Innovative Administration Systems for Vaccines, Rockville, December 2003

Mainstreaming new immunization technologies

...technologies that will facilitate high coverage with safe and effective immunization.

Goals

- Raise 'effective' coverage

 to GAVI goal and beyond

 Safe administration
 - eliminate contamination, transmission
- Reduce dependence on the cold chain
 towards elimination

Challenges (1)

- Complexity of current multi-dose vaccine presentations
- 8 vaccines and increasing:
 - inc. 4 liquid, 4 FD plus combinations in 2, 6, 10, 20 dose vials
- High wastage of MDVials:
 - Reluctance to adopt MDVPolicy
 - Refusal to open vials
- Reconstitution
 - Contamination issue
 - Recon. syringes

Challenges (2)

- Complexity of current multi-dose vaccine presentations
- Risk of needle-stick and re-use of needles

- Transmission of HepB, HepC and HIV
 - 20 million HB infections and 500,000 HIV infections
- Risks of re-use to:
 - Client & community
- Risks of needle-stick to:
 - Healthworker, waste handlers and the community

Challenges (3)

- Complexity of current multi-dose vaccine presentations
- Risk of needle-stick and re-use of needles
- Cold chain failures, frozen vaccine

- Cold chain failures cause estimated 5% wastage
- But exposure to freezing of freeze-sensitive vaccines observed to be 75-83%
 - PATH studies in Indonesia 2002-2003

Rationale for 4-point rolling strategy

- Single-dose, liquid vaccine presentations
- Needle-free administration of vaccine
- Thermostable stored under standard drug storage conditions
- Multiple vaccine combinations, vaccine antigen co-suspensions

Single-dose, liquid vaccine presentations

Single-dose versus multi-dose vaccine vials for immunization programmes in developing countries. Drain P, Nelson C and Lloyd J, P Bulletin of the WHO 2003, 81 (10)

Towards single-dose presentations

Multi-dose vial

Single-dose vial

Pre-filled

Non-invasive

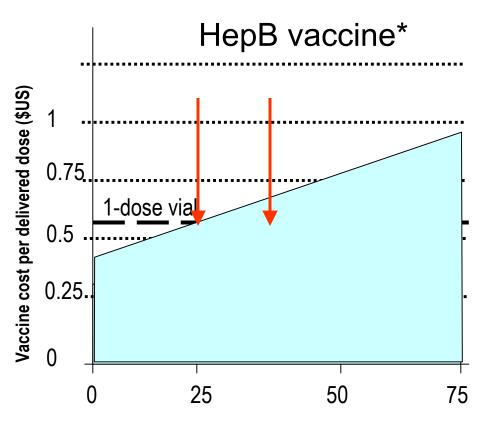
Path Program for Appropriate Technology in Health

Single v. Multi liquid dose formats

	Multi-dose vial	Single dose vial	Prefilled device
Production	Faster filling rate		
Packaging	Less packaging		
Distribution	Smaller, lighter for transport		wer filling rate
Cold chain	Smaller coldchain volume	Equip	ment investment
Safety		Less k of contamination use of Thiomere ore accurate do	X 8 uenvery
Syringe usage			No syringe required
Vaccine wastage		Less vaccine wastage	Least vaccine wastage
Coverage rates		Less reluctance to open a vial	Facilitates innovative outreach strategies Less reluctance to open a vial
Medical waste	Smaller waste volume	Most volume to dispose	Least volume to dispose

Cost & wastage trade-off

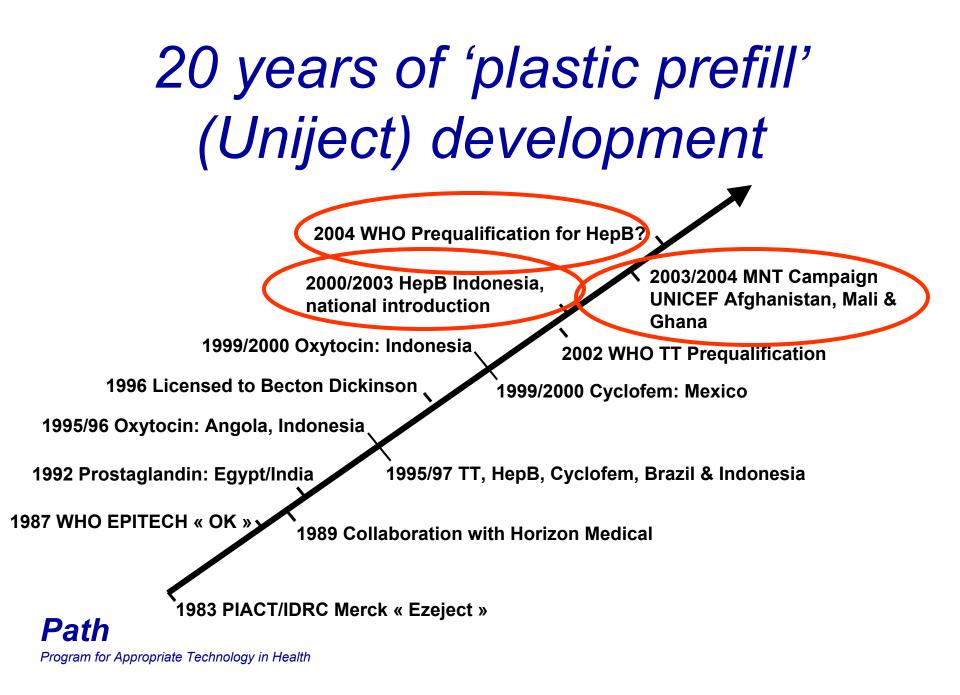
Estimated manufacturing costs (US \$) per dose, including an injection device and excluding cost of vaccine solution, for 10-dose vials, 1-dose vials, or prefilled AD device by a hypothetical vaccine producer in a developing country


Manufacturing Costs(1)	10- dose vial	1-dose vial	Prefilled AD device
Production (labor and equipment)(2)	\$0.015	\$0.040	\$0.042
Material packaging and syringe(3)	\$0.090	\$0.217	\$0.200
Vaccine overfill adjustment(4)	100%	113%	98%
Total Manufacturing Cost	\$0.105	\$0.257	\$0.242
Path			

- 1. Based on a production rate of 120 units/minute, with manual inspection and packaging, and a US\$5,000/year direct labor rate.
- 2. Includes quality control tests, facility and utility costs, and equipment depreciation, based on a 10-year life span for all manufacturing equipment.
- 3. All costs include vial/device, stopper, aluminum crimp seal, label, carton or pouch, box, and a \$.04 vaccine vial monitor. Vials include a \$.07 autodisable syringe.
- 4. Based on recommended levels of overfill for injectable vaccines.

Program for Appropriate Technology in Health

Cost & wastage trade-off


Manufacturing Costs(1)	10-do se vial	1-dose vial	Prefilled AD device
Production (labor and equipment)(2)	\$0.015	\$0.040	\$0.042
Material packaging and syringe(3)	\$0.090	\$0.217	\$0.200
Vaccine overfill adjustment(4)	100%	113%	98%
Total Manufacturing Cost	\$0.105	\$0.257	\$0.242

Vaccine wastage rate of 10-dose vials (%)

Path Program for Appropriate Technology in Health

(UNICEF Projections 2002)*

Recent experience

- 9 million TT doses 2002-2005
 - Mali -
 - Afghanistan
 - Ghana
 - S Sudan
 - Somalia
 - Burkina Faso

•340 non-literate TBAs used TT-Uniject at community posts.

•Easily trained.

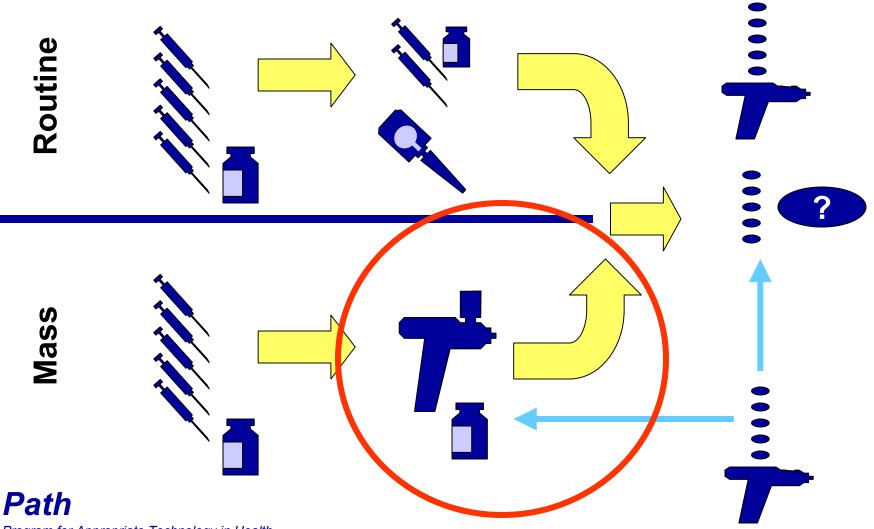
•Safely and correctly used TT-Uniject.

•Acceptability high—women prefer being immunized by people from their own community.

•Use of TBAs may increase coverage by

Mobilizing population

- -Better identification of those needing vaccination
- -Reducing rumors


Path Program for Appropriate Technology in Health

Lessons learned

- Long (and costly) process for pharma adoption of prefill system
- Prefill economics favor higher value products
- System costs offset price premiums
- Move from multi-dose to single dose (prefill or vial) is challenging
- System changes profound for BOTH pharma producers and program users
- Prefill value added not easily recognized by procurement agencies

Needle-free administration of vaccine

Towards needle-free/ non-invasive

Program for Appropriate Technology in Health

Mass immunization

Syringes

- Simultaneous
 campaign via multiple
 posts
- Period a few days
- All health staff mobilized
- Supplies distributed

Jet injectors

- Campaign by sequential zone
- Period several months
- Trained mobile teams
- Supplies carried

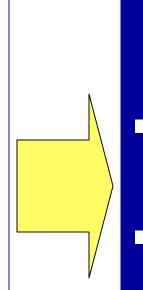
Benefits v. challenges

Benefits

- Greater safety
- Less supplies
- Less disposal
- Greater speed
- Better quality

Challenges

- Contamination history
- Lifting WHO ban
- Sterilization
- Timeliness of product

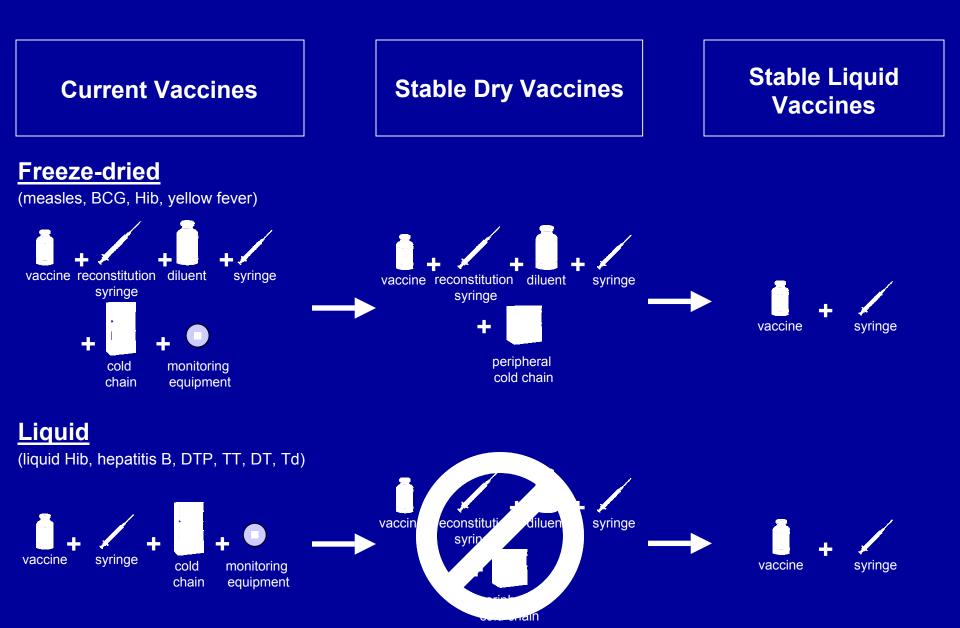

Thermostable vaccine

Path Program for Appropriate Technology in Health

PATH is working in this area with funding from GF (through the Affordable Technologies for Health project) and USAID (HealthTech)

Towards thermostable vaccine

- Introduce 'E'monitoring of vaccine stores
- Eliminate vaccine freezing in transport and storage
 - Introduce and fully utilize VVMs
 - Take certain vaccines beyond the cold chain


- Vaccines heat and freeze stable:
 - Antigen particles
 - Dried & cosuspended
 - Vaccines stable liquids for injection
- Vaccines stable dry powder for non-invasive administration

Program for Appropriate Technology in Health

Proof of principle...

Vaccine	Results	Year
Measles	Titre drop of less than 1 log Plaque Forming Unit (PFU)/ml after 120 days at 37°C or 14 days at 45°C	2001
Tetanus Toxoid (TT)	Less than 10% drop in activity after 35 weeks at 45°C. Heat stability of dried TT suspended in oil and perfluorocarbon has also been shown.	Prior to 1999
Diptheria-Tetanus- Pertussis (DTP)	Four of five results showed unaltered potency after 3 months at 60°C and after 1 year at 37°C	Prior to 1997
Oral Polio Virus (Sabin 1)	Heat-stabilization of trehalose-dried vaccine for 1 week at 45°C.	1993
Influenza (A/PR/8/34) and Tetanus	Heat-stabilization of spray-dried vaccine with adjuvants is demonstrated after 9 months at 37°C.	1991-1998
Measles	Titre drop of less than .75 log Cell Culture Infected Dose (CCID)/ml after 15 days at 45°C, and less than .5 log after 30 days at 37°C.	2002

Towards no cold chain

Development of a stable liquid vaccine

Potential Impact

Medium term Longer term

Short term

Primary Focus

- Proof of concept studies
- Safety studies on PFCs
- Intellectual property evaluation
- Securing preferential access for public sector

Primary Focus

- Formation of a consortium of partners
- Optimization studies
- Pilot production
- Clinical trials
- Operational, logistical, and market studies

Primary Focus

- Production scale-up
- Licensure by NRA
- WHO guidelines
- WHO pre-qualification
- GAVI recommendation
- Purchase agreements

Time

Manage a portfolio of interventions and continuously assess risk vs. potential return when allocating resources

Multiple vaccine combinations

Path Program for Appropriate Technology in Health

Towards fewer contacts..

- Co-suspensions of inert antigen particles
 - Permit more antigen combinations
 - Permit shorter development track
- Controlled release opportunities
 - Encapsulation of particles
 - Low hydroscopicity
- Alternative powder formats
 - Particle size control <5 microns to >40 microns
 - Options for inhalation, paste or cake deposition

Vision

Today:

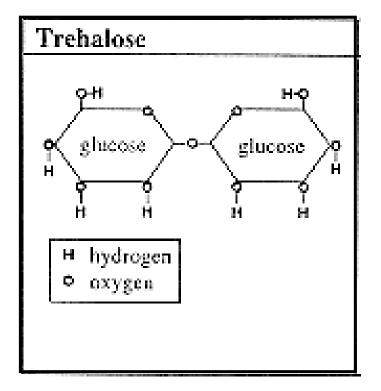
 Safety Syringes + MDVs + cold chain + VVMs for routine and mass immunization

In 5-10 years:

- Reduced dependence on the cold chain
- Prefilled injection devices for liquid combos
- Safety Syringes + MDVs for trad.vaccines in routine immunization
- Jet injection + MDVs for mass immunization

In 10-15 years:

- Stabilized liquid single-dose, combination vaccines
- Needle-free administration for all immunizations


Thank you!

Path Program for Appropriate Technology in Health

Sugar glasses

- present in high concentrations in cryptobionts: dry out completely completely and regain full metabolic activity with water
- very unreactive, because the two glucose moities are joined by a low energy glycosidic bond that makes trehalose non-reducing and very stable to hydrolisis
- ability to hydrogen bond to phospholipid membrane and proteins by substituting for structural water
- solidify as a heat stable glass rather than crystallization

Path Program for Appropriate Technology in Health

Potential for suspension in perfluorocarbon liquid