Effects of Recreational Boating on the Upper Mississippi River System

Dan Wilcox St. Paul District U.S. Army Corps of Engineers

 \bigcirc

St. Paul District

Technical Work Group Effects of Recreational Boating

Scot Johnson Alan Robbins-Fenger Tim Kelly Nani Bhowmik Tim Asplund Frank D'Erchia Eric Macbeth David Schaefer Bruce Carlson James Hill

?

Minnesota DNR Minnesota DNR Minnesota DNR Illinois State Water Survey Wisconsin DNR National Biological Survey MN-WI BAC SIU - Champaign IL CENCS CELMS

Primary Physical Effects

- Wake waves
- Propeller jets
- Noise
- Exhaust

Secondary Physical Effects

Sediment resuspensionBank erosion

Biological Effects

- Effects on aquatic plants
- Disturbance of fish

- Disturbance of wildlife
- Fish entrainment, impingement

Recreational Boating is Popular... Big Business on the UMRS

- 6.9 million boater-days/year
- 2.6 million boat trips/year
- >600 developed boat access sites
- >18,000 marina slips
- 217,364 recreational boat lockages in 1999

Recreational Boating Forecast and Allocation Model (Carlson et al. 2000)

Unconstrained traffic Years 2000 - 2050 Total growth on UMR ~ 19.6% Total growth on IL River ~ 22% Highest near metropolitan areas ?

Recreational Boating Traffic Forecast - UMR St. Paul District

?

Recreational Boating Traffic Forecast - UMR Rock Island District

Recreational Boating Traffic Forecast - UMR St. Louis District

Recreational Boating Traffic Forecast - Illinois River

Sequence of recreational boating traffic allocation model development

- v Trips /Year / Pool
- v Trips / Year / Boat Class
- v Trips / Month / Boat Class
- v Trips / Day / Boat Class
- v Trips/ Day / Boat Class / Navigated Area
- Passes / Day / Boat Class / Navigated Area

Percent by Vessel Class of Boats on the Water Summer of 1996 on the Upper Mississippi and Illinois Rivers Averaged Over All Locations

Sailboats	0.20%
 Fishing Boats 	23.41%
Pontoon Boats	2.78%
• Jet Skis	6.35%
Medium Power Boats	40.48%
Large Cruisers	24.01%
Houseboats	2.78%

?

Navigated Areas

GIS

Wake Wave Pattern

Maximum Wake Wave Heights

Vessel Type	Distance from Sailing Line		
	0 to 100 ft	100-300 ft	300-500 ft
Sailboats	N/A	N/A	N/A
Jet Skis	8 cm	4 cm	0
Fishing Boats	16 cm	8 cm	4 cm
Pontoon	8 cm	4 cm	4 cm
Medium Power	24 cm	20 cm	10 cm
Large Cruisers	50 cm	40 cm	20 cm
House boats	8 cm	4 cm	4 cm

Comparison of characteristics of typical wake waves generated by tow boats and recreational boats

Parameter	Commercial tow boat and barges	Recreational Boat
Duration of a single event	400 seconds or about 7 minutes	24 seconds
Number of waves in one event	200	12
Initial wave height	2 cm	2 cm
Occurrence of maximum wave height	Wave #25	Wave #3
Intermediate wave height	Wave #75	Wave #6
Ending wave height	2 cm	4 cm
Period of each wave	2 sec	2 sec

Sediment Suspension Concentration With Recreatinal Boat Passage Events at 5 Minutes Interval, H max = 30 cm

Sediment Suspension Concentration with Recreational Boat Passage Events at 1 Minute Interval, H max = 30 cm

Wave height (cm)	Equilibriur	n sediment c	oncentration	(mg L ⁻¹) at va	rious inter-ar	rival times
	1 min.	5 min.	10 min.	20 min.	30 min.	60 min.
10	1.0X10 ⁻³	4.1X10 ⁻⁴	2.8X10 ⁻⁴	2.0X10 ⁻⁴	1.7X10 ⁻⁴	1.3X10 ⁻⁴
20	325	110	78	58	50	38
30	865	230	160	110	95	75
40	800	330	240	175	140	110
50	1070	470	350	250	225	180

Estimated Reduction of Aquatic Plant Growth Due to Sediment Resuspended by Recreational Boats

Vessel Type	Navigation Pool	% Total Biomass Reduction	
		Wild Celery	Sago
Jet ski	none	0	0
Fishing boat	4, 7, 8, 9, 10	0 % to 9 %	0% to 6%
Medium powerboat	4 through 12	34 % to 79%	5% to 71%
Large cruiser	All 4 - 13	8% to 100%	1% to 100%
House boat	none	0	0
Pontoon	none	0	0

Locations in part of Pool 13 where boat wake waves may break aquatic plants

Percent of unprotected UMR banklines severely or moderately eroded vs. maximum recreational boat wake wave height

Percent of stable unprotected UMR banklines vs. maximum recreational boat wake wave height

Maximum Wave Height (cm)

Classification of UMRS bank erosion potential by maximum height of waves (at the bank) generated by recreational boats

Erosion Potential	Maximum Wave Height
High	> 35 cm
Medium	20 – 35 cm
Low	< 20 cm

 $E_V = D_P x P_P x S_P x V_B x T x n$ where:

?

 $E_V =$ Volume of water entrained $D_P =$ Propeller diameter $P_P =$ Propeller pitch $S_P =$ Propeller slip $V_B =$ Boat speed $T_=$ Time $n_=$ Number of boats

Estimated volumes of water entrained through recreational boat and towboat propellers on the UMRS during April through August in year 2000

River System	Water Entrained Through	Water Entrained Through
	Recreational Boals (m)	Towboals (m)
Upper Mississippi River	7.45 × 10 ⁹	4.13 × 10 ¹⁰
(impounded reach)		
Illinois Waterway	1.15 × 10 ⁹	1.50 × 10 ¹⁰
Open River		7.74 × 10 ⁹

