air tight box, made of ½" plexiglass with 2 hinge type locks on the door opening lined with gasket material. A ½" hole is located on the backside of the test chamber for the introduction of the test concentration and a 1½" hole on the top for the exit of the test fixture and to detect the breakthrough concentration. This fixture is not commercially available.
- 3.4. Resistance tester consisting of a vacuum source capable of delivering 85 liters per minute (lpm), a 6-inch slant manometer, and a 29/42 female ground glass joint. The resistance testers currently being used are located on the silica dust chamber.

4. TESTING REQUIREMENTS AND CONDITIONS

4.1. Prior to beginning any testing, all measuring equipment to be used must have been calibrated in accordance with the manufacturer's calibration procedure and schedule. At a minimum, all measuring equipment utilized for this testing must have been calibrated within the preceding 12 months using a method traceable to the National Institute of Standards and Technology (NIST).

- 4.2. Normal laboratory safety practices must be observed. This includes safety precautions described in the current ALOSH Facility Laboratory Safety Manual.
 - 4.2.1. Safety glasses, lab coats, and hard-toe shoes must be worn at all times.
 - 4.2.2. Work benches must be maintained free of clutter and non-essential test equipment.
 - 4.2.3. When handling any glass laboratory equipment, lab technicians and personnel must wear special gloves which protect against lacerations or punctures.

4.3. SULFUR DIOXIDE BENCH TEST FOR CARTRIDGES

- 4.3.1. Resistance to air flow will be taken before and after each test (see 84.203).
- 4.3.2. Three "as received" cartridges (or pairs of cartridges) will be tested at 64 lpm, continuous air flow, 50 ± 5 percent relative humidity (RH), approximately 25 degrees Celsius (°C), and 500 ppm SO₂.
- 4.3.3. Two cartridges or pairs of cartridges will be equilibrated at room temperature by passing 25 percent RH air through them at 25 lpm for 6 hours and then testing them at 50 percent RH, approximately 25°C, and 32 lpm continuous air flow rate containing 500 ppm SO₂.
- 4.3.4. Two cartridges or pairs of cartridges will be equilibrated at room temperature by passing 85 percent RH air through them at 25 lpm for 6 hours and then testing them at 50 percent RH, approximately 25°C, and 32 lpm continuous air flow rate containing 500 ppm SO₂.

4.4. SULFUR DIOXIDE BENCH TEST FOR CANISTERS

- 4.4.1. Three "as received" canisters will be tested at 64 lpm, continuous air flow, 50 ± 5 percent RH, approximately 25°C, containing 5000 ppm SO₂ for chin style and escape gas mask canisters, or 20,000 ppm SO₂ for front and back mounted canisters.
- 4.4.2. Two canisters will be equilibrated at room temperature by passing 25 percent RH air through them at 64 lpm for 6 hours and then testing them at 50 percent RH, approximately 25°C, and 32 lpm continuous air flow rate containing 5000 ppm SO₂ for chin style and escape gas mask canisters, or 20,000 ppm SO₂ for front and back mounted canisters.
- 4.4.3. Two canisters will be equilibrated at room temperature by passing 85 percent RH air through them at 64 lpm for 6 hours and then testing them at 50 percent RH, approximately 25°C, and 32 lpm continuous air flow rate containing 5000 ppm SO₂ for chin style and escape gas mask canisters, or 20,000 ppm SO₂ for front and back mounted canisters.

4.5. SULFUR DIOXIDE BENCH TESTS FOR PAPR CARTRIDGES/CANISTERS

Page 4 of 18

- 4.5.1. Resistances and airflows for tight fitting PAPR will be taken before and after each test. Airflows only for loose fitting PAPR will be taken before and after each test.
- 4.5.2. Three cartridges (or pairs of cartridges) will be tested at 115 lpm for tight fitting PAPR or 170 lpm for loose fitting PAPR hood or helmet continuous air flow, approximately 25° C, and 50 ± 5 percent RH with 500 ppm SO₂. Tight fitting only PAPR gas mask canisters will be tested at 115 lpm at 5000 ppm SO₂.
- 4.5.3. Two cartridges (or pairs of cartridges) will be equilibrated by passing 115 lpm for tight fitting PAPR or 170 lpm for loose fitting PAPR hood or helmet, continuous air flow through them at approximately 25°C, and 25 percent RH for 6 hours. They will then be tested at 115 or 170 lpm continuous air flow, approximately 25°C, 50 ± 5 percent RH, 500 ppm SO₂. Tight fitting only PAPR gas mask canisters will be tested at 115 lpm at 5000 ppm SO₂.
- 4.5.4. Two cartridges (or pairs of cartridges) will be equilibrated by passing 115 lpm for tight fitting PAPR or 170 lpm for PAPR loose fitting hood or helmet, continuous air flow through them at 25°C, and 85 percent RH for six hours. They will then be tested at 115 or 170 lpm continuous air flow, 25°C, 50 \pm 5 percent RH, 500 ppm SO2. Tight fitting only PAPR gas mask canisters will be tested at 115 lpm at 5000 ppm SO2.
- 4.6 Please refer to Material Safety Data Sheets and the NIOSH Health and Safety Manual for the proper protection and care in handling, storing, and disposing of the chemicals and gases used in this procedure.

5. <u>PROCEDURE</u>

Note: Reference Section 3 for equipment, model numbers and manufacturers. For calibration purposes use those described in the manufacturer's operation and maintenance manuals.

- 5.1. Follow individual instruction manuals for set up and maintenance of equipment used in this procedure prior to beginning testing. Malfunctioning equipment must be repaired or replaced and properly set up and calibrated before starting all tests.
- 5.2. After the manufacturer's specified warmup period, calibrate the SO₂ analyzer using the certified gas cylinder containing the 5 ppm standard as follows:
 - 5.2.1. With a tee in line on the gas cylinder, insert the intake tubing from the analyzer into the tee.
 - 5.2.2. Turn on the 5.0 ppm certified sulfur dioxide cylinder.
 - 5.2.3. Wait till the reading stabilizes, and adjust the span control to read 5 ppm.
- 5.3. Prepare solutions. Commercially purchased certified solutions can be used.

- 5.3.1. 2 percent Potassium Iodide/1 percent Potassium Iodate (KIO₃): Dissolve 20 g potassium iodide and 10 g potassium iodate in 1 liter distilled water. Solution will be pale yellow. Cover flask with aluminum foil or store in light proof container. Discard when the solution is dark yellow in color.
- 5.3.2. 0.025N Sodium Thiosulfate Solution (0.025N Na₂S₂O₃): Dissolve 6.205 g sodium thiosulfate in 1 liter of distilled water.
- 5.3.3. Starch Indicator: Weigh 1g boric acid and add to 100 ml of distilled water, bring to a boil.
 - 5.3.3.1. Weigh 1-2 g potato starch, add cold water to make a paste.
 - 5.3.3.2. Add to boiling water and continue to boil for 1 minute.
 - 5.3.3.3. Discard when starch solution becomes cloudy.
- 5.4. Set up test equipment as shown in Figure 1. In addition to the humidity reading controlled by the Miller Nelson system, the Vaisala HMI 31 humidity indicator sensor is inserted into the air stream via a tee set-up directly prior to the introduction of the gas. This set up is not shown on Figure 1. The humidity reading obtained at this point takes into account tubing length and outside hood air temperature.
- 5.5. Turn on:
 - 5.5.1. Miller Nelson Unit.
 - 5.5.2. Air and water supplies.
 - 5.5.3. SO₂ cylinder.
- 5.6. Establish the test concentration for 500 ppm SO₂.
- 5.7. Measure 50 ml potassium iodate solution into a beaker. For higher concentrations use 100 ml potassium iodate. If solution is pale yellow, add a few drops of 0.025N Na₂S₂O₃ till the solution is colorless. Pour contents into a gas washing bottle. Attach the Gil-Air 3 sampling pump to intake side of the gas bubbler. Connect outlet side of bubbler to Gilibrator. Check 1 lpm flow of the pump pulling through the potassium iodate solution. This setting will be used to sample the sulfur dioxide concentration.
- 5.8. Adjust the rotameter to the appropriate setting necessary to obtain the desired concentration of 500 ppm SO₂. For testing at higher airflows or concentrations, a rotameter delivering a higher flow rate will need to be used.
- 5.9. Connect tubing from the sample side of gas bubbler into the Gil-Air pump and tubing from the inlet side of the gas bubbler into the test gas concentration.

- 5.10. Turn the Gil-Air pump on and sample at 1 lpm for 1 minute.
- 5.11. Remove the gas bubbler, and transfer the solution into an Erlenmeyer flask.
- 5.12. Rinse the gas bubbler with distilled water and transfer the washings into the flask.
- 5.13. Titrate the solution with 0.025N sodium thiosulfate until it is pale yellow.
- 5.14. Add 5 ml of starch indicator. Solution will turn dark blue.
- 5.15. Continue titration until the blue color just disappears. Record milliliters used.
- 5.16. Calculate the concentration of SO_2 in air using the following formula:

Conc. (ppm) = ml of
$$0.025N \text{ Na}_2\text{S}_2\text{O}_3 \text{ x}$$
 standard factor

Standard factor = $305.8 \text{ ppm SO}_2/\text{ml Na}_2\text{S}_2\text{O}_3$

- 5.17. Once the test concentration has been established, testing may begin.
- 5.18. Weigh the cartridge or canister and record the weight.
- 5.19. Take inhalation and exhalation resistances of the cartridge or canister mounted on the facepiece at 85 lpm. See Sections 84.122, 84.203, 84.1157, Title 42, Code of Federal Regulations, Part 84 for breathing resistance requirements. Take airflows of PAPR cartridge or canister mounted on blower assembly.
- 5.20. Mount cartridge or canister onto test fixture and place in testing chamber.
- 5.21. Direct challenge concentration airflow into test chamber. Start timer. Mount small piece of tygon tubing onto the outlet of the test fixture. Insert intake tubing of detector into a slit cut into the side wall of the tubing to allow the detector to sample at the flow rate of the detector without interference from airflow back pressure. Monitor and record upstream and downstream temperatures throughout testing. Record breakthrough values and times.
- 5.22. Run test until breakthrough of 5.0 ppm is observed or minimum service life is surpassed depending on type of cartridge or canister tested.
- 5.23. Dismount cartridge or canister, weigh and record final weight, and take final inhalation and exhalation resistances and PAPR airflows.
- 5.24. Shut off sulfur dioxide cylinder.
- 5.25. Disconnect sulfur dioxide tubing from the rotameter to prevent contamination of the humidity sensor.
- 5.26. Allow clean air to purge through system for 10 15 minutes.

Procedure No. RCT-APR-STP-0048	Revision: 1.1	Date: 24 August 2005	Page 7 of 18
--------------------------------	---------------	----------------------	--------------

5.27. Turn off air and water supply to Miller Nelson system.

6. PASS/FAIL CRITERIA

- 6.1. The criterion for passing this test is set forth in 42 CFR Part 84, Subpart G, Section 84.63(a)(c)(d), Subpart I, Section 84.126, Subpart L, Section 84.207, and Subpart KK, Section 84.1157; Volume 60, Number 110, June 8, 1995.
- 6.2. This test establishes the standard procedure for ensuring that:
 - 84.63 Test requirements; general.
 - (a) Each respirator and respirator component shall when tested by the applicant and by the Institute, meet the applicable requirements set forth in subparts H through L of this part.
 - (c) In addition to the minimum requirements set forth in subparts H through L of this part, the Institute reserves the right to require, as a further condition of approval, any additional requirements deemed necessary to establish the quality, effectiveness, and safety of any respirator used as protection against hazardous atmospheres.
 - (d) Where it is determined after receipt of an application that additional requirements will be required for approval, the Institute will notify the applicant in writing of these additional requirements, and necessary examinations, inspections, or tests, stating generally the reasons for such requirements, examinations, inspections, or tests.

- 84.126 Canister bench tests; minimum requirements.
- (a)(1) Bench tests, except for carbon monoxide tests, will be made on an apparatus that allows the test atmosphere at 50 ± 5 percent relative humidity and room temperature (25 ± 2.5 °C.) to enter the canister continuously at concentrations and rates of flow specified in Tables 5, 6, and 7 of this subpart.
- (2) Three canisters will be removed from containers and tested as received from the applicant.
- (3) Two canisters, other than those described in paragraph (a)(2) of this section, will be equilibrated at room temperature by passing 25 percent relative humidity air through them at 64 liters per minute for 6 hours.
- (4) Two canisters, other than those described in paragraphs (a) (2) and (3) of this section, will be equilibrated at room temperature by passing 85 percent relative humidity air through them at 64 liters per minute for 6 hours.
- (5) The equilibrated canisters will be resealed, kept in an upright position at room temperature, and tested within 18 hours.
- (b) Front-mounted and back-mounted gas mask canisters will be tested and shall meet the minimum requirements set forth in Table 5 of this subpart.
- (c)(1) Front-mounted, and back-mounted, and chin-style canisters designated as providing respiratory protection against gases, ammonia, organic vapors, carbon monoxide and particulate contaminants shall have a window or other indicator to warn the gas mask wearer when the canister will no longer satisfactorily remove carbon monoxide from the inhaled air.
- (2) Other types of front- and back-mounted canisters may also be equipped with a window or other indicator to warn of imminent leakage of other gases or vapors.
- (3) The window indicator canisters will be tested as regular canisters, but shall show a satisfactory indicator change or other warning before the allowable canister penetration has occurred.
- (d) Chin-style gas mask canisters shall meet the minimum requirements set forth in Table 6 of this subpart.
- (e) Escape gas mask canisters shall meet the minimum requirements set forth in Table 7 of this subpart.

Procedure No. RCT-APR-STP-0048	Revision: 1.1	Date: 24 August 2005	Page 9 of 18
--------------------------------	---------------	----------------------	--------------

Tables to Subpart I of Part 84

Table 5-Canister Bench Tests and Requirements for Front-Mounted and Back-Mounted Gas Mask Canisters

[42 CFR part 84, subpart I]

			Test atmosphere				
Canister type	Test condition	Gas or vapor	Concentration (parts per million)	Flow rate (liters per minute)	Number of tests	Maximum allowable penetration (parts per million)	Minimum service life (minutes) ¹
Acid gas	As received Equilibrated	SO_2 Cl_2 SO_2 Cl_2	20,000 20,000 20,000 20,000	64 64 32 32	3 3 4 4	5 5 5 5	12 12 12 12
Organic vapor	As received Equilibrated	CCl ₄ CCl ₄	20,000 20,000	64 32	3 4	5 5	12 12
Ammonia	As received Equilibrated	$\mathrm{NH_3}$ $\mathrm{NH_3}$	30,000 30,000	64 32	3 4	50 50	12 12
Carbon monoxide	As received	CO CO CO	20,000 5,000 3,000	² 64 ⁴ 32 ² 32	2 3 3	(³) (³) (³)	60 60 60
Combination of 2 or 3 of above types ⁵							
Combination of all of above types ⁶							

¹Minimum life will be determined at the indicated penetration.

²Relative humidity of test atmosphere will be 95 \pm 3pct; temperature of test atmosphere will be 25 \pm 2.5° C.

³Maximum allowable CO penetration will be 385 cm³ during the minimum life. The penetration shall not exceed 500 p/m during this time.

⁴Relative humidity of test atmosphere will be 95 \pm 3pct; temperature of test atmosphere entering the test fixture will be 0 + 2.5 $^{\circ}$ C - 0 $^{\circ}$ C.

⁵Test conditions and requirements will be applicable as shown in this table.

⁶Test conditions and requirements will be applicable as shown in this table, except the minimum service lives for acid gas, organic vapor, and ammonia will be 6 min instead of 12 min.

Procedure No. RCT-APR-STP-0048	Revision: 1.1	Date: 24 August 2005	Page 10 of 18
--------------------------------	---------------	----------------------	---------------

Table 6-Canister Bench Tests and Requirements for Chin-Style Gas Mask Canisters [42 CFR part 84, subpart I]

			Test atmosphe	ere		Maximum	
Canister Type	Test condition	Gas or vapor	Concentration (parts per million)	Flow rate (liters per minute)	Number of tests	allowable penetration (parts per million)	Minimum service life (minutes) ¹
Acid gas	As received Equilibrated	SO_2 Cl_2 SO_2 Cl_2	5,000 5,000 5,000 5,000	64 64 32 32	3 3 4 4	5 5 5 5	12 12 12 12
Organic vapor	As received Equilibrated	CCl ₄ CCl ₄	5,000 5,000	64 32	3 4	5 5	12 12
Ammonia	As received Equilibrated	$\mathrm{NH_3}$ $\mathrm{NH_3}$	5,000 5,000	64 32	3 4	50 50	12 12
Carbon monoxide	As received	CO CO CO	20,000 5,000 3,000	² 64 ⁴ 32 ² 32	2 3 3	(³) (³) (³)	60 60 60
Combination of 2 or 3 of above types ⁵							
Combination of all of above types ⁶							

¹Minimum life will be determined at the indicated penetration.

²Relative humidity of test atmosphere will be 95 \pm 3pct; temperature of test atmosphere will be 25 \pm 2.5° C.

³Maximum allowable CO penetration will be 385 cm³ during the minimum life. The penetration shall not exceed 500 p/m during this time.

⁴Relative humidity of test atmosphere will be 95 \pm 3pct; temperature of test atmosphere entering the test fixture will be 0 + 2.5° C - 0° C.

⁵Test conditions and requirements will be applicable as shown in this table.

⁶Test conditions and requirements will be applicable as shown in this table, except the minimum service lives for acid gas, organic vapor, and ammonia will be 6 min instead of 12 min.

Procedure No. RCT-APR-STP-0048 Revision: 1.1 Date: 24 August 2005	Page 11 of 18
---	---------------

Table 7-Canister Bench Tests and Requirements for Escape Gas Mask Canisters [42 CFR part 84, subpart I]

		Test atmosphere				Maximum	
Canister type	Test condition	Gas or vapor	Concentration (parts per million)	Flow rate (liters per minute)	Number of tests	allowable penetration (parts per million)	Minimum service life (minutes) ¹
Acid gas	As received Equilibrated	SO_2 Cl_2 SO_2 Cl_2	5,000 5,000 5,000 5,000	64 64 32 32	3 3 4 4	5 5 5 5	12 12 12 12
Organic vapor	As received Equilibrated	CCl ₄ CCl ₄	5,000 5,000	64 32	3 4	5 5	12 12
Ammonia	As received Equilibrated	NH ₃ NH ₃	5,000 5,000	64 32	3 4	50 50	12 12
Carbon monoxide	As received	CO CO CO	10,000 5,000 3,000	² 32 ⁵ 32 ² 32	2 3 3	(³) (³) (³)	⁴ 60 60 60

¹Minimum life will be determined at the indicated penetration.

84.207 Bench tests; gas and vapor tests; minimum requirements; general.

- (a) Bench tests will be made on an apparatus that allows the test atmosphere at 50 ± 5 percent relative humidity and room temperature, approximately 25 °C, to enter the cartridges continuously at predetermined concentrations and rates of flow, and that has means for determining the test life of the cartridges.
- (b) Where two cartridges are used in parallel on a chemical cartridge respirator, the bench test will be performed with the cartridges arranged in parallel, and the test requirements will apply to the combination rather than to the individual cartridges.
- (c) Three cartridges or pairs of cartridges will be removed from containers and tested as received from the applicant.
- (d) Two air purifying cartridges or pairs of cartridges will be equilibrated at room temperature by passing 25 percent relative humidity air through them at the flow rate of 25 liters per minute (l.p.m.) for 6 hours.
- (e) Two air purifying cartridges or pairs of cartridges will be equilibrated by passing 85 percent relative humidity air through them at the flow rate of 25 l.p.m.

²Relative humidity of test atmosphere will be 95 \pm 3pct; temperature of test atmosphere will be 25 \pm 2.5° C.

³Maximum allowable CO penetration will be 385 cm³ during the minimum life. The penetration shall not exceed 500 p/m during this time.

⁴If effluent temperature exceeds 100° C during this test, the escape gas mask shall be equipped with an effective heat exchanger.

⁵Relative humidity of test atmosphere will be 95 \pm 3 pct; temperature of test atmosphere entering the test fixture will be 0 + 2.5° C - 0° C.

- (f) All cartridges will be resealed, kept in an upright position, at room temperatures, and tested within 18 hours.
- (g) Cartridges will be tested and shall meet the minimum requirements set forth in Table 11 of this subpart.

Tables to Subpart L of Part 84
Tables 9 and 10 [Reserved]
Table 11-Cartridge Bench Tests and Requirements
[42 CFR part 84, subpart L]

Cartridge	Test condition	Test at	mosphere	Flowrate	Number of	Penetration ¹	Minimum life ²
		Gas or vapor	Concentration (p.p.m.)	(l.p.m.)	tests	(p.p.m.)	(min.)
Ammonia	As received	NH_3	1000	64	3	50	50
Ammonia	Equilibrated	NH_3	1000	32	4	50	50
Chlorine	As received	Cl_2	500	64	3	5	35
Chlorine	Equilibrated	Cl_2	500	32	4	5	35
Hydrogen chloride	As received	HCl	500	64	3	5	50
Hydrogen chloride	Equilibrated	HCl	500	32	4	5	50
Methylamine	As received	CH ₃ NH ₂	1000	64	3	10	25
Methylamine	Equilibrated	CH ₃ NH ₂	1000	32	4	10	25
Organic vapors	As received	CCl ₄	1000	64	3	5	50
Organic vapors	Equilibrated	CCl ₄	1000	32	4	5	50
Sulfur dioxide	As received	SO_2	500	64	3	5	30
Sulfur dioxide	Equilibrated	SO_2	500	32	4	5	30

¹Minimum life will be determined at the indicated penetration.

- 84.1157 Chemical cartridge respirators with particulate filters; performance requirements; general. Chemical cartridge respirators with particulate filters and the individual components of each such device shall, as appropriate, meet the following minimum requirements for performance and protection:
- (a) <u>Breathing resistance test.</u> (1) Resistance to airflow will be measured in the facepiece, mouthpiece, hood, or helmet of a chemical cartridge respirator mounted on a test fixture with air flowing at a continuous rate of 85 liters per minute, both before and after each test conducted in accordance with paragraphs (d) through (f) of this section.

²Where a respirator is designed for respiratory protection against more than one type of gas or vapor, as for use in ammonia and in chlorine, the minimum life shall be one-half that shown for each type of gas or vapor. Where a respirator is designed for respiratory protection against more than one gas of a type, as for use in chlorine and sulfur dioxide, the stated minimal life shall apply.

Procedure No. RCT-APR-STP-0048	Revision: 1.1	Date: 24 August 2005	Page 13 of 18
--------------------------------	---------------	----------------------	---------------

(2) The maximum allowable resistance requirements for chemical cartridge respirators are as follows:

Maximum Resistance [mm. water-column height]

	Inha		
Type of chemical cartridge respirator		Final ¹	Exhalation
For gases, vapors, or gases and vapors, and dusts, fumes, and mists	50	70	20
For gases, vapors, or gases and vapors, and mists of paints, lacquers, and enamels	50	70	20

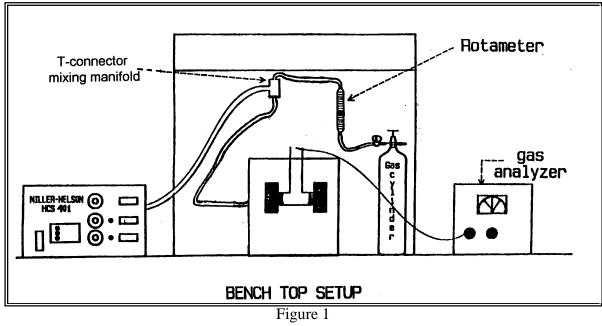
¹Measured at end of service life specified in Table 11 in subpart L of this part.

- (b) <u>Facepiece test.</u> The facepiece test will be conducted as specified in §84.205.
- (f) <u>Bench tests</u>; gas and vapor tests. (1) Bench tests will be made in accordance with 84.207 and tested cartridges shall meet the minimum requirements set forth in Table 11 of Subpart L of this part. Cartridges will be equilibrated in accordance with paragraph (f)(2) of this section.
- (2)(i) Two powered air-purifying cartridges or pairs of cartridges will be equilibrated at room temperature by passing 25 percent relative humidity air through them at the following flow rates (expressed in liters per minute (l.p.m.)) for 6 hours:

Type of cartridge	Airflow rate, l.p.m.
Powered air purifying with tight-fitting facepiece	115
Powered air purifying with loose-fitting hood or helmet	170

- (ii) Two powered air-purifying cartridges or pairs of cartridges will be equilibrated by passing 85 percent relative humidity air through them at the flow rates stated in paragraph (f)(2)(i) of this section.
- (iii) All cartridges will be resealed, kept in an upright position, at room temperatures, and tested within 18 hours.

7. <u>RECORDS/TEST SHEETS</u>


- 7.1. All test data will be recorded on the SULFUR DIOXIDE SERVICE LIFE test data sheet.
- 7.2. All videotapes and photographs of the actual test being performed, or of the tested equipment shall be maintained in the task file as part of the permanent record.
- 7.3. All equipment failing any portion of this test will be handled as follows:

Procedure No. RCT-APR-STP-0048	Revision: 1.1	Date: 24 August 2005	Page 14 of 18
--------------------------------	---------------	----------------------	---------------

- 7.3.1. If the failure occurs on a new certification application, or extension of approval application, send a test report to the RCT Leader and prepare the hardware for return to the manufacturer.
- 7.3.2. If the failure occurs on hardware examined under an Off-the-Shelf Audit the hardware will be examined by a technician and the RCT Leader for cause. All equipment failing any portion of this test may be sent to the manufacturer for examination and then returned to NIOSH. However, the hardware tested shall be held at the testing laboratory until authorized for release by the RCT Leader, or his designee, following the standard operating procedures outlined in Procedure for Scheduling, and Processing Post-Certification Product Audits, RB-SOP-0005-00.

8. ATTACHMENTS

- 8.1 Bench Top Set-Up
- 8.2 Data Sheet.

GAS & VAPOR RESPIRATOR TEST DATA SHEET (Ref.33-48,50,62) Task Number: TN Gas Name: Manufacturer: Item Tested:	1

						Т						T I
RESISTANCE		Maximum Allow (mm of					Actual Resistance (mm of H ₂ O)					Result
	Inhala	ation	Exhalation		I	Inhalation			Exhalation			
Test			Initial			Initial		Final		I Final		l
1		<u></u> '		T_{L}		T						
2				T_{L}						T		
3		1										
4												
5		'										
6												
7												
Overall Results: Pass	Fail Comme	ent:										
WEIGHTS		Ţ	WEIGHTS (gm)						AIRFLO	W (lpm)		
AND AIRFLOWS								Test	Rate		(PAI	PR Only)
Test		Con'd				Conc. (ppm)	RF	H%	lpm	nitial	I	Final
1												
2												
3												
4												
5												
6												
7												
Overall Results: Pass	Fail Comn	ment:										
DATA TABLE	Test		Final			eakage		Tempe	erature (°C)			Corrected
Test	Cond		Time (min)			(ppm)		Dnst		Upstre		ime (min)
	+			\dashv			rear	m	am			
1	+	-+		\dashv					+			
2	+	-+		\dashv					+			
3	+			\dashv					†			
4	+			\dashv								
5	+			\dashv	-							
7	+			\dashv	-							

Was all testing equipment in calibration throughout all testing: Yes ___ No Signature: ___ Date:

Procedure No. RCT-APR-STP-0048	Revision: 1.1	Date: 24 August 2005	Page 17 of 18
--------------------------------	---------------	----------------------	---------------

RB - RESPIRATOR CERTIFICATION TEAM Comparison Softy and Health GAS & VAPOR RESPIRATOR TEST DATA Task Number: TN Gas Name: Manufacturer: Item Tested:	Page 2 A SHEET (Ref.33-48,50,62) STP No.: [1
Additional Comments:	Signature:	Date:

Procedure No. RCT-APR-STP-0048	Revision: 1.1	Date: 24 August 2005	Page 18 of 18
--------------------------------	---------------	----------------------	---------------

Revision History

Revision	Date	Reason for Revision
1.0	21 March 2002	Historic document
1.1	24 August 2005	Update header and format to reflect lab move from Morgantown, WV No changes to method