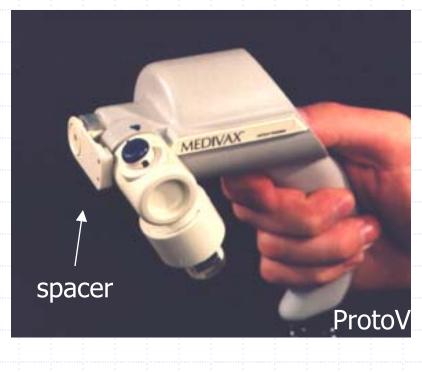
PATH's Experience from Jet Injector R&D and Field Assessment in Developing Countries

Innovative Administration Systems for Vaccines December 18, 2003 Darin Zehrung



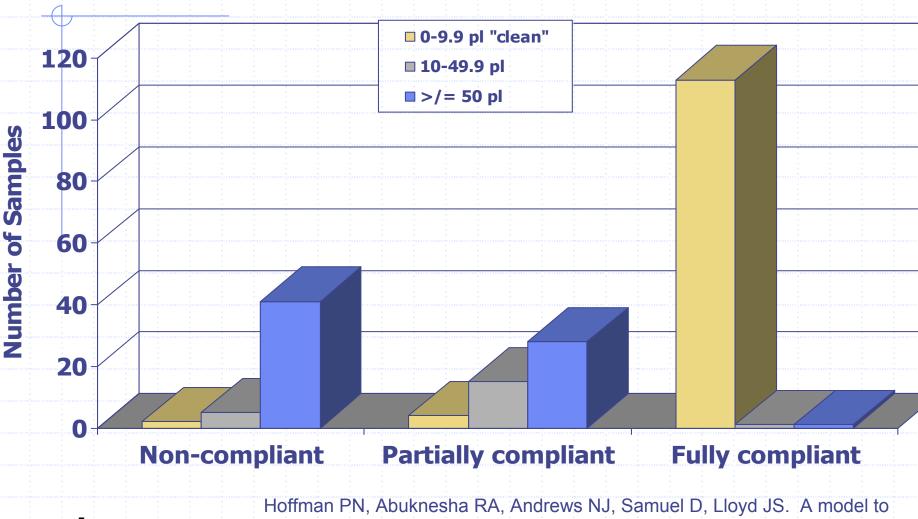
History of Jet Injector Development at PATH

- I6 years of in-house design and development experience (MEDiVAX, N-Ject)
- Evaluation and testing of numerous jet injectors
- Portfolio of patents and know-how (needlefree) – US government subject invention
- Collaboration with Felton International

MEDiVAX Design: 1988-1997

Development funded by **USAID under HealthTech** Collaboration with Vitajet Low workload injector – routine immunization Air powered system (foot pump) – novel design Incorporated "spacer" to prevent cross contamination Field assessment 1989-1995 Bench and animal studies demonstrated that cross contamination occurs

MEDiVAX Field Assessment



Indonesia -1992

MEDiVAX Contamination Testing (1997 PHLS)

Number

iate Technology in Health

assess the infection potential of jet injectors used in mass immunisation. Vaccine 19 (2001) 4020-4027

N-Ject Design: 1997-1999



Use of disposable ampules Pre-fill or fill on site "Filling station" design developed High life cycle nitrogen spring (handpiece) Project shelved due to the following challenges: Performance issues – molded ampule Vaccine manufacturer prefill Fill on site – sterile transfer Necessary development funds not available

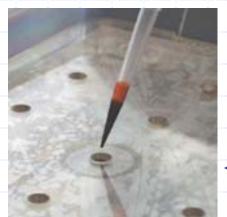
Developmental Tests: 1988-2003

- Evaluation of design iterations Baseline/predicate device comparison Dosage Stream Focus Penetration Force Stream Coherence (video/photography)
 - Contamination

te Technology in Health

Stream focus – optical comparator image

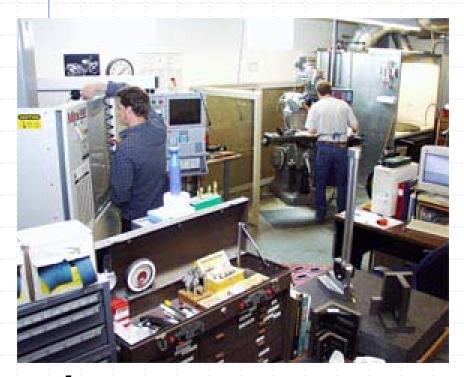
Development Tests (cont.)



Stream Coherence – video Penetration – tissue simulant

PATH Fluorescein Bench Test

Injection "wells" Sensitivity: 2.5 pL per 0.5 cc dose
 Models "ballistic" contamination event


 Bench test intended to inform designers and engineers during product development

"Worst case" scenario

 does not accurately
 replicate tissue
 response — represents
 maximum challenge

PATH Product Development Shop

- Tremendous growth over the past 15+ years
- Extensive in-house product development capabilities (injection molding, machining, testing, environmental)

PATH – Felton International Collaboration

Project Goals:

- Design and development of a low cost, mass immunization campaign injector suitable for developing country use
- Reversal/modification of current WHO policy to allow for use of the mass immunization campaign injector
- Re-introduction of the campaign injector into developing world

History of Collaboration — PATH and Felton International: 1998-2003

First Russian injectors evaluated – Alan Felton	1998
BI-3M tested and evaluated	1998 - 2001
Mass campaign jet injector specifications drafted w/WHO (BI-100)	1999 - 2000
Protector cap iterations and testing (fluorescein test development)	1998 - 2003
USFDA 510(k) clearance (BI-3M)	2001
Initial BI-100 prototypes	2001
Senegal field evaluation	2002
Final design and verification testing	2003

PATH project work funded by USAID under HealthTech

Felton International Campaign Injector

Original BI-3M

Protector cap

iate Technology in Health

- Variable dose/pressure
- Weight and ergonomics difficult for users (handpiece and foot pedal)
- Over 100 million injections delivered by BI-3 injectors in the former Soviet Union

- **BI-100**a
- Smaller/lighter than original BI-3M
- Fixed 0.5 cc dose
- SC or IM delivery
- Simplified foot pedal
- Single pressure setting
- Redesigned protector cap

BI-100b

- Ergonomic design changes
- Universal vial adapter
- Modified trigger location
- <u>User input required to</u> verify design approach

DESIGN DEVELOPMENT 1998-2002

Senegal Field Evaluation Protector Cap Injector: September 2002

- Purpose: Human factors evaluation of prototype design
- Focus group sessions/training
- ♦ 3 Senegal sites:
 - St. Louis
 - Richard Toll
 - Podor

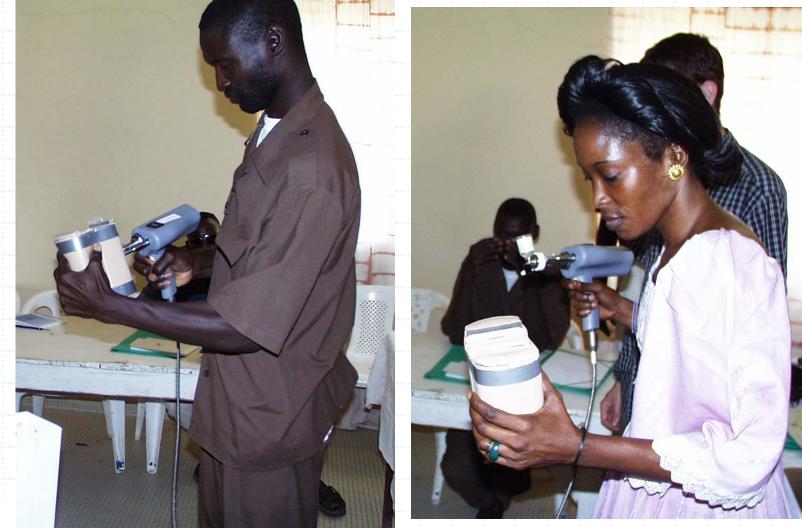
Senegal Field Sites

St. Louis

Richard Toll

Podor

Device Training (1)


Inspecting the protector caps

Protector cap placement

Device Training (2)

Injection practice with tissue simulant

Program for Appropriate Technology in Health

Focus Group Discussions

Richard Toll User Evaluation

Podor User Evaluation

Human Factors

Hand piece difficult to hold

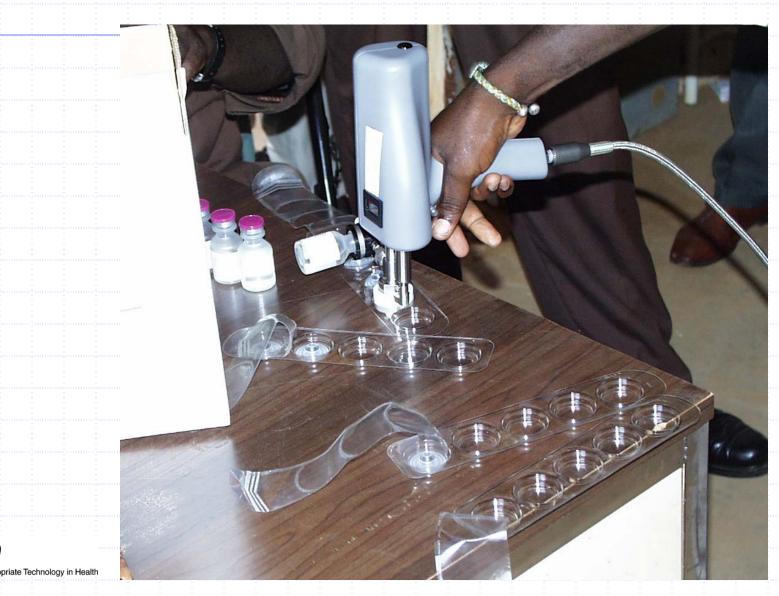
Operating the injectors barefoot

ropriate Technology in Health

Dirt in the foot pedal

Human Factors Device and Cap Handling

Simulated injection and loading the protector caps


ropriate Technology in Health

Cap Handling

Protector cap and package management – challenges

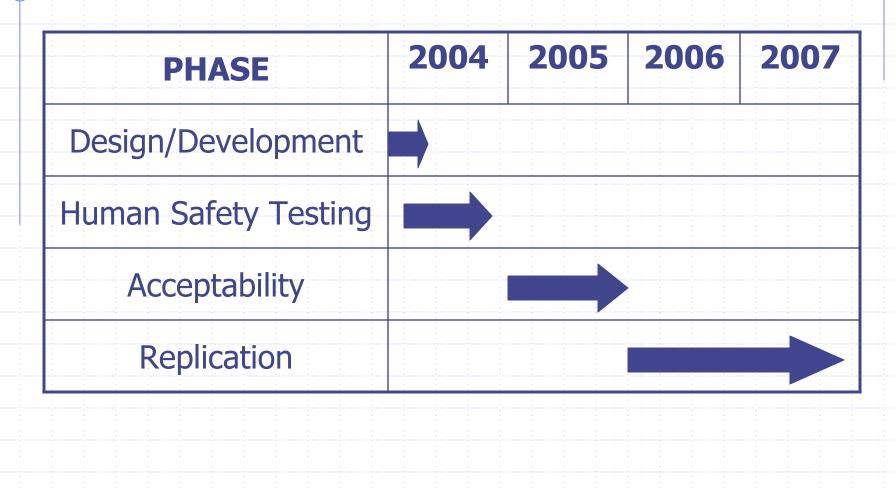
Waste Management

Program for Appropriate Technology in Health

Outcomes from Senegal Field Evaluation

Human factors input received prompted redesign of handpiece and footpedal – led to the new "torch" design

- Training will be critical to proper usage and acceptance
- Must address logistical issues such as waste management and field sterilization



New "Torch" Design – Jet Injector for Mass Immunization

Felton International

Program for Appropriate Technology in Health

Jet Injector for Mass Immunization – PATH Strategy

