

### A Strategy for Improved System Assurance

### June 20, 2007

#### **Kristen Baldwin**

Deputy Director, Software Engineering and System Assurance Office of the Under Secretary of Defense Acquisition, Technology and Logistics



### System Assurance

- We continue to be concerned with assurance of our critical DoD assets:
  - Critical information
  - Critical technologies
  - Critical systems

#### • Observations:

- Increasing numbers of network attacks (internal and external to DoD)
- Broader attack space

#### Trends that exacerbate our concerns:

- Globalization of our contracts, expanding the number of international participants in our system developments
- Complex contracting arrangements that further decrease transparency below prime, and visibility into individual components

# These trends increase the opportunity for access to our critical assets, and for tampering

# **Top Software Issues\***

- 1. The impact of requirements upon software is not consistently quantified and managed in development or sustainment.
- 2. Fundamental system engineering decisions are made without full participation of software engineering.
- 3. Software life-cycle planning and management by acquirers and suppliers is ineffective.
- 4. The quantity and quality of software engineering expertise is insufficient to meet the demands of government and the defense industry.
- 5. Traditional software verification techniques are costly and ineffective for dealing with the scale and complexity of modern systems.
- 6. There is a failure to assure correct, predictable, safe, secure execution of complex software in distributed environments.
- 7. Inadequate attention is given to total lifecycle issues for COTS/NDI impacts on lifecycle cost and risk.

\*NDIA Top Software Issues Workshop August 2006



### Consequences of Fragmented Systems Assurance Initiatives

- Lack of Coherent Direction for PMs, and others acquiring systems
  - Numerous, uncoordinated initiatives
  - Multiple constraints for PMs, sometimes conflicting
  - Loss of time and money and lack of focus on applying the most appropriate engineering for systems assurance for each system
- Synergy of Policy Multiple ownership
  - Failure to capitalize on common methods, instruction among initiatives
- DoD Risk Exposure
  - Lack of total life cycle view
  - Lack of a focal point to endorse system assurance, resolve issues, advocate PM attention
  - Lack of system-of-systems, architecture perspective on system assurance
  - Potential for gaps in systems assurance protection

### **Path Forward**



- Create a 'framework' to integrate multiple security disciplines and policies
  - Leverage 5200.39: expand CPI definition to include system assurance and total life cycle
- Use the Program Protection Plan (PPP) to identify CPI and address assurance for the program
  - Link plans (e.g., Anti-Tamper, Software Protection, System Engineering, Assurance Case)
- Modify Acquisition and System Engineering guidance to integrate system assurance across the lifecycle
  - Milestone Decision Authority visibility
  - Guidebook on Engineering for Assurance for program managers/engineers

| Raise the bar: |                                                      |   |
|----------------|------------------------------------------------------|---|
| Awareness      | - Knowledge of the supply chain                      |   |
|                | - Who has access to our critical assets              |   |
| Protection     | - Protect critical assets through security practices | 6 |
|                | - Engineer our systems for assurance                 |   |
|                |                                                      |   |



# Policy Roadmap for System Assurance



### **Current Systems Security Policies**

Defense-In-Depth

Intelligence

**Supply Chain** 

Engineering

Certification

#### **Documented Plan**



#### **Component Protection Sought**





### **Proposed Framework for Security Policies**

Defense-In-Depth

Intelligence

**Supply Chain** 

Engineering

Certification

#### **Documented Plan**







# **Critical Program Information**

#### New Definition - Draft DoDI 5200.39:

- E3.6. Critical Program Information (CPI). Elements or components of an RDA program that if compromised, could cause significant degradation in mission effectiveness, shorten the expected combat-effective life of the system, reduce technological overmatch, significantly alter program direction, or enable an adversary to counter, copy, or reverse engineer the technology or capability.
- E3.6.1. **Technologies** become eligible for CPI selection when a DoD Agency or military component invests resources to demonstrate an application for the technology in an operational setting, or in support of a transition agreement with a Program Manager.
- E3.6.2. Includes information about applications, capabilities, processes, and end-items.
- E3.6.3. Includes elements or components critical to a military system or network mission effectiveness.



#### Total Lifecycle Approach to Assured Systems



# Guidebook on Engineering for System Assurance



# SA Guidebook Intent

- Intent:
  - Provide *practical guidance* on augmenting systems engineering practice for system assurance
  - Synthesize existing knowledge from organizations, standards and best practices
  - Recap concepts from standards
- Implementation:
  - Iterative releases with updates as new knowledge is gained and applied
  - Multiple Views for information dissemination
    - Technical Project Manager
    - System Engineer
    - Subject Matter Expert Detail



### SA Guidebook – Engineering-in-Depth

- Augments SE from documentation through engineering processes and technical reviews
  - Introduced as early as possible Where there is the greatest impact
  - Continue through the life cycle

#### • Consistent with international standard and current best practices

- E.g., Guidebook approach, presentation of process / procedure consistent with ISO/IEC 15288 standard for System Engineering
- Integrates consideration and leverages numerous existing program protection or security disciplines (e.g., IA, AT, SwA, SPI, PPP)
- Existing information security / assurance material is summarized, and leveraged by reference, not repeated
  - Test & Evaluation; Center for Assured Software (CAS)
  - Enhanced vulnerability detection techniques
  - SwA Body of Knowledge
- Intent is to yield assured program / system with demonstrable evidence of assurance



Future: Link to Acquisition Guidance, Evolve/Implement into training, education

# Why this is hard...

A



Related Standards, Efforts, and Working Groups...





- NDIA
- INCOSE
- MITRE
- IDA
- SEI
- OSD, Joint Staff, Services
- Contractor community
- Academe



### **Milestones & Plan**

#### Complete the Guidebook

- Increment versions through Summer, 2007
- Focus: "Get the content right"...worry format and organization later

### Stakeholder Review

- From the larger community, different perspectives

#### Pilots

- Systems Assurance innovators and areas where comprehensive expertise in one or more relevant domains exists
- Starting Summer, 2007

### • Write SE, PM, ISSE/IA Views

- Focus: Derived from the Guidebook, "get the right content" (by audience)
- Release version 0.9 by 30 September

#### **Contact us to participate in stakeholder review**

### **Community Site**

http://www.ndia.org/Content/ContentGroups/Divisions1/Systems\_Engineering/ Systems\_Assurance\_Committee.htm



STATES OF

#### http://tinyurl.com/222hvq

#### Committee Links

#### Past meetings

Systems Assurance Guidebook Project

Guidebook Authors Guide

Guidebook Assignments

Guidebook Status

Systems Assurance White Paper Project



## System Assurance: What does success look like?

- The requirement for assurance is allocated among the right systems and their critical components
- DoD understands its supply chain risks
- DoD systems are designed and sustained at a known level of assurance
- Commercial sector shares ownership and builds assured products
- Technology investment transforms the ability to detect and mitigate system vulnerabilities

