

Four individual test facilities, supported by common electrical, vacuum, and cooling systems, comprise the Arc Jet Complex. Premixed air, heated to extreme temperature by a high-power DC discharge, expands through user-selected conical, semi-elliptical, and channel nozzles to hypersonic velocities with enthalpies similar to those experienced by the entry vehicle.

FACILITY BENEFITS

- Hypersonic flow over test article
- Heating, pressure, and enthalpy tunable for simulated heating profile
- Sustained test duration, allowing full development of material response
- Test articles of various configurations (up to a 36-inch diameter)
- Multiple tests per day

FACILITY APPLICATIONS

- TPS material screening and qualification tests
- Thermal response model validation
- Heating profiles for entry and ascent heating simulation
- TPS instrumentation design development test and evaluation (DDT&E) and calibration

INSTRUMENTATION AND DATA SYSTEMS

Facility data	Current, mass flow, voltage, chamber pressure
Recorded instruments	Thermocouples, pressures, optical pyrometers
Imaging	HD video, infrared
Hardware data channels	96 (Analog)
Data rate	60 Hz

FACILITY CHARACTERISTICS

Test Section	Gas	Power (MW)	Nozzle Exit (inches)	Mach Number	Enthalpy (btu/lb)	Pressure (atm)	Heating* (btu²/sec)
AHF		20	12, 18, 24, 30, 36	4-12	500 to 14,000	0.005 to 0.125, 0.001	20 to 225, 0.05 to 22
AHF/Huels		20	12, 18, 24, 30, 36	4-12	1,500 to 4,500	0.02 to 0.3	20 to 225
IHF	Air	60	6,13, 21, 30, 41 Semi-elliptical 8 x 32	5-7	3,000 to 20,000	0.010 to 1.2 0.0001 to 0.02	50 to 1500, 0.5 to 45
PTF	Air	20	Semi-elliptical 4 x 17	5.5	3,000 to 15,000	0.0006 to 0.05	0.5 to 30
Turbulent Flow Duct (2 x 9)		12	Channel 2 x 9	3.5	1,300 to 4,000	0.02 to 0.15	2 to 60

 $^{^{\}star}$ Heating rate is a cold-wall, fully catalytic value on a 4-inch diameter hemisphere

CONTACT INFORMATION

George A. Raiche Chief, Thermophysics Facilities Branch NASA Ames Research Center (650) 604-1983

E-mail: george.a.raiche@nasa.gov