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Executive Summary 
 
 
 The U.S. Department of Energy’s Advanced Hydropower Turbine Systems (AHTS) Program 
supports development of environmentally friendly turbines, i.e., turbine systems in which attributes such 
as fish passage survival are emphasized.  It is expected that these advanced turbines could permit the 
efficient generation of electricity while minimizing the damage to fish and their habitats. 
 
 Designing advanced turbine systems requires knowledge of environmental conditions that injure or 
kill fish such as the stresses associated with hydroelectric power production, including pressure changes 
fish experience during turbine passage and dissolved gas supersaturation (resulting from the release of 
water from the spillway). 
 
 The objective of this study was to examine the relative importance of pressure changes as a source of 
turbine-passage injury and mortality.  Specific tests were designed to quantify the response of fish to 
rapid pressure changes typical of turbine passage, with and without the complication of the fish being 
acclimated to gas supersaturated water. 
 
 We investigated the responses of rainbow trout (Oncorhynchus mykiss), chinook salmon 
(O. tshawytscha), and bluegill sunfish (Lepomis macrochirus) to these two stresses, both singly and in 
combination. 
 
 Based on results of our laboratory studies, we reached the following conclusions: 
 

• The gas supersaturation level that causes acute gas bubble trauma (GBT) varies among species.  
Resistance to acute GBT, from greatest to least, is bluegill >fall chinook salmon > rainbow trout.  
Bluegills also had a lower incidence of chronic GBT symptoms than did fall chinook salmon and 
rainbow trout. 

 
• The frequency, type, and severity of injuries related to pressure changes during turbine passage vary 

among species. 
 

 − Bluegills, and presumably most physoclistous fish, are extremely susceptible to swim bladder 
rupture when exposed to the sudden pressure change during turbine passage. The total dissolved 
gas level had only a small additive effect on the injury/death rate due to the pressure spike. 

 
 − Fall chinook salmon suffered ruptured swim bladders, but at a much lower rate than bluegills. 

When acclimated to elevated gas levels at 191 kPa, the turbine passage sequence also caused 
instantaneous bubble formation in a small number of fish, resulting in immediate death. 

 
− Swim bladder rupture was not observed in rainbow trout, regardless of total dissolved gas (TDG) 

level or acclimation pressure. 
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• If dissolved gas supersaturation is not a problem, our experiments suggest that the brief low pressure 

spike to about 0.1 atmosphere downstream from the turbine runner will cause little direct mortality 
among surface-acclimated salmonids.  If fish are entrained from greater depths, such that their swim 
bladders contain more gas and will expand more during the low pressure spike, the injury and 
mortality rates will be higher. 

 
• Injury/mortality rates would likely be reduced or eliminated if the nadir of the turbine pressure spike 

was higher, as is expected to be the case with new fish-friendly turbine designs.  A follow-up series of 
tests is needed under a modified pressure regime that more closely reflects conditions expected in 
new turbine designs, or with a nadir of ~50 kPa. 

 
• The low pressure spike is especially a problem if the water is highly supersaturated with gases 

(well beyond water quality standards), and the fish respond to the supersaturation by depth 
compensation. 
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Glossary 
 
 
AHTS Advanced Hydropower Turbine System Program of the U.S. Department of 

Energy 
 
bulb turbine An axial flow turbine often used in low-head applications.  In large units the 

generator is housed within the submerged bulb and is driven by a variable pitch 
propeller at the trailing end of the bulb.  

 
Francis turbine A radial-inflow reaction turbine, where the flow through the runner is radial to 

the shaft 
 
GBT Gas bubble trauma 
 
gpm Gallons per minute 
 
Kaplan turbine An axial-flow (propeller-type) turbine with adjustable runner blades and 

adjustable guide vanes 
 
kPa Kilopascals; a measure of pressure.  101 kPa = 1 atmosphere = 14.73 psi 
 
nadir The lowest pressure in the time versus pressure regime experienced by fish in 

these experiments 
 
physoclistous Fish that lack a direct connection (pneumatic duct) between the swim bladder and 

the esophagus.  These species must adjust the pressures within the swim bladder 
by the relatively slow process of diffusion of gases from the blood.  

 
physostomous fish Fish that have a duct (pneumatic duct) that connects the swim bladder with the 

esophagus.  In these species, gas can be quickly taken into or vented from the 
swim bladder through the duct, so that adjustment to changing water pressures 
can take place rapidly. 

 
pneumatic duct The duct that connects the swim (gas) bladder and the gut in physostomous fish 
 
pressure spike In these experiments, the rapid water pressure decrease from several times 

atmospheric pressure to a low point (nadir) of less than one atmosphere 
 
psi Pounds per square inch, a measure of pressure 
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spill Passing water over the spillway of a hydroelectric dam, rather than through the 
turbine.  Spill allows surface-oriented fish to move downstream without passing 
through the turbines, but it may also cause the river water to become super-
saturated with air. 

 
swim bladder An internal gas bladder that has a weight-regulating (hydrostatic) function in 

higher fishes 
 
TDG Total dissolved gas 
 
TGP Total gas pressure 
 
vapor pressure Pressure exerted by a vapor when the vapor is in equilibrium with the liquid form 

of the same substancei.e., when conditions are such that the substance can 
exist in both phases. 
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 1.1 

1.0 Introduction 
 
 
 The U.S. Department of Energy’s Advanced Hydropower Turbine System (AHTS) Program supports 
the development of “environmentally friendly” turbines, i.e., turbine systems in which environmental 
attributes such as fish passage survival are emphasized.  Advanced turbines would be suitable for install-
lation at new hydropower facilities and potentially suitable for replacing aging turbines at existing plants.  
It is expected that these turbines could permit the efficient generation of electricity while minimizing the 
damage to fish and their habitats. 
 
 A successful design program for the AHTS requires up-front, pre-design specifications for the 
environmental conditions that occur within the turbine system.  Precise knowledge of conditions that kill 
fish will assist engineers in the design of an advanced turbine system.  Two recent reviews of biological 
information provide the starting point for determining the environmental conditions that must be studied 
(Wittinger et al. 1995; Čada et al. 1997).  Both reviews concluded that additional biological studies are 
needed to answer questions related to the potential direct and indirect effects of pressure stresses on fish 
during turbine passage under varying dissolved gas concentrations.  To help answer these questions, the 
AHTS Program asked Pacific Northwest National Laboratory (PNNL) to study the effects of pressure and 
dissolved gas supersaturation on turbine-passed fish.  Information from these studies will provide the 
basis for communicating biological specifications to turbine designers. 
 
 PNNL tested the responses of rainbow trout (Oncorhynchus mykiss), Chinook salmon 
(O. tshawytscha), and bluegill sunfish (Leponis macrochirus) to these stresses, singly and in com- 
bination, in the laboratory.  Our overall objective was to examine the relative importance of pressure 
changes as a source of turbine-passage injury and mortality.  Specific tests were designed to quantify 
the response of fish to rapid pressure changes typical of turbine passage, with and without the com-
plication of the fish being acclimated to gas supersaturated water. 
 
 This report contains seven sections.  In Section 2.0 we present background information on water 
pressure, fish responses to pressure changes, and complications of gas supersaturation.  Methods and 
materials are described in Section 3.0.  Results are presented in Section 4.0, discussion in 5.0, and 
conclusions in 6.0.  References are provided in Section 7.0.  Appendix A includes supplementary 
information. 
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2.0 Background 
 
 
 Changes in water pressure and dissolved gas concentrations can affect the survival of fish passing 
through turbines or inhabiting tailwaters of hydroelectric dams.  Čada (1999) presented a summary of 
information on the pressure regimes and dissolved gas concentrations that might be expected at hydro-
electric power plants, summarized past and ongoing studies, and suggested an experimental protocol for 
resolving the issue.  
 
 In natural, unimpounded rivers, fish experience water pressures ranging from near atmospheric (at the 
surface) to about 2 atmospheres (water pressure increases by 1 atmosphere with every 34-ft increase in 
depth).  Dissolved gases are normally at or below 100% saturation; water is rarely supersaturated (>100% 
saturation) in natural rivers. 
 
 The construction of hydroelectric dams on river systems alters the range of both water pressures and 
dissolved gas concentrations to which riverine fish may be exposed (Čada 1999).  Within the depths of 
the hydroelectric reservoir, fish may become acclimated to water pressures that are greater than any that 
occurred in the natural river.  Fish entrained in the turbine intake flow experience rapid pressure increases 
and decreases of a greater magnitude than exists in nature.  Dissolved gas concentrations may be lowered 
or raised by the presence of hydroelectric dams.  For example, oxidation of organic matter in deep waters 
of a reservoir may lead to low oxygen concentrations in the hypolimnion and discharged waters.  On the 
other hand, spilling water from dams often increases the concentration of dissolved gases.  Although this 
may have an important benefit by increasing the amount of dissolved oxygen, water spilled from high 
dams into deep plunge pools can become supersaturated with dissolved air and cause gas bubble trauma 
(gas bubble disease) in fish.  Passage of water through a conventional hydroelectric turbine does not 
increase the amount of dissolved gas (because it is a closed system), but the percent saturation changes as 
water pressures change in different portions of the turbine system.  That is, even though the concentration 
of dissolved gas does not change in the closed system, surface water entering the gatewell that is 
equilibrium with the atmosphere will become undersaturated as water pressures increase approaching the 
runner, and then become briefly supersaturated in the subatmospheric pressures downstream from the 
runner.  The turbine discharge returns to equilibrium with the atmosphere in the tailrace. 
 
 Water pressure is expressed in kilopascals (kPa), where 101.3 kPa = 1 atmosphere = 760 mm 
Hg = 14.73 psi.  Water pressure increases with depth at a rate of 9.799 kPa/m (= 0.0294 atmosphere/ft 
= 0.434 psi/ft = 73.49 mm Hg/m).  Thus, a fish residing at the water surface experiences about 101 kPa, 
whereas a fish residing at 10 m depth experiences a water pressure of about 200 kPa.  Because fish can 
control their depth, they can ensure that the rate of pressure change they experience in natural rivers is 
small and not damaging. 
 
 Surface-acclimated fish that are entrained in the turbine flow experience increasing water pressures 
as they descend to the upstream side of the runner.  This period of pressure increase may occur in a time 
frame measured in seconds to minutes, depending on whether the fish resists entrainment by swimming 
against the flow in the forebay and intake.  As the fish passes through the runner, pressure drops very 
rapidly on the downstream side of the runner and into the draft tube, often to less than atmospheric 
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pressure.  Occasionally, pressures downstream from the runner may momentarily drop below the vapor 
pressure of water, resulting in cavitation.  Passage through this low pressure zone occurs in no more than 
a few seconds.  After leaving the draft tube, the fish is again exposed to near atmospheric pressures at the 
surface of the tailrace or greater pressures if the fish swims to deeper water. 
 
 Čada (1990) reported that water pressures in one bulb turbine (horizontal propeller-type turbine) 
varied from a high of 210 kPa to a low of about 80 kPa.  In such a turbine, a surface-acclimated fish 
(101 kPa) would experience a doubling of pressure upstream from the runner, followed by a momentary 
pressure decrease to about 80% of the acclimation pressure, all within as little as 15 seconds. 
 
 Bell (1991) calculated pressures near the Francis runners at the Lequille, Cushman No. 2, and Shasta 
hydroelectric plants.  From the turbine entrance (i.e., leading edge of the runner blades, at mid-height of 
the wicket gates) to the bottom of the turbine (entrance to the draft tube), calculated pressures dropped 
from 582 to 56 kPa at Lequille, from 830 to 68 kPa at Cushman No. 2, and from 736 to 95 kPa at Shasta 
hydroelectric plant. 
 
 Calculated pressures experienced by fish passing through a Kaplan turbine at the McNary Dam on 
the Columbia River would be as high as 460 kPa (Montgomery Watson 1995).  A fish passing along the 
upper surface of the turbine blade near the hub would be exposed to pressures that are estimated to be no 
lower than 115 kPa.  The most damaging pressure changes would be experienced by fish entering at the 
ceiling depth and passing along the bottom side of the blade near its tip; in this case, pressures would drop 
from 340 kPa to 2 kPa in less than 1 sec.  A value of 2 kPa is approximately the vapor pressure of water, 
i.e., the pressure at which cavitation occurs.  Exposure to the lowest pressures, on the downstream side of 
the runner, were estimated to last no more than 0.25 sec before pressure rapidly returned to near 
atmospheric pressures in the draft tube and tailwaters. 
 
2.1 Fish Responses to Pressure Changes 
 
 Among fish with swim bladders, the response to rapid pressure changes encountered within a turbine 
is affected by whether the fish is physostomous or physoclistous.  Physostomous fish have a duct, the 
pneumatic duct, which connects the swim bladder with the esophagus.  Gas can be quickly taken into or 
vented from the swim bladder through the mouth and pneumatic duct, so that adjustment to changing 
water pressures can take place rapidly, often on the order of seconds.  As a general rule, physostomes 
include the soft-rayed fishes like salmon, trout, catfish, minnows, shad, and gar.  On the other hand, 
physoclists lack a direct connection between the swim bladder and the esophagus.  In these fish, the 
contents and pressures within the swim bladder must be adjusted by diffusion into the blood, a process 
measured on the order of hours.  Physoclistous fish include many of the spiny-rayed fishes such as perch, 
bass, and bluegill sunfish. 
 
 Once inside a turbine, surface-acclimated physoclistous fish cannot adjust the volume of their swim 
bladder rapidly enough to compensate for changing water pressures; the swim bladder will be compressed 
and the fish will become more dense under increasing water pressures.  Conversely, in a region of low 
pressure, downstream from the runner, the swim bladder will expand rapidly, potentially to the point of 
bursting.  Physostomes have more control over the volume of gas in the swim bladder than physoclists.  If 
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a deep-water-adapted physostome is drawn toward a surface intake, decreasing water pressure will cause 
the swim bladder to expand.  Excess gas can be vented through the pneumatic duct if the rate of ascent is 
sufficiently slow.  However, even physostomous fish may not be capable of venting excess gas in 
response to the rapid pressure reductions (often less than 1 sec) that occur within the turbine and 
draft tube. 
 
 Čada et al. (1997) reviewed a large number of experiments that examined the effects of pressure 
increases and decreases on fish.  They concluded that pressure increases of the magnitude found in 
hydroelectric turbines are unlikely to injure or kill entrained fish.  Rapid, brief pressure increases caused 
little or no direct mortality in a variety of studies using a variety of fish.  However, high pressures may 
alter the behavior of fish such that they may have increased susceptibility to other, non-pressure-related 
sources of mortality.  Some investigators have noted that fish exposed to high pressures were momen-
tarily stunned.  Although the test fish fully recovered in the laboratory holding tanks, temporarily stunned 
fish may be more susceptible to predators in the tailwaters of a hydroelectric dam. 
 
 The pressure decreases that fish experience downstream from the runner occur rapidly and may be 
large.  From a direct mortality standpoint, laboratory studies suggest that the brief exposure to subatmos-
pheric pressures within the turbine is more likely to be damaging to fish with swim bladders.  Although 
there is considerable variation in the response of fish to pressure reductions, the highest mortalities 
occurred when the pressure reduction was greatest, i.e., when the exposure pressure was a relatively small 
fraction of the acclimation pressure.  On the other hand, three tests in which exposure pressure was no 
less than 60% of the acclimation pressure resulted in little or no mortality.  Based on these limited studies 
of a variety of fish, Čada et al. (1997) suggested that pressures within the turbine should fall to no less 
than 60% of the value to which entrained fish are acclimated.  For surface-oriented fish, a pressure of 
60 kPa or greater at all points within the turbine and draft tube would be expected to protect most fish 
from direct mortality resulting from low pressures. 
 
 Based on a consideration of salmonid data in USACE (1991), ARL (1996) suggested that minimum 
pressures within the turbine be no less than 30% of the fish’s initial acclimation pressure.  For fish dis-
tributed within the top 34 ft of water, this would dictate a minimum pressure of about 10 psi (69 kPa).  
ARL’s suggested minimum pressure criterion (30% of acclimation) is less restrictive than the “60 percent 
of acclimation” criterion suggested by Čada et al. (1997).  Whereas it may protect deep-adapted sal-
monids (and other physostomes) that are able to vent some of the expanding gases in the swim bladder as 
they are drawn upwards toward the intake, the 30% criterion may not be sufficient to protect other species 
of physoclistous fish. 
 
2.2 Complications of Gas Supersaturation 
 
 Supersaturation of dissolved gases, leading to gas bubble trauma (gas bubble disease) has been most 
commonly reported at Columbia River Basin dams.  However, it has also been observed at dams in the 
southeastern U.S.  Air is entrained in water spilled from high dams as numerous small bubbles with a 
great increase in air-water interfacial area.  The air in the bubbles dissolves under pressure in deep tail-
water pools.  When this water subsequently surfaces downstream, the gases are supersaturated relative 
to local atmospheric pressures.  Once the bubbles have left the water, the rate to reach equilibrium is 
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considerably slower, so supersaturation may persist in flowing waters for days, and excessive dissolved 
gas levels may persist far from the source of supersaturation (APHA/AWWA/WEF 1995). 
 
 Montgomery Watson (1995) summarized the history of gas supersaturation problems in the Columbia 
River.  Briefly, total gas pressures in the range of 115 to 143% have occurred in the Columbia and Snake 
rivers during periods of high spilling.  Gas supersaturation problems were first identified in the 1960s, but 
declined in the 1970s and 1980s as a result of 1) installation of turbines, thereby reducing the amount of 
water that was spilled, 2) installation of flip-lip spill deflectors on some spillways, and 3) generally low 
levels of precipitation and runoff.  With the increased use of spill in the 1990s to enhance downstream 
fish passage in the Columbia River Basin, gas supersaturation has once again become a problem.  For 
example, during the emergency spill program of 1994, maximum total gas pressure ranged from 120 to 
133%.  Under heavy spill conditions that could occur under possible future reservoir drawdowns, total gas 
pressure could increase to as much as 140% (Montgomery Watson 1995). 
 
 In years of low flow, there may be considerable dilution of spilled (supersaturated) water by turbine 
flow, such that total gas pressure (TGP) may decrease downstream from the dams.  Conversely, AASI 
(1998) notes that in years of high river flows, supersaturated spill flows will be much greater than turbine 
flows, so that dilution of supersaturated water in the mixing zone below the dam will be small.  Total gas 
pressure may be elevated throughout the river (due to high spill-to-turbine flow ratios), leading to high 
TGP in the forebay of the next dam downstream. 
 
 To examine the phenomenon of entrainment of fish acclimated to supersaturated water, Montgomery 
Watson (1995) exposed smolt-size rainbow trout to different levels of water pressure and dissolved gas 
saturation in laboratory chambers.  The pressure exposure system consisted of two acrylic cylinders, each 
55 cm long and 27.5 cm in diameter, connected to a system of hydraulic and pneumatic cylinders and 
their controls and water supply (detailed schematics are provided in the report).  The chambers were 
connected to hydraulic cylinders, which in turn were connected to pneumatic cylinders.  A computer-
controlled gas pressurization system caused the pneumatic cylinders to change the position of the 
hydraulic cylinders, thereby pressurizing or depressurizing the test chambers while maintaining control 
over dissolved gas concentrations.  Pressure could be dropped from 300 kPa to the vapor pressure of 
water in 0.1 sec. 
 
 In the Montgomery Watson (1995) experiments, groups of age 0, 9- to 10-cm-long rainbow trout 
were exposed to the following pressure regime in the test chambers:  Initial Pressurization Phase 
(atmospheric pressure to 300 kPa in 30 to 60 sec); Transient Phase (drop to the vapor pressure of water, 
2 kPa, in 0.10 sec); Low Pressure Phase (close to the vapor pressure of water for 0.25 sec); and Recovery 
Phase (return to 115 to 120 kPa in 30 to 60 sec).  This was estimated to be the worst-case pressure 
condition for a fish passing close to a turbine blade at McNary Dam.  Groups of 20 test fish in each 
chamber were exposed to the pressure transients (and different gas saturations) and held in the chambers 
for an additional 30 min.  After the 30 min were up, treatment and control fish were removed from the 
chambers, combined, and introduced to a tank containing adult rainbow trout predators.  Some fish 
exposed to pressure changes at 125 and 130% of saturation lost equilibrium and/or died (direct mortality).  
However, differences between treatment and control groups in the mortality due to predation (indirect 
mortality) were not statistically significant. 
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 As can be seen from the foregoing discussion, the changes in water pressure and dissolved gas 
concentrations associated with hydroelectric facilities could affect the survival of fish passing through 
turbines or inhabiting tailwaters below the dams.  The U.S. Department of Energy’s Hydropower Program 
supported experiments that examined the injury and mortality to fish caused by these stresses.  This report 
presents the results of the initial set of test conditions. 
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3.0 Methods and Materials 
 
 
 Čada (1999) suggested 12 possible test conditions for resolving pressure-related concerns about fish 
passage at hydropower projects throughout the United States.  In six of the conditions, the nadir of the 
turbine pressure spike was “near zero” (0 kPa) as might occur at dams on the lower Columbia River 
operating at high efficiency, whereas the other six conditions would simulate a less severe nadir 
(somewhere between 0 and 101 kPa) representing turbines operating at reduced efficiency.  These test 
conditions are explained below and prioritized in Table 3.1.  We conducted the tests in November and 
December 1999, January and February 2000, and June and July 2000. 
 
3.1 Test Species 
 
 Rainbow trout ~13 cm in length were obtained from Troutlodge, Inc. in Soap Lake, Washington.  
Bluegills ~7 to 10 cm in length were purchased from Osage Catfisheries, Osage Beach, Missouri.  Eyed 
fall chinook salmon eggs were obtained from the Washington Department of Fish and Wildlife’s Priest 
Rapids Hatchery on the Columbia River near Mattawa, Washington.  The eggs were hatched and reared at 
PNNL’s aquatic lab until the juvenile fall chinook salmon reached ~10 cm in length. 
 
3.2 Test Conditions 
 
 In an early experiment to examine the phenomenon of entrainment of fish acclimated to supersatu-
rated water, Montgomery Watson (1995) exposed smolt-size rainbow trout to different levels of water 
pressure and dissolved gas saturation in laboratory chambers.  Our experiments used the same hyperbaric 
chambers and experimental procedures, and are an expansion of the experiment in the following areas: 
 

• Test a greater number of species.  Montgomery Watson (1995) tested only rainbow trout.  We 
conducted tests with rainbow trout, fall chinook salmon, and bluegill, with future plans to test 
American shad (Alosa sapidissima), Pacific lamprey (Entosphenus tridentatus), and other game fish 
species. 

 
• Expand the range of turbine-passage pressures.  Montgomery Watson (1995) tested a “typical” 

turbine-passage pressure regime, i.e., what would be expected at McNary Dam turbines (test con-
ditions 2, 6, and 10 in Table 3.1).  This range will be modified to include other pressures scenarios to 
see whether the turbine designers could trade off pressure increases if necessary to reduce other 
stresses (test conditions 1, 5, and 9 in Table 3.1). 
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Table 3.1.  Twelve Possible Test Conditions for PNNL’s Turbine Passage Pressure Studies Based on 
 Different Combinations of Pre-Turbine Acclimation Pressures (101 or 191 kPa), Total  
 Dissolved Gas Concentrations (100, 120, and 135% saturation), and Pressure Changes to  
 Which Fish Would be Exposed in a Turbine.  Pressures as high as 460 kPa and as low as  
 2 kPa can be expected in Kaplan turbines on the Columbia River. 

 
Acclimation Pressure 101 kPa Acclimation Pressure 191 kPa 

% Saturation % Saturation 
Nadir of Turbine Pressure Spike 100 120 135 100 120 135 

Test Priorities Near 0 kPa 
(Maximum Turbine Efficiency)  
Expected for Lower Columbia River Dam 2 6 10 4 8 12 

~50 kPa 
(Reduced Turbine Efficiency)  
Outside the Expected Operations of a 
Lower Columbia River Dam 

1 5 9 3 7 11 

 
• Test depth-compensated, gas-loaded fish.  Assuming that most downstream migrants travel in the 

upper 3 m, Montgomery Watson (1995) tested fish that were acclimated to surface water pressures 
and varying degrees of gas supersaturation (test conditions 2, 6, and 10 in Table 3.1).  NMFS (2000; 
Section E.6.3) pointed out that gas-loaded fish may compensate for the high dissolved gas levels by 
swimming at greater depths (10 m test conditions 4, 8, and 12 in Table 3.1).  The swim bladders of 
these fish are acclimated to greater pressures, and the fish may suffer greater injury when suddenly 
exposed to low pressures in a turbine. 

 
 Tests were conducted at ambient well water temperature (~17°C).  Forty fish (20 in each of two 
chambers) were acclimated to one of three gas saturation levels (100, 120, and 135% saturation) at either 
near surface pressure (101 kPa, 14.7 psi) or the equivalent of 30 ft of pressure (191 kPa, 27.7 psi) for a 
period of 16 to 22 hr.  One group was then subjected to a pressure spike simulating passage through a 
hydroelectric turbine, while the second group acted as a paired control (same gas exposure history, but 
no pressure spike).  During the computer-controlled program sequence, pressure increased to ~58 psi 
(~400 kPa) over 30 to 60 sec to simulate fish entering the turbine intake and approaching the runner.  Fish 
then were subjected to a sudden decrease in pressure to ~1 psi (2-10 kPa), the pressure scenario expected 
at lower Columbia River dams as described in scenarios 2, 4, 6, 8, 10, and 12 in Table 1.  After the spike, 
the pressure transition simulated a fish passing out the draft tube and into the tailrace.  After completion 
of the simulated turbine passage, fish were removed from the chambers and placed in a holding trough for 
a 48-hr post-exposure observation.  The second group of 20 fish (the handling control, undergoing 
identical treatment, except they were not subjected to the turbine spike) was also held for a 48-hr post-
exposure observation. 
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3.3 Gas Supersaturation System 
 
 A pressurized packed cell column was used to generate gas-supersaturated water.  The system 
(Figure 3.1) was designed by Point Four Systems of Port Moody, British Columbia, for use in previous 
studies at PNNL and is described in AASI (1998).  Pressurized water and air were added to the column.  
Total dissolved gas levels were achieved by controlling pressure within the column and by adjusting the 
position of a proximity switch on a sight glass. 
 
 For our tests, 10 gpm of well water was pumped into the top of the column.  Backpressure was 
created inside the column by restricting the discharge line at the bottom of the column.  As the water level 
increased within the column, a proximity switch sensor mounted on a sight glass controlled a valve allow-
ing pressurized air to enter the column to maintain the desired level within the column.  The combination  

 

Figure 3.1.  Gas Supersaturation System Showing Controls (lower right) and Saturometer (upper right) 
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of compressed air acting against the pressurized water source and the restricted outlet created gas-
supersaturated water within the column.  The water level inside the column affected the water/air 
interface.  Therefore, adjusting water level and/or internal column pressure were used to change and 
control gas supersaturation levels. 
 
 As the system was set up for our tests, an internal pressure of ~11 psi at a flow of 10 gpm was needed 
to produce total dissolved gas (TDG) levels of ~135%.  A pressure of ~6 psi resulted in TDG level of 
~120%.  For “normal” saturated water, the outlet was opened wide so that no backpressure was created.  
In this condition, the TDG level was <105%.  Gas levels were monitored with a Sweeney Saturometer, 
Model DS-1B (Sweeney Aquamatic, Stony Creek, Connecticut).  As described in Aspen Applied 
Sciences (1998), the manufacturer calibrated our instrument before delivery to PNNL.  In the laboratory, 
the instrument readings were compared to other instruments by the same manufacturer and found to be 
within tolerances required for the study (±1%). 
 
3.4 Turbine Passage System 
 
 The Turbine Passage System (Figure 3.2) was designed and built by Reimers Engineering in 1994 
and is described in Montgomery Watson (1995).  The system can create a variety of pressure regimes, and 
for this study, was used to simulate the pressure history that fish would experience in passing through a 
typical Kaplan turbine on the mid-Columbia River.  The exposure chambers for the turbine passage 
system consisted of two 27.5-cm-diameter acrylic tubes, 55 cm long.  The volume of each cylinder was 
about 34 L. 
 

 
 

Figure 3.2.  Turbine Passage System with Rainbow Trout in Hyperbaric Chambers 
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 The chambers were connected to hydraulic cylinders, which in turn were connected to pneumatic 
cylinders.  Through a computer-controlled gas pressurization system attached to the pneumatic cylinders, 
the positions of the hydraulic cylinders were moved to either pressurize or depressurize the chambers.  
The maximum pressure of the chamber was 100 ft of head (3 atm, or ~400 kPa).  The system can drop the 
pressure from 100 ft (~400 kPa) of head to close to the vapor pressure of water (~1 psi or 2-10 kPa) in 
0.1 sec. 
 
 A computer program, the Labtech Control Program (Labtech Control Version 4.2.0 for 
Microsoft® Windows™, Laboratory Technologies Corporation), controlled the gas cylinders used in the 
pressurization/depressurization sequence.  Sub-programs within the Labtech Control program were used 
for various chamber operations.  Water was pumped from the gas supersaturation system to the chambers 
at the desired TDG level (100, 120, or 135%), depending on the test scenario. 
 
3.5 Water Delivery System 
 
 Water from the gas supersaturation system flowed into a trough.  A second centrifugal pump with-
drew water from the trough and pumped it to the hyperbaric chambers.  A valve on the outlet side of the 
pump was used to precisely control the quantity of water delivered.  Water from the supply line was split 
and entered both hyperbaric chambers.  Flow was equalized through the two chambers by using a restric-
tion (round orifice) in the end of drain tubes leading from each chamber.  During the acclimation period 
for fish, pressure within the hyperbaric chambers was set by adjusting the quantity of pressurized water 
delivered to the hyperbaric chambers, with back pressure determined by the size of the outlet orifice.  For 
holding fish at 30 ft of depth (191 kPa), a 3/32-in. orifice was used.  For holding fish at the surface 
(101 kPa) a 3/8-in. orifice was used.  Flow through each hyperbaric chamber was ~10 and ~14 L/min, 
respectively, and turnover rate for each chamber was 3.4 and 2.5 min, respectively. 
 
3.6 Fish Introduction 
 
 Once the TDG levels had stabilized for the ensuing test, the hyperbaric chambers were partially filled 
with water, and the delivery pump was turned off.  Twenty fish were netted from the acclimation tank and 
placed in ~10 L of water in a bucket.  The fish were then poured into a chamber through the 4-in. 
PVC pipe and valve on the end of the hyperbaric chamber.  After fish were added to each chamber, the 
valves were closed, the pump was turned on, and all the air was evacuated from each chamber through a 
vent tube.  During acclimation, both the vent tubes and the outlets remained wide open to prevent buildup 
of gas bubbles in the hyperbaric chambers.  Pressure was adjusted within the hyperbaric chambers by 
making slight adjustments to the flow control valve at the outlet of the supply pump.  When the desired 
pressure was achieved, a dark cover was placed over the chambers to calm the fish.  An “acclimation” file 
was initiated to record pressure at ~90-sec intervals within a chamber during the acclimation period 
(16-22 hr). 
 



 

 3.6 

3.7 Pressure Spike 
 
 After the acclimation period, one of the two fish groups was subjected to the simulated turbine 
passage pressure spike shown in Figure 3.3.  To initiate the sequence, the piston was first moved all the 
way in to purge any air that may have accumulated in the cylinder.  Then, the piston was positioned in the 
middle of the stroke.  When the sequence was started, the inlet, outlet, and vent tube valves were quickly  
 

 
 
 Figure 3.3. Surface (101 kPa) and 30 ft Depth (191 kPa) Acclimation and Hyperbaric Chamber 

Pressure Exposure Simulation of Turbine Passage.  Pressure increases as the fish’s 
depth increases.  Pressure spike occurs as fish pass the turbine blades.  Pressures then 
return to surface pressure as fish pass through the draft tube and enter the tailrace. 
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closed, and the computer controlled the piston to maintain the appropriate pressure (101 or 191 kPa) 
within the hyperbaric chamber.  After a brief period (~15 sec), the “dive” was initiated.  The entire 
pressure sequence lasted about 90 sec.  At the end of the sequence, the chambers were taken to “surface” 
pressure (101 kPa), and water flow was restored to the chambers.  Two minutes after completion of the 
pressure spike, the fish were removed from the chambers and placed in holding troughs. 
 
3.8 Fish Removal 
 
 To remove fish from the hyperbaric chambers, a large plastic garbage can was placed under the 4-in. 
PVC valve outlet.  The valve was opened, and the water and fish in the chamber were flushed out.  
Incoming water helped in flushing the fish.  Fish remaining in the chamber after 1 to 2 min were retrieved 
by removing the PVC valve and “sweeping” the fish from the chamber with a plastic mesh crowding 
device.  Fish were then netted from the garbage can and placed in a partitioned trough for a 48-hr 
observation.  Fish were checked (alive [OK], loss of equilibrium [LE], or dead) at 1, 24, and 48 hrs after 
the pressure spike. 
 
3.9 Fish Necropsy 
 
 Fish that died during acclimation or during/immediately after the pressure spike were examined 
immediately to determine the cause of death.  Fish that died during the 48-hr post-exposure holding 
period were examined for signs of injuries related to gas bubble trauma or the pressure spike, and 
survivors were examined at the end of each test.  Examinations were performed using a dissecting 
microscope (up to 40X magnification) with the aid of optical fiber lights.  Injuries were documented with 
digital imagery.  Necropsy included examination for bubbles in fins, bubbles or hemorrhaging in the eyes 
or gill filaments, and internal examination for bubbles and/or hemorrhaging in the heart and major 
arteries, swim bladder rupture, and hemorrhaging or rupturing of other internal organs. 
 
3.10 Monitoring 
 
 The stability of the gas supersaturation and delivery systems was monitored before and during each 
test.  Tests were not initiated until parameters were stable and within ≤5% of desired test conditions.  
Conditions monitored included those described below. 
 

• Flow through and pressure within the gas supersaturation system was checked at the beginning, 2 to 
6 hr later, and at the end of the acclimation period.  Flow and pressure readings were for reference 
only to set the system and maintain proper TDG levels. 

 
• TDG level of supply water (from gas supersaturation system to the hyperbaric chambers) was 

checked before, during, and at the end of the acclimation period. 
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• Acclimation pressure was monitored continuously at 90-sec intervals and stored as an “acclimation 
file” on the computer.  Pressure “drift” of <2 psi was accepted, but larger pressure changes voided the 
test.  Pressure gauges built into the hyperbaric chambers were calibrated by the manufacturer prior to 
the initiation of our tests. 

 
• Flow through each hyperbaric chamber was measured at the beginning, once during, and at the end 

of the acclimation period by timing the discharge of a known volume from each chamber with a 
stopwatch. 

 
• Temperature of the gas supersaturation supply water was checked before, during, and at the end of the 

acclimation period.  Temperatures in the holding troughs were monitored daily.  Since all systems 
were using ambient well water at 17°, there was little temperature variation throughout the tests. 

 
• Simulated turbine passage pressure sequence was recorded for each test.  A “slow” file measured 

pressure at 1-sec intervals.  A “fast” file measured pressure at 0.1-sec intervals for a 2-sec period that 
documented the rapid change in pressure from ~400 kPa to <7 kPa.  Instrumentation was calibrated 
by the hyperbaric chamber manufacturer prior to the initiation of our test series. 

 
• Mortalities, injuries, and abnormal swimming behavior were monitored at 1, 24, and 48 hr post-

exposure. 
 

• Fish were examined for gas bubble trauma (GBT) under a dissecting microscope, and digital images 
of injuries were captured to document injuries.  Digital “movies” were also recorded with a high-
speed camera (250 frames/sec) during the pressure spike to observe fish reaction during rapid 
decompression. 

 
3.11 Statistical Methods 
 
 The purpose of statistical analyses is to determine factors that cause differences in injuries or mortal-
ities between pressure-exposed fish (referred to as “Spike”) and control fish (“Non-spike”).  In each 
analysis, four factors were studied.  These factors and the levels of each factor are:  1) test - the test 
(Spike) and control (Non-spike); 2) species - bluegill, rainbow, and fall chinook; 3) gas - 100, 120, and 
135% TDG; and 4) depth - the surface-acclimated (0 ft) and depth-acclimated (30 ft). 
 
 Four different response variables were investigated, each individually.  These responses included:  
1) GBT - proportion of fatalities due to GBT; 2) Spike - proportion of fatalities due to a turbine-passage 
pressure regime; 3) Injured - proportion of fish that were injured; and 4) Uninjured - proportion of fish 
that were uninjured. 
 
 In each analysis, the response variable is a proportion.  In many cases, that proportion is close to 
0 or 1, because it either happened to a large majority of fish in that test group, or it rarely occurred.  When 
this is the case, the normality assumption when using Analysis of Variance is suspect.  For this purpose, 
the non-parametric Kruskall-Wallis test was used for each analysis.  The significance level of α = 0.05 
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was used to determine significance (any p-value below 0.05 is considered significant).  Unfortunately, the 
Kruskall-Wallis test only tests factors individually and does not allow for testing interactions.  Therefore, 
interactions were tested using Analysis of Variance.  To attempt to compensate for the lack of normality, 
only highly significant interactions were reported (p-value <0.01).  Only two-way interactions were 
examined. 
 
 When testing each factor individually the null hypothesis (Ho) is:  there is no difference in the 
response variable between the levels of the given factor.  The alternative hypothesis (Ha) is:  at least one 
of the levels of the factor is significantly different than the other levels for that specific response variable.  
The hypotheses for the interactions are:  Ho – no significant interaction between the two factors, and Ha – 
a significant interaction between the two factors. 
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4.0 Results 
 
 
4.1 Biological Effects 
 
4.1.1 Rainbow Trout 
 
 A series of 17 tests representing test conditions 2, 4, 6, 8, 10, and 12 of Table 3.1 was completed 
during November and December 1999.  The results of these tests are summarized based on injuries/deaths 
associated with acute and/or chronic GBT, and pressure-spiked versus non-spiked (control) fish. 
 

4.1.1.1 Gas Bubble Trauma 
 
 Since all fish were subjected to identical TDG levels, both the test and control groups were used to 
evaluate GBT.  Rainbow trout acclimated at surface pressures (101 kPa) showed signs of acute and 
chronic GBT at both 120 and 135% TDG levels (Table 4.1, Figure 4.1).  At 120% TDG, 17 of 120 fish 
died from acute GBT.  Mortality ranged from 1 to 6 fish per 20-fish group during the acclimation period 
preceding turbine passage simulation.  Other fish had visible gas bubbles in fins (Figure 4.2) and eyes, but 
after the 48-hr observation period, there were no visible external signs of GBT except that bubbles 
persisted in the eyes of three fish (Figure 4.3).  At 135% TDG, fish went into convulsions and started 
dying about 2 hr into the acclimation period.  Most fish were dead after 5 hr, and all (80 fish total) were 
dead by the end of the acclimation period.  Because of the 100% mortality rate during acclimation, only 
two test replicates were conducted under 135% TDG surface acclimation conditions. 
 
Table 4.1.  Mortality and Injury Rates for Rainbow Trout Based on TDG Level, Acclimation Depth, and 

 Pressure Spike from Turbine Passage 
 

Surface Acclimation (101 kPa) 30 ft Acclimation (191 kPa) 
Test Group 100% TDG 120% TDG 135% TDG 100% TDG 120% TDG 135% TDG 

Replicate 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 

Dead From GBT 0 0 0 1 4 6 20 20 0 0 0 0 0 0 0 0 0 
Dead from Spike 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Injured 0 1 3 2 0 1 0 0 0 4 5 5 2 3 6 4 5 
OK - no injuries 20 19 17 17 16 13 0 0 20 16 15 15 18 17 14 16 15 

Surface Acclimation (101 kPa) 30 ft Acclimation (191 kPa) 
Control Group 100% TDG 120% TDG 135% TDG 100% TDG 120% TDG 135% TDG 

Replicate 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 

Dead From GBT 0 0 0 1 4 1 20 20 0 0 0 0 0 0 0 0 0 
Injured 0 0 0 1 1 0 0 0 0 1 0 0 4 0 0 0 0 
OK - no injuries 20 20 20 18 15 19 0 0 20 19 20 20 16 20 20 20 20 
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Turbine-Passed Fish
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Figure 4.1. A Comparison of the Injury and Mortality Rates for Rainbow Trout Based on TDG Level, 
Acclimation Depth, and Pressure Spike from Turbine Passage 

 
 Rainbow trout exposed to 100, 120, and 135% TDG at acclimation pressures simulating 30 ft of 
depth (191 kPa) showed no signs of GBT during or after the acclimation period (Table 4.2, Figure 4.1).  
When the chambers were pressurized at the beginning of the acclimation period, all fish had negative 
buoyancy (i.e., sank to the bottom of the chamber).  All fish were still “negative” at the end of the 
acclimation period.  Swimming behavior (head higher than the tail and constantly “swimming” up) 
indicated that rainbow trout were unable to achieve neutral buoyancy during the 16- to 22-hr acclimation 
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Figure 4.2.  Bubbles in the Pectoral Fin of a Rainbow Trout Acclimated to 120% TDG, 101 kPa Pressure 
 

 
 

Figure 4.3.  Bubbles in the Eye of a Rainbow Trout Acclimated to 120% TDG, 101 kPa Pressure 
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period by filling the swim bladder with gases dissolved in the blood.  This suggests that fish surfacing to 
feed or as part of normal diurnal behavior will never achieve neutral buoyancy at 30 ft of depth.  How-
ever, fish held at 191 kPa appeared to be totally protected from the effects of acute and chronic GBT prior 
to the turbine passage sequence. 
 

4.1.1.2 Effects of Turbine Passage Simulation 
 
 Rainbow trout showed little reaction to the pressure spike during the turbine passage simulation.  Fish 
were startled by the sudden decompression but were otherwise unaffected (Table 4.1).  No fish lost 
equilibrium or went into convulsions prior to removal from the chambers, and no fish died (0 of 290 fish 
that were alive when the pressure spike occurred) in the 48-hr post-exposure holding period.  Fish that 
died from GBT during the acclimation phase (black bars in Figure 4.1) were not used to evaluate effects 
of the pressure spike. 
 
 Fish were startled and darted around when first placed in the holding troughs for 48-hr observation.  
Initially, most fish, especially turbine-spiked fish, were negatively buoyant.  However, within the 
1 to 2 hr, most fish were neutrally buoyant after gulping air to inflate their swim bladders, and maintained 
a normal swimming position (facing upstream) in the trough.  A few fish remained negatively buoyant for 
up to 24 hr. 
 
 No external signs of injury or trauma were evident 1 hr after the turbine passage simulation.  How-
ever, during the first 24 hr in holding troughs, 38 of 543 of necropsied fish (~7%) had developed a black 
spot on the top of their heads (Figure 4.4).  The discoloration appeared to be immediately above the 
cranial cavity.  In some fish, the spot was in the center of the skull between the eye orbits, while in other 
fish, the spot was off to the side and appeared to reach toward an eye orbit (Figure 4.5).  The spot usually 
persisted throughout the 48-hr holding period. 
 
 The black spot was more frequent in depth-acclimated fish than in surface-acclimated fish (33 of 
360 fish and 5 of 183 fish, respectively), and more frequent in spiked fish than controls (31 of 269 fish 
and 7 of 274 fish, respectively) (Table 4.2).  Therefore, the highest incidence of the trauma occurred in 
depth-acclimated, spiked fish.  Among the depth-acclimated, spiked fish, higher TDG levels produced a 
progressively higher occurrence of the injury (5 of 60 fish at 100%, 9 of 60 fish at 120%, and 14 of 60 at 
135% TDG). 
 
 No ruptured swim bladders were observed in internal necropsies of 520 fish (internal examinations 
were performed after 13 of 15 tests with surviving fish).  Of the 680 fish used in the test series, 9 of 623 
fish surviving the acclimation period developed over-inflation of the swim bladder (Figure 9), resulting in 
fish floating excessively high in the holding trough.  All 9 fish were from groups that had undergone the 
turbine passage simulation.  However, 8 of the 9 fish were from 100% TDG acclimated groups (4 from 
one surface-acclimated group and 4 from one depth-acclimated group).  The other fish was from a depth-
acclimated 120% TDG group.  The over-inflation developed gradually during the 48-hr holding period in 
the troughs. 
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 Figure 4.4. Discoloration of the Head on Rainbow Trout Observed  

During Post-Exposure Holding Period 
 

 
 
 Figure 4.5. Close-Up of Black Spot on Head of Rainbow Trout at Necropsy 48 Hr After 

Exposure to Turbine Passage Sequence 
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Table 4.2. Frequency of Black Cranial Spot in Rainbow Trout as Related to TDG Level, Acclimation 
 Depth, and Pressure History 

 
Pressure-Spiked Controls 

 # Tested 
# Dead 
(GBT) 

# 
Examined 

# with 
Cranial 

Spot # Tested 
# Dead 
(GBT) 

# 
Examined 

# with 
Cranial 

Spot 

100%-0 ft 60 0 40(a) 2 60 0 40(a) 1 
120%-0 ft 60 11 49 1 60 6 54 1 
135%-0 ft 40 40 0 - 40 40 0 - 
Total 160 51 89 3 160 46 94 2 

100%-30 ft 60 0 60 5 60 0 60 1 
120%-30 ft 60 0 60 9 60 0 60 4 
135%-30 ft 60 0 60 14 60 0 60 0 
Total 180 0 180 28 180 0 180 5 
(a) In one test, a trough divider was dislodged at the 24-hr check, mixing the spiked and control groups.  No  
 necropsies were performed on these 40 fish, 20 from each group. 

 

 
 
 Figure 4.6. Over Inflated Swim Bladder (“ropey” appearance) in Rainbow Trout 48 Hr After 

Turbine Passage Sequence 
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4.1.2 Fall Chinook Salmon 
 
 A series of 17 tests was completed during June and July, 2000.  The results of these tests are 
summarized based on injuries/deaths associated with acute and/or chronic GBT, and pressure-spiked 
versus non-spiked (control) fish. 
 

4.1.2.1 Gas Bubble Trauma 
 
 Fall chinook salmon acclimated at surface pressures (101 kPa) showed signs of acute GBT at 135% 
TDG levels (Table 4.3, Figure 4.7).  At 120% TDG, no GBT mortalities occurred; however, some fish 
developed gas bubbles in their fins during the acclimation period.  No fish acclimated to 100% TDG 
showed signs of GBT. 
 
 Table 4.3. Mortality and Injury Rates for Fall Chinook Salmon Based on TDG Level, 

Acclimation Depth, and Pressure Spike from Turbine Passage 
 

Surface Acclimation (101 kPa) 30 ft Acclimation (191 kPa) 
Test Group 100% TDG 120% TDG 135% TDG 100% TDG 120% TDG 135% TDG 

Replicate 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 

Dead From GBT 0 0 0 0 0 0 20 20 0 0 0 0 0 0 0 0 0 

Dead from Spike 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 3 
Injured 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 4 0 

OK - no injuries 20 20 20 17 19 20 0 0 20 20 19 18 20 18 19 16 17 

Surface Acclimation (101 kPa) 30 ft Acclimation (191 kPa) 
Control Group 100% TDG 120% TDG 135% TDG 100% TDG 120% TDG 135% TDG 

Replicate 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 

Dead From GBT 0 0 0 0 0 0 20 20 0 0 0 0 0 0 0 0 0 
Injured 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OK - no injuries 20 20 20 20 20 20 0 0 20 20 20 20 20 20 20 20 20 

 
 At 135% TDG, fish went into convulsions and started dying about 5-6 hr into the acclimation period.  
All fish were dead by the end of the 16 to 22 hr acclimation period.  Because of the 100% mortality rate 
during acclimation, only two test replicates were completed under 135% surface acclimation conditions. 
 
 Fall chinook salmon exposed to 100, 120, and 135% TDG at pressures simulating 30 ft of depth 
(191 kPa) showed no external signs of GBT during or after the 16- to 22-hr acclimation period (Table 4.3, 
Figure 4.7).  When the chambers were pressurized, all fish had negative buoyancy (sank to the bottom 
of the chamber).  All fish were still “negative” at the end of the acclimation period.  Swimming behavior 
(head higher than the tail and constantly “swimming” up) indicated that fall chinook salmon were unable 
to achieve neutral buoyancy during the acclimation period by filling the swim bladder with gases 
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 Figure 4.7. A Comparison of the Injury and Mortality Rates for Fall Chinook Salmon Based on 

TDG Level, Acclimation Depth, and Pressure Spike from Turbine Passage 
 
dissolved in the blood.  This suggests that fish surfacing to feed or as part of normal diurnal behavior will 
never achieve neutral buoyancy at 30 ft of depth.  However, depth-acclimated fish appeared to be totally 
protected from the effects of acute and chronic GBT prior to the turbine passage sequence. 
 

4.1.2.2 Effects of Turbine Passage Simulation 
 
 Fall chinook salmon were startled by the sudden decompression.  In addition, some fish lost 
equilibrium and/or went into convulsions immediately following the spike in the turbine passage 
simulation. 
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 At 135% TDG, 5 of 60 depth-acclimated fish subjected to the turbine passage simulation lost equili-
brium, with 2 of the 5 fish dying within 1 hr.  Another fish that did not lose equilibrium immediately also 
died within the first hour.  Necropsies of the 3 mortalities revealed massive gas bubbles in the heart 
(atrium) blocking blood flow to the gills (Figure 4.8).  The 3 other fish that lost equilibrium had ruptured 
swim bladders. 
 
 At 120% TDG, 3 of 60 depth-acclimated fish lost equilibrium and all died within 1 hr (Table 4.3).  
Necropsies again revealed massive gas bubble blockage in afferent lamellar arteries of the gills, blocking 
blood flow to the gills (Figure 4.9).  Another fish had a ruptured swim bladder. 
 
 No depth-acclimated fish at 100% TDG died from the turbine passage simulation; however, one fish 
had a ruptured swim bladder.  Necropsies of the non-spiked, depth-acclimated controls showed that none 
had ruptured swim bladders or any signs of trauma. 
 
 Fish were startled and darted around when first placed in the holding troughs for 48-hr observation.  
Initially, most fish were negatively buoyant, and some fish had problems maintaining an upright position.  
However, within 1 to 2 hr, most fish were neutrally buoyant after gulping air to inflate their swim 
bladders, and maintained a normal swimming position (facing upstream) in the trough.  A few fish 
remained negatively buoyant for the entire 48-hr observation period. 
 
 Necropsies were performed on a total of 600 fish.  The only external sign of injury or trauma during 
the 48-hr holding period (with the exception of the 6 mortalities) was partial loss of equilibrium in some 
fish.  Necropsies revealed that most of these fish had ruptured swim bladders.  Only 1 of 120 of surface-
acclimated fish subjected to the turbine passage simulation suffered a ruptured swim bladder, whereas 
 

 
 
Figure 4.8. Gas Bubble Accumulation in the Atrium of Fall Chinook Salmon Acclimated to 135% TDG 

at 191 kPa Pressure and Subsequently Subjected to Turbine Passage Pressure Spike 
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Figure 4.9. Bubble Formation in the Afferent Arteries of the Gills in Fall Chinook Salmon Acclimated 

at 120% TDG at 191 kPa and Subsequently Subjected to Turbine Passage Sequence 
 
7 of 174 (and all 6 mortalities) of the depth-acclimated fish subjected to the turbine spike had swim 
bladder ruptures.  None of the 120 surface-acclimated, non-spiked fish or 180 depth-acclimated, non-
spiked fish showed any signs of GBT or distress after 48 hr. 
 
4.1.3 Bluegill 
 
 A series of 18 tests was completed during January and February, 2000.  The results of these tests are 
summarized based on injuries/deaths associated with acute and/or chronic GBT, and pressure-spiked 
versus non-spiked (control) fish. 
 

4.1.3.1 Gas Bubble Trauma 
 
 Bluegills acclimated at surface pressures (101 kPa) showed signs of acute GBT at 135% TDG and 
chronic GBT at 120% TDG.  At 135%, 25 of 120 fish died from acute GBT (Table 4.4, Figure 4.10).  
Mortality ranged from 1 to 6 fish per 20-fish group during the 16- to 22-hr acclimation period preceding 
the turbine passage simulation.  Other fish had visible gas bubbles in fins and eyes, but after the 48-hr 
post-exposure observation period, there were no visible external signs of GBT except that some fish had 
minor hemorrhages in the eyes that may have been the result of GBT (Figure 4.11).  At 135% TDG, fish 
began to die about 10-12 hr into the acclimation period.  At the end of the acclimation period, many fish 
had external GBT signs (bubbles in fins and eyes). 
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Table 4.4. Mortality and Injury Rates for Bluegills Based on TDG Level, Acclimation Depth, and 
Pressure Spike from Turbine Passage 

 

Surface Acclimation (101 kPa) 30 ft Acclimation (191 kPa) 
Test Group 100% TDG 120% TDG 135% TDG 100% TDG 120% TDG 135% TDG 
Replicate 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Dead From GBT 0 0 0 0 0 0 3 5 5 0 0 0 0 0 0 0 0 0 
Dead from Spike 0 0 1 0 3 1 0 0 4 6 8 7 6 7 9 7 6 13 
Injured 0 0 6 0 10 4 1 8 4 13 10 10 13 12 9 10 12 7 
OK – no injuries 20 20 13 20 7 15 16 7 7 1 2 3 1 1 2 3 2 0 

Surface Acclimation (101 kPa) 30 ft Acclimation (191 kPa) 
Test Group 100% TDG 120% TDG 135% TDG 100% TDG 120% TDG 135% TDG 
Replicate 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Dead From GBT 0 0 0 0 0 0 6 1 5 1 0 0 0 0 0 1 1 0 
Injured 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
OK – no injuries 20 20 20 20 20 20 13 19 14 19 19 19 20 20 20 19 19 20 

 
 Bluegill exposed to 100, 120, and 135% TDG at pressures simulating 30-ft of depth (191 kPa) 
showed no external signs of GBT during or after the 16- to 22-hr acclimation period.  When the chambers 
were pressurized all fish had negative buoyancy (sank to the bottom of the chamber).  However, after 
about 2 hr, fish were again neutrally buoyant, able to float motionless inside the acclimation chambers.  
This swimming behavior suggests that bluegills can rapidly inflate their swim bladders from gases 
dissolved in the blood.  Fish appeared to be totally protected from the effects of acute and chronic GBT 
prior to the turbine passage sequence. 
 

4.1.3.2 Effects of Turbine Passage Simulation 
 
 As the turbine passage scenario was initiated, bluegills sank to the bottom of the chamber as pressure 
within the chamber built and compressed the gas in their swim bladders (Figure 4.12).  Bluegills reacted 
violently to the pressure spike during the turbine passage simulation (Figure 4.13).  At the instant of the 
turbine spike, a large bubble was observed (with the aid of a high-speed video camera) near the heads of 
most fish (Figure 4.14).  Many fish convulsed and settled to the bottom of the chamber.  When the fish 
were removed from the chambers and placed in the holding troughs, most of the spiked fish sank to the 
bottom of the trough (Figure 4.15).  Almost all spiked fish lost equilibrium.  Non-spiked, depth-
acclimated fish (controls) floated at the surface. 
 
 The mortality caused by the pressure spike ranged from 0 to 4 fish for surface-acclimated groups and 
6 to 13 for depth-acclimated groups (Table 4.4).  Most fish that died as a result of the pressure spike were 
dead at the 1-hr post-exposure observation check.  Most spiked fish (whether dead or alive and 
experiencing loss of equilibrium) were negatively buoyant, lying on their sides on the bottom of the 
trough.  Depth-acclimated controls (non-spiked fish) were buoyant, often floating on their sides on the 
surface, struggling to swim upright (Figure 4.16).  Surface-acclimated controls exhibited normal 
buoyancy and behavior when placed in troughs.  Over a period of several hours, the depth-acclimated 
control bluegills were able to maintain a normal, neutral position in the troughs. 
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 Figure 4.10. Comparison of the Injury and Mortality Rates for Bluegills Based on TDG Level, 

Acclimation Depth, and Pressure Spike from Turbine Passage 
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Figure 4.11. Hemorrhage in the Eye of a Bluegill After Acclimation at 135% TDG at 191 kPa and 
Subsequently Subjected to Turbine Passage Sequence.  Fish died from other injuries. 

 

 
 
Figure 4.12.  Bluegill Sinking to the Bottom as Pressure Increases During the Turbine Passage Sequence 
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Figure 4.13.  Bluegill Reacting to Pressure Spike During Turbine Passage Sequence 
 

 
 
 Figure 4.14. Large Bubbles Appearing from Under the Gill Operculum During Turbine Passage 

Sequence at the Instant When Pressure is Reduced from 400 to 3-7 kPa 
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 Figure 4.15. Spiked Bluegills Sinking to the Bottom of the Holding Trough Immediately Following 

Turbine Passage Sequence 
 

 
 
 Figure 4.16. Response of “Control” (non-spiked) Bluegill Acclimating to 191 kPa Immediately After 

Returning to 101 kPa When Removed from the Hyperbaric Chamber 
 

“Floaters” 
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 Over the course of the 48-hr observation period, some fish appeared to recover while others remained 
on the bottom struggling to maintain an upright position.  Necropsies were performed on 680 fish.  Depth-
acclimated bluegills, regardless of TDG level, suffered high mortality and injury rates.  Of the 180 depth-
acclimated, “turbine-passed” bluegills (60 each at 100, 120, and 135% TDG), 69 died and 96 were 
injured.  Only 15 fish appeared to be uninjured.  A ruptured swim bladder, indicated by the presence of 
bubbles floating freely in the viscera (Figure 20), was the most common injury, accounting for 95 of the 
96 observed injuries.  Some of these fish had other injuries as well (i.e., hemorrhages in one or both eyes).  
Surface-acclimated bluegills exposed to the turbine passage simulation also had swim bladder rupture, but 
at a lower rate.  Of 167 surface-acclimated bluegills alive at the end of the acclimation period that were 
turbine-spiked, 9 fish that later died and 33 surviving fish (42 total), had ruptured swim bladders, leaving 
125 uninjured. 
 
 Most of the mortalities or injuries observed in control (non-spiked) bluegills attributable to test 
parameters was in the 135% surface-acclimated groups.  A total of 12 of 60 of these fish died from acute 
GBT (Table 4.4), and two other fish had eye injuries (exophthalmia and/or hemorrhage).  Of the 180 non-
spiked acclimated at 30 ft of depth, a total of 3 fish (1 fish acclimated at 100% TDG and 2 fish acclimated 
at 135% TDG) died of embolism and/or swim bladder rupture during the 48-hr holding period. 
 
 A small number (4 of 360 fish, including one surface acclimated and 3 depth-acclimated fish) died 
during the 48-hr post-test holding period from a bacterial (Flexibacter columnaris) infection of the gills. 
 

 
 
Figure 4.17. Hemorrhaging and Loose Bubbles Visible in the Pericardial Cavity of Bluegills One Hour 

After Exposure to the Turbine Passage Sequence 
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4.2 Statistical Analyses 
 
 Table 4.5 summarizes the results of the analyses testing an overall difference in each of the four 
factors for each of the four responses.  P-values that have been bolded indicate significance and show 
there is a significant difference in the levels of that factor for that particular response.  Table 4.6 shows 
the proportions tested in Table 4.5 and can be used to show how the levels differ within a factor. 
 
 As expected, the test factor was significant for Spike Mortality, Injured, and Uninjured.  When 
looking at the GBT mortality, there was no difference between the Spike and Non-Spike runs.  The factor 
species was also significant for Spike Mortality, Injured, and Uninjured.  The Bluegill appears to be 
having the worst time with higher Spike and injuries.  The gas level of 135 had a significantly higher 
proportion of GBT, although there were no differences in the gas levels for Spike fatalities and injuries.  
For the factor depth, surface level runs had a significantly higher proportion of GBT fatalities, while 
30-foot depth runs had a significantly higher proportion of Spike Mortalities. 
 

Table 4.5.  p-Values for Each Response and Each Factor (bolding means a  
 significant difference was found) 
 

Factor GBT Mortality Spike Mortality Injured Uninjured 

Test (spike & non-spike) 0.4725 <0.0001 <0.0001 <0.0001 
Species 0.2654 <0.0001 0.0013 0.0191 
Gas <0.0001 0.6679 0.4784 0.0001 
Depth <0.0001 0.0299 0.0567 0.5961 

 
Table 4.6.  Overall Proportions 

 
Factor GBT Mortality Spike Mortality Injured Uninjured 

Test 
Spike 0.100 0.081 0.171 0.648 
Non-spike 0.098 0 0.009 0.893 

Species 
Bluegill 0.040 0.108 0.182 0.669 
Fall Chinook 0.118 0.009 0.012 0.862 
Rainbow 0.143 0 0.071 0.787 

Gas 
100 0.003 0.031 0.075 0.892 
120 0.024 0.040 0.096 0.840 
135 0.292 0.052 0.101 0.556 

Depth 
0 ft (surface) 0.202 0.009 0.045 0.744 
30 ft 0.004 0.069 0.131 0.795 
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 The significant interactions are listed for each response variable in Table 8.  Only GBT and Uninjured 
have significant interactions.  In each case, these interactions were with species and gas, and with gas and 
depth.  These interactions are visible on Figure 4.18.  As the gas increased, the bluegill had significantly 
fewer GBT mortalities than did the other species.  Also, those fish at the surface had significantly more 
GBT fatalities at the higher gas levels than those fish acclimated at pressures found at 30 ft depth. 
 

Table 4.7.  Significant Interactions for Each Response Variable 
 

GBT Mortality Spike Mortality Injured Uninjured 

Species – gas 
gas - depth 

None None Species – gas 
gas - depth 

 
 Each species was also analyzed individually, without including the control (Non-spike) data.  These 
results are summarized in Table 4.8.  Figure 4.18 can be used to better understand significant differences 
found in Table 4.8. 
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Figure 4.18. Proportion OK (uninjured), Mortality due to GBT and Spike, and Proportion Injured 

Plotted Against Gas, for Each Species/Depth 
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Table 4.8.  p-Values for Analyses Finding Significant Differences in Gas and Depth for Each 
 Species (no control data included in the analyses) 
 

Factor GBT Mortality Spike Mortality Injured Uninjured 
Bluegill 

Gas 0.0342 0.9429 0.8503 0.7753 
Depth 0.0662 0.0003 0.0013 0.0003 

Fall Chinook 
Gas 0.0773 0.3694 0.6201 0.0066 
Depth 0.1213 0.0826 0.1480 0.5073 

Rainbow 
Gas 0.1724 No Effect 0.8371 0.0276 
Depth 0.0072 No Effect 0.0061 0.8842 

 
 For the bluegill, there was a significant difference between the gas levels only for GBT fatalities.  
GBT fatalities only occurred at gas level 135.  Significant differences between depths were found in 
proportion of Spike fatalities and injuries.  As Figure 4.18 shows, the depth of 30 ft had significantly 
higher proportions of Spike fatalities and injuries. 
 
 For the fall chinook salmon, significant differences at the 0.05 significance level were only found for 
the factor gas and the response proportion uninjured.  The gas level of 135 had significantly fewer fish 
uninjured than the other levels.  There were two other factors that were close to being significant.  The 
factor gas was nearly statistically significant for the GBT mortality proportion for (p-value=0.0773), and 
the factor depth was nearly statistically significant for the Spike mortality proportion (p-value=0.0826).  
Although these were not quite statistically significant, these differences are apparent on Figure 4.18.  
Figure 4.18 shows an increase in the GBT mortality proportion at the gas level of 135, especially for 
those at the surface.  Figure 4.18 also shows a slight increase in the Spike mortality proportion at the 
3-ft depth. 
 
 For the rainbow trout, there was a significant difference between the gas levels only for proportion 
uninjured.  The gas level of 135 was significantly lower than the other levels.  Significant differences 
between depths were found in proportion of GBT fatalities and injuries.  Surface level runs had 
significantly higher GBT fatalities, while 30-foot depth runs had significantly higher injuries.  There were 
no Spike fatalities for the rainbow trout. 
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5.0 Discussion 
 
 
5.1 Gas Level Effects 
 
 The effects of gas supersaturation on fish have been well documented since the 1960s when GBT 
became a concern due to the construction and operation of mainstem dams on the Columbia and Snake 
rivers.  Weitkamp and Katz (1980) reviewed literature on dissolved gas supersaturation and gas bubble 
disease and summarized bioassay results for different fish species, gas levels, water temperatures, and 
water depths.  In 1967, juvenile salmonid smolts held at Priest Rapids Dam during the spring outmigra-
tion had a high incidence of external gas bubble signs and mortalities (Ebel 1969).  However, fish held in 
submerged pens 2.5 m or deeper did not show GBT symptoms.  Beiningen and Ebel (1970) reported that 
gas supersaturation levels of 123 to 143% downstream of John Day Dam caused mortalities in juvenile 
and adult salmon and steelhead.  Bentley et al. (1976) found that susceptibility of squawfish to elevated 
gas levels was similar to juvenile salmonids, with 100% mortality occurring in 20 hr at 126% TDG.  
Montgomery and Becker (1980) observed external gas bubble disease in 72 and 84% of smallmouth bass 
and northern squawfish, respectively, when TDG levels exceeded 115%. 
 
 By 1975, gas supersaturation problems associated with mainstem dams on the Columbia River were 
greatly reduced (Ebel 1969), and research on the effects of gas supersaturation declined.  However, 
interest in gas supersaturation resurfaced in the 1990s when fisheries managers implemented increased 
spill at dams to improve passage conditions for salmon smolts during the spring outmigration.  Elevated 
TDG levels came with increased spills.  Mesa et al. (2000) assessed GBT in juvenile chinook salmon and 
steelhead at 110, 120, and 130% TDG.  The LT20 (time for 20% to die) at 120% TDG was 40 to 120 hr 
for chinook salmon and 20 to 35 hr for steelhead.  At 130%, LT20’s were 3 to 6 hr and 5 to 7 hr, 
respectively.  Counihan et al. (1998) exposed larval white sturgeon to TDG levels of 118 and 131%.  Gas 
bubble signs were observed, but no mortalities occurred in 10 days at 118%, whereas 50% died in 13 days 
at 131% TDG.  Ryan et al. (2000) found that signs of GBT in fish exposed at <120% TDG were rare, and 
at levels >120%, the researchers were able to develop a model to predict the extent to which fish 
displayed external GBT signs. 
 
 External GBT in fish is reversible.  Elston et al. (1997) found that gas bubbles in the fins, gills, and 
lateral line can be reabsorbed and their presence go undetected due to pressure increases when fish sound 
in reservoirs or holding ponds or during dam passage.  The significance of these findings raised questions 
about the accuracy of GBT monitoring programs at dams.  AASI (1998) conducted extensive research on 
the physiology of gas bubble formation in fish. 
 
 Of the three species tested, bluegills were the most resistant to acute and chronic GBT, and rainbow 
trout were the least resistant (bluegill > fall chinook salmon > rainbow trout).  A TDG level of 135% for 
up to 22 hr resulted in 100% mortality for rainbow trout and fall chinook salmon and only partial 
mortality (~21%) for bluegills. 
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 At 120% TDG, some rainbow trout (~14%) died during the acclimation period; however, all fall 
chinook salmon and bluegills survived, and few showed external signs of GBT.  Typical chronic (sub-
lethal) GBT signs included gas bubbles in the fins, bubbles in an eye, and occasionally exophthalmia of 
one or both eyes.  All external signs of GBT disappeared during the 48-hr post-exposure holding period 
except for bubbles inside the eye.  Rainbow trout held at 135% TDG at surface pressure (101 kPa) started 
dying ~2 hr into the acclimation period, whereas fall chinook salmon did not start dying until ~5 hr into 
the acclimation.  Although the onset of deaths with bluegills was not observed directly, acclimation pres-
sure records indicated that mortalities might have started about 9 to 10 hr into the acclimation period. 
 
 Gas levels resulting in acute and chronic GBT for fall chinook salmon and rainbow trout were con-
sistent with results from previous GBT studies using our hyperbaric chamber reported in Montgomery 
Watson (1995).  No visible signs of GBT were observed for any species when held at 191 kPa (equivalent 
of 30 ft of depth).  However, when bluegills were returned to and held at surface pressure (101 kPa), most 
had over-inflated swim bladders and struggled to achieve neutral buoyancy in the holding trough.  Rain-
bow trout and chinook salmon, which remained negatively buoyant when held at 191 kPa, quickly 
adapted when returned to surface pressure. 
 
 In response to the National Marine Fisheries Service’s (NMFS) Biological Opinion on the operation 
of the federal Columbia River Power System (NMFS 1995), the U.S. Army Corps of Engineers (Corps) 
initiated a Dissolved Gas Abatement Program that is intended to reduce dissolved gas supersaturation 
associated with spills at federal hydroelectric dams on the Columbia and Snake rivers.  A Gas Abatement 
Workshop was held during October 1996 to review potential structural and operational changes that could 
be used to improve fish survival during spill events.  The Corps is currently pursuing three avenues for 
gas abatement:  1) reducing the mass of total dissolved gas produced (by the use of flow deflectors and 
raised stilling basins); 2) minimizing new gas production (by the use of submerged passageways, 
submerged gates, and turbine flows); and 3) flow degassing in an elevated tailrace (R2 1998).  The 
workshop participants cautioned that some of these gas abatement measures could cause mechanical 
injury to fish in spillways and stilling basins.  A review of available literature (R2 1998) was conducted to 
assess the negative aspects of spill and gas abatement measures. 
 
 NMFS feels that it would be difficult to stay below the U.S. Environmental Protection Agency (EPA) 
gas saturation criterion of 110% in the Columbia River system without major disruption of the power 
system, and suspects that values of ≤120% may be sufficiently protective (NMFS 1998, 2000).  However, 
there are many unanswered questions about the effects of gas supersaturation on both juvenile and adult 
salmonids.  Our experiments suggest that fish may be killed by dissolved gas supersaturation in two ways:  
1) the direct effect of GBT, and 2) TDG-caused changes in behavior that lead to higher turbine-passage 
mortality.  Gas saturation values of ≤120% are unlikely to cause lethal GBT in the three species we tested.  
However, our data indicate that if fish change their distribution from the surface to greater depths to 
compensate for dissolved gas supersaturation (NMFS 2000), the low pressure spike associated with 
turbine passage may be more lethal.  In view of our findings, it would be desirable both to reduce the 
amount of gas supersaturation (by reducing spill or the amount of gas added during spill) and develop 
advanced turbines that operate efficiently at a higher pressure downstream from the runner. 
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5.2 Turbine Passage Effects 
 
 Weitkamp and Katz (1980) listed several researchers who confirmed the benefits of hydrostatic 
compensation for protection from acute and chronic GBT effects as was observed in our tests.  However, 
potential complications for fish equilibrated to elevated TDG levels at depth as it relates to dam passage 
was not addressed in early studies.  Montgomery Watson (1995) evaluated the effects of turbine passage 
on rainbow trout acclimated to shallow (surface) water conditions and elevated gas levels (115 to 130%).  
Although swim bladder rupture during turbine passage was a concern, it was not observed.  Fish exposed 
to turbine passage simulations with TDG levels of 125% or higher were more susceptible to predation 
than controls (turbine passage at 100% TDG).  No turbine passage tests were completed with depth-
acclimated fish. 
 
 Our tests are among the first to combine the effects of elevated TDG, hydrostatic compensation, and 
turbine passage.  Although we expected acute GBT at 135% TDG for surface-acclimated rainbow trout 
and fall chinook salmon, tests were completed at this level to compare our results to previous studies and 
observations and as a baseline comparison for depth-acclimated fish.  In addition, there is little informa-
tion on the effects of GBT and turbine passage on bluegills. 
 
 In the turbine passage simulation, pressure built from acclimation pressure (101 or 191 kPa) to 
~400 kPa over a 30- to 60-sec period.  Pressure held at 400 kPa for 15 sec, then suddenly dropped to 4 to 
7 kPa in about 0.1 sec.  At the instant of the pressure spike, bubbles sometimes briefly appeared within 
the chamber.  Some of these bubbles floated to the surface and accumulated, while other bubbles 
“flashed” and disappeared.  Pressure stayed at this sub-atmospheric level for ~0.2 sec before increasing to 
~200 kPa over the next ~5 sec, then gradually returned to 101 kPa over ~30 sec, completing the sequence.   
 
 Fish reacted when the “spike” (pressure change from 400 kPa to <7 kPa) occurred, but we don’t know 
if their reaction was due to the sudden pressure change, noise, or mechanical jarring of the hyperbaric 
chambers.  Since both chambers were mounted on the same frame, the noise and jarring was similar in 
both chambers.  Fish in the non-spiked chamber reacted less, indicating that the response was likely due 
to sudden pressure change. 
 
 No loss of equilibrium or other signs of injury were apparent for rainbow trout.  All fish appeared 
normal when removed from the chambers and moved to the holding trough for 48-hr observations.  When 
first placed in the troughs, most of the rainbow trout were negatively buoyant, but they soon filled their 
swim bladders by gulping air from the surface and swam normally.  In three tests (100% TDG surface-
acclimated, 100% TDG depth-acclimated, and 120% TDG depth-acclimated), a few rainbow trout 
became overly buoyant (“floaters”) over the 48-hr holding period and struggled to swim normally.  The 
“floaters” occurred only in the “spiked” groups and not in the “control” groups, but were not related to 
TDG level.  Although the condition appears to be directly related to the pressure spike, the exact cause is 
unknown. 
 
 Reaction of fall chinook salmon to the pressure spike was similar to that of rainbow trout; however, in 
four tests (two tests at 120% TDG depth-acclimated and two tests at 135% TDG depth-acclimated), some 
fish experienced loss of equilibrium and went into convulsions immediately after the pressure spike.  In 
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the 120% tests, all 3 fish experiencing loss of equilibrium died within 1 hr.  In one of the 135% tests, a 
single fish that lost equilibrium recovered.  In the other 135% TDG depth-acclimated test, 2 fish that lost 
equilibrium and one additional fish died within 1 hr.  Macroscopic examination revealed that all 
mortalities were caused by acute GBT.  Bubbles were usually visible in the atrium, and blood flow to the 
gills was blocked, as indicated by very pale gill filament color.  Many depth-acclimated fall chinook 
salmon also suffered ruptured swim bladders.  This condition was determined by necropsy when fish died 
or after 48 hr.  Ruptured swim bladders were observed in only 1 of 60 fish depth-acclimated at 100% 
TDG, 4 of 60 fish depth-acclimated at 120% TDG, and 8 of 60 fish depth-acclimated at 135% TDG.  No 
depth-acclimated “control” fish had ruptured swim bladders. 
 
 The turbine passage simulation was especially harmful to bluegills.  High injury and mortality rates 
were observed in all depth-compensated (191 kPa) groups, regardless of TDG level.  The most common 
injury was swim bladder rupture and hemorrhaging within the body cavity.  The source of the hemorrhage 
was not determined.  Surface acclimated bluegill also suffered higher injury and mortality rates than did 
rainbow trout or chinook salmon, but less than depth-acclimated bluegills.  Unlike depth-compensated 
fish, injury/mortality rates were proportionately higher in groups acclimated at 120 and 135% TDG levels 
(12, 30, and 36% injury rates for 100, 120, and 135% TDG, respectively).  Non-spiked (control) bluegills 
did not have ruptured swim bladders or hemorrhaging within the body cavity.  However, many non-
spiked, depth-compensated fish were excessively buoyant when first place in the holding troughs. 
 
 It should be noted that the 7- to 10-cm-long bluegills tested in these experiments are larger than those 
frequently entrained at hydroelectric power plants in the U.S.  Juvenile bluegills with an average length 
of about 5 cm are more commonly entrained.  We do not know what effect size has on the response of 
bluegills to the pressure changes associated with turbine passage.  Also, at most hydroelectric power 
plants that entrain bluegills, the fish are likely to be surface-oriented and the water is not supersaturated 
with dissolved gases.  Our worst case experimental conditions (combinations of gas supersaturation, 
depth acclimation, and turbine passage) are probably rare outside of the Columbia River Basin. 
 
5.3 Fish Behavior Within the Hyperbaric Chambers 
 
 At surface pressure acclimation (101 kPa) all three species were neutrally buoyant during the accli-
mation period.  Fish swam freely within the hyperbaric chambers, although sometimes fish rested on the 
bottom.  At 30 ft depth acclimation (191 kPa), all fish were negatively buoyant when the hyperbaric 
chambers were first pressurized, sinking to the bottom.  Rainbow trout and fall chinook salmon remained 
negative throughout the acclimation period, swimming “head-up/tail-down” to rise from the bottom of the 
chamber.  However, bluegills were able to inflate their swim bladders to reach neutral buoyancy within 
1 to 2 hr and suspend motionless within the water column and off the bottom of the chamber.   
 
 When the turbine pressure simulation was initiated and pressures within the hyperbaric chamber 
increased from either 101 or 191 kPa to ~400 kPa, bluegills were again negative and sank to the bottom of 
the chamber.  Since rainbow trout and fall chinook salmon were already negatively buoyant, swimming 
behavior did not change significantly as pressure increased. 
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 In response to increasing pressures, fish may actively swim within the turbine to areas that would not 
be predicted based on modeling of flow fields and neutrally buoyant objects.  Harvey (1963) observed an 
increase in the rate of pectoral fin movements and angle of the body (head upwards) among sockeye 
salmon in response to pressure increases.  Many investigators have observed a tendency for salmonids to 
swim downwards (sound) in response to increased pressure (Harvey 1963; Muir 1959).  This sounding 
behavior would reinforce the natural tendency of the fish to sink under increased pressures (because the 
swim bladder becomes compressed).  Consequently, actively swimming salmonids may not act like 
neutrally buoyant objects within the high-pressure region of turbines, but rather, may move to regions of 
the turbine that pose relatively greater or lesser risk.  The effects of the combination of increased body 
density, sounding behavior, and other directed and random fish movements on turbine-passage mortality 
are unknown. 
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6.0 Conclusions 
 
 
 The gas supersaturation level that causes acute GBT varies among species.  Resistance to acute GBT, 
from greatest to least, is bluegill >fall chinook salmon > rainbow trout.  Bluegills also had a lower inci-
dence of chronic GBT symptoms than fall chinook salmon and rainbow trout. 
 
 Salmonids are not able to quickly fill their swim bladders with gases dissolved in the blood, and 
therefore, cannot easily inflate their swim bladders without access to air at the surface.  However, 
bluegills have the ability to fill their swim bladders from gases dissolved in the blood and can become 
neutrally buoyant without surfacing to gulp air. 
 
 The frequency, type, and severity of injuries related to pressure changes during turbine passage vary 
among species, as described below. 
 

• Bluegills, and presumably most physoclistous fish, are extremely susceptible to swim bladder rupture 
when exposed to the sudden pressure change during turbine passage.  The “worst case” turbine pas-
sage scenario (pressure dropping to 2-10 kPa) was more harmful to bluegills acclimated at 191 kPa 
than at 101 kPa.  TDG level had only a small additive effect on the injury/death rate due to the 
pressure spike. 

 
• Fall chinook salmon suffered ruptured swim bladders, but at a much lower rate than bluegills.  When 

acclimated to elevated gas levels at 191 kPa, the turbine passage sequence also caused instantaneous 
bubble formation in a small number of fish, resulting in immediate death. 

 
• A black discoloration appeared on the top of the head of some rainbow trout, signs of an unknown 

trauma.  The trauma was not observed in chinook salmon.  The frequency of this trauma was cor-
related to acclimation at 191 kPa in fish subjected to the turbine passage sequence.  The discoloration 
rarely appeared in fish acclimated at 101 kPa or in non-spiked fish.  Swim bladder rupture was not 
observed in rainbow trout, regardless of TDG level or acclimation pressure.  Although listed as an 
“injury,” the discoloration may not have actually affected the health and/or survivability of rainbow 
trout. 

 
 If dissolved gas supersaturation is not a problem, our experiments suggest that the brief low pressure 
spike to about 0.1 atmosphere downstream from the turbine runner will cause little direct mortality among 
surface-acclimated salmonids.  If fish are entrained from greater depths, such that their swim bladders 
contain more gas and will expand more during the low pressure spike, the injury and mortality rates will 
be higher. 
 
 The results suggest that injury/mortality rates would likely be reduced or eliminated if the nadir of the 
turbine pressure spike was higher, as is expected to be the case with new fish-friendly turbine designs.  A 
follow-up series of tests is needed under a modified pressure regime that more closely reflects conditions 
expected in new turbine designs, or with a nadir of ~50 kPa. 
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 The low pressure spike is especially a problem if the water is highly supersaturated with gases (well 
beyond water quality standards), and the fish respond to the supersaturation by depth compensation.  
While this occurs in the Columbia River Basin when water is being spilled to transport fish downstream 
(NMFS 2000), dissolved gas supersaturation is probably relatively rare in other river basins. 
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Appendix A 
 
 
 
 The pressure histories for fish acclimated at surface depth (14.7 psi, or 101 kPa) and at a depth of 
30 ft (27.7 psi, or 191 kPa) are shown in the following five figures.  The first two figures are representa-
tive of “acclimation files” for surface and depth-acclimated fish, respectively.  The computer software 
recorded surface acclimation pressure as 14.7 psi instead of 0 psi.  During the 22-hr acclimation period, 
pressure within the hyperbaric chamber was maintained slightly above 14.7 psi to prevent the formation 
and buildup of bubbles in the chamber.  A ventilation tube at the top of the hyperbaric chamber was left 
open at all times to allow bubbles to flow from the chambers.  The vent was closed only to measure flow 
at the hyperbaric chamber discharge line.  Closing the ventilation tubes caused a brief “spike” in the 
pressure.  The spike was more noticeable in the acclimation files for depth-acclimated fish because a high 
proportion of the total flow exited through the ventilation tubes. 
 
 The next two graphs show the pressure history during the time when the computer program had 
control.  When the spike sequence was initiated, inflow, outflow, and ventilation tubes were shut, trapping 
a volume of water within each chamber.  When the baseline pressure stabilized, the “Dive” pressure spike 
sequence was initiated.  Over period of about 30 sec, pressure increases from either 14.7 or 27.7 to 
~58 psi.  After 15 sec, the spike occurs, where pressures drop to near vapor pressure in ~0.1 sec.  After the 
spike, pressures represent passage through the draft tube.  When the pressure sequence approaches surface 
pressure (14.7 psi) the program is terminated, water supply and drain valves are open, and flow through 
the hyperbaric chambers is restored. 
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Surface Pressure Acclimation
(1 Atmospere=~14.7 psi)
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Figure A.1.  Example of Surface Acclimation Pressure History 
 

30-Ft Depth Pressure Acclimation
(30 ft = ~27.7 PSI)
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Figure A.2.  Example of Depth-Acclimation (30 ft) Pressure History 
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Surface-Acclimated Turbine Passage
Pressure Sequence (Start at ~ 14.7 psi)
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Figure A.3.  Example of Computer-Controlled Pressure Sequence for Surface-Acclimated Tests 
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Figure A.4.  Example of Computer-Controlled Pressure Sequence for Depth-Acclimated Tests 
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Pressure Spike
(similar in all tests)
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Figure A.5.  Example of 2-Second Interval Showing Pressure Sequence When Turbine Passage 

 Spike Occurs 
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