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Course Outline - Geography 701M

Advanced Geographic Statistical Methods (Spatial Modeling)

Professor: Dr. Gary L. Raines
Office: Laxalt Mineral Research 271, telephone 784-5596, email: graines@usgs.gov

Course Goals and Objectives: Introduction to the techniques of modeling
and spatial analysis of non-deterministic processes in GIS for geographers
and natural scientists.

The goal of this class is to introduce the concepts of modeling in which multiple categorical and
ordered spatial-data sets are combined to predict the distribution or occurrence of the product of
some complex process. Examples of the types of applications addressed might be predictive
models of animal habitat, occurrence of infectious disease, or undiscovered mineral resources.
These types of models all have the characteristic that the processes involved are complex and
sometimes poorly understood, that is the models are not prescriptive, but are often fuzzy or
probabilistic in nature.

We will use ArcGIS 9.1 and the Spatial Analyst extension with the Spatial Data Modeler
extension (ArcSDM 3.1). This will require the student to be familiar with ArGIS 9 and Spatial
Analysis. Students will create simple to complex models using software to gain experience in the
process of modeling complex natural science processes. Exercises will work toward the types of
multi-disciplinary problems that are common in land management or natural resources
organizations. Self directed exercises using available data are utilized.

The class will be a combination of lectures and student-lead discussions. In addition, students will
present results of exercises to the class.

Schedule

Lecture — 2 hours per week

Laboratory — Three hours per week minimum in 222 or 221 Mackay Science Hall (Geography
GIS computer lab. The GIS laboratories are open from 8am to Spm Monday through Friday.
Software and data will be available in both rooms. From Data Works Computer Laboratory in
Getchell Library should be able to access the class materials and we plan to get the software there
in a few weeks. Students need to meet with GIS laboratory manager, Patrick Guiberson in
room 224 in Mackay Science to get a login for this class and an update on GIS laboratory
policy. Patrick has office hours from 11 am to Noon, Monday through Thursday. All of the
exercises for this class can be done with Arcview 3 with the Spatial Analyst, and Spatial Data
Modeler (ArcSDM) extensions. The ArcSDM extension is available on the class folder. I am
currently developing an ArcMap version of ArcSDM. It should be available for many of the
exercises, but it is not yet fully debugged and tested.

Office Hours: to be arranges, 271 Laxalt Mineral Research. I maintain an open door policy.
When I am in, the door is open. You are welcome to drop by when you have questions.

Textbook: Bonham-Carter, G.F., 1966, Geographic information systems for geoscientists —
modeling in GIS: Elsevier Science Inc., New York, 398p. Besides the textbook, journal articles
will be read and discussed in student-led discussions.


mailto:graines@usgs.gov

Assignments

All students will use modeling tools in an increasingly complex series of exercises. Later
exercises will require a group of students with differing science backgrounds to form a team to
address a problem that requires expertise in several fields of science. Graduate students will be
expected to take a leadership position in these multidisciplinary teams to define the task, the
approach, to integrate team members, and to write and present the team report.

Assignment 1 — Using ArcSDM 3.1 in ArcMap 9.1 reproduce weights-of-evidence, logistic-
regression, fuzzy-logic, and neural-network models for Carlin deposits. The intent of this
exercise is for the student to gain familiarity with ArcSDM, the processing steps, and the
decisions necessary to calculate these models.

Assignment 2 — Using various statistical measures, compare the maps prepared in Exercise 1.

Assignment 3 — Prepare and compare models of animal habitat in the Tahoe Basin.

Grading Geog 701M
Class Participation 10%
Assignment 1 10%
Assignment 2 10%

Assignment 3 Poster  20%
Assignment 3 Report  30%
Examinations 10%
Discussions 10%

Originality, logic, and overall quality of the models will be the primary consideration in grading;
but cartographic and oral presentation will also influence the grade.

Additional Requirements for Students Enrolled in Geography 701M

All graduate students are expected to draw on their experience and knowledge gained elsewhere
to enhance the formation of connections between the topics covered in this course as well as
related topics not explicitly covered in the course. In a sense, this course addresses a philosophy
of creating scientific, spatial models. Thus, the students have to integrate their science, statistics,
and GIS background to define the spatial problem, the approach necessary to solve a problem,
and then present a solution to the problem. Graduate students will be called upon throughout the
semester to lead and participate in class discussion related to advanced concepts of the course
material.

Students enrolled in 701M will have to prepare a research project and class presentation in
relation to Assignment 3. The report provides an opportunity for investigating course subjects at
an advanced level. The graduate students’ technical presentation increases their ability to speak in
from of an audience, and serves as a synthesis experience, combining explicit class material with
external independently research information to develop a greater understanding of the subject.



Lecture, Reading, and Exercise Schedule

Exercise
Date Subject PPT  Exercise 1l 2 Exercise 3 Reading
29-Aug-06 Finland (Reading Ch 9 & Ch 8 (pg 248-258) Ch.9
31-Aug-06 Finland Ch.8 (Pg 250-258)
5-Sep-06  Arrive Home Carlin Exercise
7-Sep-06 Introduction 1 Carlin - WofE ArcSDM users manual

King & Kramer,

12-Sep-06 Redlands Velleman
14-Sep-06 Overview & Demo 2
19-Sep-06 Patterns & Discussion (King & Kramer, Vellerman) 3 Nova Scotia
21-Sep-06  Multimap Introduction 4 Cl_Agterberg
26-Sep-06 Boolean and Index Overlay models 5 (Exploratory Carlin)
28-Sep-06 WofE1l 6 Carlin-LR (Epithermal Gold)
3-0ct-06 WofE2 7 Carlin-FL
5-Oct-06 Multi-class Generalization 8 Carlin- NN
10-Oct-06 = Carlin WofE Presentations (Part 1 of Exercise 1) Expert WofE
12-Oct-06  Expert WofE, LR, FL, and NN Demo 8B Final Exercise Logistic Regression
17-Oct-06  Logistic Regression 9
19-Oct-06 Fuzzy Logic 10 Form Groups
24-Oct-06  Neural Networks 11
26-Oct-06  Miscellany 12 Review Data
31-Oct-06 Exercise 1 Discussion & Progress on Final Exercise
2-Nov-06 ~ Ch9 Discussion 13 Correlation Ch. 8
7-Nov-06  Overlay 14 Define Approach Kappa
9-Nov-06  Correlationl 15
14-Nov-06 Correlation2 16
16-Nov-06 Exercise 2 Presentations & Discussion Fragstats
21-Nov-06 Fragstats 19 Ch7.
23-Nov-06 Thanksgiving Holiday
28-Nov-06 Reclassification 17
30-Nov-06 Filtering 18 Completed Modeling
5-Dec-06 Summary 21 Prepare Report/Poster
7-Dec-06  Spatial-Temporal Modeling? 20 (CA)
12-Dec-06 Final Exercise Presentations




Additional Reading

Agterberg, F.P., Bonham-Carter, G.F., Cheng, Q. And Wright, D.F., 1993, Weights of
evidence modeling and weighted logistic regression for mineral potential mapping
in Davis, J.C., and Herzfeld, U.C. (eds.), Computers in geology, 25 years of
progress: Oxford, Oxford University Press, p. 13-32.
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Bonham-Carter, G.F., Agterberg, F.P., and Wright, D.F., 1988, Integration of geological
datasets for gold exploration in Nova Scotia: Photogrammetric Engineering and
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assessment and risk management: Natural Hazards, v. 27, p. 315-329.

Brismar, Jan, 1991, Understanding receiver-operatoring-characteristic curves: a graphic
approach: AJR, p. 1119-1121.
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hazard mapping: Natural Hazards, v. 30, p. 451-472.
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Psychological Measurement, v. 20, no. 1, p. 37-46.

Hudson, W.D., and Ramm, C.W., 1987, Correct formulation of the kappa coefficient of
agreement: Photogrammetric Engineering and Remote Sensing, v. 53, no. 4, p.
421-422.

King, J.L., and Kraemer, K.L., 1993 , Models, facts, and the policy process: the political
ecology of estimated truth in Goodchild, M.F., Parks, B.O., and Steyaert, L.T.,
Environmental modeling with GIS: New York, Oxford University Press, p. 353-
360.

Levin, S.A., 1992, The problem of pattern and scale in ecology: the Robert H. MacArthur
award lecture: Ecology, v. 73, no. 6, p. 1943-1967.

Raines, G.L., and Bonham-Carter, G.F., 2006, Exploratory Spatial Modelling
Demonstration for Carlin- type deposits, Central Nevada, USA, using Arc-SDM
in Harris, J.R. (editor), GIS applications in earth sciences: Special Publication,
Geological Association of Canada, Special Publication 44, p. 23-52.

Raines, G.L., 1999, Evaluation of.weights of evidence to predict epithermal gold deposits
in the Great Basin of the western United States: Natural Resources Research, , v.
8, no. 4, p. 257-276.

Rosenfield, G.H., and Fitzpatrick-Lins, Katherine, 1986, A coefficient of agreement as a
measure of thematic classification accuracy: Photogrammetric Engineering and
Remote Sensing, v. 52, no. 2, p. 223-227.

Velleman, P.F., 1997, The philosophical past and the digital future of data analysis: 375
years of philosophical guidance for software design on the occasion of John W.
Tukey’s go™ birthday in Brillinger, D.R., Fernholz, L.T., and Morgenthaler, S.,
The practice of data analysis: essays in honor of John W. Tukey: Princeton,
Princeton University Press, p. 317-337.



Source of Spatial Data Modeller Extension

http://www.ige.unicamp.br/sdm/default_e.htm
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Lectures for a University Semester Course



Gary Raines

Modeling in GIS

Dr. Gary Raines * Gary Raines

_ _ = USGS Research Geologist
_-‘_ Insights Through Integration = Remote Sensing applications to
mineral exploration

= Development of techniques for
«Geography 701M — UNR spatial modeling in mineral and
environmental applications

= Focus on large areas

* Course Outline * Grading

= Lecture schedule Task

= Three Laboratory Assignments Class Participation
= Examinations Assignment 1

= Reading Assignment 2
= Geographic Information systems for Assignment 3 Poster

eoscientists - modeling in GIS: Chapters .
% 8, and 9 ’ P Assignment 3 Report

= Additional reading - student lead discussion Examinations

Discussions

i Laboratory Assignments * Class Participation

= Assignment 1 — Reproduce the weights-of- = What | know is obvious!
evidence, logistic-regression, fuzzy-logic, and
neural-network models for Carlin deposits.

= Assignment 2 — Using various statistical
measures, compare the maps prepared in
Exercise 1.

= Assignment 3 — Prepare and compare models
of animal habitat in the Tahoe Basin.

= Your job is to ask questions!

Spatial Analysis in GIS (Geography
491/691)



Gary Raines

* Schedule * Examinations

= Take home
= Short essays

= Probably will be one at the end of
Chapter 7 and Chapter 8

= Presentation and report of third
exercise will serve as final.

3 Discussions * Goals and Expectations

= Journal articles will be assigned to . T]Q intrtc_)dluce éhF COUC%F’It;‘ fand process
. of spatial modeling in or
enhance material in book. geographers and natural scientists.

= Emphasis on probability and favorability
students. models, that is nondeterministic
= Laboratory assignments will be models.
presented and discussed in class by = Students are GIS experts!
students.

= Discussion of these articles will be lead by

i What is a model? * Why Model?

= A simplification of nature. = “..when you can measure what you are

; ; speaking about and express it in numbers,
= A r¢presef‘ta“°.” of a set of objects and you know something about it; but when you
their relationships.

cannot express it in numbers, your

= A model is a way of describing knowledge is of a meager and unsatisfactory
something that cannot be directly kind; it may be the beginning of knowledge,
observed. but you have scarcely in your thoughts

advanced to the state of science, whatever

= A model is a way of communicating the matter may be.” Lord Kelvin

complex ideas.
= GIGO “Garbage In, Garbage Out”

Spatial Analysis in GIS (Geography
491/691)



Gary Raines

* Modeling in GIS * Reading Assignment

= Read King and Kramer
= Why models?
= Volunteer to present?
= Read Velleman
= Philosophy of data analysis

= Volunteer to present? Select and explain 3
most important points.

= Chapter 9

i Laboratory Assignment * Laboratory Exercise

= Objective — To gain familiarity with = Reproduce the weights-of-evidence, logistic-

: regression, fuzzy-logic, and neural-network
ArcSDM, the processing steps, and the models for Carlin deposits.

decisions necessary to calculate these = WofE mathematics understood by lecture on Oct 3

models. = Present your results as a short, 8.5x11 page-
= Data — Carlin exercise size report. Include a concise summary of
. . . processing steps for a knowledgeable user.
= Arcview 3 — Carlin_AV3.zip = Example report — Nova Scotia and Nevada
= ArcMap — Carlin_ArcMap83.zip Epithermal Gold papers

. . . . = WofE presentation Oct 10
Carlin Exercise — Carlin_Exercise.pdf )
" — p = Final Report due Oct 31

i Challenges in this exercise * Laboratory Grading

= How to process the data in ArcGIS and = Elegant solution
to report the results elegantly. = Logical thinking
= How to use ArcSDM while the lectures and . ..
reading give you an understanding of the = Quality of writing and cartography
mathematics and decision process. = Concise writing is a virtue.
= How to concisely summarize the = Tell the reader only what is important.
processing sets.

= Assume a knowledgeable ArcGIS and
ArcSDM users, such as yourself.

Spatial Analysis in GIS (Geography
491/691)



Gary Raines

3 Background

= Measurement Scales
= Precision
= Integers versus Real numbers
= Map Scale and Resolution
= Guidelines for modeling

* Measurement Scales

Free " Nominal (Categorical)
= An unordered label of categories or classes.
= Ordinal (Rank)

= Measurements ordered (ranked) according to
relative position on a scale with unequal intervals
between classes.

= Interval
= Measurements that can be labeled and ordered

with an equal interval between classes but without
a true zero.

= Ratio

= Measurements that can be labeled and ordered,
with an equal interval between classes, and wi
true zero.

Precision = a measure of ability to

distinguish between nearly equal
* numbers.

= The number of significant figures
determines how maps can be
reclassified and symbolized.

= Integers versus real numbers in ArcGIS

= Integer and Real valued grids can be
classified by various methods that all have
assumptions about the data.

= Integer grids always have VAT or, simply,
an attribute table.

Examples of Measurement
Scales

Scale Type Examples Operations _Means
Nominal ~ Rock type = Mode

Ordinal Relative age >< Median
Interval  Temperature Mean

Ratio Distance Mean

Guidelines for Modeling

i Map Scale and Resolution

Resolution

Map Scale Base Information Buffer?
1:2,500,000 1250 2500 5000

1:500,000 250 500 1000
1:250,000 125 250 500
1:100,000 50 100 200

Formal statement of the problem.
Define the user of the model.

Specification - preprocess the data to provide useful
information, that is evidence.

= Data exploration
= Data transformation, filtering, and scaling

= Reduce the dimensionality by eliminating
redundant or correlated information

= Use the minimum information necessary

Prediction - combine the evidence to create the
model.

= A type of multidimensional data exploration.
Testing - evaluate the model and it's properties.

Units - Meters
Base Resolution ~ Scale denominator / 2000

Spatial Analysis in GIS (Geography
491/691)



Gary Raines

* Properties of Evidence * Scientific Method

= Selected attributes must discriminate
between one or more classes of - Define a problem
objects. * Gather pertinent data

= Selected attributes must not be » Form a working hypothesis or explanation
correlated with other attributes to any * Do experiments to test the hypothesis
moderately strong extent. * Interpret the results

= Selected attributes must have meaning * Draw a conclusion and modify the
for humans. hypothesis as needed.

Occam’s Razor

Occam's razor states that a person should not increase,
beyond what is necessary, the number of entities
required to explain anything, or that the person
should not make more assumptions than the
minimum needed.

This principle is often called the principle of parsimony.

Questions have been raised, however, as to whether a
person can determine without any doubt that given
entities or assumptions are not needed in an
explanation. Unless this determination can be made,
it is impossible to tell with complete certainty when
the principle can be applied

Abstracted from the Grolier Encyclopedia.

Spatial Analysis in GIS (Geography
491/691)



Spatial Analysis in GIS =

Email addresses

_‘l_ Overview Patch for Arcview 3 on XP operating
’ - systems

¢ Examples of Nondeterministic Spatial
Models

e Demonstration of ArcSDM

ArcSDM Usage Summary 2003

i Schedule Revised

Subject PPT Exorcise 1 Exercise 2 Exercise 3 Reading
s 1 Carln - WoE T T
11262004 Ovenview & Demo ho
1128/2004 Pattems & Discussion
212/2004 Multimap Introduction
214/2004 Boolean and Index Overiay models
219/2004 WofE1
2/11/2004 WofE2 7 Catlin- LR
2/16/2004 President's Day Holiday. Carlin - FL
2/18/2004 Mult-class Generalization 8 Carlin - NN
212312004 Carlin WofE Presentations Expert WofE
212512004 Expert WofE, LR, FL, and NN Dema Final Exercise
3/1/2004 Logistic Regression £l J
31312004 F i 10 = i
- i Applications __ Count % Applications. Count | Rations
z:mz zpﬂ ugreat Anthropology 3 Hazardsfandsiidesiearthquakes 67 Total
Wz212004 Meclany Aachealogy 13 Hydrelagy m [
3/24/2004 Exercise 1 Dtscms ion & Progress on F\nil Exercise Ch. 8 Business applications 15 Land Management " ==
312912004 Ch9 Discussi Corelation Kappa Crime prevention 11 Marine Research 1% [ 8
3/31/2004 Overlay i i
4512004 Conelation 15 EcologyHabitat studies ¥ Medical Geography 12
Education 190 Mineral Exploration k=]

2012204 Cordscn Pserilion & Dacusin ch7. Epidemiclogy 46 Mineral Patential Mapping m |
AR e e iz Forestry 45 MNot Specified - other 208
4119200 it 18 ==
42172004 Fragstats e FRAGSTATS Gecchamistry 18 Cther Geological Application 9 .
4/26/2004 Spatial-Temporal Modeling? 20 CA Gaclogy 166 Public haalth 16 D §
412812004 Summary 21 = s 25 |

[ 5/3/2004 Final Exercise Presentations

Nowa Scotia
(Exploratory Cariin)
(Epithermal Gold)

ERAINAN

1865 Users (Oct. 2003)

Addltlonal Materials Pomts of Demonstration

. What to do with data and why.
= There may be no right way to

= Raines, G.L., 2001, Resource materials
for a GIS spatial analysis course: U.S.
Geological Survey Open File Report 01-

analyze any particular data!

= There are often several ways to
analyze data that are good!

= Data analysis is like doing an
experiment.

221, http://geopubs.wr.usgs.gov/open-
file/of01-221/, 216p, four zip files of
software and class exercises, and a zip

file of student posters.
= Exploratory Carlin zip file

Paraphrased from Velleman, 1997



http://geopubs.wr.usgs.gov/open-file/of01-221
http://geopubs.wr.usgs.gov/open-file/of01-221
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Spatial Analysis in GIS
Overview Continued

* Data Exploration

= Seeking patterns involves:
= Measurement
=« Statistical Summary
= Visualization
= Description
« Understanding of processes causing
pattern

= Foundation is data model.

- 238,
® 235,282
® 262.-327.
c | @327

506 skm

* Data Exploration

= Process of seeking patterns on maps
that help predict spatial phenomena.
= Visualization leads to recognition of a
pattern and the association of the pattern
with something of interest.
= A model is proposed that describes the
association.

* Pattern

= An area having a consistent, recognizable
characteristics associated with some
object or process.

= A pattern is something that deviates from
the norm.

= A pattern is associated with a particular scale
of observation!

= It is a primitive.
= Association of patterns and their causes
are the bricks of scientific knowledge.

Types of Recognition

= Classification is the process of grouping
objects together in classes according to
perceived similarities.

= ldentification is the recognition of an
individual object as a unique singleton
class.

= Discrimination is the recognition that an
individual object as different from a
class.




* Recognition of a Pattern * Measurement Scales

= Task - Determine what the appropriate level = Nominal (Categorical) _
of aggregation and simplification is for the . _An unordered label of categories or classes.
problem at hand, a problem of = Ordinal (Rank)

reclassification = Measurements ordered (ranked) according to

. R . relative position on a scale with unequal intervals
= Aggregation and simplification are tied to scale of between classes.
observation.

= Interval

= There is no single scale at which to view a system. = Measurements that can be labeled and ordered

= Does not mean that all scales serve equally well or with an equal interval between classes but without
there are not scaling laws. a true zero.

- . . . = Ratio
Desc_r'ptlon of pattems_ is the starting point. = Measurements that can be labeled and ordered,
Spatial models start with an assemblage of

with an equal interval between classes, and wi
patterns and associated processes. true zero.

King and Kramer Modeling Continuum )
King and Kramer

o . . = Models are most useful when the right
Engineering «———p Science <= Public Policy

K« ) answer is not clear.
_ _ _ Decision Making = Modeling clarifies the issues of debate
Ho_w to build a Whlch location Do we need in evaluation of an answer.
bridge at is best? a bridge . T
location X? somewhere? = Modeling enforces a discipline of
analysis, discourse, and consistency.
= Models provide a powerful form of
Imprecise “advice”, that is not “truth”, buta
. refined result of a particular viewpoint.
Probabilistic

Fuzzy

Facts Clear Facts Unclear
. B —————————
Precise

Deterministic -t

i Velleman — Top 3 Points

= Aphorism 3 — Iterative learning
leading to understanding.

= Aphorism 7 — Keep it simple!

= Aphorism 14 — Multiple working
hypotheses.




Tools for Map Analysis
Multiple Maps

Boolean Logic
Index Overlay (Weighted Overlay)
Fuzzy Logic
Weights of Evidence
Logistic Regression
Neural Networks

Reading Assignment
e Chapter 9
— Look over whole chapter and pages 250-258.
— Boolean Logic
— Index Overlay (Weighted Overlay)
— Bayesian Models (Weights of Evidence)
— Logistic Regression
— Fuzzy Logic
 Other Papers
— Nova Scotia: Lecture 9/28 (WofE_NovaScotia.pdf)
— Logistic Regression (WofE LogisticRegression.pdf)
— Fuzzy knowledge representation (Fuzzy Logic
Chapter - Report.pdf)

=EUSGS

Additional Reading

* Epithermal Gold
(Nevada_ Epithermal Gold.pdf)

 Exploratory Carlin: (060117 GIS44-2.pdf)
» Fuzzy Logic (060117 GIS44-2.pdf)
+ Neural networks (RBFLN ArcSDM1.pdf)

Guidelines for Modeling

» Formal statement of the problem.
* Define the user of the model.

 Specification - preprocess the data to provide
useful information, that is evidence.

— Data exploration
— Data transformation, filtering, and scaling

— Reduce the dimensionality by eliminating
redundant or correlated information

— Use the minimum information necessary

» Testing - evaluate the model and it’s properties.

=EUSGS

Purpose of GIS Projects

» Combine data from diverse sources

* To describe and analyze interactions

» To make predictions, that is models

» To provide support for decision makers

=EUSGS)

Properties of Evidence

 Selected attributes must discriminate
between one or more classes of
objects.

 Selected attributes must not be
correlated with other attributes to any
moderately strong extent.

* Selected attributes must have meaning
for humans.

=EUSGS)




Scientific Method

- Define a problem

* Gather pertinent data

* Form a working hypothesis or
explanation

» Do experiments to test the hypothesis
* Interpret the results

* Draw a conclusion and modify the

Types of Models

* Prescriptive or Deterministic
— Application of good technical practices
— Process: Boolean rules, Equations, Index Overlay
— Output: Binary map (yes or no), User defined range
such as 0 to 10
* Predictive

— Application of mathematics to represent how people
think about the evidence but cannot represent as
equations.

— Process: weighting of evidence and combination of
weights

— Output: Favorability, probability, or fuzzy map [0 to 1]

hypothesis as needed.
EUSGS)
Types of Models
Fuzzy
Heuristics
Statistics
Physics Mineral Exploration
iness Siting
Sediment
transport
Principles
“‘%@{\c‘a\ \’\‘Jw{‘\é Eﬁ“?“\ca\
=EUSGS

Knowledge Driven Methods

+ Boolean Logic - True/False representation of
maps with all maps rated equally. Simple method
with True/False answer.

+ Index Overlay with Binary Maps - Maps are
given different weights. Linear combination of
maps. Can use Weighted Overlay tool.

+ Index Overlay with Multi-Class Maps - Maps
are given different weights as well as the classes
of the maps are given different weights. Linear
combination of maps. Can use Weighted Overlay
tool

+ Fuzzy Logic - More flexible weighting of maps
and map classes. Nonlinear combination of maps.

INGER GVERLAT
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- 4 Fig 9-4
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Fuzzy Logic VHMS Model

From, Wright, 1996

Fuzzy Membership

Nominal Measurement Scale

M Contrast
Fuzzy Membership

Proximity to Anticlines
= —

=
= 4

Guld Ocourmencas
O Unclasaified

Data Driven Methods

* Weights of Evidence
— log linear combination of maps, simplest with binary maps.

— Classifies areas by probability or favorability of occurrence
of a training site.

— Model parameters easy to understand.
» Logistic Regression
— log regression combination of binary maps

— Classifies areas by probability of occurrence of a training
site.

— Model parameters complex.
* Neural networks
— Experimental, nonlinear combination of fuzzy or rescaled
maps
— Classifies areas by fuzzy membership in training set.
— Can also be self organizing to produce fuzzy membership.
— Model parameters complex.

=USGS
Application of Contrast
Proximity
T S =
e T _as— T & - -
T— - s
___,_,_: f:_-—’_,,r—'i: :'!‘___‘ —
—--"‘.’F T . . _—
N Dmoiosade
L
hFFq-
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C Contrast

Maximum contrast at
1.25 km.
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0.4
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Binary Reclassification of Anticline Proximity Variance and Uncertainty

Proximity to anticlines

Posterior Probability Studentized Posterior Probability

Wpﬂem ahsent

[ pattern presert

=uscs|
Compare Results
; Compare Results
* ArcSDM Post Processing (Classes) Map of Rank Differences
—Spearman Correlation Coefficienct X .
—Map of Rank Differences ey
—Quantile-Quantile Plot T R
* Spatial Analyst Tools/Multivariate it

. . . WoAEPant v Wall Pord by 2 Rasks
—Band Collection Statistics T O R e
* Covariance and Pearson’s Correlation Wz e b 2
Coefficient (aka Product Moment Wetrert s ntbad by @ty ¥
Corelation Coefficient) matrices

Bonham-Carter, 1999

Compare Results
Quantile-quantile Plot

Posterior Probability

Logistic Regression

Bonham-Carter, 1999




Boolean Operators

» And - Returns True (= 1) only if all are true
— Logical intersection

* Or - Returns False (= 0) if all are false,
otherwise returns True (= 1)
— Logical union

» Xor - Returns True (1) if one and only one
is true.

» Not - Negates the operation

Tools for Map Analysis
Multiple Maps
Boolean Logic
Index Overlay Kn_°W|edge
3 Driven
Fuzzy Logic
Weights of Evidence
s - Data
Logistic Regression Driven
Neural Networks
musmy
Examples
e land1=1 * For Boolean operators,
e 1and0=0 an input of zero (0)
000 equals False.
i * Any other number is
True.
e Ixorl=0
* 3and2=1
e lor0=1
*2and0=0
e Ilxor0=1
* 3and2and 12=1
* 0or0=0
* 3or2orl2=1
* 0xor0=0

e 3or2or0=1

. t0)=1
001, 5oL 0) e 3xor0Oxor0=1

Landsite Selection
Statement of the Problem

1. Be in an area where unconsolidated surficial

material is more than a minimum thickness, AND
2. Be in material that has a low permeability, AND
etc.

Example on page 272 of text.

Portion of calculation on page 273.

Boolean Map Algebraic
Statement of the Problem

: At current location, determine if conditions for each input are satisfied
: The conditions, C1 to C2 are either TRUE (=1) or FALSE (=0)
: See Table 9-5 for a summary of the map classes
C1 = class(‘OVERTHIK")>4
etc.
C10 = class(‘ECOLOG’) == 1
:Combine conditions with Boolean “AND” operator
: The variable OUTPUT is either TRUE (=1) or False (=0)
OUTPUT =C1 AND C2 AND ... AND C10
: Map results as a binary 2-class map
RESULTS(OUTPUT)

Translate class into ArcGIS

e Cl=class(‘OVERTHIK’) > 4
— OVERTHIK is an integer grid
— Returns TRUE (= 1) if OVERTHIK > 4; otherwise
returns FALSE (= 0)
— ArcMap 9.1:
* Spatial Analysis/Raster Calculator
CON([OVERTHIK] > 4, 1, O)
* Spatial Analyst/Raster Calculator
[OVERTHIK] > 4
* Spatial Analyst/Reclassify
» Geoprocessing — Weighted Overlay




Inference Net for Landfill Site
Boolean Logic

| musos RN

o N

i
|

i

].

o
4§

el ]
£

Caylina. —

: S im

A: Boolean B: Binary Index Overlay C: Multi-class Index Overlay D: Fuzzy logic

BonhamCarte, 1996, Fig9-2

Model for Boolean Logic

Reclassify is probably a
simpler tool than Con for
categorical evidence.

Boolean-Logic Carlin Model

Boolean

Or

Red =1 Blue =0

Decisions for Boolean Logic
Reclassify Attributes and Map Interactions
e Thresholds

— Greater than some value
« Distance from some feature
« Some high measured value (e.g. slope > 20)
— Less than some value
« Some measured low value (e.g. thickness < 4)
» Equal or Not Equal to some named class
» How the criteria (maps) interact
— AND, OR, XOR, NOT




Boolean Logic Summary

» Advantages

— Models are simple.

— Where prescriptive guidelines from law,
Boolean combinations are practical and easily
applied.

+ Disadvantages

— All evidence (Maps) are treated equally.

— A weak representation of how people think
about spatial problems

— Output is binary, either Suitable or Not
Suitable.

Index Overlay Algebraic
Statement of the Problem

: Calculate normalization sum
SUMW =3+4+5+3+2+4+5+4+2+1
: Define a variable to name the row
ROW = class(‘BASIN’)
: For current location, determine map weights
M1 =3 * (class(‘GEOL’) = = 1 OR class(‘GEOL") = =2)
M2 =4 * table(‘BASIN’, ROW,’AS’) > 30
M3 =5 * table(‘BASIN’, ROW, ‘SB’) > 0.8
ete:
: Calculate normalized sum of weight factors
NEW = (M1 + M2 + M3 ... + M10)/SUMW
: Classify and map output
NEWMAP = CLASSIFY(NEW,’BINWT")
RESULTS(OUTPUT)

Portion of calculation on page 287, Mineral model.

Inference Net for Landfill Site
Binary Index Overlay

Sum Map Weights

EEEEE

Index Overlay
Score=-4L——

Where
w, = weight of Map1
For binary-classmaps, s; is either 1for true or present or
0 for false or absent.Scoreranges between0and1.
For multi-class maps, s; is the score or weight assigned to

a particular attribute.Scoreis averagescore ranging between
minimumand maximum weights.

High scoresindicate more favorableplaces.

Translate table into ArcGIS

* M1 =4~*table(‘BASIN’, ROW,’AS’) > 30
— Basin is an integer grid with multiple attributes. ArcGIS 9.1
does not do this. Will be in ArcGIS 9.2
— Returns TRUE (= 4) if AS > 30; otherwise returns False (= 0)
— Arcview 3.0 (Something like this in ArcGIS 9.2)

* Analysis/Map Query

(IBASIN.AS] > 30.AsGrid)*4.AsGrid

» Returns 4 if TRUE and 0 if FALSE, but will be labeled TRUE(1) and
FALSE (0), respectively.

— ArcMap 9.1 (Arsenic raster)

« Ifhad a real or float grid, that is only one attribute (Value), can use the
same procedure. If want an integer result, may have to appropriately
use Int() in the equation.

« Can also use the longer form in the Raster Calculator of the Boolean
example (con statement).

CON([AS] > 30, 1, 0)*4
— Returns 4 if TRUE and 0 if FALSE. May need to use Int() function

« Spatial Analysis/Reclassify, specially for categorical data

 Geoprocessing Weighted Overlay tool

From Mineral Model page 287. LR

Model for Multi-class Index Overlay

Used Scores [1,5]

Divide by 5 to rescale [0,1]




Weighting Scheme Example

* Multi-class weighting
or scoring scheme

* Influence defines the
importance of each
evidence layer

* Note influence is
percent and scoring
scheme is same for all
evidence. Thus
maximum response is

fixed, 5 in this case.

mugmg
Weighted Overlay Response
ki "‘ — — —
Rescaled [0,1] b
*
¢
L]
"-—
= 3 Wialghtad Ovarlay Mol
= B wicverd
;::nnn r
Enmnnm-ummam . b. S |
[ 0.400784316 - 06015658625 .
oy L -
» 8 i s $ | wumy

INGER GVERLAT
Sutabi

A: Boolean B: Binary Index Overlay C: Multi-class Index Overlay D: Fuzzy logic

BonhamCarte, 1996, Fig9-2
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Decisions for Index Overlay
Weights for Attributes and Maps
¢ Thresholds

— Greater than some value
« Distance from some feature
¢ Some high measured value (e.g. slope > 20)
— Less than some value
« Some measured low value (e.g. thickness < 4)
» Equal or Not Equal to some named class
* How the criteria (maps) interact
— Weight individual maps. What is the value of
each criteria (map)?
— Summation

Index Overlay Summary

* Advantages

— Weights for individual maps and attribute values allows
for better representation of experts opinion of the data.

— By adjusting weights of maps and attributes can
evaluate many different scenarios.

— Output is a ranking of suitability, which gives decision
makers more flexibility.

— Scaling of Output is by reclassification, an expert
decision.

* Disadvantages
— Linear additive nature is greatest disadvantage.




Model Complexity

Simple « Boolean Logic does binary, logical
reclassification of evidential layers (maps).
* Binary Index Overlay adds relative
weighting of evidential layers (maps).
More Multi-Class Index Overlay adds relative
Complex  wejghting of an attribute or attributes of
each evidential layer (map).

Knowledge-Driven Models

Boolean-Logic And Boolean-Logic Or

-




Tools for Map Analysis
Multiple Maps

Boolean Logic
Knowledge
Driven

Index Overlay
Fuzzy Logic
Weights of Evidence (Part 1)

= v Data
Logistic Regression

Driven
Neural Networks

mumsg

Counts to Probability

A A A A
345 382 727 0.117 |0.130 |0.247

ST @) (@) Bl (b)) (b))

141 2077 |2218 —[0.049 |0.705 |0.753

(TZI) (Tzz) (Tz.)B (p21) (pzz) (pz.)

486 2459 2945 0.165 0.835

oo oy e )

Area Tabulation — Probability Tabulation

ool

g

Venn Diagram

Area(ANB)=T, =345 |A~y
Area(A NB) =T, =141

Area(AB) =T,, =382
Area( AN B)=T,, = 2077 & ,

MAPA MAPB

uuuuuuuuuuuuuuuuu

7 Z
8 2 1 Bonham-Carter, 1996 Fig. 8-13

Cross-Tabulation Table

A A
345|382 |727 Ara(ANB)=T, =345
P (1) | (1) Arsa 0B)=T, =10
141 |2077 |2218 Area(ANB) =T, =382
(T21 ) (Tzz ) (Tz.) Area(AB)=T,, = 2077
486 2459 2945

) ) (L)

Area Tabulation

oe]l

Probability Table -
Asbi i Pj; =1

5 |0117 0130 10247 173
(pll) (plz) (p1.) P{A} = p-l

—{0.049 [0.705 [0.753 P(B!=p,

B (p21) (pzz) (pz.) { } 1
0.165 0.835 P{ANB}=p,
(p.) (p) (P.) P{ANB}=p,,
Proportional-Area p{ﬂﬂ B =D

Tabulation

— P{ANB}=p,,




Conditional Probability
PBOA . Py Tu

P{B|A}=
P { A} p-] Ttl

st . 345

P{GraniteTil 1| Granite } = —— = 0.7098
486

Sex i
P{GraniteTil 1} = p,, = T =0.247
If Granite is present, then the probability of
Granite Till also being present is 0.7098

g

Conditional Odds

BT
Ak aoE AR T
T

S P A BB

1—'/3{B|A} P{1|_3|A}
pll pol pll 11

OfB|Ay=Tul B _ B _ it

{ | } p21/pol p21 T21

Example - Conditional Odds

O{GraniteTill} = — 2/ _
2045-727

or3to10

A : 345
O{GraniteTill | Granite} = Py 245
or25to10

0.328

If Graniteis present, then the odds of
Granite Till also being presentis 25to 10

e

Probability and Odds
b 1: P [0 [mo
P = probability e
O =odds 1 [1/9]-2.20
P 2 |1/4]-1.39
ke 4 [23]-041
1-P 5 [1/1]0.00
6 [3/2]0.41
Pk O 8 (41139
1+0 9 19/112.20
1.0|0 |oo
Conditional Odds

Odds of B given A does occur

O{B | A} i pll/pol :&:h
pZI/pol p21 T21
Odds of B given A does not occur
o Ay =P _Te
22 T22

Numerical Example

N{T} =10,000  W*=0.9474
N{B,} = 3600 W-=-1.8734
N{B,} = 5000 W= 0.3447
N{S} =200 W-,=-0.5189

N{B,NS} =180  C,=2.8208
N{B,NS} =140  C,=0.8636

Venn diagram of point and
grid intersections, not draw
to scale.

Fig. 9-9

C, > C, :Therefore Pattern B, is a
better predictor that Pattern B,!

o




Weights

* Define the area to be studied
— Count its area in unit cells = N{Study Area}

» Count the number of training sites in the study area = N{Training
Sites}= N{S}

» Count the area of the pattern B = N{B}

« Prior probability = P{S} = N{Training Sites}/N{Study Area}

« Conditional Probability: Posterior Probability of a training site
given the presence of a binary pattern B and absence of B.

P{SNB} N{SNB} —PiS}* P{B|S}

PB  NB P{B}

PiS|B}=

P{B|S}

P{S|B}=P{S}* i

Odds Formulation

pis|By=PENBI_NISNB} oo, PIBIS)
P{B} N{B} P{B}

0S| B} =0{S} E::%

& P{B|S}
nO{S | B} —an{S}+ln{P{B | g}}

3 5 . | P{B|S} : 3
logit{S | B} loglt{i}+log1t{P{B|§}} logit{S}+W
P{B|S}

P{B} ;

P{B|S}

logit{S | B} =logit{S} +logit{ — =2 \ = logit{S} + W~
ogit{S | B} =logit{S} ogl{P{Bls}} ogit{S}

P{S|B}=P{S}*

Cross-Tabulation Table

A A
345 1382|727 Area(ANB)=T, =345

M) (1) |(,) AvaanB)-T, <14
141 |2077 |2218 Area(ANB) =T, =382
(TZI ) (Tzz ) (Tz.) Area(ANB)=T,, = 2077
486 2459 2945

) )

Area Tabulation

ool

Nersion 1, January 2000

Bayes’ Theorem
P{Rain|Time-of-Year} = P{Rain} * Time-of-Year
Factor
P{Rain|Evidence} = P{Rain} * Evidencel *
Evidence 2 etc.

P{Rain} = Prior Probability, the probability before
considering the evidence

P{Rain|Evidence} = Posterior Probability, the
probability after considering the evidence.

* The evidence can increase or decrease the prior
probability

*Applied to maps, the evidence is a pattern!

e

Weights Calculation Formula

—Tll *TZO :
_T21 *Tlo _

W' =1In eq.8-20

Woan| 2t T lae, € o
T22 *Tlo_

Binary Patterns!

Bayes’ Theorem and Training Sites

* Used here to predict the presence or absence
of a set of point objects.

— Points objects used include mineral deposits,
animal habitat, human disease, etc.

— Points represent a small unit of area, the unit
cell, relative to the area studied and the
resolution of the evidence.

— Points are the training sites.
— Assumes one training site per unit cell.

* Assumes conditional independence of
evidence with regards to training sites.




Logit Form of Baye’s Theorem
* This allows for summation of the weights
for all patterns as opposed to products
+ W' is weight for inside the pattern, B
» W- is weight for outside the pattern, not B

* Positive W* and negative W- indicates a
positive correlation between training sites
and the pattern

+ Contrast= W*- W~

— Relative measure of correlation - larger the
contrast the greater the correlation

— Can use contrast to help define best pattern!

Conditional Independence

What if there were
three patterns?

Conditional Independence is satisfied if :

N{B NS}, N{B,NS} _N{B,NB,NS}

N{S} N{S} N{S}
Using numbers from Fig 9-9
180 , 140 NiB,NB,NS 126
—*——0.63:forCIM=—:0.63
200 200 N{s} 200
Part of the WofE table Test Statistic for
" % ) NP N2SP2 - confidence that the
Variance E :
Area_sqm  Area (KM2)  Post_Prob  Uncertainty T T predlcted number is
3.27E+09 327275 0002132 0ovo712 6978845 5435925  greater than the
3.17E+10 31687.19 0.000239 8E-05 758116 6.432526 expected number
LooEedo'S Fa0hrata AL mE ST, TaBelS  Unsiast oas T s
1.2E+09 1204.625 0.000117 0.000123 0.14058 0.021975 ( )'
2.29E+08 228.875 0.000511 0.000541 0.116973 0.015316 T e 35
6.84E408 683875 0000275 0003188 6343248 4754615 =0.218
8.03E+09 8026.25 0.000521 0.000197 4.181596 2504673 Std (T )
1.13E+09 1130.625 0.004633 0.001747 5.2384 3.901065
2.69E+08 269.0625 0.019985 0007631 5377319 4215386 S ]ess than 0.253
73375000 73375 0000614 0000104 0045076  5.8E-05 (60% confidence);
1937500 1.9375 3.36E-05 3.41E-05 6.5E-05 4.35E-09
%o o therefore Accept ClI
See CI_Agterberg.pdf in Documentation or Reading

folders for details. IR

Multiple Patterns = Multiple Weights

* Objective is to combine all the evidence to obtain
a combined posterior probability.
— Use Bayes’ Theorem to combine patterns

— Assumes conditional independence of patterns with
regards to the training sites.

Conditional independence implies
P{B,MB,[S}=P{B, [S}*P{B,|S}

This allows

P(S|B,NB,} = P{s}* 1S}, PiB; [ S}

P{B}  P{B,}

or
logit{S | B, B, } =logit{S} +W," +W,’

Old Overall Test for Conditional Independence
N {Scac} = D P * (unit cell)

k=1
where m = total number of unit
cells.

CI Ratio = LS}
N {SCaIc}

« Unit cell is a constant in the grid implementation of
Weights of Evidence.

« Cl Ratio is typically less than 1.

«If Cl Ratio is less than .90 to .85 then a serious CI
problem has occurred. Now considered too conservative.

*Replaced by Agterberg-Cheng CI Test [T

Testing for Sources of Conditional
Dependency

* Pair-wise Chi-squared test
— A weak test of pairs only.
— Not implemented in ArcSDM 3.
» Replaced by multiple Agterberg-Cheng tests.
— Make models of pairs, triplets, etc. of evidence
layers and get the Agterberg-Cheng results.
— Identify combinations causing the problem. Note
may be a triplet or larger combination.

o




Solutions to CI Problems

» Combine group of evidence causing the CI
problem in some logical fashion or delete one
evidence and recalculate the model.

« If still have CI problem, must consider the
WofE Posterior Probability distorted.

— Treat the “posterior probability” as favorability, an
ordinal measurement-scale number.

— Call it favorability even though the software labels it
posterior probability.

— Define ranks.

» Use Logistic Regression Posterior Probability.
musmy

Total Variance of Posterior Probability
1 n

SZ(PPos!erior) = {@ & ; SZ (ij )j| % PPZos!erior
where
kis + and - and
n is the number of patterns
57 (missing) = {P(S | B,)— P(S)}" *P(B,) +{P(S | B)-P(S)}’ *P(B)
wherei is a pattern with missing data

s* (total) = 8 (Paggerior ) + Z s (missing)

i=1

where m is the number of layers with missing data.

Variance of Weights and Contrast

2 +\ 1 1
A )_N{BﬂS}+N{Bﬂ§}

1 1
N{ﬁﬂS}+ N{BNS}

W)=

s*(Contrast) = s*(W ") +s*(W ")

Nersion 1, January 2000

Revised Variance of Missing Data
s;(Missing) = > [(P —P)’ i]
s! a_data;
where
i=a layer with missing data
j=one of m, classes in layeri.
PJ-* =updated posterior probability by the weight for class jof a cell
with missing data
P = the posterior probabilty of a cell with missing data
a; =the area of class jin layeri
a_data; = the total area of data in layeri,

that is total study area - area of missing data in layer i

Note this is a cell based calculation, which is applied to S

Studentized Value

Studentized Contrast = Contrast/s(C)

Studentized Posterior Probability = Post.
Prob./s(total Post. Prob.)

* An informal test of the hypothesis that value
tested is zero. If Studentized value greater than 2
then can assume that the value tested is not equal
to zero with approximately 98% confidence.

» Use in a relative sense and to structure decision
making.

Version 1, January 2000

cells with missing data! Revised Sept 2006
Student T Values
Confidence  Test Value
99.5% 2.576
99% 2326 Because Studentized test applied
% : here is only approximate, use

91.5% 1.96 these values as a guide. If you can
95% 1.645 accept more risk, then you can
90% 1.282 use lower confidence values!
80% 0.842
70% 0.542
60% 0.253




Decisions for Weights of Evidence

¢ Define the study area

* Define the training set

* Select confidence level for contrast
* Select the evidential maps

— Use Contrast and Studentized Contrast to
evaluate.

— Binary Reclassification

— Thresholds maximum, minimum, or grouping
of nominal classes

» These decisions define objective, binary
reclassification

— Needed measurements; Area of study, Area of
the pattern, Number of training sites, Number

of training sites inside the pattern
gy

Weights of Evidence

» Advantages
— Objective assignment of weights, which reflect
the importance of the class and the layer.
— Multiple patterns combined simply

— Binary reclassification to optimize contrast
gives insights into spatial relationships
— Deals with missing data

— Measures aspects of uncertainty that can be
mapped

* Disadvantages

— Assumption of conditional independence
— Requires a training set of sufficient size.

e




Tools for Map Analysis
Multiple Maps

Boolean Logic
Index Overlay
Fuzzy Logic
Weights of Evidence (Part 2) e
Logistic Regression Biin
Neural Networks

Knowledge
Driven

mumsg

Weights-of-Evidence Method

* Originally developed as a medical diagnosis

system
— relationships between symptoms and disease
evaluated from a large patient database

— each symptom either present/absent

— weight for present/weight for absent (W+/W-)
» Apply weighting scheme to new patient

— add the weights together to get result

Weights of Evidence

+ Data driven technique
— Requires training sites

« Statistical calculations are used to derive the
weights based upon training sites.

+ Evidence (maps) are generally reclassified
into binary patterns.

Weights-of-Evidence Terms

» Weights for patterns
— W+ - weight for inside the pattern
— W- - Weight for outside the pattern
— 0 - Weights for areas of no data
* Contrast - a measure of the spatial
association of pattern with sites
 Studentized Contrast - a measure of the
significance of the contrast

Weights of Evidence

 Binary maps to define favorable areas
— Can use multi-layer patterns

* Measurements
— Area of study
— Area of Pattern
— Number of training sites
— Number of training sites inside the
pattern

/T

™~

B

T=total study area D=deposit points

B=binary map pattern used as evidential theme

Bonham-Carter, personal comm. 2002




Preprocessing
Nominal Measurement Scale

» For example - Geological map

—select particular stratigraphic units or
class

— generalize by reclassification

— extract and buffer boundaries between
units

Preprocessing
Continuous Measurement Scale

* Histogram transformations
« Physical properties processing
* Filter
— separate anomaly/background
 Spatial interpolation (e.g. surfaces, krige)
* Logical combinations (merging, boolean, fuzzy
logic)
» Summarize by zonal statistics
— separate anomaly/background
— define a residual
— multivariate analysis

« principal components analysis and others g

Overlay combination

e In vector

— create polygon overlay and associated
PAT

— create unique conditions overlay and
associated PAT

— Topological selections
* In raster
— superimpose grids

Application to Binary Evidence

Class  Area  #sites Relative density Weight

1 50 8 0.8/0.5=1.6 In(1.6)=+0.47
2 50 2 0.2/0.5=0.4 In(0.4)=- 0.92

Total 100 10

Expected Values of Weights

* If sites occur randomly,
— Relative density (RD)=1.0
— Weight (W) = In(RD) =0.0

o If sites occur more frequently than
chance
—RD > 1.0, W is positive

* If sites occur less frequently than
chance
—RD < 1.0, W isnegative

Example — More Points Than Chance

N(T) = 1000 unit cells (area of study region)

N(B) = 500 unit cells (area of theme B present)

N(B&D) = 20 (count of number of training points on B)
N(D) =30 (count of total number of training points)
W+=0.2980 W-=-0.4157 C=0.7138

More points on theme than would be expected due to chance

Bonham-Carter, personal comm. 2002




Example — Many More Points

N(T) = 1000 unit cells (area of study region)

N(B) = 500 unit cells (area of theme B present)
N(B&D) = 28 (count of number of training points on B)
N(D) = 30 (count of total number of training points)
W*=0.6513 W-=-2.0414 C=2.6927

Many more points on theme than would be expected due to chance

Bonham-Carter, personal comm. 2002

Example — Equal Pattern and Points

N(T) = 1000 unit cells (area of study region)

N(B) = 500 unit cells (area of theme B present)
N(B&D) = 15 (count of number of training points on B)
N(D) = 30 (count of total number of training points)
W+=0.0 W-=-0.0 C=0.0

Number of points on theme equals that expected due to chance

Bonham-Carter, personal comm. 2002

Example — Small Pattern and Many Points

Example - Weights Undefined

N(T) = 1000 unit cells (area of study region)

N(B) =250 unit cells (area of theme B present)

N(B&D) = 20 (count of number of training points on B)

N(D) =30 (count of total number of training points)
+=1.0338 W-=-0.8280 C=1.8617

Many more points on theme than would be expected due to chance

Bonham-Carter, personal comm. 2002

N(T) = 1000 unit cells (area of study region)

N(B) = 250 unit cells (area of theme B present)

N(B&D) = 30 (count of number of training points on B)

N(D) = 30 (count of total number of training points)

W+ =inf W- = -inf C=inf

Undefined: practical solution--assign fraction of point to (not B)

Bonham-Carter, personal comm. 2002

Multi-class Themes

» Maps (themes) with unordered classes (categorical)
e.g. geological map. Calculate weights for each
class and then group classes (reclassify) as needed.

» Maps (themes) with ordered classes (contour maps
e.g. geochemical or geophysical field variables).
Usually calculate weights based on successive
contour levels, cumulatively. Then reclassify.

Bonham-Carter, personal comm. 2002

Multi-class — Categorical Classes

C

N(T) = 1000 unit cells (area of study region)

N@) =250, N@B) =500, N(C) =250,
N(A&D) =23, N(B&D) =4, N(C&D) =3,

N(D) = 30 (count of total number of training points)
WI1=1.1866 W2=-1.3442 W3=-0.9347 C,, =2.5308

Three classes, e.g. rock types (categorical scale of measurement)

Bonham-Carter, personal comm. 2002




Ordered Classes - Cumulative

56 T BT B Weights Calculations
utside » Choose a small unit cell — affects the prior
o probability but only a little on the weights
[ ] X
o » Can have multi-class maps but often not
N@B) 100 100 100 100 100 100 100 100 100 enough tralnlpg points to get stable we.l.ghts.
— Use Studentized contrast to evaluate stability of
Cum 100 200 300 400 500 600 700 800 900 weights.
ND) 12 11 7 O Tl 1 1 1 1 » Contrast can be used to define optimal
Glhm# o = =II3ME 30 IR S 3 ot S - =R R E 30 1) thresholds.
W+  1.08 1.03 087 072 051 035 021 0.10 i — Use Studentized contrast to evaluate Stability of
contrast.
W- 025 -0.63 -1.01 -1.53 -1.53 -1.53 -1.53 -1.53  --
= . __- Proximity to Anticlines
.. ___,_,..:; p—
e e 8 Y %
e _
f o
e =
//'1-’—.:—/.—' ‘“:‘é;:"‘ E-:om Occurrences ‘..W
..--"'""-.-
— o — Gold Occurrences

/ ke 10 o 20km . Unclassified =]

km 10 0 20 km — et

e

| A

Bonham-Carter, 1996

Bonham-Carter, 1996

C Contrast

L0 ’\/

Proximity to anticlines

Maximum contrast at

5 1.25 km.
08 Inside Outside
- Pattern Pattern
0.4
] Legend
n [ pattern absent
0.0 ' : : : I pattern present

DISTANCE, km

Bonham-Carter, 1996

Bonham-Carter, 1996




Cumulative-descending Reclassification

Intensity or Concentration
C Grouping
— =

Categorical-Weighting Reclassification

BC (W+-W-)
Bw+
o w-

[
1
] Outside
i Pattern

I

Outside

=
= =
o B
E o
<]
o 173
g <
Z ]
7} I
1 o
= )
g ©
£ 4
=3 =y
O] =
=

[ntensity/eriConcentration

Gagoiysieal Intarisity or Gagenamiczl Sonsaritratior Limestornes S SHalers Sanustones S{Stones  Granite Basall:

Modified from Mihalasky, 1999 Modified from Mihalasky, 1999

Handling Uncertainty Decisions for Weights of Evidence
» Uncertainty due to weights — variance of
weights. * Define unit area for counting area (Unit Cell)
* Uncertainty due to missing data — estimate + Define the study area
of variance due to missing data + Define the training set
. Other measures Of uncertainty? * Select confidence level for contrast

 Select the evidential maps
— Use Contrast and Studentized Contrast to evaluate.
— Reclassification (Binary or Multi-class)

* For Response Map can combine the various
uncertainty measures to obtain a total

Varlanc§:. X T — Thresholds maximum, minimum, or grouping of
+ Studentized posterior probability (PP/s(PP)) nominal classes <
can provide a useful measure of confidence. . Thel:se c_lfe_:c1st10ns define objective, binary
reclassification
— Needed measurements; Area of study, Area of the
pattern, Number of training sites, Number of training
sites inside the pattern
e B
. . Evolution of Models
Welghts Of EVldence Boolean-Logic And Boolean-Logic Or Multi-class'l'ndex Overlay|
= g .:..' 4 ..'.'
» Advantages f’ ﬁ .._:.’.‘._‘ .9
— Objective assignment of weights 2 ..J" sk /
— Multiple patterns combined simply ) o]
— Reclassification to optimize contrast gives Al

insights into spatial relationships
— Deals with missing data

— Measures aspects of uncertainty that can be
mapped

 Disadvantages
— Assumption of conditional independence
— Requires a training set of sufficient size.




Multi-Class Generalization

Boolean Logic
Knowledge

Index Overlay Arkar

Fuzzy Logic
Weights of Evidence (Part 3)
Logistic Regression

Data
Driven
Neural Networks

Student T Values

Confidence Test Value
99.5% 2.576
99% 2.326
97.5% 1.96

95% 1.645
90% 1.282
80% 0.842
70% 0.542
60% 0.253

Because Studentized test applied
here is only approximate, use
these values as a guide. If you can
accept more risk, then you can
use lower confidence values!

Version 1. January 2000

Categorical Weights Data

Class Code Area Sq km Area Units #Points W+ s(W+) W- i C ©) stud(C

3BLPZE  4766.9375 4767 197 1.9917 0.2299 -0.8617 0.2887 2.8534 0.3690 7.7319
27.c 999.6250 1000 3 17066 0.5782 -0.0841 0.1890 1.7907 0.6083 2.9436
45 UPZC|  385.9375 386 1 15595 1.0013 -0.0260 0.1826 15855 1.0178 1.5577
14LPZ 18058750 1806 4 1.4024 05006 -0.1059 0.1925 1.5083 0.5363 2.8124
29/UPZE  1469.8750 1470 1 0.2204 1.0003 -0.0066 0.1826 0.2270 1.0169 0.2232
1TPC | 1950.6250 1951 1 -0.0628 1.0003 0.0022 0.1826 -0.0650 1.0168 -0.0639
10LMZ  3512.9375 3513 1 -0.6512 1.0001 0.0311 0.1826 -0.6823 1.0167 -0.6711
13Q 245534375 24553 1 25958 1.0000 0.5337 0.1827 -3.1295 1.0166 -3.0785
2TRPE  999.0625 999 0
3TMF | 55118125 5512 0
6 TMV 0.2500 0 0
9UPZ  432.2500 432 0
17.QV 74.8125 75 0
18PV 1991.2500 1991 0
20 TPF  1570.8750 1571 0
25 KG 531.8125 532 0
2P 58.9375 59 0
35T 106.8125 107 0
36LTV | 4537.7500 4538 0
3936 665.5625 666 0
43 KC 138.5000 138 0
47 LMzV 325.5625 326 0
48 TRG 173.3750 173 0
49 KG2 50.9375 51 0
50 JMI 184.2500 184 0

Categorical Data (Zoomed)

Class Code #Points C s(C) stud(C)

38 LPZE 19 2.8534 0.3690 7.7319
27 C 1.7907 0.6083 2.9436
45 UPZC 1.5855 1.0178 1.5577
14 LPZ 1.5083 0.5363 2.8124
29 UPZE 0.2270 1.0169 0.2232

1 TPC -0.0650 1.0168 -0.0639
10 LMZ -0.6823 1.0167 -0.6711
13 Q -3.1295 1.0166 -3.0785
2 TRPE

ORRFPRREPMNEW®

myraag

4]

Multi-Class Generalization
Table Metho
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Editing and Checking

Number Std
) Outside  11717.75 1 -2.9076 1 0.7788  0.1771 -3.6864 10156  -3.6298
| Moderate 4275.375 8 0.1818  0.3539 -0.0518 0.2001  0.2337  0.4066  0.5747
: High  385.9375 2 12038 0.7089  -0.0442  0.1797 1.248 0.7314  1.7063
VHigh ~ 4766.938 22 1.0873 0.2137 -0.8441 03016 1.9314 0.3696 5.2251
Younger 3584044 2




Categorical-Weights Generalization

Multi-class

Ordered-Data Reclassification

from Integer Source
Reclassified by Quantiles

5y S

Ratio Weights Data
Cumulative Descending

Class Area Sq km Area Units #Points W+ s(W+)  W-  s(W-) c s(C) stud(C)

14 416.0000 416 4 2.8777 0.5024 -0.1309 0.1925 3.0085 0.5380 5.5917

13 469.0000 469 4 2.7566 0.5021 -0.1299 0.1925 2.8866 0.5378 5.3676

12 526.0000 526 5 2.8661 0.4494 -0.1667 0.1962 3.0327 0.4903 6.1854
11 618.0000 618 6 2.8874 0.4102 -0.2043 0.2000 3.0917 0.4564 6.7738
10 730.0000 730 7 2.8749 0.3798 -0.2431 0.2042 3.1180 0.4312 7.2312
9 868.0000 868 9 2.9538 0.3351 -0.3277 0.2132 3.2815 0.3972 8.2622
8  1137.5000 1138 9 2.6805 0.3347 -0.3228 0.2132 3.0034 0.3968 7.5685
7 1567.5000 1568 11 2.5598 0.3026 -0.4104 0.2236 2.9702 0.3763 7.8941
6  2310.5000 2310 11 2.1701 0.3022 -0.3969 0.2236 2.5670 0.3760 6.8273
5  3746.0000 3746 15 1.9960 0.2587 -0.5934 0.2500 2.5894 0.3598 7.1968
4 7282.5000 7282 21 1.6666 0.2185 -0.9945 0.3163 2.6611 0.3844 6.9225
3 16892.3125 16892 27 1.0752 0.1926 -1.6950 0.5000 2.7703 0.5358 5.1700
2 50663.0625 50663 3
1 56779.0625 56779 31

-99 0.5000 0 0 0.0000

Ordered-Data Preprocessing

IDW Antimony Surface Integer Antimony Surface

Int(([Sb] * 10) + 0.5))
e

WofE Binary Generalization
from Integer Source

Source: STD Source: Quantile

Ratio Data — Categorical Weights
Table Method

W-

W+ S(W+) sW)  C s(C) _stud(©)]

[Class Area Sq km Area Units #Points
0

9609.8125 0.0717 0.4084 -0.0152 0.1925 0.0869 0.4515 0.1925
3536.5000 1.0725 0.4086 -0.1364 0.1925 1.2090 0.4517 2.6767
1435.5000 1.5693 0.5007 -0.1037 0.1857 1.6730 0.5340 3.1326
743.0000

430.0000 2.4917 0.5794 -0.0878 0.1826 2.5794 0.6075 4.2461

269.5000
138.0000 3.2303 0.7123 -0.0601 0.1797 3.2904 0.7346 _4.4793




Checking Weights from
Generalization

Input Sb reclassified by Standard Deviation.

Used in subsequent models.

Input Sb reclassified by Natural Breaks with breaks at 10 and 2.

Ratio Data — Multi-Class
Generalization

Quantile Source

STD Source
ey

Multi-Class vs. Binary Models
Cumulative Area vs. Posterior Probability

0.0045
0.0040 -
0.0035 { |—— Binary Model
0.0025 -
0.0020
0.0015 4
0.0005 -

0.0000 - ]
0 10 20 30 40 50 60 70 80 90 100

Cumulative Percent Area

osterior Probability

P
o
Q
=}
=1
o

Ratio Data — Chart Method

alll X
Shquant CD C,stud(C)

I 0 .o
isb2 CD C.stud(C)

Class

ey
Comparison of Models
Binary Model Multi-Class Model

Comparison of Multi-Class Models

Multi-Class Model
(Sb Quantlle)

Multi-Class Model
(Sb - STD)




Multi-Class vs. Multi-Class Models
Cumulative Area vs. Posterior Probability

0.1000

—e— Multi-class (Sb Quantile)
0.0100

—a— Multi-class (Sb Std)

0.0010 4

0.0001 -

Posterior Probability

0.0000

0.0000

T T T T T T T T T |
0 10 20 30 40 50 60 70 80 90 100

Cumulative Percent Area

mumsg

Evolution of Models

Boolean-Logic And Boolean-Logic Or Multi-class Index Overlay|
- R

..’-ﬁ-,.,‘, E%i

e 2

i g4 4

S .v&‘ 13 (
)

[0,1]
o

. -

Simple Binary LR

Multi-Class Generalizations

» Many approaches: a complex knowledge
driven process guided by the statistics
— Evaluate Studentized Contrast

— Pick significant values of contrast and
Studentized Contrast

— Classes should make sense as measured by
contrast and logic of process being modeled.

* Test the generalization by calculating
weights for the generalization

» Evaluate differences between models

Evolution of Models
Simple Binary WofE Simple Binary LR




Logistic Regression Method

Graeme Bonham-Carter

In ordinary regression, the response variable is
continuous, unbounded and measured on an
interval or ratio scale

In situations where the response variable is
binary (present/absent) this causes a problem,
because the predicted response must be in the
interval [0,1].

The response variable can be assumed to be
P(Y=1), from which we also know
P(Y=0)=1-P(Y=1)

Bonham-Carter, 1999

Logit(Y) = by +b,X, + b,X, + bX; +...+ b, X,
(simultaneous solution of b’s)

Logit(Y) = Prior Logit + W, + W, + W5 +...+ W
(solution for W’s theme by theme, not simultaneous)

Note that the b, term in LR is comparable to the
prior logit in WofE, and the b’s are comparable to
the W’s. However, instead of 1 coefficient, there
are 2 (or more) weights, depending on the number
of classes. Therefore, the b’s are more comparable
to the contrast values

Bonham:

Introduction

“Data-driven” method applicable where
training set of mineral sites is available

The response variable is dichotomous
(binary), e.g. presence/absence of mineral
site

The explanatory variables (evidential
themes) are ordered or dichotomous (not
multi-class categorical).

Bonham-Carter, 1999

The solution to the problem of forcing the
response variable to be in the range [0,1] is to
use the logit transform.

Logits = natural logs of odds
Odds = Probability/(1-Probability)
Logit(Y) = b, + b, X, + b,X,+ b;X;+...+ b X,

Where the b’s are unknown coefficients and
the X’s are the explanatory variables

Bonham-Carter, 1999

Solution to Logistic Regression Equation

 The coefficients cannot be solved by
ordinary least squares (a direct matrix
inversion), because the equation is non-
linear

The method of maximum likelihood is used
to maximize the value of a log-likelihood
function

— This requires an iterative solution

So coefficients are obtained simultaneously
without an assumption of conditional
independence.

Bonham-Carter, 1999



Practicalities

* Can calculate the logistic regression
coefficients using the same unique
conditions table as for WofE
— Muti-class themes must be split into

binary themes in unique conditions table.

* In ArcSDM deal with missing data and
multi-class problem automatically.

* In Arc/Info does not deal with missing
data and has another input format.

Bonham-Carter, 1999

“Missing Data” Approaches

Gold Potertial

F e

Gold Potential

[

Used in Arc-SDM

Compare Results

» ArcSDM includes three techniques for
comparing the results of different
techniques:

+ Spearman’s Area Weighted Rank
Correlation

+ Quantile-quantile plot
+ Map of rank differences

Problem of Missing Data

» Deleting all unique conditions with
missing values in any of the evidential
themes.

Deleting themes that have missing data
totally.

» Replacing missing values with zero, or
some other constant.

Bonham-Carter, 1999

Can then compare the results from weights
of evidence to logistic regression

This is then a check on the effect of
conditional dependence on the results of
weights of evidence, although if missing
data and multi-class categorical
evidential themes have been used, then
one cannot be absolutely sure what effect
the recoding in logistic regression has on
the results.

Bonham-Carter, 1999

Compare Results

pare Results

Selot layers: Select comparison techniqus(s}
LR Posterior Probabilty 1 . Bioau] 5|
LR Posterior Probabiily 1. TmgPorts] _|
(LR Posterior Probabiity 1 . Ara_sqm] I Quantie-quariie plot
(LR Posterior Probability 1. LRPostProb] W Map of rank differences

I¥ Aea veighted Speaimans rank

O Cancel

Bonham-Carter, 1999



Compare Results Compare Results
» Possible inputs: Spearman’s Rank Correlation and Rank Mapping

+ integer grid theme with numeric field(s)  Arcview 3 - Classifies both variables into
+ floating point grid theme 20 quantiles (ranks). ArcGIS — user
specifies number of ranks

E?Le;t;ayfn - Selest comparison techniquels): Spearman’s Area Welghted Rank
‘asterior Probabilty 1 Bioau 2

(LR Postetis Prabiiy 1 TrogPais] ||| 7 oo wecht=d Speaman' ark Correlation is calculated and written to a
[LR Posterior Probabilty 1 . &rea_sqm] ¥ Quantie-quanie plot dB ase f|| e

¥ Map of rank differences )
Map of rank differences generates a
difference map, classifies and symbolizes
it to show where the two input evidential

S themes are similar or dissimilar

Bonham-Carter, 1999 Bonham-Carter, 1999

LR Postetor Pababily 1 . LR_Std_Dev]

Compare Results Compare Results
Spearman’s Rank Correlation Map of Rank Differences

Area Weighted Spearman’s Rank 1

ArcGIS — User has to symbolize and
specify number of classes

Bonham-Carter, 1999 Bonham-Carter, 1999

Compare Results Compare Results
Quantile-quantile plot Quantile-quantile Plot

» Sorts the values in each field or theme in
ascending order

« if one variable has more observations than
the other (for Arcview3), its values are
interpolated so that there are equal number of
values. ArcGIS: specify number of classes

¢ values are plotted as x and y coordinates

Posterior Probability

Logistic Regression

Bonham-Carter, 1999 Bonham-Carter, 1999




ESRI Band Collection Statistics Tool

from 4 joised aftribut !!-

ArcSDM 3.1
Create Raster tool

ESRI Band
Collection
Statistics tool

A Evolution of Models
Simple Binary WofE Simple Binary LR
o . s

SUMMARY

* Logistic regression can be compared to
weights of evidence to check CI assumption

* The total expected number of deposits is
usually slightly underestimated by LR
(rounding?)

* In general the results of the two methods are
similar in terms of ranks, except the WofE
probabilities are usually higher than LR
probabilities because of CI

Band Collection Statistics Report

. SDMUC7 WofE
. SDMUC7 LR
. SDMUCI10 WofE

Pearson’s Correlation Coefficient

COMPARISON OF PREDICTIONS

DEMPSTER
WEIGHTS LOGISTIC  FUZZY SHAFER
OF EVIDENCE REGRESSION LOGIC SUPPORT

WEIGHTS
OF EVIDENCE

LOGISTIC
REGRESSION

FUZZY
LOGIC

DEMPSTER
SHAFER
SUPPORT

Overall prediction ()  Areas of interest ()

From Wright, 1996

SUMMARY (2)

* ArcSDM will generate LR automatically
(expanding the UC table for categorical
themes and substituting area-weighted mean
values for missing data) at the same time as
running WofE, if desired

Tools for comparing maps are provided in
ArcSDM Post Processing and ArcGIS
geoprocessing tools.




Multiple Maps
Fuzzy Logic

Modified from Graeme Bonham-Carter

Bonham-Carter, Oct. 1999
and Sept. 2002

OUTLINE

e Crisp vs. fuzzy logic

* Fuzzy membership functions
* Fuzzy combination operators
 Application

Bonham-Carter, Oct. 1999

Crisp Logic
* Membership of crisp set defined as either 1 or
0, True or False

— (1) Truth(This location is close to a lineament) = 1

— (2) Truth(This location is on a geochemical
anomaly)= 0

» Combination of (1) and (2) by AND, OR, NOT
Boolean operators.
— Truth(1 AND 2) = 0
— Truth(1 OR 2) = 1

Bonham-Carter, Oct. 1999

Fuzzy logic

* Fuzzy membership defined in the range [0,1]
allowing for gradational membership
— (1) Truth(This location is close to a lineament) = 0.6
— (2) Truth(This location is on a soil geochemical
anomaly) = 0.9
* Fuzzy operators

— fuzzy AND, fuzzy OR, fuzzy algebraic SUM, fuzzy
algebraic PRODUCT, fuzzy GAMMA, etc

— Truth(1 Fuzzy Or 2) = 0.9
— Truth(1 Fuzzy And 2) = 0.6

Bonham-Carter, Oct. 1999

Fuzzy Membership Functions

* Membership defined by a functional
relationship, or by a table of ordered pairs

* Membership reflects degree of truth of
some proposition or hypothesis (often a
linguistic statement)

Bonham-Carter, Oct. 1999

Non-spatial example

 Truth of proposition (Person X is Tall)
* Degree of tallness depends on height

» Need a fuzzy membership function relating
height to degree of tallness

In range [0, 1], similar to probability, but not
satisfying probability laws

* Sometimes termed “possibility”

Bonham-Carter, Oct. 1999




Tall
g Oldness

Person Age Oldness

Person  Height Tallness

Fred 32" 0.00 Tallness = 0 if height < 5°, Oldn. 0if 18

Tallness = (height-5)/2; Sall 27  0.21 i skl
Mke 55" 021 o :ée:;ﬁt@;’- e M'ky G i Oldness = (age-18)/42

; ike : :
Sally 39" 038 Tallness = 1 if height > 7 if 18 <= age <= 60; or
Marg 32 0.33 2t
Mrg 310" 042 ess = 1 if age > 60
£ [ Truth(Marg is tall) = 0.42 | John.... 4l ..0.54
John 61 054 Sy [ Truth(Fred is old)=1.00 |
AR ARl Fred 65 1
Bonham-Carter, Oct. 1999 Bonham-Carter, Oct. 1999

Fuzzy Combination of Tallness and Oldness Fuzzy Membership Graph
Person  Height  Tallness Age Oldness Talland old  Tall or old
Fred ) 0.00 65 1.00 0.00 1.00 Probably
Mike S5 0.21 30 0.29 0.21 0.29
Sally SI98 0.38 27 0.21 0.21 0.38
Marg 5'10" 0.42 32 0.33 0.33 0.42 Missing  Data or Uncertain
John 61" 0.54 41 0.54 0.54 0.54
Sue .24 1.00 45 0.64 0.64 1.00

Probably

[ Truth(Sally is tall AND old) = min(0.38,0.21) = 0.21 |

[ Truth(John is tall OR old) = max(0.54, 0.54) = 0.54 |

Bonham-Carter, Oct. 1999

Fuzzy Membership Function Fuzzy Membership Table
H (X) =0 if x<50 Class Membership Source Intervals
1 0.8 '142 - 166 ppm As'
x_so i 2 5.7 V12 i 2 ppm Ask
,u(x)=g1f 50<x<250 3 0.3 '28 - 52 ppm As'
250 5 U2, Sehi = A p DML
6 (e 2 PPN SIS ppm ASE
a 7 (052 T il 2 As'
,u(x)=11fx>250 8 G2 '2-7 ppm iirv" ;
9 Q%2 'No data'

Where u(x) is the membership value for x

Modified from Bonham-Carter, 2002 Bonham-Carter, Oct. 1999




Fuzzification Functions

* Functions * Hedges (square root

—Large and squared)
—Small —Somewhat
—Near —Very
—Gaussian
—MS Small
—MS Large
—Linear
=usGs|
Large Function
Varying Spread
1 I — ‘
0.9 +——=Large(70,1)
o 08 +———=Large(70,2) /
£ 0.7 +—|—Large(70,3)
8 06 — — Large(704)
€ 051 — Large(70,5 —
> -
N 03 /; /
L 0.2 A
0.1 ’///
0 //

o

Crisp Value

20 30 40 50 60 70 80 90 100

Combination Function

0.9 /
08

(-3

2or7 /
3 06
€ 05
> 0.4 1

S 0.3
* 02 / N
014 _A

Cristp Value

Fuzzification Functions

Large Small
1 1
u(x)= 5l o u(x)= EEY Y WY
1 1
el i ifaclis =
%) )
Near Gaussian
% 2
e (=D

14 1% (x - f2)2

where f2 = mid point and f1 = spread
H(X) is the membership value for x

Near Function
Varying Spread

] ]
——Near(150,0.1) |

——Near(150,0.01) ||

/I \\
/ \ = Near(150,0.001)[

\

. k —
60 110 160 210 260 310
Crisp Value

009009000
NWw RO N ® O

Fuzzy Membership

o

o
o

4
0.9 s\\ ——Small(30,4)
0.8 ——Very Small
o ery Smal
RS NN
[4 = Somewhat Small
g o AN
£ o AN
) N N
[0 W N N
§ 03
[ \\\\
0.1
0 . . : " , : : -
10 20 30 40 50 60 70 8 90 100
Crisp Value

Very Small = small squared

Somewhat small = square root of small




Mean-Standard Deviation
(MS) Small and Large

MS Large
y(x)=1———bs—ifx>am
x—am+bs

Otherwise u(x) =0
MS Small

H(x )—b—lfx>am
xX—am+bs

Otherwise x(x) =0
‘Where: m = mean, s = standard deviation

a and b are user input parameters, defaults 1 and 1

B Contrast
B Fuzzy Membership

Examples of MS Small and Large

1
0.9 +
0.8
0.7 +
0.6
0.5 +
0.4 +
0.3
0.2
0.1

0

—e—Large

—=—Very_Large
Somewhat_Large
Small

—x— Somewhat_Small

—e— Very_Small

Fuzzy Membership in ArcSDM2
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Operators
Fuzzy Or and Fuzzy And

Fuzzy Or

HCombination = Max(tg, iy, fe»--.)

Fuzzy And
HCombination = Min(y, iy, tc»..)

Combination Operators
Fuzzy Product = ficompination = [ 1i=1(44)
Fuzzy Sum = £icompination =1 - H?zl (1— )

Gamma Operator
HCombination =

(Fuzzy Sum) * (Fuzzy Product)”
Where y = Gamma specified by user




r T T i
i Increasive — 7T
(e > max(tas o) |

08F  p=78 2 Lol "
o
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£
£
E 0.4
uj_ decreasive
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0.2

0.0 0.2 0.4 0.6 0.8 1.0

’Y Bonham-Carter, Oct. 1999

Fuzzy o,
Inference Net

10

NWLINS

Favourable
lake sed.
geochem,

GEOL

biogeachem|

Intia evidence Intermediate Final hypothesis
(Input Map) hypothesis (Output Map)

Bonham-Carter, 1999

Decisions for Fuzzy Logic

* Fuzzy Memberships

— Thresholds can be gradational, potentially many
values to assign

— Named classes can be fuzzy, potentially a value
for each class

* How the criteria (maps) interact
— Fuzzy AND, OR, and GAMMA
— Fuzzy SUM and PRODUCT - not used often

— Gamma value to define fuzzy relationships of
criteria

1]

Fuzzy Logic Summary

e Advantages
— Flexibility of assigning fuzzy memberships
— Choice of combination operators
— Mimic decision making by expert
— Can deal with “maybe”
— Not limited to binary criteria
— Easy to understand
» Disadvantages
— Problem of missing data
— Confusion between fuzzy membership and

uncertainty
— Potentially many fuzzy membership values to
assign Madified from Bonham-Carter,

Oct. 1999; Wright, 1996

Comparison of Fuzzy Evidence

Auin Laka Sod Fuzzy Asin aes Sed

Bonham-Carter, Oct. 1999

Operator Comparison

Combined Au, As, Sb, W Combined As, Au_ Sb and W

£z
e

L
Fuzzy AND '
3 Fuzzy OR
Combined Au, As, Sb. W Combsnation of As, Au, 55 and W
" &
: ]
e . !
| - ' v &
d »
L3 'y 9
L4 *_‘
il = 05 . Gamma=098 e

Bonham-Carter, Oct. 1999




Au Favourability

-';:L’_ A -

Fuzzy membership
T [N
03-04
[ ]04-05
[ ]05-06
[ j06-07
[__J07-08
0.8-09

Bonham-Carter, Oct. 1999




Neural Networks

Fuzzy Clustering (Unsupervised)
Radial Basis Functional Link Net (Supervised)

Modified from
Carl G. Looney, Prof. of Computer Science
Computer Science and Engineering/171, UNR

1. Intro. to Classification

* Humans accumulate knowledge by grouping
observed objects into classes

 This saves the effort of storing every object as a
unique item with its own special list of properties

* Classification allows knowledge to be built and
organized efficiently

Looney, 2004

1. Intro. to Classification
+ Given a population of objects and the goal

of classifying them, we must first find
measurable properties they all share that

- distinguish them to some extent
- allow multiple individuals to be alike

» We call such measurable properties features

Looney, 2004

1. Intro. to Classification

» We represent the objects in the population by their
feature vectors

« Itis the set of feature vectors that we classify

» To classify, we must partition, or cluster, the
feature vectors into groups with similarity within
groups, and dissimilarity between groups

Looney, 2004

1. Intro. to Classification

» Suppose there are 3 types of beetles

 Let us measure the green color intensity X
and the height-to-width ratio y

» Then the feature vector for a beetle is (X,y)

Looney, 2004

1. Intro. to Classification, cont’d

Ratio
B -
Subtype Protatypes . | gujvme 3
x P e T
x '}/ | + e
* 4% X ‘-\ + + +
X X X 1
* X o ‘I". o "
Subtype 2 d& o
oo o
o Subtype 1
0

0 1 Color
Looney, 2004




1. Intro. to Classification

* After the clustering into clusters, a vector is used
to represent each cluster (called prototypes or
centers)  [a cluster is also called a class]

» When a new feature vector from that population is
to be recognized, it is compared with the
prototypes in the various clusters

* It is recognized as belonging to the class that has a
prototype most similar to it

Looney, 2004

2. Recognition

+ Classification: self-organizing, or unsupervised
learning, of classes by a system [e.g., clustering]

+ Recognition: supervised learning, or training, of a
system to determine which class an input feature
vector belongs to [e.g., neural networks]|

Looney, 2004

Fuzzy Clustering

Unsupervised Method
No Training Sites Needed

1. Intro. to Classification

» Data may or may not have clustering structure

XXXXXXXXXXX XX XX XX

XXXXXXXXXXX X XX X XX XXX X X XX
XXXXXXXXXXX X XX

XX XXX X XXX
XXXXXXXXXXX X XX X XX X X XX
XXXXXXXXXXX X X XXX
XXXXXXXXXXX
No Clustering Structure Clustering Structure

Looney, 2004

2. Recognition

+ After classification, we desire to train an on-line

automatic recognizer that recognizes the class of any
new input vector from the same population.

+ We use the set of labeled feature vectors to train a

-- fuzzy neural network
-- fuzzy recognizer

Looney, 2004

Unique Conditions Table
VAT

» Each row can be thought of as a feature
vector, X = (X, X, ... X,) Where each x,, is
the value or attribute of the feature.

— There are N attributes for any object in a
population of objects.

e There are Q rows or feature vectors

» Goal is to partition the population of feature
vectors in classes of objects by partitioning
the feature vectors.

o




Classification

Each + represents vectors (s) in the plane, includes
error and measurement noise, but on average they
fall into two subpopulations (classes).

Lo
Estimation of Variance
X Xs are standardized between [0,1]
2
1 N = 2 = number of evidential layers
°‘° M = 4 = number of clusters, experience
°A’° indicates if want 2 final clusters start
ol 1 X1 with M = 10

Where M is large enough, then can
initially estimate the variance by

1 1
vl Ul Lo
2 M) "ala) 3

g

Fuzzy Clustering Flow Chart

Weighted Fuzzy Expected Value

- : ——— s
1) initializewith sample average
WFEV _Sl+52 +...+Sp

=)

i) computetuzzy weights

wp =exp[~(sp — 10> /(20%)] forp=[1.....P]
P

Wy =w,/ ler
r=
iii) compute WFEV
P
o — ZWp . Sp

p=l1
iv)if(stop_criteria) then stop

Fuzzy Clustering Algorithm

* Input a number K of classes that is larger than the
expected number of classes

 Assign first K of the Q vectors as cluster centers
TA R )

* Forq=1t0 Q
— Assign x@ to closest & by c[q]=k
— Find WFEV for each cluster to obtain a new center {z&)}
— If(any center changes more than €) start over

— Else Compute weighted fuzzy variance for each cluster
and WFEV dygy of distances between centers

e fork =1 to K-1
— for kk =k+1 to K
« if distance(z®),z:0)<Bd ., then merge (k.kk)

Calibration of Fuzzy NN Models

¢ Cluster validity — make as small as possible




Radial Basis Function Link Net

Supervised
Training Sites Required

Radial Basis Functional Link Nets

A radial basis functional link net (neural network, NN)
transforms each N-dimensional input feature vector into
an output target vector

= X=X X)—NN—t=(t;,....t,)
Tar%et vector t is a code word that represents a class. This
is called supervised learning because the network must be
told the class for each input feature vector x.

NNs have a relatively large number of parameters that can
be thought of as dials. The parameters are also known as
weights:

During training a set of feature vectors are presented to the
network and the dials are adjusted until each feature vector
is mapped to its known target vector

— These feature vectors are called training vectors when used to train
the network.

e

Diagram of Process

X=X X ) 2> NN > 2 =(2,,...,2,) > e <t =(1,,...,t,)

The error to be minimized over all Q input feature vectors is
Q%) :

E=> > fi-2))
G=IRj=]

In our case j=1Dbecause only one target value.

Radial Basis Function

RBEF is a Gaussian function. It has a center vector
v and processes any input vector X via

y = f(x;v) = exp[(x-v)?/(267)] (0<y<l)

Each middle-layer node in RBFN or RBFLN
contains a RBF whose output fans out to each
node in the output layer.

Y| y =f(x;v)

RBF Contour Curves in the Plane

RBFLN Flow Chart

Load RBFLN Train Train &
.DTA File Parameter Dialog Initialization Process Info
Load Parameters
.PAR File

Initialization

Load
.PAR File .DTA File
RBFLN Load
Classify .DTA File

Save .RBN RBFLN __‘Lo—ad‘
Results File Classi -PAR File -m




Input Data Format

NMJQ * N = number of evidential layers
0:@, 9,0, g5®, x, @, x,D,..., x@, t,® * M = number of nodes (RBFs) in
9,2, 9,®, 9:@, x,®, X,,...., X\, t,® middle layer

* J=number of output classes = 1

* Q= number of feature vector/target
vector pairs, that is number of unique

0,9, 3,9, g,@, x,@, %,@,.._, X\, ,@ conditions

o g0, g0, g M X0, x,0,  x D=

first input feature vector, g, is the
key field to join with unique

The t, values are the training-set conditions table.

fuzzy-membership output values.  « t,() = first target output value in [0,1],
. g . s where

This allows for ranking of training S

sets. — 0.9 = strong indication of yes

— 0.1 =strong indication of no
— Can use to say “kind of like” a training

Output Results File

g,®, c®, £, £,0,..., f O 2,9 is the key field to
9,?,¢c?, £,0,1,@,..., %@ join with unique
....................... conditions table

9,9,6Q), £,@, x,@, .., %@

c@ is the fuzzy class
number

site!
musmy

Decision with Neural Networks

 Transform evidential values into range [0,1]
— Can use fuzzy membership values as inputs
— Possibly can use value field

» Ranking of training sites

 Evaluation of reported measures of
classification

PNN

* What say?
 Uses circular functions in space.
* Measures

— Nearness of cluster

— Measures

— Overfitting

£,@ fuzzy membership
values, respectively
for input vector q
belonging to class k =
19e8 K

Soheies,

e

Calibration Measures of RBFLN

¢ Minimize number of clusters, M.

¢ Small number of iterations
— Over fitting
e (Calibration measures.

Summary

e Advantages
— Can rank training sites
— Non-linear mathematics
— Unsupervised and Supervised method
» Disadvantages
— Model parameters are difficult to understand

— Need training sites for occurrence and non-
occurrence

— Approaches to ranking of training sites not well
understood

— Overall use is poorly understood




Miscellany

Fuzzy Membership
Nature of Evidence
Semantic Classification of Response
Testing of Predictions

=EUSGS|
Membership Functions
N(%t A Grisp A Not A
N
0-9 I\\
0.8 1\
= 0.6 Crossover
gl 05 < Point
i /
(I A I | A
S TN
A /1N VAW HAY
: L
() e—— T T —
012 3 4567 8910
Class
Semantic Summation
Summation -
Membership in
good basketball
players 0
Importance as
basketball
player
Membership 1
in semantic ery
S i ;’]:m Short),~ Average Tall >

Height
=

Fuzzy Membership

Semantic Approach

Membership Function

Not A Crisp A

Crossover
<+ Point

N

O e
ocxaNwhuoN®O

o
N
»

Ranking Fuzzy Membership




Speculations on the Nature of
Evidence

Generalization
Positive and Negative Evidence

Categorical Generalization
Expert Interpretation

Categorical | Area | #Points | Contrast
Class

Inside
Outside

Inside

Lime mud 2000

* For percolation of water through sediments, Sand
and Shelly sand are more alike than Lime mud!

» Always check categorical generalization by
calculating weights of the generalization

Multi-Classes

o

H —e— Contrast

f —=— Confidence N \‘ —
7 —

i I

High [ *Moderate Outside

— T
O =N WhH U ON O =
Contrast

16 15 14 13 12 11 10 9 8 7 6 5 4

Antimony Class

Categorical Generalization
Simple

Categorical | Area | #Points | Contrast
Class

Inside
Lime mud 2000 -1.0

Null or 0

Outside

Shelly sand 75

* Assume both have significant Studentized
Contrast

» Always check categorical generalization by
calculating weights of the generalization

* Does Shelly sand belong with Lime mud? ==

0.8

0.4

0.0

C\/ Cumulative Contrast
-{ Inside Outside
| 4 -
-{ Pattern| Pattern

y 1.25 km.

Maximum contrast at

DISTANCE, km

Another Multi-Class

r 10
——Contrast | | 9
" —=—Confidence| | g
- 6 %
5 2
-\-\ i 8
b— o \/’ 3
"4 T e e ~ —
* ,
High| < »Dutside
Moderate 0
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11
Log Antimony classes




Positive and Negative Evidence

%W

1

What are the rules of Generalization?

» A model should follow a consistent rule
of generalization.

* Rules might define how to consistently
derive specific types of models.

» Models are always wrong but
sometimes useful!

* Not all models are equal.

* Is there a best model or simply a
collection of better models?

Fuzzy Membership - Ordered Variables

CONTRAST
W+

—4— Abs(W-)
Fuzzy Mbr

Semantic Classification of Response

» What is the significance of a particular
posterior probability or fuzzy membership
value?

» Have to interpret in context of the model.

— Number of training sites: Do you have a large
or small sample of the possible training sites?

— State of knowledge about process being
modeled: How good is the scientific
understanding of the process?

— Quality of the evidence: Consider accuracy and
precision of the values and the location.

|

Solution

+ Analyst has the best understanding of the
significance of the response value.

— Highest posterior probability may not be a high
or large value. Might be quite low.

— Consider the meaning of the prior probability
» Assign names to intervals of response
values.

— Carefully consider the meaning or implication
of the selected terms.

Testing of Predictions

» How well does the Response value
predict the training sites?
— ArcSDM2: Associate Responses with Point
Theme
» Experimental Design
— Hold back training sites to test the model
— ArcSDM2: Associate Responses with Point
Theme

* Field studies

suseq




Chapter 9

Summary
Comments on Exercise 1

Guidelines for Modeling

» Formal statement of the problem.
* Define the user of the model.

* Specification - preprocess the data to provide
useful information, that is evidence.

— Data exploration
— Data transformation, filtering, and scaling

— Reduce the dimensionality by eliminating
redundant or correlated information

— Use the minimum information necessary

* Prediction - combine the evidence to create the
model.

» Testing - evaluate the model and it’s properties.

=EUSGS

Purpose of GIS Projects

» Combine data from diverse sources

» To describe and analyze interactions

* To make predictions, that is models

* To provide support for decision makers

=EUSGS

Properties of Evidence

» Selected attributes must discriminate
between one or more classes of
objects.

* Selected attributes must not be
correlated with other attributes to any
moderately strong extent.

* Selected attributes must have meaning
for humans.

=EUSGS

Types of Models

* Prescriptive or Deterministic
— Application of good technical practices
— Process: Boolean rules, Equations
— Output: Binary (yes or no), Index overlay
(score)
* Predictive

— Application of mathematics to represent how
people think about the evidence but cannot
represent as equations.

— Process: weighting of evidence and
combination of weights

— Output: Favorability, probability, or fuzzy map

[0to 1]

=EUSGS)

Knowledge Driven Methods

+ Boolean Logic - True/False representation of maps with
all maps rated equally. Simple method with True/False
answer.

+ Index Overlay with Binary Maps - Maps are given
different weights. Linear combination of maps.

» Index Overlay with Multi-Class Maps - Maps are given
different weights as well as the classes of the maps are
given different weights. Linear combination of maps.

» Fuzzy Logic - More flexible weighting of maps and map
classes. Nonlinear combination of maps.

» Expert Weights of Evidence — Weighting of evidence
easily understood. Log linear combination of maps.

=EUSGS)




Data Driven Methods
» Weights of Evidence

— log linear combination of binary or multi-class maps.

— Classifies areas by probability or favorability of
occurrence of a training site.

— Model parameters easy to understand.
* Logistic Regression
— log regression combination of binary maps
— Classifies areas by probability of occurrence of a
training site.
— Model parameters complex.
* Neural networks

- Elxperimental, nonlinear combination of fuzzy or map
classes

— Classifies areas by fuzzy membership in training set.

— Can also be self organizing to produce fuzzy
membership.

— Model parameters complex.
=EUSGS

Recognition of a Pattern

» Task - Determine what the appropriate level of
aggregation and simplification is for the problem
at hand, a problem of reclassification.

— Aggregation and simplification are tied to scale of
observation.

— The is no single scale at which to view a system.

— Does not mean that all scales serve equally well or
there are not scaling laws.

» Description of patterns is the starting point.
» Spatial models start with an assemblage of

patterns and associated processes.

=EUSGS

Examples of Measurement Scales

Scale Type Examples Operations Means

Nominal  Rock type = Mode
Ordinal Relative age >< Median
Interval  Temperature +-*/ Mean
Ratio Distance +-*/ Mean
=USGS
Testing

Data-driven Methods

 Evaluate classification of training points
— Associate Points with Response
— Efficiency of Classification
» Use points not included in training set to test the
model
— Implementation - use a random subset of training set to

develop the weights and use the remainder to evaluate
the model. (Efficiency of Prediction)

— Problem - for many models there may only be a small
number of training points to start with.

— Field Studies

Buffer Resolution
Threshold Weighting Reclassification

Map Geologic  Buffer
Map Scale Resolution Resolution Resolution
1:2,500,000 1250 2500 5000
1:500,000 250 500 1000
1:250,000 125 250 500
1:100,000 50 100 200

Units - Meters
Map Resolution = (Scale denominator)/2000




Spatial Analysis in GIS
Map Pairs

* Overlay
» Map Correlation

Guidelines for Modeling

Formal statement of the problem.
Define the user of the model.
Specification - preprocess the data to provide useful
information, that is evidence.
— Data exploration
* Reclassification, filtering, transformation, and scaling
Reduce the dimensionality by eliminating redundant or
correlated information
Use the minimum information necessary
Prediction - combine the evidence to create the model.
Testing - evaluate the model and it’s properties.

Join Data ]
1wt e

Spatial Joins

* Define relationships
between features in
layers.

+ Apply to points, lines,
or polygons

* Nature of the join
changes as a function
of what type of spatial
layers are being joined

e .

i
Dissolve Management
)
s : j ” bt e Useful for hierarchical
i data
\ I« Example
- . Sedimentary Rock
=4 | o Carbonate
g Limestone
= Dolomite

Combining Grids

» Zonal Statistics - summarize one grid for zones in another
grid or shape file
* Map Calculator - some sort of map algebra
— Combine
— Con
* Multivariate Statistics (Scaling Issues)
— Maximum Likelihood Classification
— Principal Components
* Merge grids
— Unique polygons
— Unique conditions

Spatial and Other
Transforms
of Rasters




Simple Shape Files

Ay Coccdrane gam,

3 Brusete sl el b e e v ity | Aenis e
[
e wneil

7 vy bt vl e v e s e
it 1 e achs s b

¥ Dnplay mamwg meiage fsachm reads have o b
oommn.

prcied Aavy araay

o] e
An Irregular Area | ==
with holes

Analysis Properties

N N

Map Calculation
with Extent

Map Calculation with
Extent and Mask

muses

Merging Two Grids

Create the grids

Map A (Grid)

Two Shape Themes

Map B (Grid)

Map A Map B

Red |2 )
Green| 1 1
Blue |0 0

| =] |
A Rectangular
Area
| tmen
Stamped Overlay
Shape Theme Grid Theme Reclassified Grid
Two Polygons . > 7
Red has ID =2 Spatial Analyst/Option/Extent = View

Green has ID = 1
Gray = No Data

Reclassify: 2 =2, 1=1, No Data=0

Weighted Sum

Map A

(2*MapA) + (3*MapB)

Weighted Sum

Map A

012
m 00 2 4
e1357
=26 8 10

VAT

Map B

||




Conditional Overlay

wiap o (JOIN OVerlay in text)

Con(MapA > MapB, MapA,0)

Conditional Overlay

0
0
m
Map B ‘ 2
=2

VAT values

Stamped, Joined, Compare

Unique Polygons vs. Unique Conditions

Unique Polygons
14 polygons
Shape file or Grid

Two Shape Themes

U
o

Unique Conditions
9 Classes

Grid theme

Transform Grid/Combine

sptrnfrm.avx
Frequency
VAT with Case added
VALUE COUNT Map B Map A CASE
1 53517 0 0 1
Sy ) - 2 Consistent numbering
Sf jee 2 = S of the matrix or VAT
2 3291 1 0 4 7
4 4139 1 4 5 Do this for Shapefile
6 2642 ¥ 2 6 in ArcGIS9.1.
il 7k z i 4 Can do in ArcGIS 9.2
8 1071 2 1 8
7 545 2 2 9
ArcMap: ArcToolBox Analysis Tools/Statistics/Frequency
Sort and add Case in Excel
Or

ArcMap: Symbolize by multiple attributes musgs

A oo
: D)
2
. (D) : &
b > @ > > @
==~ 4 e 6
e s

ATTRIBUTE TABL
“UN

s 1 1 1 i
2 B T iy o B
S i I = 2
e e
2 PR
[e] 2 & Bonham-Carter, 1996 8-13
Problem with the VAT
Unique Conditions VALUE COUNT Map B Map A
9 Classes 1 53517 0 0
Grid theme 2 3291 1 0
3 9356 0 1
4 4139 1 1
5= 22971 0 2
6 2642 il 2
7 545 2 2
8 1071 2 ik
9 718 2 0
Value not sorted with regards to Map B and Map A values.
]

Grid Overlay
Application

« Reclassification rasters
« Convert to Shapefiles
* Union Shapefiles

« Symbolize by Multiple
Attributes.

* Add Sorting Attribute
[1-25]

« Convert to raster on
Sorting Attribute.

[mezaon




Correlation Analysis

Arsenic Classes

Summary

* Shape files - several tools
— Computations can be slow

* Grid overlay offers great flexibility
— Numerical and logical combinations

— Ordered VAT or table of combinations opens
the door for many types of modeling

— Unique conditions table shortens the ordered
matrix and simplifies programming in modeling

— Computations are very fast

musa




Spatial Analysis in GIS
Map Pairs

*Map Correlation

Probability

Probability | Put the following balls in a bag:
0.3 3 red-blue balls ----Red-Blue (RB)
0.2 2 red-green balls ----Red-Not Blue (RG)
0.1 1 blue-green ball ----Blue-Not Red (BG)
0.4 4 green balls ----Not Red-Not Blue (G)
Area Tabulation Table
‘What is the probability of R BG
drawing each type? g =i [1=tn 4T,
What is probability of Uil it e 1
drawing a blue ball? RG|2-Ty [4=T |6-T>
0.2:P21 0.4:P22 0.6:P2_

Marginal Probability of a

blue ball = 0.4 5=T: [5=T, |10=T,

0.5=P; |0.5=P,

mypng

Combining Two Binary Grids

oSl b ——
-
Lapead Lepad
| ol ol licaFar L e Sl vt
[T | St
e F o o

g R

.-'-':'"x'.' X . :
— S e Granite | No Granite
- ¢ Legmaet Granite | Granite | Granite Till
L Till & Till | only
g::'-‘_- No Till |Granite | No Granite
TR only or Till

Bonham-Carter, Fig. 814

Probability

Put 3 red balls and 7 blue balls in a bag.

‘What is the probability of drawing a blue ball from
the bag?

What is the probability of drawing a red ball from
the bag?

Probability of drawing a blue ball is 7/10 = 0.7 = P,
Probability of drawing a red ball is 3/10=0.3 =P, = 1- P,

s

MABA [VPNTY
: &)
2
Unique polygon map Unique conditions m
; D) : D)
2 @ > @
T % (T 6
MAP_C MAP_D
ATTRIBUTE TABLE OF MAP_C ATTRIBUTE TABLE OF
“UNIQUE POLYGONS" "UNIQUE CONDITION
MAP_A MAP_B MAPA wmaAPE
i 1 T T 1 1
2] 1 2 T o Fi 2
oE = B = T B
| e s 7 2 s
1l s S 2 7]
s 2 2 B > b
71 2 4
8 | 2 1 Bonham-Carter, 1996 Fig. 8-13

Tabulate Areas or Unique Conditions

Reclassified Antimony

VALUE VALUE_1 VALUE_2 VALUE_3 VALUE_4 VALUE_5
1 881207640.750  411230232.350 2098113.430 0.000 0.000
2 3212211661.900 26041783897.000 354581169.730 0.000 0.000
5 3 39864155.177 9426823642.600 2979321071.100 10490567.152 0.000
= 4 0.000  117494352.100 448996274.100 46158495.468 0.000
v 5 0.000 0.000  23079247.734 4196226.861 2098113.430
E Units = Area Correlation Coefficient
) 0.803
zf—'j VALUE _ VALUE 1 VALUE_2 VALUE 3 VALUE 4 | VALUE 5
‘@ 1 2.00 0.93 0.00 0.00 0.00
§ 2 7.30 59.18 0.81 0.00 0.00
8 3 0.09 21.42 6.77 0.02 0.00
-4 4 0.00 0.27 1.02 0.10 0.00
5 0.00 0.00 0.05 0.01 0.00
Units = Percent of Area Agreement
68.07

Agreement = 100*(Sum of Diagonal (gray cells)/Total).
Also called area cross tabulation or confusion matrix.

|




Nominal Scale Data
Information Statistic
Area-Proportions Cross-Tabulation Table
2 Q"a":‘ 5 Information Statistics
o PP [P L [Py ¢
] 2 [ L2 I H(A)= _JZ P.iInp.;
BolPr [P Lo [P H(B)= _i p|. 11'1 plo
‘F',.fo'ﬁﬂ__ Joint Entrjozfay
P =TT, SR
Pj=TyT H(A’B):‘Z Z p; In p;
i=1 j=1
Joint Informatiorjl Uncertainty
U(AB)=2 H(A)+H(B)-H(AB)
H(A)+H(B)
L

Weighted Pearson’s Correlation Coefficient
Modified for Cross-Tabulation Table

ZTiJ' >k(xi _YXYJ _V)

=1 j=1

rs: columns rows. —__columns rows [y
\/Z 2 B0 X T, Y
= i=1 1

i=1 i=

where
X; andY; = Values of Map X and Map Y respectively

X andY = Area- weighted mean respectively
T, = area or count in the i" - j"pair or cell of the
cross - tabulation matrix.

Same as in Excel!

Ordinal Data

Weighted Spearman’s Rank Correlation

rows columns

o* z ZTU *(in % Ryj)z

=1 j=l

Lol n(n>-1)

where
R, and R areranks for Maps X and Y
n =sum of cellsin cross - tabulation matrix

Use this formula:

where ranks are numbered 1, 2, 3, ...,n and

where there are no ties.

If have ties, then ranks are given average of the ranks!

Nominal Scale Data
Coefficient of Agreement, kappa
Area-Proportions Cross-Tabulation Table
Map A - -
Pl] PlZ P13 Pl
E_ Py [P [Py |... [P Z Pi— ;i
S|Pau Py [Py ... [Py K =%
P.. [Py [Ps .. |P. 1_2‘(1ii
Where )
Py= Ty/T.. where
R T Q; = Pi. * P,
Pj=TyT n = number of classes, which is the
same in both maps.
Conditional kappa for the i - th class
o Pii — Qi
Pi. — G
[y
Band Collection Statistics: Pearson
1
- STATISTICS of INDIVIDUAL LAYERS
¢ Layer L MESN
H s CRRE Layer 1 = As
R Layer 2 = Sb
§ L Both IDW defaults
1
. H as real-valued
rasters
# Layer 1
. 1 1, GO000
3 0. 52465
R
Same as in Excel!
ey

Bonham-Carter’s Modification

Weighted Spearman’s Correlation Coefficient

columns rows

=] ;Tu *(RX' 7§XXRYJ ‘ﬁv)
o=

o columns rows —_columns rows 7z
\/ Z‘ Z] Ty *(Ry -Ry)? Z ZT,J- *Ry; LTTT
e

i=l  j=I

where
R,; and R;; =ranks of Map X and Y respectively

Ry and Ry = Area - weighted average rank respectively
T, =area or count in thei" - j*"pair.

If the area-weighted average rank is simply the normal area-
weights average this is the same as Pearson Correlation
Coefficient. This is what is done in ArcSDM 3.1

|




Spearman’s - Ordinal Data

Table 8-9B

Tabulate Area Table Map A (X) Sum Cum. RankY
= 80 0 18 0 0 o8’ 98 49
Dunc 37 71 0 0 of 108 206 152
T__ M 0 0 0 10 0 10[ 216 211
ij & 0 0 0 22 30 52 268 242
= 0 0 17 3 51 71 339

CSllm 117, 35 35 81 G 1695
um.  g57' | 188] 223 339
Rank X 585 1525 2055 ﬁ]
e =0.826
Cum. = Cumulative row or column sum rsw =(0.874

RankX, = CumX,, +>UMXi _ o3, % =240.5

Max(CumX;) _ 339
2) 2

Sum = row or column sum

RankX = =169.5

Quantile-Quantile Plot

-l £ 0] 3 ¢ N
SDMUCTS(SDMUCTS wofe Post Prob)

SOMUCH logpol0n LR PostProb) E

ArcSDM?2 Compare Results

=
Select layers: AI‘C'SHM?

[Reclass of Logas - Value]

v Area weighted Spearman's rank
Feclass of LogSh - Value = y "

[¥ tap of rank differences

[Calculation - alue]

[Calculation - Rclassh] v fDuanll\e-Huant\le DIDE_
[Caleciation - Relass?] Ane A P
[stdpareazsl - Walue]

Ok Cancel

Rank Difference
*
.- ' ;
= Y Area Weighted
ET Spearman’s Rank
‘ Correlation
E Attributes of wsr1
| Theme_Field | SDMUC15, SDMUCTS_wofe.Post_Piob |
||| » | SDMUCE,logpai001.LRPostProb 0.92

[masmnsy




Spatial Analysis in GIS
Map Pairs

*Map Correlation

Input As and Sb Rasters

Reclassified into 5 classes by Quantiles

ot | i"l T | *

Rasters created by IDW g

Source Ratio Data

] 05 AR

Log Sb 2%
IDW

Log Sb

Spatial Correlation
Area-Weighted Ra;r.\k D|ffelarence Sh - As
Spearman’s Correlation o e 8 A

e O
Coefficient = 0.28 5 g e :
l_ o b4 .J.r:__ »
Agreement = 0.31 ¥ o M
Difference Batwe:n Sl: and As P i % -
diff002.RnkDffrnce S
— TR
0 -
oo
[=p}
m: “ue = Wag
CE P y :
- L
e
Correlation Analysis
Points (ratio scale) Nominal-Scale Representation
Correlation Coefficient LR o
Log As:Log Sb=0.738 Tk

As:Sb = 0.3000

Grid (ratio scale, IDW)
Correlation Coefficient . !
Log As:Log Sb = 0.803 Explanation
Grid (reclassified 5x5
Agreement = 68%

Arsenic Classes

Interval and Ratio Scale

* Pearson’s product moment correlation
coefficient - measure of linear correlation
— Varies from -1 to 1
* -1 - perfect negative correlation
* 0 - no correlation
« 1 - perfect positive correlation
— Use for ratio and interval measurement scales.
— Not appropriate for nominal and ordinal
measurement scales.




Pearson’s Correlation Coefficient

S, )

\/i(xi—i)zi oY, —Vy:

where

X; andY; = values of Map X and Y respectively

X andY = Average of Map X and Map Y respectively
n = number of cellsin intersection of two Maps.

r=

Nominal Scale Data
Chi-square statistic

Area Cross-Tabulation Table ¢ Ti- *T..
J
Map A Ti' =
T [T [T [ [Ty : T
To [T |To3 |... |To = )
Ta |Tap [T |... [T N (T _T*)
2 _z ] ]
Eir | Eotler i mi=| T, l e
i=l

Map B

M=

p

]

]

Where

Tj;, where thereare 1=1,2,3, ..., N
classes on Map B (rows of the table)
andj=1,2,3, ..., Mclasses on
Map A (columns of the table).

Ti. is the sum of the i" row,

T.j is the sum of the j™ column, and

T.. is grand sum over rows and columns.

mumsg
Proportional-Area Table T
50117 o130 J0.247 =
(Pu) | (p) | (p..) P{A} = p,,
—10.049 [0.705 [0.753 P{Bl=p,
B (pZI) (pzz) (pz.) { } s
0.116 0.830 P{AB}=p,
(p.) (p) (P.) P{ANB}=p,

Probability Tabulation p{ﬂﬂ B}=p,,
P{Kﬂg} = Py

Conditional Probability

el how . Bl
P{A} pol Tol

1 : 345
P{Granite Till | Granite} = —
486

P{B|A} =

=0.7098

P{Granite Till} = p,, = _-P' =0.247

Probability and Odds

P = probability o

O = odds 1/9]-2.20
1/4|-1.39
P

o 2/3]-0.41

= p 1/1]0.00
3/2(0.41
4/1]1.39
9/1]2.20

o]

oo | | | B b0 [ |

S
8

)
Conditional Odds
il
By s Tl T
el 1-P(B} | T. T.-T,
T
O(B| Al = P{BIA} _PBIA
1—5’{B|A} P{1|_3|A}
pll p-l pll 11
Of{B| Ay =1t/ Pl - Fil _ 1
{ | } p21/p.1 p21 T21
|




Conditional Odds Example

O{GraniteTill} = — 27—
2045-727

or3tol0

g ; 345
O{GraniteTill | Granite} = T 2.45
or25to10

0.328

If Graniteis present, then the odds of
Granite Till also being presentis 25 to 10

mumsg

Contrast

Cy =1In(Cg)
€ e alnilhs 3P 280

Mixed Scales
Nominal Ordinal Interval/
Ratio
Nominal Chi-square, Median by Mean by
i, Cw, €tc.  nominal nominal
class class
Ordinal Rank Rank

correlation  correlation
coefficient coefficient

Interval/ Covariance
g Correlation
Ratio coefficient

Odds Ratio - Binary Maps
_O(BIA}_TT,
O{B|A} TpT,
%
s 345*2077 _133
382*141
0. — Measure of Agreement
" Measure of Disagreement

R

e

Mixed Scales - Box Plots

Use Excel
chart types

Stock and
- ex =l
Combination
charts to get
Limestone - * * “ bi H

similar plots.
10 100 1000 10 000

Bonham-Carter, 1996 Fig. 8-16

Categorical Correlation Summary

a and K Useful, nice results between —1 and +1.

K Where number of classes match, useful for
binary and multi-class maps.

Orand Cy  Useful, comparable results to « and o and
are easy to compute.

(&5 Useful test if positive agreement is more
important than negative agreement.

x>, C,and U Avoid for binary maps. Does not
distinguish large interactions due to
agreement or disagreement.

(€% Use with care because does not account
for chance associations.

Qualification Choice of counting region (study area)
influences the correlation measured.




Correlation of Rare Events

Kappa and
o 1 Contrast are
=09 A t
sero for all
o 07 |
cases!
=06
S o5 // Cross Tabulation
=04
Sosl /,// T, |Tiz|Tix
S 0.1 "
O okt 165 ISR Ot
0 10 20 30 40 50 60 70 80
Area Percent of Rare Event T*l T*z e

M1 +T) T
Agreement ( “T” = ) and Jaccard’s C (7, 1Ty, +T,,)

from cross tabulation of two random binary grids.

Arc/Info Statistical Tools
* Grid: Autocorrelation tools
— Correlation - calculates cross correlation
— Geary and Moran spatial autocorrelation index
 Grid: Multi-variant clustering
— Isocluster( ) - natural clustering of attributes in
attribute space
— Miclassify( ) - maximum-likelihood
classification in attribute space
— Princomp ( ) - principal components
classification in attribute space
— Regression - linear or logistic regression
coefficients

» Stackstats - standard statistics for a stack of

grids
e

ArcSDM3 Create Raster
]

Select a raster layer bo convert

( [sotucss [l AreSD¥e
Select a joined table

( [SDMUCEE_wofe =l Join
Select an attibute to corvert

’7 |F'ﬂst_Prnh ﬂ

Creates a new raster from a
joined attribute in an raster

" Create I Cancel |

Summary

* Ratio and Interval

— Pearson’s correlation coefficient
* Ordinal

— Spearman’s rank correlation coefficient
* Categorical

— Several measures. Kappa is very useful as
long as have same number of classes.

* Problems when dealing with rare
events.

Summary

* Quantitative comparison between two
maps can be done several ways!

—Chap. 8 provides a brief overview
and a starting point for further
investigation.

* Area tabulation or cross-tabulation
table is a fundamental input to most of
the correlation measures.




Spatial Analysis in GIS
Single Maps

m

eFiltering

= Process of seeking patterns on maps
that help predict spatial phenomena.

= Visualization leads to recognition of a
pattern and the association of the pattern
with something of interest.

= A model is proposed that describes the
association.

= An area having a consistent, recognizable
characteristics associated with some
object or process.

= A pattern is something that deviates from
the norm.

= A pattern is associated with a particular scale
of observation!

= Itis a primitive.
= Association of patterns and their causes
are the bricks of scientific knowledge.

[muscsy

Guidelines for Modeling

Formal statement of the problem.
Define the user of the model.

Specification - preprocess the data to provide useful
information, that is evidence.
= Data exploration

= Reclassification, filtering, transformation, and scaling

= Reduce the dimensionality by eliminating
redundant or correlated information

= Use the minimum information necessary

Prediction - combine the evidence to create the
model.

Testing - evaluate the model and it's properties.

Data Exploration

= Seeking patterns involves:
= Measurement
= Statistical Summary
= Visualization
= Description
= Understanding of processes causing
pattern

= Foundation is data model.

Types of Recognition

= Classification is the process of grouping
objects together in classes according to
perceived similarities.

= Identification is the recognition of an
individual object as a unique singleton
class.

= Discrimination is the recognition that an
ir|1dividual object as different from a
class.

usos




Legend 350,
Granite
[Jotner

Bopham-Carter 1906

Measurement Scales

lominal (Categorical)

= An unordered label of categories or classes.
= Ordinal (Rank)

= Measurements ordered ﬁranked) according to

relative position on a scale with unequal intervals
between classes.

= Interval
= Measurements that can be labeled and ordered

with an equal interval between classes but without
a true zero.

= Ratio

= Measurements that can be labeled and ordered,
with an equal interval between classes, and with a
true zero.

ReC|aSSIflcatI0n Natural Breaks_(.lenks)

in Arcview Q .

Qudnulc

..

Equal Interval
-
L

Standard Deviation

Mitchell, 1999

Recognition of a Pattern

= Task - Determine what the appropriate level
of aggregation and simplification is for the
problem at hand, a problem of
reclassification.

= Aggregation and simplification are tied to scale of
observation.

= There is no single scale at which to view a system.
= Does not mean that all scales serve equally well or
there are not scaling laws.
= Description of patterns is the starting point.

= Spatial models start with an assemblage of
patterns and associated processes. =i

RecIaSS|f|cat|on

= Reclassification Methods - Continuous
measurement scales - definitions
= Natural breaks
= Quantile, Equal area
= Equal intervals
= Standard deviation

= Semantic Reclassification - Categorical
measurement scales

Reclassification
Another
Example

Mitchell, 1999




Reclassification — Normal Distribution

4!5

LN ST ko
&% -9
[ —— a5 -y
Bl TR BT
S  —
P sl
[ o - % T ey
]
e e

== _=— 38
[ WL Py
[ == =
L .

;

- T
e -
T

X* 2 X 55 X min
e AR o
max min
Standard Normal Distribution Skewed Distributions
Ko LR o X L
X, =50 X; =log(X,)

Data Transformations
Transform to common range

Floating to Integer Transform
X =(X,+0.5.4sGrid).int AV3
X l.* =1int(X, +0.5) ArcMap
where

* o .
X, 1s an integer value

X. 1s a floating value

Semantic Reclassification
iCategoricaI Measurements
= This is an important problem!

= Expert Systems
= GeoGen - http://geology.usgs.gov/dm/

= Spatial Association - How to define?
= Expert decision
= Measurement such as ArcSDM Contrast

Guidelines

iContinuous Measurements

= Histograms are essential.

= Quantile, Natural Breaks, and Equal Intervals
are least sensitive to frequency distribution.

= Standard deviation are very sensitive to
frequency distribution.

= If interested in tails, use standard deviation.
If interested in middle, use quantile.

If interested in minimizing class variance, use
natural breaks.

[ Independence

Getchell
Carlin
Battle
Mountain-
Eureka


http://geology.usgs.gov/dm

Lithology Evidence Theme Lithology Evidence Theme

C (W+-W-)
"W+
W-

1:500,000 scale

Lithology Predictor Pattern

90
80
70

0
[
=
(2]
'
o
-
c
@
o
=
[
o

—e— Percent of Sites

© ) Legend
M Oinary Pattern Present
[Clsinary Pattern Absent

500 1000
Buffer Radius (m)

Mihalasky, 1999

Guidelines and Reclassification
Summary

= Concept of a pattern.

= Reclassification of continuous
measurement scales.
= Many tools

= Reclassification of categorical
measurement scales.
= Few tools - current research

= Expert decision guided by statistics,
Contrast and Studentized Contrast




Spatial Analysis in GIS
Single Maps

*Modeling - Pattern Recognition
eReclassification

eFiltering

Two Signals Sum
High Frequency 3
2
1
[1]
-1 it
-2 2
Low Frequency 3
Low-Pass Filter MOVII;g Average
Moving Average Sl
’ Fuy =N A,

W

|

Filtering Overview

j=1
N= Nurﬁber of prior periods
to include in average
A; = Actual value at time j
F, =Forcasted value at time j

=uses|

Filters

Interpolate a surface

— Inverse distance weighting (IDW)

— Spline

— Kriging (Geostatistics extension in ArcMap)
Block statistics and Focal statistics

— Neighborhood Statistics

Zonal Statistics

Hillshade, slope, and aspect

Convolution Filters

3x3 BlockStats Function

®No overlap of neighborhoods
® All cells in neighborhood receive same value

® A way to decrease the resolution

3x3 FocalStats Function

®Overlapping neighborhoods
®Only the central value receives the new value

®Loose the outside of the theme.

Types of Neighborhoods or Filters

Interval and Ratio Scales
*Mean (Low Pass)
Standard Deviation

Ordinal Scales
*Median (Low Pass)
Nominal Scales
*Majority (Low Pass)
*Variety (Diversity)
Maximum (High Pass?)
Minimum (Low Pass?)

Kernal Properties

Height and Width - 3x3
Type of neighborhood
Weights
1/9 1/91/9
119 1/9 1o Mean Flter
weights
1/91/9 1/9

Others

Minority?

Sum- Program other filters




Convolution Filters

0-10 -1 -1 -1
o4 Laplacmn 19 -1 High

weights Frequency
0 -10 -1 -1 -1
55 | ol Gl 0.25 0.50 0.25

5 :
P = 050100 0:50 ?lgh
requenc

West 028 050" 0258 T 2
1y |
-1 -1 -1

Directional There are a large number of other
21 1, s filters for many applications.
1| Available as Arcview 3 extensions

with problems.

=uscs|

Cascade Programming in AV3

Problem: How do you define the weights?
Neighborhoods can only be defined as
including or not including a cell (0,1).

Fragment of Cascading Avenue Code
firstLine = {0,1,0}

secondLine = {1,0,1}

thirdLine = {0,1,0}

theKernal = {firstLine,secondLine,thirdLine}
aNbrHood = NbrHood.Makelrregurlar (theKernal)

theResult = sourceGrid*4.AsGrid -
sourceGrid.FocalStats(#GRID STATYPE SUM,
theNbrHood, True)

Fragment of VB Code to Define
and Apply Filter

Dim kernel As Variant
kernel = MakelrregularKernel
' pHood.SetIrregular 3, 3, kernel
pHood.SetWeight 3, 3, kernel
' Perform Spatial operation

Dim pOutRaster As IRaster

Set pOutRaster =
pNeigbOp.FocalStatistics(pGeoDs,
esriGeoAnalysisStatsSum, pHood, True)

Laplacian Filter

4+8-2
FriapalaEa] 2
4 i 2 Source
4+8-4 2] |
aba-2
SR b
| -4
Filtered Result 2+4-2
() — —I—

One-Dimensional Laplacian weigths: -1 2 -1

Cascade Programming in ArcMap

Problem: How do you define the weights?
Neighborhoods can be defined by two
methods:

Setlrregular (weights 0 and 1)
SetWeights (any real or integer value)

SetWeights is most useful to weight
individual cells in the filter.

VB Code to fill Kernel

Private Function MakelrregularKernel() As Variant

Dim OutArray() As Long

Dim X As Long, Y As Long

X=3

Y=3

ReDim OutArray(X * Y)

OutArray(0) =0

OutArray(1) = -1

OutArray(2) =0

OutArray(3) = -1

OutArray(4) =4

OutArray(5) = -1

OutArray(6) =0

OutArray(7) = -1

OutArray(8) =0

MakelrregularKernel = OutArray
End Function =




Cascade Neighborhoods in AV3

Laplacian Laplacian
3x3 9x9

&#.1°0 000111000

L R 000111000

010 000111000
E il 380020~ 1 adil
1= 80 0. 91 12
103000, 01 =T
000111000
000111000

Odd number of

rows and columns! 0505081 13404040

Recursive Filtering

* Often necessary to filter the filtered
grid to remove artifacts.

—For example on the Laplacian, may
only want the high and not the low.

—May wish to eliminate isolated cells.

* Often human interpretation
necessary to remove various types
of artifacts.

Antimony Point Samples

Cascade Neighborhoods in ArcMap
SetWeight Method
Laplacian Laplacian
3x3 9x9
0-10 000-1-1-1000
SEs ) 000-1-1-1000
0-10 000-1-1-1000
BT e T
ST 4 44808 -1
A-1-1444-1-1-1
000-1-1-1000
000-1-1-1000
0Odd number of 000-1-1-1000
rows and columns! ...
=EUSGH
ZonalStats

Shape or Grid Theme Grid Theme
The Zones Measurement to Summarize
Mean STD Min Max
Table from A nl n2 n3 n4
ZonalStats B| ns n6 n7 n8
C n9 ol nll - nl2

Spline

F vy
= =
| 11 bl Il;._

Symbolized by 1/4 standard deviations EUSGS




Filtering Antimony

- B

b e

20km

Neighborhood mean from 3x3 surface at various kernal sizes
s

Zonal Statistics Another Pattern?

“Low Pass”
High-Pass Residual

IDW 3x3 - Zonal Stat

.

W . P
Geologic Units ;

Mean Antimony
Central Nevada

1]

1]

Surface with Barriers
I / : A /‘,ﬁ. 3 x 3 Laplacian Filter
L st '
- - -3 2 {( 5
o, T d N
LB (7B A5
[ f
VR ' /-’ ' ! ' ol T :
y : it e 3 Source: DEM Shaded Relief Laplacian of
Sb Surfaczg‘;:lti‘;zu‘ Bartigts o rfa:; pligg Bl HillShade Shaded Relief
ZUSGS =uses




Recursively Filtered Laplacian

R

Filtering Summary

* Objective of filtering is to define a pattern
that may not be obvious in the original data.

— Edges of homogeneous areas are often
important.

* Filtering is an art!

— May require recursive filtering or
interpretation to remove artifacts.

» Powerful tool for data exploration!




Model Testing

Measures to compare, describe, and validate models
Simple Carlin Model Example

Measures of Models

« Correlation measures to compare models
— Kappa for ranked models
— Pearson’s for raw models
¢ Fragstats: Measure the texture or appearance of
the model. Does the model look geologic?
« Efficiency of Classification
— Training sites
— Not-Training sites: What should “Nots” be?
« Efficiency of Prediction (Validation)
— Sites not used for training

Models

L%

All models using
King and Beikman
geology and Nure Sb

“Nots” all other

3-Class Models

mineral deposits in
the area.

All models
symbolized by
natural breaks.

Correlation between Models

WofE RBFLN WofE
Binary (Poor) RBFLN Unique
WofE
Binary 1 0.068 0.29 0.706
RBFLN
(Poor) 0.005 1 -0.006 0.132
RBFLN 0.343 0.08 1 0.29
WofE
Unique 0.159 -0.01 0.063 1

Pearson’s above and Kappa below the diagonal

Kappa: 3 classes by natural breaks

Fragstats: RBFLN-WofE

Index Name

RBFLN

WofE

Number of Patches

503

253

Patch Density 00104 00045
Largest Patch Index 547 623 3 CIaSSeS by N atura|
Total Edge 14,398,750 6,117,000

Edge Densiy 25 I Breaks.

Landscape Shape Index 16.2 6.7

TR RBFLN has larger

Fractal Dimension Index Mean 10404 10419 number of smaller
Perimeter-Area Fractal Dimension 1323 12699 S 3
- o patches (Higher density
Patch Area-Weighted Mean 1,774,070 2443288 of pa[che 5)

Patch Area Median 2875 300

Patch Avea Standard Devaion 129952 23087 RBFLN patches have
Patch Area Coefficient of Variation 1357.8 10386 mOre complex Shapes-
Shannon's Diversity Index 0.8 05

Simpsorts Diversiy Index 0s 03 RBFLN patches are
Shannon's Evenness Index 07 04 4

o7 os more mixed.

Largest Patch Index 54.7 80.7

Interspersion Juxapostion Index 810 187

Patch Cohesion Index 99.7 99.9

‘Aggregation Index 96.9 99.0




PRC: Efficiency of Prediction
SRC: Efficiency of Classification

« Intersect points with response grid.
« Frequency of points.
« Join frequency of points with counts in response grid.
* Summation
— Sort response value descending
— Cumulative area from high to low response value.
— Cumulative number of points from high to low response value.
« Plot Cumulative area versus cumulative number of points
+ Calculate area under the curve.
— Area under the curve for sites should be greater than 50% of total area,
then have a positive association with points.

— Area under the curve for “Not” sites should be less than 50% of total
area, then have a positive association with points

— If area under the curve, then have a random association with the
evidence. Evidence provides no better information than guessing.
» Point in curve where goes from steep slope to flat slope is an
optimal break between predicted sites and not sites.

Chung and Fabbri, 2003, Validation of spatial prediction models for landslide hazard
mapping: Natural Hazards, v. 20, p.451-472 m

Efficiency of Classification of WofE

WofE Models

—— Random (50%)

—»— WofE Binary Sites
(89%)

—— WofE Binary Not
Sites (59%)

—— WofE Unique Train
(96%)

Cumulative Sites

0+ T T T T 1
0 20 40 60 80 100

Cumulative Area

Efficiency of Classification of RBFLN

Efficiency of Classification
RBFLN - WofE

RBFLN vs. WofE
100
—— RBFLN Sites (93%)
o 80
e
5 . ——RBFLN Not Sites
g 70%)
g 20 —— Random (50%)
£
E
3 20 —+«— WofE Binary Sites
(89%)
0 + T T T T ! —— WOofE Binary Not
0 20 40 60 80 100 Sites (59%)
Cumualtive Area

RBFLN Models
100
——RBFLN Sites (93%)
g 8
@ ——RBFLN Not Sites
g & (70%)
g 4% —— Random (50%)
S
E
3 20 RBFLN (Poor) Train
(76%)
LE. . . . . .
0 20 4 60 8 100
Cumulative Area
Lo
Efficiency of Classification
Unique Generalization
Unique Generalization
100 .
——RBFLN Sites (93%)
@ 80
§ 60 —— Random (50%)
E
g 4 RBFLN (Poor) Train
g (76%)
3 20 —— WofE Unique (96%)
ol . . . . ,
0 20 4 60 8 100
Cumualtive Area

Efficiency of Classification

All Models

——RBFLN Sites (93%)

——RBFLN Not Sites
(70%)
—— Random (50%)

—«— WOofE Binary Sites
(89%)
—»— WOofE Binary Not
Sites (59%)
0 T T T T | RBFLN (Poor) Train
0 20 40 60 80 100 (76%)
Cumualtive Area ——WofE Unique (96%)

Cumulative Sites

o




Validation Models Efficiency of Classification
LT
] All models using Summary
KinoepgRelkrier) Area Number  Shannon
geology:andiNure Sb Under Patch of Diversity
“Nots” all other Model Curve Density  Patches Index
mineral deposits in WofE Binary Sites 0.89 0.0045 253 0.5
the area.
All models WofE Binary Not Sites 0.59
symbolized by
natural breaks.
WofE Unique Train 0.96
ORI S o) RBFLN Sites 093 00104 559 08
training and
remaining 50% for
validation. RBFLN Not Sites 0.70
RBFLN (Poor) Sites 0.76
Expert Sites 0.77 0.0062 354 d
Expert Not Sites 0.45
gy g

Correlation: Validation ROC Terminology

Processing Steps T g
WofE WofE Binary RBFLN = i et pOigtS s By Negatlve
response grid to get 2
Binary RBFLN  Validation  Validation probability at points. Predicted TP FP
+ Frequency of points. Positive
. ions with
WofE Binary i3 0.290 0.760 0.186 Eg{{gg?ﬂ?,ﬂi?;‘ﬁegi‘g .
Iovlvest response Predicted FN TN
values.
RBFLN 0.290 i 0.300 0.754 Negative
Sensitivity = TP/(TP + FN)
WofE Binary Validation 0.760 0.300 1: 0.238 TP + FN = Total number of sites
1- Sensitivity = Type Il errors (Errors of Omission)
RBFLN Validation 0.186 0.754 0.238 1 Specificity = TN/(TN+EP)

TN + FP = Total number of “Not” or negative sites
1- Specificity = Type | errors (Errors of Commission)
Measures are free from prevalence (rare events) and thresholds.

Lo | How to define the negative sites (“Nots")? ELE

Validation: ROC Validation Measures: ROC

Receiver Operator Curve Sensitivity-Specificity Curve
Decision ROC ROC Alternate
‘Specificity rror e | (Error mmission)
e ene | Theshola T | S

1 0 1 3
Error of Omission - _
081/ oonnssaer 08 ,\\ 0z "2
5
Increasing Test Increasing Test zos g0 -
& 0a 0 21| @ os 06 3
Type 1 Error —— WOfE Binary (875) o7 f ——WofE Binary é
02 ——RBFLN (74%) 08 5 02| —rerin 08

Error of Commission —— Random (50%) 0 —— Random
FP 1 e @ e e w1
1-Specificity (Error Type |, Error of Commission) Specificity
——— Test negative ———— Test positive ———#

Brismar, 1991, American Roentgen Ray Society: v 157, p. 1119-1121. ERLEREE RIS




Tralnlng “Nots” Low Sb

=
Low_Sb PRC Efficiency
10
o
8
«»
0 | —— WorE Bnary (Sites)
£ — oy o 5ot s
3 @ | —a— Random
g e
3 — oo srecsu
»
[ ——
°  x @ © =

Cumulative Area

_Training: “Nots”

Sensitvty

Specifcty

ROC Alternate
Error Type (Erorof Commission)

Speciicty

Validation Summary
WofE versus RBFLN

Correlation: WofE-validation model (76%) correlates slightly better with WofE than
RBFLN-validation (75%) with RBFLN.
Measure

FRAGSTATS WofE is a simpler map.

— Is this a significant measure?

— What should these statistics be for a good model?
SRC & PRC: RBFLN has a higher efficiency of classification of lralnlng snes (SRC:
93% to 89%) than WofE and a greater PRC for “Not" sites (PRC: 70% to 59%).

- Asmall for sites ar with “Not” sites; suggesllve of

slgnmcance RBFLN Expllcllly consldered the “Nots” in tralnlng
~ Were the appropriate sites used for “Nots™?

ROC): WofE has greater efficiencies of prediction (Other-Deposits ROC: 87% to
74%).

— Question of ROC test because Other-Deposit “Not” sites have PRC values greater than 50%
with regards to evidence.

— Using low Sb as “Nots" gives almost the same validation models (Pearson’s correlation 75-
76%) and WofE Validation is the same as the RBFLN Validation (ROC: 94% to 93%).

Conclusions

~ “Nots” were used to train the RBFLN. This issue with the “Nots” raise questions about the
meaning of the RBFLN model?

— The “Nots” simply further qualmes the meaning of the model. So this RBFLN model may be
different than this WofE model.

— Therefore, if question the “Nots”, then cannot compare these models.

— Alternatively accept the “Nots”, therefore the WofE model is slightly better than this RBFLN
based on multiple ROC curves.

= Dggnillion of the “Nots” would seem to be a critical consideration to understand and validate a
model.

Ertor Type I (Eror of Omision)




Spatial Modeling in GIS

Summary

=EUSGS

Examples of Measurement Scales

Scale Type Examples Operations _Means

Nominal Rock type = Mode
Ordinal Relative age >< Median
Interval Temperature +-*/ Mean
Ratio Distance +-*/ Mean

=EUSGS

Guidelines for Modeling

» Formal statement of the problem.
* Define the user of the model.

» Specification - preprocess the data to provide
useful information, that is evidence.

— Data exploration
— Data transformation, filtering, and scaling

— Reduce the dimensionality by eliminating
redundant or correlated information

— Use the minimum information necessary

 Prediction - combine the evidence to create the
model.

» Testing - evaluate the model and it’s properties.

=EUSGS

Properties of Evidence

» Selected attributes must discriminate
between one or more classes of
objects.

* Selected attributes should not be
correlated with other attributes to any
moderately strong extent.

* Selected attributes must have meaning
for humans.
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Types of Models

* Prescriptive or Deterministic
— Application of good technical practices
— Process: Boolean rules, Equations
— Output: Binary (yes or no), Index overlay
(score)
* Predictive
— Application of mathematics to represent how
people think about the evidence but cannot
represent as equations.
— Process: weighting of evidence and
combination of weights

— Output: Favorability, probability, or fuzzy map
[0to 1]
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Knowledge Driven Methods

+ Boolean Logic - True/False representation of maps with
all maps rated equally. Simple method with True/False
answer.

+ Index Overlay with Binary Maps - Maps are given
different weights. Linear combination of maps.

» Index Overlay with Multi-Class Maps - Maps are given
different weights as well as the classes of the maps are
given different weights. Linear combination of maps.

» Fuzzy Logic - More flexible weighting of maps and map
classes. Nonlinear combination of maps.

» Expert Weights of Evidence — Weighting of evidence
easily understood. Log linear combination of maps.
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Data Driven Methods
» Weights of Evidence

— log linear combination of binary or multi-class maps.

— Classifies areas by probability or favorability of
occurrence of a training site.

— Model parameters easy to understand.
* Logistic Regression
— log regression combination of binary maps
— Classifies areas by probability of occurrence of a
training site.
— Model parameters complex.
* Neural networks

- Elxperimental, nonlinear combination of fuzzy or map
classes

— Classifies areas by fuzzy membership in training set.

— Can also be self organizing to produce fuzzy
membership.

— Model parameters complex.

Recognition of a Pattern

Task - Determine what the appropriate level of
aggregation and simplification is for the problem
at hand, a problem of reclassification.

— Aggregation and simplification are tied to scale of
observation.

— There is no single scale at which to view a system.
— Does not mean that all scales serve equally well or
there are not scaling laws.
Description of patterns is the starting point.
Spatial models start with an assemblage of
patterns and associated processes.
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Buffer Resolution
Threshold Weighting Reclassification
Map Geologic  Buffer
Map Scale  Resolution Resolution Resolution
1:2,500,000 1250 2500 5000
1:500,000 250 500 1000
1:250,000 125 250 500
1:100,000 50 100 200
Units - Meters
Map Resolution = (Scale denominator)/2000
[T

Reclassification Summary

» Concept of a pattern.
» Reclassification of continuous measurement

scales.
— Many tools

+ Reclassification of categorical measurement

scales.
— Few tools - current research
— Expert decision
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Filtering Summary

» Objective of filtering is to define a pattern that
may not be obvious in the original data.

— For example, edges of homogeneous areas can
be important.

« Filtering is an art!

— May require recursive filtering or interpretation
to remove artifacts.

» Powerful tool for data exploration!
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Correlation Summary

+ Ratio and Interval
— Pearson’s correlation coefficient
— Independent of thresholds (reclassification).
¢ Ordinal
— Spearman’s rank correlation coefficient
— Sensitive to thresholds (reclassification).
* Others
— Kappa for correlation involving rare events
— Sensitive to thresholds (reclassification).




Testing
Data-driven Methods

+ Evaluate classification of training points

» Use points not included in training set to test the
model
— Implementation - use a random subset of training set to

develop the weights and use the remainder to evaluate
the model.

— Problem - for many models there may only be a small
number of training points to start with.

* Make a validation model from a subset of training sites and test
that validation model is same as model from all training sites.

» Conclusion of testing is often identification of
some deficiency in the evidence.

* Field testing of the model.

Weights of Evidence — Rules of Thumb

= What is the significance of conditional independence — the big issue in
Bayesian methods?

— If only interested in ranks, not an important issue. Ignore conditional
dependency.

~ Can use combination of generalized evidence as a new evidence factor.

— Can use fuzzy models to bine conditionally depend id asa
new evidence factor.

* Binary generalization based on maximum contrast or maximum
confidence with acceptable confidence.

* Multiclass generalization based on categorical weights using contrast
with acceptable confidence.

* What about generalization based on maximum Studentized contrast or
equal weights? Area of on-going research.

« Symbolization by natural breaks gives similar breaks points to breaks
on cumulative area vs. posterior probability or efficiency of
classification.

 Posterior Probability should be thought of as a measure of favorability
of occurrence, a relative ranking.

- Prior probability is generally taken as defining the neutral point between
favorable and unfavorable.

Neural Networks — Rules of Thumb (Continued)

PNN
— Sensitivity to “Not” sites is not clear. May be insensitive to “Nots”.
— Training
« Adjust distance parameter by small amounts, for example by 0.1.
« Start by decreasing and if SSE does not decrease then increase parameter.
+ Not terribly sensitive to distance parameter
— Symbolize the response by quantiles.
Fuzzy Neural Network
— Adjust distance parameter by small amounts, for example by 0.1.
— Two outputs, clusters and membership in clusters.
— More clusters may represent subtypes, for example of deposits.
— Symbolize patterns by natural breaks.
Response themes are all fuzzy membership in favorability of occurrence, a
relative ranking.
— There seem to be scaling problems so neutral point between favorable and
unfavorable is not always defined.
— Fuzzy membership of 0.5 may be good threshold in RBFLN and Fuzzy Neural
Network
— Cannot use fuzzy membership of 0.5 in PNN as a threshold. Considering rare
events, might use some small area of high fuzzy membership.

KISS - Keep It Simple

* Quickly make a simple model based on binary
generalization of existing evidence or a neural
network model without generalization of existing
evidence.

+ Test this model to determine what is right and
what is wrong with this simple model.

« If the model is reasonably acceptable, refine the
model within the time available.

— Add new evidence

— Improve evidence: new field work or present in a
different way (filtering, reclassification, Boolean or
Fuzzy combination of several evidence layers)

— Rethink the binary generalizations

— Multi-class generalization

Neural Networks — Rules of Thumb

Literature suggests equal number of deposits and not deposits produces
better training

— Basis as a general rule not well tested. May not apply to RBFLN.
Can always decrease SSE by compressing the evidence, that is fewer
unique conditions.

— Excessive number of unique conditions can lead to noisy response.
Should be unaffected by conditional dependency. Not proven.
Fuzzy memberships of training points improves the classification.
RBFLN

— Seems unaffected by mix of deposits and not deposits.

— Training most sensitive to number of RBF.

* Make small adjustments in number of RBF, parameter M.

Then adjust number of iterations. Increasing number of iterations will always

decrease SSE and might decrease MSE. Trick is to optimize training so get optimal
classification

Can test for over fitting by
— A testing set: Complex to do because of design of software. Maybe a weak test if testing

set only tests unique conditions used in models.
— Optimize the training by finding the optimal classification. Optimal means minimum
MSE and SSE

« Influence of the “Not” sites is not well understood.
— Symbolize response by natural breaks.
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Fuzzy Logic — Rules of Thumb
« Conditional independence is a consideration for Fuzzy sum, product,
and gamma.
— Best to use conditionally dependent evidence to create a fuzzy factor that
utilizes the Fuzzy Or or And.
* A sigma-shaped fuzzification seems to be how people think about
evidence.
« Can weight evidence by a multiplier, which must be [0,1].
— Weighting reflects the importance of the weights.
— Try to adjust things so 0.5 is neutral.
— Can use training to define weights (Luo and Dimitrakopoulos, 2003)
* Combining factors is an aggregation process where the combination of
factors is more favorable than individual factors.
— Fuzzy Gamma and Sum are appropriate operators.
+ Optimize Gamma so neutral response is fuzzy membership of 0.5.
* Response themes are all fuzzy membership in favorability of
occurrence, a relative ranking.

— Easier to utilize if tuned so fuzzy membership of 0.5 is neutral between
favorable and unfavorable. Tune fuzzification and/or weights.

— Can symbolize by equal intervals between 0 and 1.




Evaluation of Models — Rules of Thumb

» Use efficiency measures (SRC, PRC, and ROC) to evaluate models
— ROC is a stronger test than PRC.
— PRC is simpler to use because does not require “Nots”.
« Symbolization: The big question is how many classes.
— Breaks in Area vs. Posterior Probability
— Breaks in slope of efficiency of classification.
— Backward first derivative defines ranked break points.
* Absolute measures
— How well classifies the training points, SRC and PRC.
* A weak test but often all that can be done.
« Use Brown’s probability measure
— How well classifies points not used in training, ROC.
* A strong test that can be made with existing data if have appropriate “Not”

+ All measures are relative, that is for comparison of different models of
the same study area.
— Rank differences
— Correlation measures: Spearman’s, Pearson’s, and Kappa
— FRAGSTAT - appearance of the response map
- Efficiency measures

Which Method? — Rules of Thumb

* Have adequate training
— WofE: Need an understanding of physical process
« LR: Dealing with conditional dependency problems

— Can also help define conditionally dependent evidence or highly
correlated by zero coefficient

— RBFLN or PNN Neural Networks: Quick answer
* Nonlinear classification problems.
» Lack adequate training
— Fuzzy Logic: Based on how experts think about the
problem
* Address conditional dependency in WofE model.
— Fuzzy Neural Network: Quick answer
 Nonlinear classification problems
— Expert WofE: Model expert thinking in a WofE
context.
« Apply WofE model from one location in another location.
 Adjust the prior probability to define number of undiscovered

deposits? A controversial approach. !USG§|




Correlation Exercise

Compare Results
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Problem with Reclassify from
Real Values

» Seems to be a problem with Reclassify for
posterior probability rasters when reclassify
by quantile and 3 classes.

» Seems to give more reasonable results if
first use Raster Calculator to calculate to an
integer and then Reclassify the integer
raster.




Overview
of
Fragstats in ArcGIS

http://www.umass.edu/landeco/research/fragstats/fragstats.html
See FRAGSTATS.PDF in reading for an example.

FRAGSTATS Metrics Menu

3 (AreGrid enabled) - Untitled
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Patch and Class Metrics are subsets of Landscape Metrics.

e

Terminology

Definitions
Patch — an individual
polygon.

Class — a group of
related polygons, such
as the green areas.

! Landscape — the
whole area.

FRAGSTATS Parameters Menu
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ERAGSTATS Metric
Total Landscape Area
Number of Patches
Mean Patch Size
Patch Size Standard Deviation

Patch Size Coefficient of
Variation
Total Edge

Edge Density
Mean Shape Index

Area Weighted Mean Shape
Index

Mean Patch Fractal
Dimension

Area Weighted Mean Fractal
Dimension

Interspersion Juxtaposition
Index

Shannon's Diversity Index
Shannon's Evenness Index
Total Core Area

Core Area Density

Mean Core Area

Core Area Standard Deviation

Core Area Coefficient of
Variation
Total Core Area Index

Short Definition

Sum of areas of all patches in the landscape
Total number of patches in the landscape
Average patch size

Standard deviation of patch area

Coefficient of variation of patch areas, that is patch size standard deviation
divided by mean path size
Sum of perimeter of patches

Amount of edge relative to the landscape area

Shape complexity, equals 1 when all patches are circular (polygons) or square
(grids).
Shape complexity weighted by the area of patches.

Shape complexity, equals 1 for shapes with simple perimeters and approaches.
2 when shapes are more complex.
Shape complexity weighted by the area of patches

Measure of patch adjacency

Measure of relative patch richness.
Measure of patch distribution and abundance

Sum of all core areas in the landscape

Measure of relative distribution of core area (hectares).
Average area of disjunct core patches

The standard deviation of disjunct core areas (hectares).

The relative number of disjunct core patches relative to the landscape area.

o

Proportion of core area in the landscape.



http://www.umass.edu/landeco/research/fragstats/fragstats.html

Analysis of Patches
Shape Index
of
Nevada
Geologic Map
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Landscape Statistics
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Boulder Batholith Intermediate
BandPass Magnetics

Boulder Batholith — Magnetic
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Boulder Batholith — Fractal
Dimensions of Magnetic Anomalies

Fractal Dimensions

1 - 1.0362939944
[ 1.036299945 - 1.0704

Boulder Batholith, Plutons

Fragstats: RBFLN-WofE
index Name ReFLN Wole
Number of Patches 593 253
Patch Density 0.0104 0.0045
Largest Patch Index 547 623 . 3 classes by Natural
Total Edge 14,398,750 6,117,000
e Densiy 25 11 Breaks.
Landscape Shape Index 162 6.7
S 7 s RBFLN has larger number
Fractal Dimension Index Mean 10404 10419 of smaller patches (H]gher
e 1323 12609 %
i - e density of patches)
Patch Area-Weighted Mean 1,774,070 2,443,288 « RBFLN patches have
i 2875 300
129952 233087 more complex shapes.
13578 1036
- o ¢ RBFLN patches are more
o5 = mixed.
0.7 0.4
07 04
547 w7
a0 17
07 w9
‘Aggregation Index 96.9 99.0

If(Mag Anomaly and Simple Shape)
Then Pluton Else Not Pluton
» con([mag_anom] >= 1.879 & [NbrMajor2 of

magam15id8 FragMagAM15.patch.Frac2] <=
1.0519,1,0)

Magnetic Anomaly Patch Fractal Dimensions

Comparison Carlin
RBFLN — WofE
3 classes

vy
0.922 - Spearman 3 Classes, Natural Breaks
0.659 - Band Collection 3 Classes, Natural Breaks
0.290 - Band Collection unclassified

Fragstats Summary

* Descriptive tool: Quantifies the texture of a

map at various scales.

— Patches: The pieces of the map

— Classes; The groupings of the pieces of the map.
— Landscape: The whole map.

* Analytical tool: Texture measures can give a
new presentation of aspects of information in a
map.

— Maps of shape index, etc.

o




Rare Events

Nominal Scale Data
Coefficient of Agreement, kappa
Area-Proportions Cross-Tabulation Table
Map A
Py [Py, [Py [... [Py S &
i Py [Py [Py |... [Py zpii _zqii
S|Py Py [Py ... [Py K ==L =
WIN 5.
Wh =
’, :’T"] s where
P,=T,/T. q; =D *Ds
P;=T/T. n =number of classes, which is the
same in both maps.
Conditional kappa for thei - th class
K = Pi — 9
i L P —4;
Correlation of Rare Events
Kappa and
° Contrast are
20 zero for all
©
20 cases!
o Cross Tabulation
sy Tyy | Tia | Ty
G o.
© — ‘ Toy | Tpy | Tos
0 10 20 30 40 50 60 70 80
Area Percent of Rare Event T*l T*2 i
Agreement ( r*. ) and Jaccard’s C ( 7.77,57, )
from cross tabulation of two random binary grlds.

Correlation of Rare Events
Kappa and

Contrast are
| = hgreement | zero for all
cases!
<05 e, Cross Tabulation
S 04 ///'
5 0.3 = T i T
S 07 e ISl RV RS E
S 0.1 "
O o bt Ty [Too [Tos
[] 10 20 30 40 50 60 70 80
Area Percent of Rare Event T*l T*2 M)

Agreement( T** ) and Jaccard’s C ( 77,7, )
from cross tabulation of two random binary grlds.

=uses|
Counts Counts
B 0 0 0 Not B 990 10 1000
NotB 10 990 1000 B 0 0 0
10 990 1000 990 10 1000
Agreement 0.99 Agreement 0.99
Jaccard's C 0 Jaccard's C 0
Proportion Proportion
B 0 0 0 Not B 0.99 0.01 1
NotB 0.01 0.99 1 B 0 0 0
0.01  0.99 1 0.99 0.01 1
Expected Values (Product of marginals) Expected Values (Product of marginals)
B 0 Not B 0.99
Not B 0.99 B 0
Kappa 0 Kappa 0




Source Ratio Data
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Color Composite

K — Blue
Sb — Green
As — Red




Short Course Version of Lectures



GIS — Insights Through

Graeme Bonham-Carter (GSC)
Gary Raines (USGS)

GIS Catalyst

— General purpose software for spatial data analysis
* Ability to deal with

— High resolution grids

— Spatial objects in vector form

— Complex and simple attributes

* Potential for linkage to specialized analytical tools

Modeling Continuum

Decision Ma

How to build Which location Do we need
a bridge at is best? a bridge
location X? somewhere?
Deterministic < ,. Probabilistic

Fuzzy

?

SRS
Verion . sep 2001

Mineral Potential Mapping

evidence
» Multivariate statistical approach started in
the 1960s.

— Very tedious process to get data in formats that
could be used by specially written software.

GIS Preprocessing

measures

» Reclassify complex data, such as geologic maps,
with simple or complex attributes

* Derive contact relationships
 Derive proximity relationships (Buffering)

* Subset of spatial objects (linears by orientation,
deposits by types, etc.) using queries of attributes

Models —Simplification of Reality

— The geological map is a model
— Interpolated surfaces are models

— The notion of combining evidence from
multiple sources using a weighting scheme
involves a model (statistical or subjective)




Philosophy of Modeling
Data Exploration

multiple working hypotheses™ (Attributed to Tukey in
The Practice of Data Analysis: Essays in Honor of John W. Tukey)

... models are not destructive; at worst they are
ineffectual, and at best, they help to strengthen the

quality of the decision making process. (King and
Kramer, 1993)

Refined Viewpoint

No “Right or “Wrong” Answers

— Different choice of evidence

— Different generalizations of evidence

— Different weightings and combination method
* We learn by experimenting with the data

and investigating spatial associations

Approaches to Quantitative Mineral

Prospectivity Mapping

— USC Measurcd a O dt1on OCIWCC
themes and known mineral deposits
« e.g. regression, neural networks, weights of
evidence
 Expert system approach (“knowledge-
driven”)
— use expert exploration knowledge
* e.g. fuzzy logic, Dempster-Shafer belief functions

Why Model?

debate 1n
evaluation of an answer.
» Modeling enforces a discipline of analysis,
discourse, and consistency.

* Models provide a powerful form of
“advice”, that is not “truth”, but a refined
result of a particular viewpoint.

Version 1. January 2000

Steps in Typical Study

* Prediction analysis by weighting
— Data Driven

— Knowledge Driven
* Interpretation and Evaluation

Program

— Case Studies
— Weights of Evidence e Afternoon
— Introduction to ArcSDM — Fuzzy Logic
(Hands on)
» Afternoon

— Demonstration of Carlin
Model

— Carlin Model (Hands on)

— Demo: Logistic Regression




Program

— Demo: Neural Network
— Carlin Model (Hands on)

— Hands on wrap up

» Afternoon
* Afternoon — ArcSDM as geoprocessing
— Carlin Model or Your data tools
(Hands on)

ectures

» Reprints — Useful papers on spatial
modeling in PDF format
 Training materials

— Carlin — Project with data for the Carlin
exercise and PDF training file




Spatial Modeling
Case Studies

Gary Raines and Graeme Bonham-Carter

1865 Users (Oct. 2003)

é( -

Applications  Count % - Applications
Anthrepolo gy 3 Hazardsiandslides/eathquakes
Archealogy 13 Hydrology
Business 15 L
Crime prevention " Marine Research
EcologyMabitat studies 254 Medical Geography
Education 1% Mineral Exploration
Epidemiclogy 45 Mineral Patential Mapping
Forestry 46 Mot Specified - other
Geochemistry 18 Gther Geslogical Application
Geology 166 Public health

25 Soils

COMPARISON OF PREDICTIONS

DEMPSTER
WEIGHTS LOGISTIC  FUZZY SHAFER
OF EVIDENCE REGRESSION LOGIC SUPPORT

WEIGHTS
OF EVIDENCE

LOGISTIC
REGRESSION

FUZZY
LOGIC

DEMPSTER
SHAFER
SUPPORT

Overall prediction ()  Areas of interest ()
From Wright, 1996

Volcanic-hosted Massive Sulfide Deposit
Models

VHMS Polential - WOE Appeosch Lixpistic Plagression Weres

Fuzzy Logic VHMS Model — Inference Net

< Gamma - ] sacprynca Toarers

From Wright, 1996

Sedimentary
Rock-Hosted
Gold




Evidence Themes

Exarnined for Potential Inclusion in Modeling

Lithologic

Lithologic units

DDiversity of lithologic units

Cenozoic igheous otk unit distance buifers

Cenozoic igheous rock time-slices

Cenozoic igheous rock composition-slices

IMesozoic pluton distance buffers

Niesozoic pliton density

Clastic and carbonate rock units

Clastic and carbonate rock unit distance buffers

Geochemical (and related)

~ IKiNa, BalNa, W/Th, FelAl, Lalk, SciFe, ScV, K,
A, As (MURE data)

« Igneous rock major element analyses (PETROS)

* Igneous rock radiometric age dates (RADB data)

* WNineralization (metallic deposits) radiometric age
dates

¢ e e e e e

Geographic

+ Topographic @levation

« Shaded relief of topography
* DDegree of topographic slope

Structural/tectonic

* Cenozoic fault distance buffers

Cenozoic fault density

Thirust-front distance buiffers

Stiike-slip fault distance buffers

ILANDSAT linear-features distance buffers
ILANDSAT linear-features density

Hiighly extended upper crustal terrain
Deep-seated basement fracture system buffers
Lithotectonic terrane

Crustal thickness

Tertiary rock dip angle and direction
ke Pokoroic oAty paleot

¢ v e 00000000

aromoly
Geaophysical

Bouguer gravity anomaly

Iisostatic residual gravity anomaly

Total residual field geomagnetic anomaly
Geothermal conductivity (gradient)

Crustal heat flow

Geothermal wells and springs temperature

¢ e e e 00

Cormparison to Expert-Defined Favorable Areas

USGS Open File Report 96-2

N

Agreement with Favorable Area = 92.8%

Weights-of-Evidence Model

Raines, 1999

|DepositTypes

|Percentage |

Comstock Epithermal (25C)

Evidence Thermes

Lithology

Lithotectonic

Pluton Buffers Terrane

Lithologic

Fault Buffers Diversit,

Blind Test

0046)

4921)

How well does the model
predict 12 newly discovered
sedimentary rock-hosted
deposits that were not part of
the training sites?

10 of 12 deposits
were estimated to have
posterior probabilities higher
than the prior probability
(0.0003), where four had
relatively high posterior
probabilities

Contrast

3.80

3.70
3.60
3.50
3.40 +
3.30

3.20 4

3.10 +

3.00

—=— Contrast

—e— Percent of Sites 110

Percent of Sites

500 1000

Buffer Radius (|

t 0

m)




Evidence

Pattern

Criteria

Source

Volcanic Rock Proximity
Alteration Proximity

Placer Proximity
Vent Proximity

Fault Proximity
Anomalous Uranium

Linear Feature Proximity

1 A

Within 8 km of volcanic rocks less than
34 ma

Within 1 km of hydrothermal alteration
Within 1 km of known placer workings
Within 2 km of Tertiary vents, shallow
intrusives, dome complexes, and other
units indicating a volcanic rock source
area.

‘Within 4 km of faults trending NNW to
NNE and NW to W

NURE equivalent uranium greater than 2
eu

Within 0.5 km of linear features trending
NS and NE to E

Anomalous Geochemistry

NURE ics greater than 0
gammas

Theisen polygons with Ag > 2ppm or As
> Sppm or Mn > 2000ppm or Se >

Nevada state geologic map

‘Western Mining Corp. data
MRDS sites classification
Nevada state geologic map

Nevada state geologic map

NURE data, Duval’s national
compilation

Landsat MSS interpretation,
Offield, Sawatzky, & Raines
NURE data, Hildenbrand
compilation

NURE stream sediment data,
Raines’s Great Basin

1.9ppm compilation

Summary of Contrast
Studentized

Contrast Contrast

Volcanic Rock Proximity  4.901 3.65
Alteration Proximity 3.756 8.27
Placer Proximity 3.012 8.375
Vent Proximity 1.42 10.418
Fault Proximity 1.317 8.446
Anomalous uranium 1.253 3.864
Linear Feature Proximity 1.149 6.453
Anomalous Aeromagnetics 0.762 6.556
Anomalous Geochemistry  0.721 5.672

Summary of Weights

W+ W-
* Volcanic Rock Proximity  0.204 -4.697
* Alteration Proximity 2.331 -1.425
* Placer Proximity 2.989 -0.024
» Vent Proximity 1.247 -0.172
* Fault Proximity 0.338 -0.979
* Anomalous Uranium 0.072 -1.181
* Linear Feature Proximity 1.072 -0.077
* Anomalous Aeromagnetics 0.334 -0.428
* Anomalous Geochemistry  0.346 -0.375

Posters

Model . ; A <
Favorable fd -‘ - YT ""
Permissive ‘,! ‘.‘éﬁ

Non-permissive

N “.
W

National
Assessment

Confidence

(] .

>~97.5%
> ~95%
> ~90%
> ~75%

<~75%

CIOEC

What have we learned?

» Weights of Evidence Solution to Spatial Modeling

* The Problem of Training in Weights of Evidence
Compared to Neural Networks

* Demonstration of a Method of Regional Small-
Scale Mineral Assessment Based on Geology

* Prediction of Northwest Goshawk Habitat Using
Weights of Evidence

« Results comparable or acceptable to expert’s assessment
« Comparison with US National Assessment
* Spokane - Epithermal gold and Mississippi Valley deposits
* Humboldt Assessment
» New discoveries
» Massive sulfide deposit (Wright and Bonham-Carter)
* Deposits not in training set are in areas of high posterior probability
(Raines and Mihalasky)
« Packrat model (Mensing and others)
* Gold deposit in Finland (Nykanen)
* $10M new investment in exploration in New Zealand based on WofE
models (Partington)
* Results are not dependent on mathematics used

« Proximity analysis is powerful data exploration tool

* Conditional Independence problems are most severe in
mineral-exploration applications




Weights-of-Evidence Method

* Originally developed as a medical diagnosis
system

— relationships between symptoms and disease
evaluated from a large patient database

— each symptom either present/absent

— weight for present/weight for absent (W-+/W-)
» Apply weighting scheme to new patient

— add the weights together to get result

Weights of Evidence - WofE

* Data driven technique
— Requires training sites

« Statistical calculations are used to derive the
weights based upon training sites.

» Evidence (maps) are generally reclassified
into binary patterns.

Weights-of-Evidence Terms

» Weights for patterns
— W+ - weight for inside the pattern
— W- - Weight for outside the pattern
— 0 - Weights for areas of no data

» Contrast - a measure of the spatial
association of pattern with sites

 Studentized Contrast - a measure of the
significance of the contrast

Weights of Evidence

* Binary maps to define favorable areas
— Can use multi-layer patterns
* Measurements
— Area of study
— Area of Pattern
— Number of training sites

— Number of training sites inside the
pattern

/T

‘\B

T=total study area D=deposit points

B=binary map pattern used as evidential theme

Bonham-Carter, personal comm. 2002

Preprocessing
Nominal Measurement Scale

* For example - Geological map

—select particular stratigraphic units or
class

— generalize by reclassification

— extract and buffer boundaries between
units




Preprocessing
Continuous Measurement Scale

» Histogram transformations
+ Physical properties processing
* Filter
— separate anomaly/background
 Spatial interpolation (e.g. surfaces, krige)
* Logical combinations (merging, boolean, fuzzy
logic)
» Summarize by zonal statistics
— separate anomaly/background
— define a residual
— multivariate analysis

« principal components analysis and others musmyg

Overlay combination

* In vector
— create polygon overlay and associated

— create unique conditions overlay and
associated PAT

— Topological selections
* In raster
— superimpose grids

Application to Binary Evidence

Class  Area  #sites Relative density Weight

1 50 8 0.8/0.5=1.6 In(1.6)=+0.47
2 50 2 0.2/0.5=0.4 In(0.4)=- 0.92

Total 100 10

Expected Values of Weights

* If sites occur randomly,
— Relative density (RD)=1.0
— Weight (W) = In(RD) =0.0

* If sites occur more frequently than
chance
—RD> 1.0, W is positive

* If sites occur less frequently than
chance
—RD < 0.0, W is negative

Example — More Points Than Chance

N(T) = 1000 unit cells (area of study region)

N(B) = 500 unit cells (area of theme B present)
N(B&D) = 20 (count of number of training points on B)
N(D) =30 (count of total number of training points)
W+ =0.2980 W-=-0.4157 C=0.7138

More points on theme than would be expected due to chance

Bonham-Carter, personal comm. 2002

Example — Many More Points

N(T) = 1000 unit cells (area of study region)

N(B) = 500 unit cells (area of theme B present)
N(B&D) = 28 (count of number of training points on B)
N(D) =30 (count of total number of training points)
W+=0.6513 W-=-2.0414 C=2.6927

Many more points on theme than would be expected due to chance

Bonham-Carter, personal comm. 2002




Example — Equal Pattern and Points

Example — Small Pattern and Many Points

N(T) = 1000 unit cells (area of study region)

N(B) = 500 unit cells (area of theme B present)
N(B&D) = 15 (count of number of training points on B)
N(D) = 30 (count of total number of training points)
W*=0.0 W-=-0.0 C=0.0

Number of points on theme equals that expected due to chance

Bonham-Carter, personal comm. 2002

Example - Weights Undefined

N(T) = 1000 unit cells (area of study region)

N(B) =250 unit cells (area of theme B present)

N(B&D) = 30 (count of number of training points on B)

N(D) =30 (count of total number of training points)

W =inf W = -inf C =inf

Undefined: practical solution--assign fraction of point to (not B)

Bonham-Carter, personal comm. 2002

Multi-class — Categorical Classes

C

N(T) = 1000 unit cells (area of study region)

N@A) =250, N@B) =500, N(C) =250,
N(A&D) =23, N(B&D) =4, N(C&D) =3,

N(D) = 30 (count of total number of training points)
WI1=1.18066 W2=-1.3442 W3=-0.9347 C,, =2.5308

Three classes, e.g. rock types (categorical scale of measurement)

Bonham-Carter, personal comm. 2002

N(T) = 1000 unit cells (area of study region)

N(B) = 250 unit cells (area of theme B present)
N(B&D) = 20 (count of number of training points on B)
N(D) = 30 (count of total number of training points)
W+=1.0338 W-=-0.8280 C=1.8617

Many more points on theme than would be expected due to chance

Bonham-Carter, personal comm. 2002

Multi-class Themes

* Maps (themes) with unordered classes (categorical)
e.g. geological map. Calculate weights for each
class and then group classes (reclassify) as needed.

» Maps (themes) with ordered classes (contour maps
e.g. geochemical or geophysical field variables).
Usually calculate weights based on successive
contour levels, cumulatively. Then reclassify.

Bonham-Carter, personal comm. 2002

Ordered Classes - Cumulative

B6 B7 B8
utside
attern -
[ ]
°

N(B;) 100 100 100 100 100 100 100 100 100
Cum 100 200 300 400 500 600 700 800 900
ND) 12 gel 7/ 5 1 1 1 1 1
Cum 12 23 30 B 30 37 38 39 40
W+ 1.08 103 087 0.72 051 035 021 0.10 -
W- -025 -0.63 -1.01 -1.53 -1.53 -1.53 -1.53 -1.53 -
C 133 1.66 188 225 204 188 174 1.64 --

Bonham-Carter, personal comm. 2002




Weights Calculations

» Choose a small unit cell — affects the prior
probability but only a little on the weights
+ Can have multi-class maps but often not enough
training points to get stable weights.
— Use Studentized contrast to evaluate stability of
weights.
» Contrast can be used to define optimal thresholds.
— Use Studentized contrast to evaluate stability of
contrast.
» See Bonham-Carter, Agterberg, and Wright
(1988) for equations (WofE_NovaScotia.pdf)
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Handling Uncertainty
Uncertainty due to weights — variance of
weights.

Uncertainty due to missing data — estimate
of variance due to missing data
Other measures of uncertainty?

For Response Map can combine the various
uncertainty measures to obtain a total
variance.

Studentized posterior probability (PP/s(PP))
can provide a useful measure ot confidence.

musmy
Summary of Weights

WEIGHTS (o
» Geology 0.31 -1.24 -1.74 2.05
» Lake sed geochem 142 -0.38 1.80
* Anticlines 0.56 -0.83 1.39
* Au in vegetation 0.84 -0.29 1.13
* Geol contact(1) 0.37 -0.27 0.64
» Geol contact (2) 0.22 -0.04 0.26
* NW lineaments 0.04 -0.01 0.05

mugppg

More Evidence

» Most gold deposits occur close to anticlines

* Generate map showing distance to
anticlines

* How many intervals? The robustness of
weight estimates inversely proportional to
number of intervals

* Can explore relationship of contrast for
binary interval and “optimize” cutoff

GOLD POTENTIAL
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= 1 00903 - ue0n
¥ [ ©0508 - 000
) i o088 -0es1
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-Js
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Decisions for Weights of Evidence

Define the study area

Define the training set

Select confidence level for contrast
Select the evidential maps

— Use Contrast and Studentized Contrast to
evaluate.
— Reclassification (Binary or Multi-class)
— Thresholds maximum, minimum, or grouping
of nominal classes
These decisions define objective, binary
reclassification
— Needed measurements; Area of study, Area of

the pattern, Number of training sites, Number
of training sites inside the pattern

e

Bonham-Carter, 1996

Weights of Evidence

e Advantages
— Objective assignment of weights
— Multiple patterns combined simply

— Reclassification to optimize contrast gives
insights into spatial relationships

— Deals with missing data

— Measures aspects of uncertainty that can be
mapped

» Disadvantages
— Assumption of conditional independence
— Requires a training set of sufficient size.




Logistic Regression Method

Graeme Bonham-Carter

Bonham-Carter, 1999

In ordinary regression, the response variable is
continuous, unbounded and measured on an
interval or ratio scale

In situations where the response variable is
binary (present/absent) this causes a problem,
because the predicted response must be in the
interval [0,1].

The response variable can be assumed to be
P(Y=1), from which we also know
P(Y=0)=1-P(Y=1)

Bonham-Carter, 1999

Logit(Y) = by +b,X, + b,X, + bX; +...+ b X,
(simultaneous solution of b’s)

Logit(Y) = Prior Logit + W, + W, + W5 +...+ W
(solution for W’s theme by theme, not simultaneous)

Note that the b, term in LR is comparable to the
prior logit in WofE, and the b’s are comparable to
the W’s. However, instead of 1 coefficient, there
are 2 (or more) weights, depending on the number
of classes. Therefore, the b’s are more comparable
to the contrast values

Introduction

“Data-driven” method applicable where
training set of mineral sites is available
The response variable is dichotomous
(binary), e.g. presence/absence of mineral
site

The explanatory variables (evidential
themes) are ordered or dichotomous (not
multi-class categorical).

Bonham-Carter, 1999

The solution to the problem of forcing the
response variable to be in the range [0,1] is to
use the logit transform.

Logits = natural logs of odds
Odds = Probability/(1-Probability)
Logit(Y) = b, + b, X, + b,X,+ b;X;+...+ b X,

Where the b’s are unknown coefficients and
the X’s are the explanatory variables

Bonham-Carter, 1999

Solution to Logistic Regression Equation

* The coefficients cannot be solved by
ordinary least squares (a direct matrix
inversion), because the equation is non-
linear

The method of maximum likelihood is used
to maximize the value of a log-likelihood
function

— This requires an iterative solution

So coefficients are obtained simultaneously
without an assumption of conditional
independence.




Practicalities

* Can calculate the logistic regression
coefficients using the same unique
conditions table as for WofE
— Muti-class themes must be split into

binary themes in unique conditions table.

* In ArcSDM deal with missing data and
multi-class problem automatically.

* In Arc/Info does not deal with missing
data and has another input format.

“Missing Data” Approaches

Gold Potertial

F e

Gold Potential

[

Used in Arc-SDM

Compare Results

» ArcSDM includes three techniques for
comparing the results of different
techniques:

+ Spearman’s Area Weighted Rank
Correlation

+ Quantile-quantile plot
+ Map of rank differences

Problem of Missing Data

» Deleting all unique conditions with
missing values in any of the evidential
themes.

Deleting themes that have missing data
totally.

Replacing missing values with zero, or
some other constant.

Can then compare the results from weights
of evidence to logistic regression

This is then a check on the effect of
conditional dependence on the results of
weights of evidence, although if missing
data and multi-class categorical
evidential themes have been used, then
one cannot be absolutely sure what effect
the recoding in logistic regression has on
the results.

Bonham-Carter, 1999

Compare Results

pare Results

Selot layers: Select comparison techniqus(s}
LR Posterior Probabilty 1 . Bioau] 5|
LR Posterior Probabiily 1. TmgPorts] _|
(LR Posterior Probabiity 1 . Ara_sqm] I Quantie-quariie plot
(LR Posterior Probability 1. LRPostProb] W Map of rank differences

I¥ Aea veighted Speaimans rank

O Cancel

Bonham-Carter, 1999



Compare Results Compare Results
» Possible inputs: Spearman’s Rank Correlation and Rank Mapping

+ integer grid theme with numeric field(s) » Arcview 3 - Classifies both variables into
+ floating point grid theme 20 quantiles (ranks). ArcGIS — user
specifies number of ranks

E?Le;t;ayfn - Selest comparison techniquels): Spearman’s Area Welghted Rank
‘asterior Probabilty 1 Bioau 2

(LR Postetis Prabiiy 1 TrogPais] ||| 7 oo wecht=d Speaman' ark Correlation is calculated and written to a
[LR Posterior Probabilty 1 . &rea_sqm] ¥ Quantie-quanie plot dB ase f”e

¥ Map of rank differences )
Map of rank differences generates a
difference map, classifies and symbolizes
it to show where the two input evidential

S themes are similar or dissimilar

Bonham-Carter, 1999 Bonham-Carter, 1999

LR Postetor Pababily 1 . LR_Std_Dev]

Compare Results Compare Results
Spearman’s Rank Correlation Map of Rank Differences

Area Weighted Spearman’s Rank 1

ArcGIS — User has to symbolize and
specify number of classes

Bonham-Carter, 1999 Bonham-Carter, 1999

Compare Results Compare Results
Quantile-quantile plot Quantile-quantile Plot

» Sorts the values in each field or theme in
ascending order

« if one variable has more observations than
the other (for Arcview3), its values are
interpolated so that there are equal number of
values. ArcGIS: specify number of classes

¢ values are plotted as x and y coordinates

Posterior Probability

Logistic Regression

Bonham-Carter, 1999 Bonham-Carter, 1999




COMPARISON OF PREDICTIONS

DEMPSTER
WEIGHTS LOGISTIC  FUZZY SHAFER
OF EVIDENCE REGRESSION LOGIC SUPPORT

WEIGHTS
OF EVIDENCE

LOGISTIC
REGRESSION

FUZZY
LOGIC

DEMPSTER
SHAFER
SUPPORT

Overall prediction ()  Areas of interest ()
From Wright, 1996

SUMMARY (2)

» ArcSDM will generate LR automatically
(expanding the UC table for categorical
themes and substituting area-weighted mean
values for missing data) at the same time as
running WofE, if desired

* Tools for comparing maps are provided

SUMMARY

+ Logistic regression can be compared to
weights of evidence to check CI assumption

» The total expected number of deposits is
usually slightly underestimated by LR
(rounding?)

+ In general the results of the two methods are
similar in terms of ranks, except the WofE
probabilities are usually higher than LR
probabilities because of CI
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Gary Raines
Sept. 2001
Student T Values
Confidence | T Value
99.5% 2576
99% 2326
97.5% 1.96
95% 1.645
90% 1.282
80% 0.842
70% 0.542
60% 0.253




Gary Raines and Graeme Bonham-Carter
Winter 2005
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Weights and Spatial Association
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* Rock Type — Density
o e — Proximity
— Proximity to map unit R SOV————
— Lithodiversity _ Sinuosity
— Lithotectonic package Shape
» Topology

Binary map of Binary map of standard Binary map of natural

quantile classification deviation classification breaks classification

Classification Sb Conc

Method (ppm)  Contrast W+ wW- Stud C  %Area
Quantile 3.40 3.1693 0.5015 -2.6678 3.1236  58.8600
Std Deviation 33.60 3.2155 2.8950 -0.3205  8.5593 1.6000
Equal Interval 110.60 3.8993 3.7805 -0.1188  7.2529 0.2680
Raw Antimony 121.00 4.0532 3.9341 -0.1191  7.5247 0.2300
Natural Breaks 145.10 4.0347  3.9468 -0.0880  6.5866 0.1700

Gene Lohrmeyer, written communication, March 2004}

20km

Neighborhood mean from 3x3 surface at various kernal sizes
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Shape Index
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Fractal Dimensions
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Confusion Matrix

Confusion Matrix
Calculated
Expert Nonpermissive Permissive | Row Sum
Nonpermissive 82.1 4.6 86.7
Permissive 8.4 4.9 13.3
Column Sum 90.5 9.5 87/40/28

North America Comparison

PP3
Chorlton
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Cross Tabulations

Conterminous U.S.

Us PP2 Us PP3
NP P NP P

Expert NP[765 96 861  Expert NP[80.1 6.0 86.1
P |68 70 139 P le2. 77 jE8
833 167 835 863 137 [87.8|

Kappa = 36.5 Kappa = 48.7

Cellular Automata
Gray — marginal sums
World PP3
Red - Percent Agreement NES
NP — Nonpermissive area Further Reading
S PP2 NP[753 79 831 .
P — Permissive area SRvEr Toffoli, Tommaso, and Margolus, Norman, 1987,

PP2 — Exxon map 5 TG Cellular automata machines — a new environment
PP3 - Chorlton’s map = for modeling: Mass., MIT Press, 259p.
Kappa = 13.7 T|USGS

* The state of each cell evolves by a simple
transition rule, the automaton.
* Implementation of a CA in a GIS involves a

summation filter with an if-then or logic
rule.

=g













* Flow of lava

* Evolution of forest fires

* Physics — diffusion, Bro
defraction

* Biology — life processes

http://www.ncgia.ucsb.edu/projects/gis/project_gig.htm
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http://www.ncgia.ucsb.edu/projects/gis/project_gig.htm
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