# **Ozone and Air Quality**

# Some Selected Research Projects in the Chemical Sciences Division



Joost de Gouw & Christoph Senff



- 1. Research approach and tools
- 2. Ozone precursor emissions
- 3. Nighttime chemical transformation
- 4. Land-sea breeze circulation
- 5. Ozone regional transport
- 6. Nighttime transport in low-level jet

- Joost

Christoph

#### **Ozone - Air Quality Research in CSD**



- Interplay between different approaches is one of the keys to success
- Collaboration with GSD and PSD on (forecasting) models
- Collaboration with GMD on ozone measurements

### **Tools for Field Measurements Used by CSD**



In-situ Measurements (WP-3 and Ron Brown) Ozone precursors and radiation Radicals By-products of ozone chemistry

<u>Remote Measurements</u> (Twin Otter and Ron Brown) Ozone lidar Doppler wind lidar



## **ESRL Regional Air Quality Field Studies**



## **VOC Emissions from Petrochemical Industries**





Houston has a severe ozone problem due to emissions from the petrochemical industry

NOAA performed the Texas Air Quality Studies in 2000 and 2006

*Work by: Joost de Gouw, Carsten Warneke, Tom Ryerson* 

### **Ethene Emissions From Industrial Point Sources**



 TexAQS 2000: Ethene is one of the main reactive VOCs
 A laser photo-acoustic instrument was developed for fast-response measurements during TexAQS 2006

## **Ethene Emissions From Industrial Point Sources**



#### Ethene flux from Freeport:



Emissions are severely underestimated in inventories developed by the State of Texas

As a result, rapid ozone production in industrial plumes is underestimated by models

### **Verification of Isoprene Emissions Inventories**



Isoprene: large sources ~35% of all VOC emissions high reactivity midday lifetime <1 hour</li>
 Reliable estimates of the emissions is key in ozone models

Work by: Carsten Warneke, Joost de Gouw

#### **Validation of Isoprene Emission Inventories**



#### Warneke et al. [in preparation]

 Inventories constructed from land-use data and emission factors depending on vegetation type
 Here: validate U.S. emission inventories using aircraft data

## **Validation of Isoprene Emission Inventories**

## Example from 1 research flight over NE Texas:

35 OK AR 34 33 LA 32 TΧ 31 500 30. isoprene (pptv) 29 -98 -96 -94 -92 -90



Warneke et al. [in preparation]

NOAA WP-3

Measurements:
➤ 1-sec PTR-MS data
➤ Scatter due to real atmospheric variability

Model:
➢ EPA BEIS3.13 inventory
➢ ECMWF temperature and radiation

### Measurements agree with inventory within factor of ~2

# **Nighttime Chemical Processing**

Work by: Steve Brown, Bill Dubé, Hendrik Fuchs, Roberto Sommariva

# **Diurnal Nitrogen Oxide Cycles**



 $NO_x$ , VOC ,  $O_3$  transformed at night

# Vertical Stratification & Nighttime Chemistry



**NOAA WP-3** 

- NO<sub>x</sub> and VOC plumes occur in discrete layers at night
- Chemical transformation within different layers differs markedly



# Boundary Layer Vertical Profiles Erie (BAO) Tower

- 300 m w/ vertical resolution ~ 0.5 m
- Movable carriage on *outside* with > 1 ton payload



• Studies in 2004 (fall) and 2007 (summer)



- High NO<sub>3</sub> routinely observed aloft
- Often associated with complex layering

Surface layer commonly observed

# **Ozone Transport and Mixing Processes**

• Local-scale transport:

Land – sea breeze circulation in Houston, TX

Regional transport:

Increasingly important as 8-hour O<sub>3</sub> standards are tightened

• Nighttime processes:

Transport and mixing by low-level jet

#### **Ozone Lidar:**

### **TOPAZ** = Tunable Optical Profiler for Aerosol and Ozone



TOPAZ lidar mounted in NOAA Twin Otter

R. Alvarez II, C. Senff, et al.





#### **Ozone profiles & mixed layer height**

#### **Doppler Wind Lidar:**

### HRDL = High Resolution Doppler Lidar



S. Tucker, A. Brewer, et al.





#### Wind speed & direction profiles

### Wind Profiler Network (PSD):





NOAA/ESRL Integrated Wind Profiler Observing Site

#### TEXAQS-II East Texas Wind Profiler Network

A. White et al.

### Wind Profiler Network (PSD):



#### TEXAQS-II East Texas Wind Profiler Network



A. White et al.

#### Local Transport: Houston land-sea breeze recirculation



### Air Quality forecast model comparison with lidar



#### Lidar O<sub>3</sub> cross section

#### MM5/Chem model (1.7 km horizontal resolution)

J.-W. Bao, G. Grell, S. McKeen

### Air Quality forecast model comparison with lidar



#### Lidar O<sub>3</sub> cross section

#### MM5/Chem model (1.7 km horizontal resolution)

J.-W. Bao, G. Grell, S. McKeen

### Regional Transport: Estimating ozone exported from Houston



#### **Regional Transport: Houston Ozone Flux**



A flux of 35 kg  $O_3$  s<sup>-1</sup> transported out of Houston over an 8-hour day is equivalent to a 10-ppb increase in ozone over an approx. 10,000 square mile area, assuming a 2-km deep mixed layer.

## **Nighttime Transport & Mixing**



12-hour forward trajectories: 6 PM – 6 AM LST

- Nighttime low level jet can transport O<sub>3</sub> over long distances.
- Speed and directional wind shear at night are very effective in distributing O<sub>3</sub> over large areas.

# **Nighttime Transport & Mixing**





Wind speed variance:  $\sigma_u^2 \approx TKE$ 





R. Banta, Y. Pichugina, et al.

#### Summary: Ozone - Air Quality Research in CSD



Atmospheric measurements of emissions, chemical and dynamical processes are an important cornerstone.

Laboratory measurements and modeling studies complete CSD's ozone – air quality research approach.