

Program Support: Capabilities and Value Added Oversight

Dave Castellano

Deputy Director, Assessments and Support

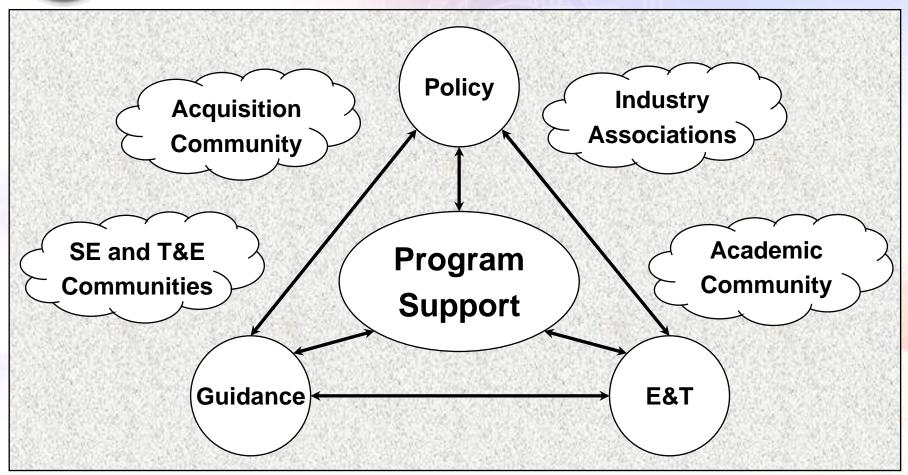
Systems and Software Engineering Directorate
Office of the Deputy Under Secretary of Defense for
Acquisition and Technology

August 30, 2006

Top Five Systems Engineering Issues*

- Lack of awareness of the importance, value, timing, accountability, and organizational structure of SE on programs
- Adequate, qualified resources are generally not available within government and industry for allocation on major programs
- Insufficient SE tools and environments to effectively execute SE on programs
- Requirements definition, development, and management is not applied consistently and effectively
- Poor initial program formulation

* Based on an NDIA Study in January 2003


Recap: What We Have Done To Revitalize Systems Engineering

- Issued Systems Engineering (SE) policy
- Issued guidance on SE and Test & Evaluation (T&E)
- Integrating Developmental T&E with SE policy and assessment functions – focused on effective, early engagement of both
- Instituted system-level assessments in support of OSD major acquisition program oversight role
- Established SE Forum senior-level focus within DoD
- Working with Defense Acquisition University to revise SE, T&E, and enabling career fields curricula
- Leveraging close working relationships with industry and academia

Necessary but not sufficient!

Systems Engineering Revitalization Framework

Driving Technical Excellence into Programs!

Driving Technical Rigor Back into Programs "Portfolio Challenge"

- Systems and Software Engineering was tasked to:
 - Review program's SE Plan (SEP) and T&E Master Plan (TEMP)
 - Conduct program support reviews
- Portfolio of major acquisition (ACAT ID and IAM) programs, supporting 10 Domain Areas:

Business Systems

 Communication Systems Land Systems

- C2ISR Systems

Fixed Wing Aircraft

Unmanned Systems

Rotary Wing Aircraft

Ships

Munitions

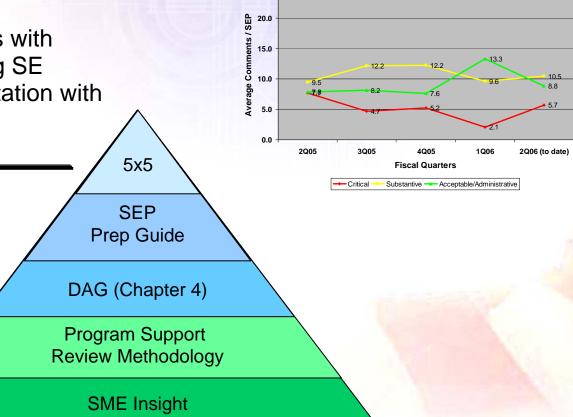
Missiles

Systems Engineering and T&E Support to Over 150 Major Programs in 10 Domain Areas

Driving Technical Excellence into Programs

Topic	Systems Engineering	Test & Evaluation	Risk Management	Exit Criteria	Acquisition Strategy
Focus Areas	Requirements	V&V Traceability	Risk ID	Mission Systems	Time-defined
	Organization & Staffing	Test Resources	Risk Analysis	Support	COTS
	Technical Reviews	Test Articles	Risk Mitigation Planning	Manufacturing	Bounded Solutions
	Technical Baseline	Evaluation	Risk Tracking	R&M	Industrial Base
	Linkage w/ Other Program Mgmt & Controls	Linkage w/ Other Program Mgmt & Controls	Evidence of Effectiveness	Net Centric	Risk-based Source Selection
Product	SEP	TEMP	RM Plan	Phase Exit Criteria	RFP, Contract, ASR

Systems Engineering Plan (SEP) Reviews



 Structured approach with multiple perspectives

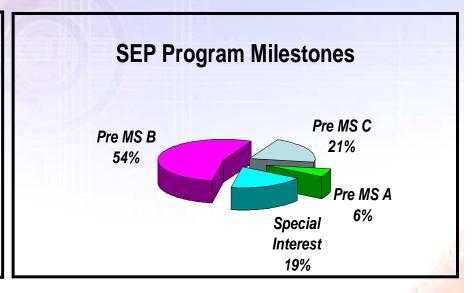
 Iterative review process with Program Office; refining SE planning and documentation with each pass through

SEP Review Areas

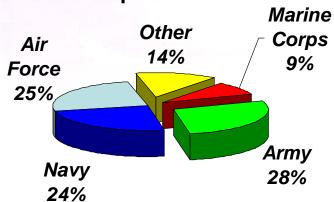
- Program Requirements
- Technical Staffing and Organization Planning
- Technical Baseline Management Planning
- Technical Review Planning
- Integration w/Overall
 Management of the Program

25.0

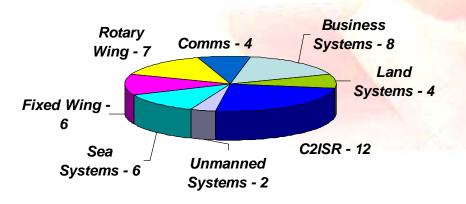
Trend Analysis - 5x5 SEP Focus Areas


Thorough SE Planning Ensures Fewer "Gotchas" in Program Execution

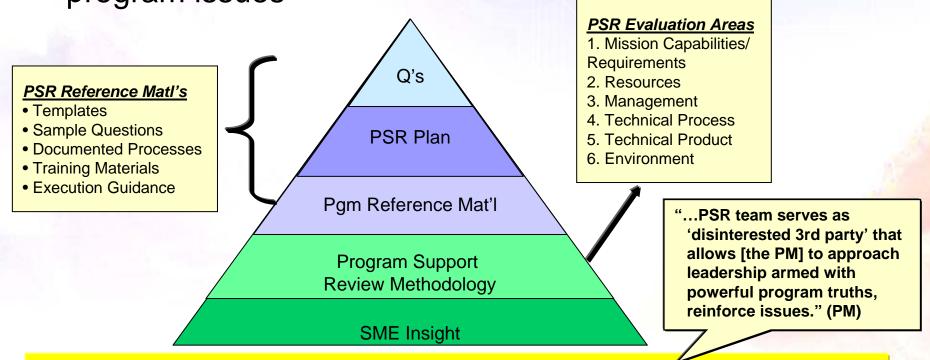
Systems Engineering Plan Activity



(since November 2004)


- Programs submitting SEPs: 49
- Number of SEPs reviewed: 88
 - OSD-approved: 13
 - Pending final approval: 3
 - Pending draft review: 6
- Reviews planned for rest of FY06: >50

Component-Managed Acquisitions

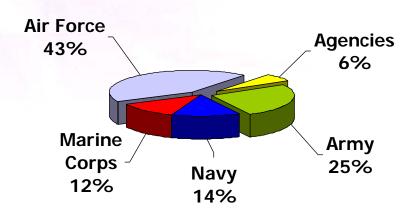

Programs by Product Line

Program Support Review (PSR)

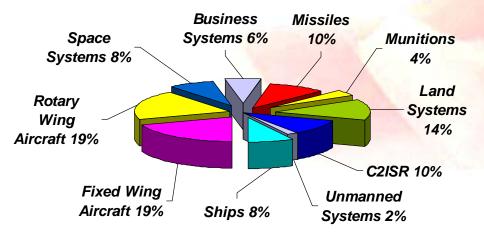
- Repeatable, tailorable, exportable process
- Trained workforce with in-depth understanding of PMs' program issues

PMs Report Process is Insightful, Valuable, and Results Oriented; better than 90% acceptance of recommendations

Program Support Review Activity

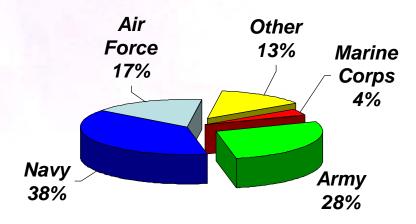


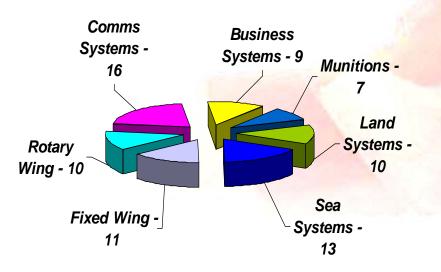
(since March 2004)


- PSRs/NARs completed: 34
- AOTRs completed: 7
- Nunn-McCurdy Certification: 3
- Participation on Service-led IRTs: 4
- Technical Reviews: 3
- Reviews planned for rest of FY06
 - PSRs/NARs: 10
 - AOTRs: 4
 - NARs: 2

Service-Managed Acquisitions

Programs by Domain Area


Test and Evaluation Master Plan Activity


(since November 2004)

- Programs submitting TEMPs: 66
- Number of TEMPs reviewed: 76 (includes TEMP updates/change pages)
 - Approved: 69
 - Pending approval: 7
- Reviews planned for rest of FY06: >30

Component-Managed Acquisitions

Programs by Product Line

Systemic Analysis Vision and Expected Outcomes

<u>Vision</u>: Illuminate systemic program performance strengths and weaknesses in an informative and consistent manner in support of stakeholder decision making and more effective acquisition policy, education and training.

Desired Outcomes:

Improved state of the practice

- Provide foundational information to support policy, education, training and identification of best practices
- Inform target audiences of issues and their root causes, risks and recommended solutions based on lessons learned
- Improve PSR process (e.g. methodology, training for teams, templates etc.)

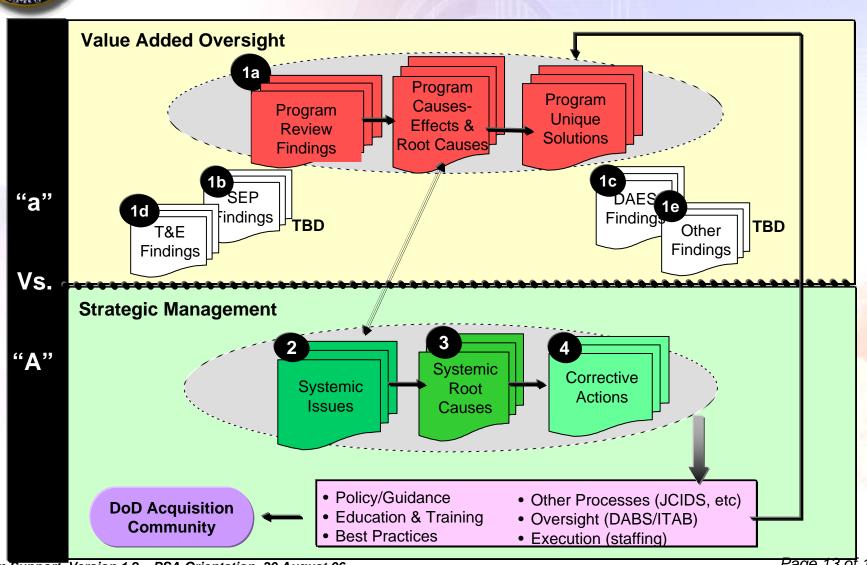
Mid Term √

Near Term

Informed decisions

- Data to inform leadership decisions, and support leadership questions
- Ability to correlate program symptoms (seen in OIPTs, DAES, etc) to systemic indicators

ong Term


Parametric Modeling

- Trend data, analyzed over time
 - Track individual cost, schedule, performance over time
 - Track improved performance vs. corrective actions made; successful practices incorporated
- Identify relationships across multiple data sources (SEP/TEMP, DAES, NARs, etc.) and CAIG cost model

Systemic Analysis Model

Steps 1A, 2-4 Underway

Representative Issues*

Requirements

Change without consideration, lack support for planned modifications, lack SoS definition

Management

 Overworked PM offices, poor SoS integration, lack measures driven approach to risk management, lack quantifiable exit criteria

Schedule

Aggressive, concurrent, missing key components

Software

 Processes not institutionalized, lessons learned not incorporated into successive builds, immature architecture, support plans missing

Test and Evaluation

 Lack metrics, reliability details, poor planning to evaluate joint interoperability, inability to pass IOT&E

Systems Engineering

Lack of disciplined SE process, metrics, missing technical reviews, technology risks not mitigated

^{*} Based on systemic analysis of 23 PSRs to date

Representative Systemic Issues (1 of 4)

1.0 Mission Capabilities/Requirements

- Reliability requirements lack mission context
- Lack of growth margins
- Upgrade programs lack measurable baseline requirements
- Systems of Systems not well defined; Stovepiped ORDs/CDDs
- Requirement creep leads to systems engineering churn
- Difficulty in balancing requirements (e.g., transportability, lethality and survivability requirements)

2.0 Resources

- Small, overworked program offices
- Plans to evaluate joint interoperability not well defined

Representative Systemic Issues (2 of 4)

3.0 Management

- Reluctance to demonstrate key functionality in SDD phase
 - » Integration of Mission Equipment Packages onto platforms
- Success oriented schedules trivialize integration risks
 - » COTS poses integration and support challenges
- Concurrent development and testing schedules
- Lack of planning for follow-on increments and technical refresh
- Avoidance of quantifiable Milestone exit criteria
- PMs not leveraging lessons learned from other programs
- Lack of overall SoS integrator with authority and resources
 - » Poor funding commitment for SoS programs
 - » Lack of issue resolution process across program and Service lines
- Poor communication across IPTs
- Lack of measures-driven approach to risk management

Representative Systemic Issues (3 of 4)

4.0 Technical Process

- Dependence on critical technologies
 - » Late Technology Readiness Assessments preclude ITAs
- Technology Development phase not used properly to mitigate risks
- Lack of disciplined SE processes and SE reviews, on all programs
 - » No "time" to conduct full suite of SE technical reviews
 - » Insufficient time between SE technical reviews
- Limited capability demonstrated by MS C
- Systems Engineering
 - » Lack of disciplined SE process, metrics, missing technical reviews, technology risks not mitigated
- T&E Planning
 - » Success oriented T&E schedules; No time for corrective actions
 - » Lack of attention to reliability growth
 - » Poor plans to mature suitability during SDD phase
 - » Hesitancy to establish exit criteria for test phases
 - » Plans to evaluate joint interoperability not well defined

Representative Systemic Issues (4 of 4)

5.0 Technical Product

- Production Planning
 - » Production Readiness Reviews (PRRs) not always conducted
 - PRRs at key suppliers not always planned
 - » Lack of supplier management plans
 - » Movement to improving processes; eliminating waste

Software

- » Software processes not institutionalized
- » No plans to apply lessons learned into successive builds
- » Systems and spiral software requirements undefined
- » Software reuse strategies are inconsistent across programs
- » Software support plan missing

Contact Information:

Dave Castellano

Deputy Director, Assessments and Support Office of the Deputy Under Secretary of Defense for Acquisition and Technology

<u>David.Castellano@osd.mil</u> <u>http://www.acq.osd.mil/ds/se/as/</u>