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Abstract

Attempts to correlate radiation-induced microstructural changes with changes in mechanical properties rely on a

well-established theory to compute the resolved shear stress required to move dislocations through a ®eld of obstacles.

However, this microstructure-based shear stress must be converted to an equivalent uniaxial tensile stress in order to

make comparisons with mechanical property measurements. A review of the radiation e�ects literature indicates that

there is some confusion regarding the choice of this conversion factor for polycrystalline specimens. Some authors have

used values of 1.73 and 2.0, based on an inappropriate application of the von Mises and Tresca yield criteria, re-

spectively. The basic models pertinent to this area of research are reviewed, and it is concluded that the Taylor factor

with a value of 3.06 is the correct parameter to apply in such work. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The relationship between radiation-induced micro-

structural evolution and changes in mechanical proper-

ties has been the subject of considerable research for

many years. Much of this work has been carried out

under the auspices of various national research pro-

grams on fusion reactor materials, and can be found in

the proceedings of the US Topical Meetings on Fusion

Reactor Materials and the International Conferences on

Fusion Reactor Materials [1]. While only incremental

improvements have been made in measuring hardness or

tensile properties during this period, continuing ad-

vances in transmission electron microscopy (TEM), at-

om probe ®eld ion microscopy, and various X-ray and

neutron scattering techniques have provided a much

more detailed description of the irradiated microstruc-

ture. Since the theory needed to compute the increment

in matrix hardening from a given distribution of dislo-

cation obstacles is well established [2±9], this improved

microstructural characterization should lead to good

agreement between observed microstructural and me-

chanical property changes and enable better estimates of

parameters in the hardening theory to be obtained.

However, an examination of the radiation e�ects liter-

ature published over the last 30 years is not uniformly

encouraging.

The purpose of this short paper is to point out a

particular error that has frequently been made when

microstructural measurements are used to predict me-

chanical property changes in irradiated materials. This

process involves calculating the increase in shear

strength required to move dislocations through a ®eld of

obstacles of a given type, and then converting that shear

strength to an equivalent uniaxial yield strength. The

Taylor factor (3.06) is the most appropriate parameter

to use in this conversion. Values of 1.73 and 2.0 have

also been used, apparently as a result of a misunder-

standing about the proper application of the von Mises

and Tresca yield criteria.

2. Hardening due to radiation-induced defect structures

The initial model used to compute matrix hardening

by barriers to dislocation motion was developed by

Orowan [2] for impenetrable obstacles, those which are

hard enough that the dislocation is unable to cut

through them and can only pass through the ®eld of
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obstacles by bowing around them. For simplicity, the

following discussion considers the case of only a single

type of obstacle. Based on OrowanÕs model, the most

commonly used expression for the change in shear stress,

Dss, induced in the dislocation glide plane by a regular

array of defects is shown in the following equation:

Dss � aGb�Nd�0:5; �1�

where G is the shear modulus of the matrix, b the

magnitude of the dislocation Burgers vector, N the de-

fect number density, d the defect diameter, and the

square-root factor is the reciprocal of the average dis-

tance between obstacles. In principle, the a factor in Eq.

(1) is determined by the angle between adjacent dislo-

cation segments at the point where the dislocation

breaks free of the obstacle [8]; if the critical angle is

U; a � cos�U=2�. This factor is typically referred to as

the Ôbarrier strengthÕ, and accounts for the fact that some

obstacles may be partially cut or sheared by the dislo-

cation as it bows out. This reduces the amount of energy

required for a dislocation to glide through the ®eld of

obstacles, and the barrier strength is intended to provide

a relative measure of the defectÕs ability to impede dis-

location glide. For impenetrable Orowan obstacles,

�U=2� � 0 and a � 1:0. In practice, relatively few mea-

surements of the critical angle have been made for ra-

diation-induced defects. Rather, a comparison of

microstructural observations and mechanical property

measurements has been used to infer values of a for

di�erent types of defects [1].

Various corrections to the Orowan equation have

been proposed [7±9], and one of the updated versions is

given by Kelly [8]:

Dss � a
0:83Gb

��Nd�ÿ0:5 ÿ d�
ln�d=r0�

2p�1ÿ m�0:5 ; �2�

where m is PoissonÕs ratio and r0 is the dislocation core

radius. The factor 0.83 in Eq. (2) accounts for a random

distribution of particles, the denominator in the second

factor corrects the particle spacing for ®nite particle size,

and the ®nal factor provides an improved estimate of the

dislocation line tension and the interaction between line

segments when the dislocation is bowing around an

obstacle. The a factor has been included in Eq. (2) to

indicate its correspondence with Eq. (1). The overall

result of these corrections lowers the predicted shear

stress, and quite di�erent values of a will be obtained if

Eq. (1) is used rather than Eq. (2).

3. Yield criteria and compatibility criteria

In order to compare the shear stress value obtained

from Eqs. (1) or (2) with a measured uniaxial yield

strength, a conversion factor must be applied. It is evi-

dent from the literature in this area that some confusion

exists regarding the selection of this conversion factor. It

appears that the errors in the literature may have arisen

because the distinction between two di�erent, but related

problems was misunderstood. The ®rst problem is that

of relating multi-axial yield behavior to uniaxial yield

behavior. There are two commonly applied solutions to

this problem, one by von Mises which is referred to as

the von Mises yield criterion [10]. The other is the Tresca

yield criterion [11]. The second problem relates yield in

polycrystalline materials to that in single crystals. Work

of von Mises, the von Mises compatibility criterion, was

also applied in developing a solution to this problem

[12].

3.1. Yield criteria

Most engineering tensile data are obtained from

uniaxial tensile tests, while engineering structures are

typically used in multi-axial stress states. The von Mises

yield criterion states that yielding under multi-axial

conditions initiates when the elastic distortion energy

reaches a critical value. In the case of pure shear, the

yield strength is reduced relative to uniaxial tension:

ry(shear)� ry(tension)/(3)0:5. The Tresca yield criterion

assumes that yield occurs when the maximum resolved

shear stress on any plane reaches some critical value. In

the case of pure shear, the yield strength is reduced

relative to uniaxial tension: ry(shear)� ry(tension)/2.

There are many examples in the radiation e�ects litera-

ture in which either the von Mises or Tresca yield cri-

teria is quoted as the reason for using a conversion

factor of (3)0:5 or 2.0 to obtain a uniaxial tensile strength

from the shear stress computed with Eqs. (1) or (2).

However, this is a misapplication of the concept of yield

criteria since the problem at hand is not that of com-

paring uniaxial and multiaxial stress conditions.

3.2. Compatibility criteria

One of the basic elements of elasticity theory is that

deformation must occur in such a way as to maintain the

continuity of the material. This requirement can be ex-

pressed mathematically as a set of compatibility equa-

tions. The von Mises compatibility criterion arose from

his demonstration that ®ve independent slip systems

were required for a material to undergo plastic defor-

mation by slip [12]. In the absence of su�cient slip

systems, phenomena such as grain boundary sliding,

pore formation, cracking, or fracture will occur to ac-

commodate the deformation. His compatibility criterion

essentially states that all the grains in a polycrystalline

material must undergo the same deformation (strain) as

350 R.E. Stoller, S.J. Zinkle / Journal of Nuclear Materials 283±287 (2000) 349±352



the overall specimen deformation. The von Mises com-

patibility criterion is relevant to the problem of obtain-

ing the correct factor for converting shear stress to

tensile stress in polycrystalline samples.

4. Yielding in a uniaxial tensile test: role of resolved shear

stress

When a single crystal specimen is loaded in uniaxial

tension, the applied stress, ru, is resolved on the slip

planes in the material as illustrated in Fig. 1. The re-

solved shear stress, ss on any given plane is determined

by the angle between the plane normal and the applied

stress: ss � ru cos�/� :cos�h�. Yielding occurs by dislo-

cation slip when the resolved shear stress on one of the

planes exceeds a critical value. The Schmid factor, m, is

de®ned as the ratio of the resolved shear stress to the

axial stress, m � cos�/� cos�h�, or ru � ss/m [13]. The

maximum value of m occurs when the shear plane is at a

45° angle to the applied stress and mmax� cos(45)

cos(45)� 0.5. Alternately, the minimum value of

ru�single crystal� � 2ss.

The relationship between ru and ss is of course the

same in polycrystalline specimens, but is complicated by

the fact that maximum resolved shear stress will vary

from one grain to another. In addition, material com-

patibility and continuity act to limit the deformation of

any one grain that may be favorably oriented for slip. By

applying a simple compatibility criterion and assuming

that all the grains in the material deformed uniformly,

Taylor [3,4] derived a relationship between uniaxial yield

strength and the resolved shear stress in a polycrystal.

Such an analysis amounts to determining an e�ective

average reciprocal Schmid factor for the polycrystalline

material. The average value obtained by Taylor for fcc

aluminum was about 3.06 and has since been termed the

Taylor factor. Subsequently, Bishop and Hill [5] per-

formed a more general analysis for fcc materials and

found the same value of 3.06. Further work by Kocks [6]

led to the same value, and indicated that the average

Taylor factor for bcc materials that slip on {1 1 0} planes

is also 3.06. Thus, for most of the engineering materials

of interest to the fusion reactor community, the Taylor

factor, T� 3.06, and Dru�polycrystal� � T Dss.

TaylorÕs value of 3.06 is actually an upper limit for

the ratio of uniaxial yield strength to resolved shear

stress [3,4,6]. However, his research indicated that this

value provided good agreement with experimental data

on aluminum. KocksÕ more detailed analysis [6] dem-

onstrated that this upper limit should be close to the

actual solution. Although slightly lower values may be

obtained for speci®c slip systems or due to material

texture [6], it seems sensible to recommend that the value

of 3.06 be used to provide a standard basis of compar-

ison when publishing results of microstructure-

mechanical property correlations.

5. Summary

Confusion between the von Mises (and Tresca) yield

criteria and analysis based on the von Mises compati-

bility criterion has led to the use of incorrect parameters

when calculated resolved shear strengths (based on mi-

crostructural measurements) are converted to equivalent

uniaxial yield strengths (for comparison with measured

tensile data). The use of these varied and incorrect

conversion factors has limited our ability to correlate

data from di�erent research groups and to arrive at

consistent estimates of dislocation barrier strengths. In

the case of most polycrystalline bcc and fcc materials,

the Taylor factor of 3.06 is the most appropriate pa-

rameter to use.
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Fig. 1. Illustration of resolved shear stress in tensile test with a

single crystal specimen.

R.E. Stoller, S.J. Zinkle / Journal of Nuclear Materials 283±287 (2000) 349±352 351



References

[1] FRM and ICFRM proceedings, J. Nucl. Mater. 85&86

(1979); 103&104 (1981); 122&123 (1985); 141±143 (1986);

155±157 (1988); 179±181 (1991); 191±194 (1992); 212±215

(1994); 223±237 (1996); 258±263 (1998).

[2] E. Orowan, in: Internal Stresses in Metals and Alloys,

Institute of Metals, London, 1948, p. 451.

[3] G.I. Taylor, J. Inst. Met. 62 (1938) 307.

[4] G.I. Taylor, in: Deformation and Flow of Solids, Springer,

Berlin, 1956, p. 3.

[5] J.F.W. Bishop, R. Hill, Philos. Mag. 42 (1951) 1298.

[6] U.F. Kocks, Metall. Trans. 1 (1970) 1121.

[7] A.L. Bement Jr., in: Strength of Metals and Alloys,

Proceedings of Second International Conference, ASM

International, Metals Park, OH, 1973, p. 693.

[8] P.M. Kelly, Int. Metall. Rev. 18 (1973) 31.

[9] U.F. Kocks, Mater. Sci. Eng. 27 (1977) 291.

[10] G.E. Dieter (Ed.), Mechanical Metallurgy, McGraw-Hill,

New York, 1976, p. 79.

[11] G.E. Dieter (Ed.), Mechanical Metallurgy, McGraw-Hill,

New York, 1976, p. 82.

[12] H.P. Hirth, J. Lothe, Theory of Dislocations, McGraw-

Hill, New York, 1968, p. 276.

[13] H.P. Hirth, J. Lothe, Theory of Dislocations, McGraw-

Hill, New York, 1968, p. 269.

352 R.E. Stoller, S.J. Zinkle / Journal of Nuclear Materials 283±287 (2000) 349±352


