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[1] A sudden change in stress is seen to modify earthquake rates, but should it also
revise earthquake probability? Data used to derive input parameters permit an array of
forecasts; so how large a static stress change is required to cause a statistically significant
earthquake probability change? To answer that question, effects of parameter and
philosophical choices are examined through all phases of sample calculations. Drawing
at random from distributions of recurrence-aperiodicity pairs identifies many that recreate
long paleoseismic and historic earthquake catalogs. Probability density functions built
from the recurrence-aperiodicity pairs give the range of possible earthquake forecasts
under a point process renewal model. Consequences of choices made in stress transfer
calculations, such as different slip models, fault rake, dip, and friction are tracked. For
interactions among large faults, calculated peak stress changes may be localized,
with most of the receiving fault area changed less than the mean. Thus, to avoid
overstating probability change on segments, stress change values should be drawn from a
distribution reflecting the spatial pattern rather than using the segment mean. Disparity
resulting from interaction probability methodology is also examined. For a fault with
a well-understood earthquake history, a minimum stress change to stressing rate ratio of
10:1 to 20:1 is required to significantly skew probabilities with >80–85% confidence.
That ratio must be closer to 50:1 to exceed 90–95% confidence levels. Thus revision to
earthquake probability is achievable when a perturbing event is very close to the fault
in question or the tectonic stressing rate is low.
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1. Introduction

[2] Earthquakes change future seismicity rates in a
volume roughly proportional to main shock magnitude.
Aftershocks populate parts of the volume, while seismicity
might be suppressed in others. Rate changes are temporary;
Omori [1894] noted that the rate of aftershocks decays
with time approximately as t�1 following the main shock.
Temporary earthquake rate changes can be correlated with
static stress changes [e.g., Harris, 1998, and references
therein]. Most aftershocks are not especially damaging
compared to the main shock; however, stress interactions
have been correlated with large, damaging earthquakes
[e.g., Kagan, 1994; Stein et al., 1997; Parsons, 2002a].
When empirical observation suggests a major impact on
earthquake rates, like the near century long suppression of
M > 6 earthquakes in northern California following the
1906 earthquake [Bakun, 1999; Harris and Simpson,
1998], there may be justification for modifying earthquake
probability estimates [e.g., WGCEP, 2003].
[3] If we want to make a probabilistic earthquake forecast

in a region under the influence of past events, then many

decisions must be made. We have some observational
evidence that stress transfer might hasten or delay another
large earthquake. However, time-dependent probability
calculations are a means of expressing variability in a
poorly understood earthquake renewal process. Often,
input parameters are lacking, or must be modeled, and
uncertainty mounts. The purpose of this paper is to explore
the variability, parameter sensitivity, and limitations of the
time-dependent approach and to assess the circumstances
under which stress interactions should be added if any.
[4] This effort concentrates solely on the concept of static

stress transfer, the theorized lasting change in the stress field
resulting from displacements caused by previous fault slip
or magmatic intrusions. The significant effects (potentially a
minimum 40% of large triggered earthquakes globally
[e.g., Parsons, 2002a]) from dynamic stress transfer
[e.g., Belardinelli et al., 1999; Kilb et al., 2000; Gomberg
et al., 2003; Anderson et al., 2003] are not considered here
because the physics and timing of dynamic triggering are
not well understood.
[5] I draw upon a range of paleoseismic and historic

catalogs from the San Andreas fault and Nankai subduction
zone to build a thorough picture of the uncertainty and
sensitivity of time-dependent probability calculations. From
comprehensively studied earthquake ruptures and triggered
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events like the 1992 Landers earthquake and the 1999
Izmit-Düzce pair, I assess variability in stress change
calculations from source slip models, and receiver fault
uncertainties like friction coefficient, dip, and rake. I inves-
tigate variability incurred by using different techniques to
incorporate stress transfer into probability. Finally, I use
simple statistical tools to assess how large a stress change
must be (relative to the tectonic stressing rate) to signifi-
cantly change the distribution of answers from the unper-
turbed case.

2. Parameter Sensitivity of Time-Dependent
Probability Calculations

[6] Time-dependent probability calculations follow the
renewal hypothesis of earthquake regeneration such that
earthquake likelihood on a fault is lowest just after the last
event. As tectonic stress grows, the odds of another earth-
quake increase. A time-dependent probability calculation
sums a probability density function f(t) as

P t � T � t þ Dtð Þ ¼
Z tþDt

t

f tð Þdt ð1Þ

where f(t) can be any distribution, such as lognormal [e.g.,
Nishenko and Buland, 1987], Weibull [Hagiwara, 1974], or
Brownian passage time [Kagan and Knopoff, 1987;
Matthews et al., 2002]. These functions distribute around
some mean interevent time (m), and the width of the
distributions represents inherent variability (a) on recur-
rence. For example, a very narrow distribution implies very
regular recurrence.
[7] Two commonly applied probability density functions,

the lognormal

f t; m;að Þ ¼ 1

ta
ffiffiffiffiffiffi
2p

p exp
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and Brownian passage time,

f t; m;að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
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exp � t � mð Þ2

2ma2t

 !
ð3Þ

have characteristics that qualitatively mimic earthquake
renewal. The distributions are asymmetric, with less weight
at short recurrence time which, when integrated, translates
to very low probability early in the earthquake cycle. They
are defined by two parameters, mean interevent time, and a
coefficient of variation, or aperiodicity that govern their
shape. The distributions differ in their asymptotic behavior;
integration of the lognormal distribution to very long times
asymptotes to zero, whereas the Brownian passage time
distribution asymptotes to a fixed value, behavior that
Matthews et al. [2002] say favors the Brownian distribution
for hazard calculations. In this section I explore effects of
input parameter variability on time-dependent probability
calculation to establish its inherent variation before
perturbations from stress transfer are applied.

2.1. Recurrence Interval and Coefficient of Variation

[8] To calculate the time-dependent probability of an
earthquake of given magnitude under the renewal model,

one must know or estimate its mean interevent time,
aperiodicity, and time elapsed since the last earthquake of
comparable size. These parameters define the distribution
and duration to be integrated, and are most commonly
drawn from the historic and paleoseismic record. If an
earthquake catalog is lacking, then parameters must be
inferred from geologic slip rate and earthquake slip
estimates.
2.1.1. Paleoseismic Catalogs
[9] Some of the lengthiest paleoseismic records are found

on the San Andreas fault in southern California. At Wright-
wood there are 14 events observed [Fumal et al., 2002], and
10 events are noted at nearby Pallet Creek [Sieh et al.,
1989]. Biasi et al. [2002] calculated an interevent time (m)
of 83 years at Wrightwood with coefficient of variation (a)
of 0.70. At Pallet Creek, m = 107, and a = 0.76. Using those
parameters, 30-year conditional probability calculated with
a lognormal distribution is 40% at Wrightwood, and 30% at
Pallet Creek.
[10] Even the longest paleoseismic records are short in

the context of building a well-determined distribution.
Thus a question emerges. Do the mean recurrence and
coefficient of variation from a small sample represent the
only distribution that can satisfy the observations? A
number of possible approaches can be taken such as
Bayesian analysis [e.g., Ogata, 1999], data-dependent
normalization [Nishenko and Buland, 1987], or careful
stratigraphic/sedimentological/historical analyses [e.g.,
Biasi et al., 2002]. The goal here is to find the full array
of mean recurrence and coefficient of variation pairs that
could satisfy observations, so a forward approach is taken.
I constructed Brownian passage time distributions (differ-
ences between Brownian and lognormal are explored in a
later section) with a range of interevent time and aperiod-
icity. Events were repeatedly drawn at random from each
distribution in an attempt to match the observed event
windows (range of possible event times as constrained by
radio carbon dating). Distributions that succeeded were
tallied (Figure 1). For the Wrightwood and Pallet Creek
examples, each distribution was sampled 5 million times,
with a number of distributions matching the catalogs at
least once (Figures 1 and 2).
[11] Brownian passage time distributions with a range of

mean interevent times from 90 to 163 years, and with
aperiodicity from 0.4 to 0.9 can match the Wrightwood
catalog, and distributions with mean interevent times from
106 to 239 years and aperiodicity from 0.5 to 0.9 can match
the sequence at Pallet Creek (Figures 1 and 2). Observed in
the paleoseismic [Sieh et al., 1989; Fumal et al., 2002]
and historic catalogs, the M � 7 1812 and M � 8 1857
[Ellsworth, 1990] earthquakes attest to significant magni-
tude variation within the record. This may be part of the
reason for the interevent time variability in the catalogs,
and for why multiple distributions can fit the observations.
[12] Thirty-year time-dependent probability calculations

were made using a Brownian passage time density function
from the array of distributions that met observations at
Wrightwood and Pallet Creek. Two approaches are possible;
one can take the mean of all interevent time distributions
that reproduced the catalogs (m = 116 years, a = 0.70 for the
Wrightwood case) and calculate one answer (33% in 2004).
Alternatively, a histogram of all the probability calculations
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can be produced (Figures 1b and 2b). At Wrightwood, a
histogram shows that probabilities range from 20% to 60%
with a peak between 30 and 35%. That result differs slightly
from the probability value (41%) calculated from the m = 83
and a = 0.70 parameters derived from the record by Biasi et
al. [2002]. Similar results are obtained for the Pallet Creek
example; the mean parameters from all the models (m = 162

a = 0.72) lead to a 30-year probability of 24% in 2004, and
the histogram plot suggests allowable answers ranging from
15 to 40%
[13] Interpretation of a range or distribution of earthquake

probability calculations remains an open issue. Equally
viable 30-year probability calculations of 20% and 60%
are obtained from a very good paleoseismic catalog at

Figure 1. (a) Interevent and aperiodicity combinations
that reproduce the earthquake sequence (time ranges shown
in inset) on the San Andreas fault at Wrightwood [Fumal et
al., 2002] using Brownian passage time distributions. The
mean of the combinations is shown as a white star, and the
mean taken directly from the data [Biasi et al., 2002] is
shown as the black star. (b) Histogram of conditional
30-year earthquake probabilities calculated from the intere-
vent time-aperiodicity pairs using the Brownian model.

Figure 2. (a) Interevent and aperiodicity combinations
that reproduce the earthquake sequence on the San Andreas
fault at Pallet Creek [Sieh et al., 1989] using Brownian
passage time distributions. The mean of the combinations is
shown as a white star, and the mean taken directly from the
data [Biasi et al., 2002] is shown as the black star.
(b) Histogram of conditional 30-year earthquake probabil-
ities calculated from the interevent time-aperiodicity pairs
using the Brownian model.
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Wrightwood. Most of the results fall between 30 and 35%
(Figure 1), which might be a reasonable criterion for
selecting a value to report. In this paper I carry all the
possible answers forward as a distribution, and test whether
stress transfer alters the shape in a significant way.
[14] The examples from Wrightwood and Pallet Creek

are relatively long earthquake catalogs (10–14 events). A

similar analysis can be carried out for shorter catalogs. For
example Lienkaemper et al. [2002] report four events over
the past �500 years at Tyson’s Lagoon on the south
Hayward fault in northern California. A shorter catalog
can be more readily fit by an array of interevent time-
aperiodicity models. A contour plot is shown in Figure 3a
of matches to the record resulting from 100000 draws from
Brownian passage time distributions. Distributions with a
range of aperiodicity from 0.1 to 0.9 and interevent times
from 50 to >300 years can reproduce the catalog. The
resulting 30-year probability calculations cover a broad
range from 10 to 70% (Figure 3b). These results indicate
that the 500-year south Hayward fault catalog is too short to
provide parameters for meaningful time-dependent earth-
quake probability calculations. A 2000-year earthquake
catalog from Tyson’s Lagoon with 12 events is in devel-
opment [Lienkaemper et al., 2003] that will substantially
improve parameter estimation.
2.1.2. Historical Catalogs
[15] In parts of the world where written records have

been kept for a long time relative to large-earthquake
interevent times (i.e., Japan, Turkey, Greece), earthquake
timing in catalogs can be more tightly constrained, often to
the day and hour [e.g., Usami, 1988; Ambraseys, 2002].
However, historical reporting alone does not often allow
for very accurate earthquake locations, which usually must
be obtained from isoseismal or other relative intensity
methods [e.g., Bakun and Wentworth, 1997]. For example,
a 2000-year catalog from the Sea of Marmara region of
Turkey [Ambraseys, 2002], only provides enough intensity
detail to locate earthquakes over the past �500 years
[Parsons, 2004]. Along the Nankai-Tokai subduction zone
in Japan there is a combined paleoseismic and historic
earthquake/tsunami record. There, a long and tightly con-
strained catalog in time and space was developed [Ishibashi
and Satake, 1998]. The catalog shows considerable com-
plexity with events occurring only at Nankai or Tokai, and
others rupturing both zones simultaneously. Attempts to
match either the Nankai or Tokai record with multiple
interevent models was not possible even with 10 million
random draws from each distribution. Thus drawing a
mean directly from the data could represent the limited
range of possible models. However, significant aperiodic-
ity is expected since there appear to be several instances of
coupled earthquakes [e.g., Lu et al., 1999], and interac-
tions between events. A partial analysis of combined
Nankai-Tokai ruptures examines four events (Figure 4),
but like the short Hayward fault catalog, there is a wide
range of possible interevent-aperiodicity pairs that can
replicate the catalog, even when the exact rupture date is
known.

2.2. Effects of Unknown Elapsed Time Since the
Last Event

[16] The earthquake catalogs examined so far have all
been associated with at least one historic earthquake. There
are important fault zones for which probabilistic analysis is
desired, but where there has not been an observed earth-
quake. For example, the north Hayward and Rodgers Creek
faults have not slipped over most of their length since the
establishment of Spanish missions in 1776. That date
combined with paleoseismology brackets the last large

Figure 3. (a) Interevent and aperiodicity combinations
that reproduce the earthquake sequence on the southern
Hayward fault [Lienkaemper et al., 2002] using Brownian
passage time distributions. The shorter sequence can be fit
with more models; thus the number of matches is contoured.
The mean of the combinations is shown as a white star, and
the mean taken directly from the data is shown as the black
star. (b) Histogram of conditional 30-year earthquake
probabilities calculated from the interevent time-aperiodic-
ity pairs using the Brownian model.
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earthquake between 1640 and 1776 [Schwartz et al., 2001;
WGCEP, 2003]. Uncertainty on elapsed time adds to the
distribution of calculated earthquake probabilities for a
fault segment; drawing at random from dates between
1640 and 1776 for elapsed time on the north Hayward-
Rodgers Creek segment while keeping other parameters
fixed adds about a 6% range of 30-year probability for the

segment (Figure 5). The asymmetry in the distribution of
probability in Figure 5 results from integration of the
probability density function that returns nearly constant
values (30% in this case) for recurrence times greater than
the mean.
[17] Another way to examine the effects introduced by

elapsed time uncertainty is to use the Wrightwood catalog
and pretend that our knowledge of the 1812–1857 events
is restricted to their occurrence sometime within the 19th
century. By drawing from a range of distributions as
before to get all possible interevent time and aperiodicity
models, the range of 30-year probability values is broad-
ened to 15–65% (Figure 6). An alternative way to handle
uncertain elapsed time is provided by the Brownian
passage time model, which can treat the fault state as
equal to the Poisson rate with the same interevent time
[Matthews et al., 2002]. Also, Ogata [1999] developed a
weighted average procedure for forecast when the last
event time is unknown.

2.3. Probability Distribution Functions

[18] Choice of a probability density function can have a
direct influence on the calculated value for a given fault or
region. Unfortunately, this decision is somewhat arbitrary
because there is little quantitative basis for making it.
Differences in the 30-year probability values at any given
time are evident between the distributions (Figure 7). At
times exceeding one interevent time (m) disparity among the
distributions becomes most important; integration of the
Weibull distribution rises monotonically, whereas the log-
normal and Brownian distributions rise to a maximum value
controlled by the coefficient of variation or aperiodicity. At
very long times relative to m, conditional lognormal prob-
ability approaches zero. Under the same conditions the

Figure 5. Histogram of probability for fixed interevent
time and aperiodicity but variable time elapsed since the last
earthquake. This plot indicates about 6% variability
introduced by a window of possible last earthquake times
between A.D.1640 and 1775.

Figure 4. (a) Interevent and aperiodicity combinations
that reproduce part of historical earthquake sequence at the
Nankai-Tokai trough [Ishibashi and Satake, 1998] using
Brownian passage time distributions. All events could not
be fit with this approach, which signifies a well-constrained
catalog. The mean of the combinations is shown as a white
star, and the mean taken directly from the data is shown as
the black star. (b) Histogram of conditional 30-year
earthquake probabilities calculated from the interevent
time-aperiodicity pairs using the Brownian model.
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Brownian passage time probability approaches a fixed
value; when a = 1/

ffiffiffi
2

p
, the fixed value is the same as the

Poisson probability [Matthews et al., 2002]. This behavior
is illustrated in Figure 7 where the mean value of a = 0.7
from the Wrightwood distributions is used, which is almost
equal to 1/

ffiffiffi
2

p
.

[19] To investigate the effects of probability density
function choice, the same analysis of the earthquake
catalog at Wrightwood was conducted except that instead
of drawing at random from Brownian distributions, log-
normal distributions were used. Somewhat different results
were obtained. The mean value of interevent time (m) from
all the distributions was reduced from 116 years to 96 years,
and the aperiodicity (a) was reduced from 0.70 to 0.64
(Figure 8a). The histogram of resulting 30-year probabilities

has a less peaked shape and smaller range (25–60% com-
pared with 20–60%) (Figure 8b).

2.4. Conclusions Regarding Time-Dependent
Probability Parameter Sensitivity

[20] Even long paleoseismic catalogs permit a broad array
of equally viable earthquake probability forecasts. In some
cases the array appears to have a central peak that might
provide some basis for expressing a preferred value [e.g.,
Savage, 1991, 1992], but in others not. Time-dependent
probability calculations may not be warranted for paleo-
seismic catalogs with fewer than �10 events. Choice of
probability density function and knowledge of elapsed time
are shown to have potentially broadening effects on the
array of probabilities. In the following sections, stress
transfer is introduced to the calculations to investigate
how large it must be to skew the array of probabilities.

3. Stress Change Calculations

[21] In this section, inherent variability and uncertainty
from stress change calculations are explored because their
influence on earthquake probability scales with their mag-
nitude. At present, direct measurements of induced stress
changes are not made. Instead, slipping (or opening) a
dislocation in an elastic half-space simulates the static
change in the stress field [e.g., Okada, 1992]. Probability
changes might also be calculated from stress changes
imparted by magmatic intrusions or other forces. Changed
stress tensor components are resolved on planes of interest
and related to triggering or inhibition of future earthquakes.
Usually, the Coulomb stress change is calculated to explain
patterns of seismicity change [e.g., Harris, 1998, and
references therein]. The Coulomb failure criterion (Dt) is
defined by

Dt 	 D�tf
�� ��þ fc Dsn þ Dpð Þ ð4Þ

where D�tf is the change in shear stress on the receiver fault
(set positive in the direction of fault slip), fc is the coefficient
of friction, Dsn is the change in normal stress acting on the
receiver fault (set positive for unclamping), and Dp is pore
pressure change.
[22] Calculated stress changes depend on parameters that

must be estimated, or worse, guessed. Equation (4) above
requires an estimate of fault friction, and some concept of
pore fluid behavior. There are additional uncertainties
involving the earthquake or magmatic source model and
its translation to a slipping or opening dislocation. In
addition, there are different ways of considering the target
faults. One common method is to make calculations on
optimally oriented fault planes, which are determined from
an input regional stress field and the perturbations caused by
the source earthquake. An alternative method is to resolve
stresses on known faults, which requires estimates of their
strike, dip, and rake. In general probability changes are
sought for specific fault segments, thus determining strike,
dip, and rake is preferred.

3.1. Slip Model Variation

[23] The source time function of a large earthquake may
be determined from geodesy, seismology, or a combination.

Figure 6. Broadening of possible probabilities for a
simulated case at Wrightwood if the last earthquake was
not known from historical observation but instead was
determined from the paleoseismic catalog alone.
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An estimate of the cumulative slip distribution is needed to
make static stress change calculations. Methods are sensi-
tive to different aspects of the earthquake source, and it is
not uncommon to have a range of slip estimates resolved
on different planes (Figure 9a). Slip model variability was
shown to be most important very close to the rupture by
Steacy et al. [2004]. In this section, a well-studied
example, the 17 August 1999 M = 7.4 Izmit, Turkey
earthquake is used to investigate variability of stress
change calculations because there are multiple slip models,
the earthquake apparently triggered the 12 November 1999
M = 7.2 Düzce event, and postseismic strain effects have
been studied.
[24] Five estimates of Izmit coseismic slip are considered

here [Reilinger et al., 2000; Wright et al., 2001; Bouchon et
al., 2002; Delouis et al., 2002; Li et al., 2002], three of
which are depicted in Figure 9a. The obvious differences in
rupture dimensions and slip distribution cause variation in
calculated stress change (Figure 9b), particularly on faults
close to the rupture plane (Figure 10). As an example, the
Düzce fault was projected from its surface trace on a 60�
dip (at a �160� rake) determined from centroid moment
tensor solutions of the Düzce earthquake. Stress changes
were resolved on the plane using a friction coefficient of
0.2 with five different slip models (Figure 10). Significant
variation in the stress change pattern on the Düzce plane
is evident, most resulting from slip distribution on the
eastern ends of the Izmit source models, and how close
slip approaches, or even overlaps the Düzce plane. Effects
of source slip model variation coupled with variation in
target fault friction, rake, and dip are investigated in
section 3.2.

3.2. Friction Coefficient, Rake, and Dip

[25] The 12 November 1999 M = 7.2 Düzce earthquake
nucleated at a point calculated to have been stressed by the

Izmit event [Hubert-Ferrari et al., 2000; Parsons et al.,
2000] and seems a likely example of a large, triggered
earthquake. The Düzce hypocenter is thus used here as a
test point to investigate stress change calculation variabil-
ity. Static stress changes were calculated at the hypocenter
with varying friction and a range of rakes that encom-
passed oblique normal to pure strike slip (�140�–180�)
with five source models (Figure 11). The effects of
frictional variation alone caused 20–50% variation in
calculated stress change, depending on the source slip
model. Rake variation caused an additional 20% to 80%
change in the calculated Coulomb stress at the Düzce
hypocenter. Combined variation of friction coefficient and
rake caused stress change values to differ between 23%
and 127%, depending on slip model (Figure 11). This
variation could be reduced with more information about
the Düzce fault. For example, if sufficient microseismicity
catalogs exist, then it may be possible to correlate stress
change calculations with different friction coefficients
against seismicity rate changes [e.g., Reasenberg and
Simpson, 1992; Parsons et al., 1999]. Similarly, if suffi-
cient focal mechanisms can be calculated, then the range of
possible rakes might be limited as well.
[26] A span of friction coefficient between 0 and 0.8 is

considered here, which is making a common assumption that
pore fluid response to static stress change is encompassed
within that range. That assumption could well be incorrect
[Beeler et al., 2000], since it is not known how fault
fluids are distributed, or how they respond to static stress
change. Friction coefficient is treated as f 0c = fc(1 � Bk),
where Bk is Skempton’s coefficient. Implicit within that
assumption is that fault zone porosity is distributed
anisotropically, with fluids occupying a shear fabric
parallel to slip. In that case, the cracks respond primarily
to the stresses acting normal to them [e.g., Scholz, 1990]
and shear stresses do not contribute to pore pressure

Figure 7. Comparison of 30-year conditional earthquake probability versus time for four density
functions using the mean interevent time and aperiodicity values from the Wrightwood catalog.
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changes. Under those conditions the coefficient of friction
simplification of pore fluid changes can be used for
Coulomb failure.
[27] An additional source of stress change calculation

uncertainty is that the dip of a target fault may only be
known approximately. Either it is projected from the sur-
face, defined by earthquake hypocenters, identified with
seismic reflection profiling or other structural information,
or defined by moment tensors or focal mechanisms. In all
cases there are uncertainties that lead to variation in stress

change calculations. For example, if fault dip at the Düzce
hypocenter is allowed to vary from 45� to 90�, then stress
change values can vary between 40 and 50%, depending on
friction coefficient (Figure 12).

3.3. What Stress Change Value to Use When
Forecasting Nucleation at an Unknown Site?

[28] Making stress change calculations for earthquake
probability highlights another issue. What value should be
used? Should it be the mean stress change, or the peak stress
change? In the Düzce hypocenter examples above, the
triggered earthquake location was already known. For fault
segment earthquake probabilities all that is typically known
in advance is that the next earthquake is expected to nucleate
somewhere along a lengthy fault plane. We do not know how
tectonic stress is distributed, and often have no information
about asperities. Inherent uncertainties in calculating either
the mean or peak stress are expected. In this section it is
shown that for large fault planes, it is common for most of
the segment to be stressed by a nearby earthquake at values
lower than the mean stress change; if the mean value is used
everywhere on the segment, then the probability perturbation
would likely be overstated. Thus stress change values for
earthquake probability calculations should be pulled from
some distribution that reflects calculation uncertainties and
the spatial pattern of the stress change.
[29] Returning to the Izmit-Düzce example, we can

pretend that the Düzce event has not yet happened and we
do not know where or when large earthquake nucleation
will occur. Coseismic static stress changes calculated on the
Düzce fault are shown in Figure 10; peak stress changes
tend to be near the west end of the fault and decline to the
east. Since stress on most of the fault is only slightly
increased and the areas of peak stress are localized, the
vast majority of potential nucleation sites are increased to
degrees less than the mean stress increase (Figure 13a). A
distribution of all the stress-increased fault patches (2.5 �
0.5 km) is plotted scaled against the mean stress increase.
This distribution characterizes the calculated state of post-
Izmit stress change encompassing variation from five dif-
ferent Izmit slip models and unknown Düzce fault friction
and rake (Figure 13a). Most of the stress increases are
normally distributed between �0 and the mean with a
standard deviation between 0.25 and 0.5. The same analysis
conducted just for the Düzce hypocenter shows stress
changes normally distributed about the mean, with standard
deviation between 0.15 and 0.25 (Figure 13b), which gives
an impression of just the effects of slip model and target
fault uncertainties.
[30] If we assume that nucleation could occur anywhere

on the Düzce plane, then we might draw stress change
values at random from this distribution to calculate proba-
bility change. However, the actual Düzce earthquake nu-
cleated near the peak stress change part of the fault. Thus
perhaps drawing from the stress change values above the
mean would be a better choice. This issue will be visited in
section 5, where statistical significance of probability
changes is assessed.

3.4. Postseismic and Viscoelastic Loading

[31] Deep postseismic afterslip and viscoelastic relaxa-
tion of the lower crust and upper mantle may redistribute

Figure 8. Same approach to finding all possible interevent
and aperiodicity combinations that reproduce the Wright-
wood earthquake sequence as shown in Figure 1, except
that lognormal distributions are used. The dashed black line
in Figure 8b shows the Brownian passage time results of
Figure 1 for comparison.
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stress into the seismogenic crust over time [e.g., Nur
and Mavko, 1974; Savage and Prescott, 1978] affecting
the likelihood of earthquake nucleation. Surface defor-
mation following the Izmit earthquake was modeled by
postseismic afterslip and creep in the lower crust and/or
upper mantle [Bürgmann et al., 2002], and calculated
to have increased stress at the Düzce hypocenter
[Hearn et al., 2002] (Figure 14). A simple way to
incorporate afterslip in probability calculations is to com-

bine the coseismic and postseismic slip models [Parsons,
2004].

4. Incorporation of Stress Transfer Into
Probability Calculations

4.1. Recurrence Interval Change Versus Clock Change

[32] A direct way to incorporate calculated stress
changes into earthquake probability calculations is to

Figure 9. (a) Modeled slip distribution of the 17 August 1999 M = 7.4 Izmit earthquake from three
different studies. Coseismic slip in meters is contoured on the fault surfaces. The origin of the models is
the Izmit epicenter. (b) Differences in calculated Coulomb stress change for different fault segments
adjacent to the Izmit rupture resulting from use of the three slip models shown in Figure 9a.
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Figure 10. Calculated changes in Coulomb stress from different Izmit slip models projected onto a 60�
dipping Düzce fault surface projected from the mapped trace. Friction coefficient fc = 0.2, and a rake of
�160� was used for the calculations.

B05S02 PARSONS: SIGNIFICANCE OF INTERACTION PROBABILITY

10 of 20

B05S02



Figure 11. Variability of calculated Coulomb stress change at the hypocenter of the 12 November 1999
M = 7.2 Düzce earthquake hypocenter resulting from fault rakes ranging from �140� to �180�, friction
coefficients from 0 to 0.8, and five different Izmit earthquake slip models.
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treat a stress change as an advance or delay in the
earthquake cycle. Under the renewal model, fault stress
builds with time because of tectonic plate motion. Thus
a sudden stress change should be equivalent to a sudden
shift in the time to the next earthquake. The advance or
delay (clock change T0) can be estimated by dividing
the stress change (DCF) by the tectonic stressing rate
( _t), as T0 = DCF/ _t. Probability is accrued from the last
earthquake time adjusted by the clock change (T0 +
T0) [e.g., Working Group on California Earthquake
Probabilities (WGCEP), 1990]. Alternatively, the earth-
quake interevent time m can be adjusted by the clock change
as m = m0 + T0.
[33] The choice of whether to change the elapsed time or

the interevent time has a potentially significant effect on the
resulting earthquake probability calculation. Probability
calculated with a clock change, or elapsed time shift, is
most significant at the time of the stress change, and then
asymptotes to the maximum probability value with time
(Figure 15). A change in recurrence interval has the oppo-
site characteristic. The probability change is smallest at the
time of the stress change, and then asymptotes to a perma-
nent offset in probability (Figure 15). These differences are
caused because in one instance (recurrence interval change),
the mean of the recurrence distribution is changed and thus
the maximum calculated probability changes. In the case
where the last earthquake time is changed (clock change),
the center of the distribution is unaffected; thus, after a long
elapsed time, the maximum calculated probability stays the
same.
[34] These differences could be important for cases like

the interaction between the 1906 San Francisco earthquake
and the north Hayward fault shown in Figure 15, where
nearly 100 years have passed since the stress change; is
there still an effect on the probability of Hayward fault
earthquakes? Unfortunately, there is no clear justification
for choosing one method over the other, and the differences

Figure 12. Variability in calculated Coulomb stress
change at the Düzce hypocenter with dip angle and friction
coefficient. Calculations in this example were made with the
Reilinger et al. [2000] Izmit slip model.

Figure 13. (a) Calculated distribution of increased stress
(Ds > 0.01 MPa) patches (2.5 � 0.5 km) on the Düzce fault
plotted relative to the mean of all stress-increased patches.
The distribution includes calculations from five different
slip models and a range of friction coefficients and rakes.
The majority of stress-increased fault patches are approxi-
mately normally distributed between the mean and zero;
three sample normal distributions are plotted with standard
deviations between 0.25 and 0.5. (b) Distribution of
calculated Coulomb stress changes at the Düzce hypocenter
plotted relative to the mean for the same range of slip
models, rakes, and friction coefficients as in Figure 13a.
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must be considered as part of the variability associated with
interaction probability calculations.

4.2. Tectonic Loading Rate

[35] Making a clock change or interevent time adjust-
ment in probability calculations requires an estimate of the
tectonic stressing rate. Different techniques for stressing
rate calculations result in very different assumptions about
the distribution of lithospheric stress. A commonly used
approach to estimating tectonic loading is to simulate the
earthquake fault as a dislocation; the seismogenic part of
the fault is locked while the rest of the fault is allowed to
slip freely. This type of model assumes that almost all
crustal stress is concentrated on faults, while almost none
is found in the crust as a whole (Figure 16). In contrast,
solid three-dimensional (3-D) models of crustal deforma-
tion tend to have a more uniform crustal stress distribution
(Figure 16). Dislocation models will indicate much higher
tectonic loading rates, leading to smaller clock or inter-
event time changes for a given stress change calculation,
hence smaller probability changes [e.g., Parsons, 2002b,
2004].

4.3. Transient Probability Change

[36] A transient change in seismicity rate following an
earthquake is a long recognized [Omori, 1894; Dutton,
1904], widely observed phenomenon. The physics of the
process [e.g., Scholz, 1968; Dieterich, 1994; Marcellini,
1997; Kilb et al., 2002; Felzer et al., 2003] and how to
work it into earthquake probability calculations [e.g.,
Dieterich and Kilgore, 1996; Matthews et al., 2002;
Hardebeck, 2004; J. Gomberg et al., unpublished data,
2004] are still debated. Much like the overall question
whether to incorporate stress transfer into time-dependent
earthquake probability calculations, the issue whether to
fold in transient seismicity rate changes pits observational
evidence against the uncertainty and variability of proba-
bility calculations. At present, three methods for transient
probability change calculations are in use; two techniques
from rate state friction theory [Dieterich and Kilgore,
1996; Toda et al., 1998; Hardebeck, 2004], and one from

the Brownian passage time model [Matthews et al., 2002;
WGCEP, 2003].
4.3.1. Rate State Transient
[37] The rate state transient effect describes an expected

enhanced rate of earthquake nucleation resulting from a
stress increase, and can be expressed as a probability.
For a stress decrease, the rate of nucleation declines, and
eventually recovers. Dieterich [1994] derived a time-

Figure 14. Calculated Coulomb stress change on the Düzce fault plane from modeled postseismic
deformation following the Izmit earthquake [Bürgmann et al., 2002], using a friction coefficient of 0.2
and a rake of �160�.

Figure 15. Thirty-year conditional probability versus time
on the Hayward fault in northern California after a
calculated 0.5-MPa stress decrease associated with the
1906 M = 7.9 San Francisco earthquake. Interaction
probability calculations were made with (1) a clock change,
where the time of the last earthquake was set forward an
amount proportional to the stress change, and (2) with an
interevent time change, where the interevent time was
lengthened by an amount proportional to the stress change.
The two methods generate different probability values at
different times in the earthquake cycle.
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dependent seismicity rate R(t), after a stress perturbation
as

R tð Þ ¼ r

exp �Dt=asð Þ � 1½ 
 exp �t=ta½ 
 þ 1
ð5Þ

where r is the steady state seismicity rate, Dt is the stress
step, s is the normal stress, a is a fault constitutive constant,
and ta is an observed aftershock duration, a fault-specific
parameter.
[38] The transient change in expected earthquake rate R(t)

after a stress step can be related to the probability of an
earthquake of a given size over the time interval Dt through
a nonstationary Poisson process as

P t;Dtð Þ ¼ 1� exp �
Z tþDt

t

R tð Þdt
� �

¼ 1� exp �N tð Þ½ 
; ð6Þ

after Dieterich and Kilgore [1996], where N(t) is the
expected number of earthquakes in the interval Dt. This
transient probability change is superimposed on the
permanent change that results from a time shift, or a change
in the repeat time as discussed previously. Integrating for
N(t) yields

N tð Þ ¼ rp Dt þ ta ln
1þ exp �Dt=asð Þ � 1½ 
 exp �Dt=ta½ 


exp �Dt=asð Þ

� �	 

ð7Þ

where rp is the expected rate of earthquakes associated with
the permanent probability change [Toda et al., 1998]. This
rate can be determined by again applying a stationary
Poisson probability expression as

rp ¼
�1

Dt

� �
ln 1� Pcð Þ ð8Þ

where Pc is a conditional probability, and can be calculated
using any distribution.
[39] There are advantages in using the rate state model,

though a number of important assumptions must also be
made. Rate state friction laws describe physical processes
that govern rock friction behavior in the laboratory setting.
Most of the assumptions evolve from extrapolation to
natural faults, and from presupposing stress conditions
and distributions on natural faults. Under the Dieterich
[1994] model, a group of faults or even a single fault is
considered an infinite population of earthquake nucleation
sites that are near to failure. These conditions are treated as
Poissonian [Dieterich and Kilgore, 1996], are independent
of the fault rupture history, and are applied on top of the
static probability change.
[40] Hardebeck [2004] suggests that superimposing the

transient response onto a clock change, or static probability
change is double counting, and proposes a method to
calculate interaction probabilities that uses time-varying
clock change corrections. Integration limits of a probability
density function are changed with each time step to simulate
a variety of potential earthquake nucleation sites. If a rate
state nucleation model [Dieterich, 1994] is implemented, as
[Hardebeck, 2004]

Told ¼
As
_t

ln exp
Tnew _t
As

� �
� 1

� �
exp

Dt
As

� �
þ 1

� �
; ð9Þ

then a transient response in probability change is obtained
(Figure 17). The probability that nucleation will occur
between the new limits is calculated using the original
density function.
[41] Comparison of the two rate state methods shows a

similar shape in the evolution of probability with time; a
higher peak is obtained with the time-varying clock change
method [Hardebeck, 2004] than with the Dieterich and
Kilgore [1996] method (Figure 17). Rate state parameters
used in both instances imply an aftershock decay time of
10 years, and by 20–30 years after the stress step, the
probability changes are equivalent.
4.3.2. Brownian Passage Time
[42] A sudden stress change, or state change in Brownian

terms, can produce a transient probability change depending

Figure 16. Example tectonic stressing rate calculations
for the San Francisco Bay region [Parsons, 2002b].
(a) Stressing rate plotted at 6 km depth on a profile orthogonal
to the relative plate motion vector. Black line results from
the 3-D finite element model shown in Figure 16b. Gray
line is calculated from a deep dislocation model. This plot
illustrates variability in clock change adjustments for
probability calculations because these are usually calculated
by dividing Coulomb stress change by a loading rate value.
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upon time elapsed since the last earthquake [Matthews et
al., 2002]. The transient results from an entirely different
origin than in the rate state models. Aperiodicity in the
Brownian model comes from random noise superimposed
on a state evolution function. Following a stress step late in
the cycle, a sudden increase in state has a relatively high
probability of causing failure, which leads to a spike in
calculated probability (Figure 17). However, continuous
random fluctuations in state cause the spike in probability

to approach the background rate over time, which produces
a decaying transient probability change [Matthews et al.,
2002].
[43] The calculated spike in probability from a stress step

using the Brownian model is less pronounced than those
calculated with the rate state methods (Figure 17), especially
for a step earlier in the cycle (Figure 17b). However, the
duration of the probability change is longer lived, resem-
bling an interevent time adjustment more than a clock
change (Figure 15).
4.3.3. Variability Introduced by Different Transient
Calculation Methods
[44] Global observations indicate that the duration of

transient seismicity rate increase following a stress step is
between �7–12 years [e.g., Kagan, 1994; Dieterich, 1994;
Parsons, 2002a]. Indeed, in the examples shown in
Figure 17, the important variability between the methods
is confined within the decade following the stress step and is
largest in the first year or two. Depending upon the method
applied, input parameters, and timing of the stress step
(Figure 17b), variation among the methods can exceed
10% for a short time. Unfortunately, there is not a good
way to calibrate the peak of the transient against data. Thus,
if probability is calculated shortly after a stress perturbation,
and it is desired to capture the transient response, a large
degree of uncertainty must be accommodated.

5. How Large Must a Stress Change be to Cause
a Meaningful Probability Change?

[45] Clearly, there is significant uncertainty in collecting
parameters to make an interaction probability calculation.
Drawing from paleoseismic and historical earthquake cata-
logs allows for many viable interevent models, making
stress change calculations adds another layer of variability,
and choices must be made as to how to assimilate them as
probability changes. These choices are to some extent
uninformed by data, and decisions are often made on a
philosophical basis. The logic applied here is to ask at what
point does the signal of a stress change become large
enough such that all the other variability becomes less
important by comparison? The example pursued here is
from the interaction between the 1992 M = 7.4 Landers
earthquake and the adjacent San Andreas fault in southern
California. This choice is made because variability associ-
ated with the paleoseismic catalogs on the San Andreas has
already been explored in this paper, the Landers event is
well studied, and Hardebeck [2004] also calculated post-
Landers San Andreas fault probability changes. The
calculated stress change from the Landers event is char-
acterized as a distribution relative to the mean stress
change (Figure 18), but the magnitude of the mean stress
change is scalable in this example to investigate how
large it must be to cause a significant perturbation in
calculated probability. In other words, the shape of the
stress change pattern is preserved, but its amplitude can
be changed. In this way the results are made more general
beyond the San Andreas case.
[46] The Landers earthquake occurred between �40 to

�100 km from the San Andreas fault, and is calculated to
have caused a heterogeneous stress change (Figure 18),
with large areas of positive and negative Coulomb stress

Figure 17. Comparison of three different implementations
of transient probability changes resulting from sudden stress
changes. (a) A 0.1 MPa stress change applied 200 years
into a 200-year earthquake cycle. A sharp increase in
probability is calculated (using a Brownian distribution)
with all methods; the time-varying clock change method of
Hardebeck [2004] shows the largest change, the rate state
technique of Dieterich and Kilgore [1996] is intermediate,
and the Brownian passage time step model of Matthews et
al. [2002] has the smallest change. (b) Same stress step but
applied at 100 years into the cycle. In all three cases the
transient is less pronounced than in Figure 17a.
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change. Calculations were made for a range of friction
coefficients between fc = 0 and fc = 0.4 as determined
from analysis of microseismicity before and after the
Landers event [Parsons et al., 1999]. The San Andreas
fault is assumed vertical with a strike-slip rake of 180�.
Coulomb stress changes were calculated with the slip
model of Wald and Heaton [1994], and changes of
absolute value greater than 0.01 MPa were included in
the analysis.

[47] San Andreas fault patches (�1 � 2 km) with calcu-
lated stress increase and decrease have a similar distribution
relative to mean stress change (Figure 18) as calculated for
the Izmit effect on the Düzce fault (Figure 13), with most of
the patches approximately normally distributed between 0
and the mean. Stress change values were drawn at random
from the stress-increased distribution with the mean scaled
by different amounts, expressed as a ratio of the mean stress
change and tectonic stressing rate (clock change). Ratios

Figure 18. Landers earthquake effects on the San Andreas fault in southern California. (a) Distribution
of calculated increased stress (Ds > 0.01 MPa) patches (1 � 2 km) on the San Andreas fault plotted
relative to the mean of all stress-increased patches on the segment. Values calculated over a range of
friction coefficients from 0 to 0.4 are included. (b) Distribution of calculated decreased stress patches on
the San Andreas fault. (c) Contour plot of calculated stress changes using a friction coefficient of 0.2.
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from 10 to 50 were explored, which are the equivalent of a
0.1 to 0.5 MPa stress change relative to a typical San
Andreas fault stressing rate of �0.01 MPa/yr [Parsons,
2002b]. Stress change values were used to perturb the
distribution of probabilities calculated from the permissible
San Andreas fault interevent models that fit the Wrightwood
paleoseismic and historic catalog (Figure 1). Three methods
for incorporating the stress changes into time-dependent
probabilities were compared: (1) the rate state method of
Dieterich and Kilgore [1996] and Toda et al. [1998] super-
imposed on a clock change, (2) the time-varying clock
change method developed by Hardebeck [2004] using a rate
state nucleation model, and (3) the Brownian passage time
step model [Matthews et al., 2002]. In all cases the Brownian
distribution of equation (3) was used to accrue 30-year
conditional probability for the year 2004.
[48] Needed parameters for the interaction probability

calculations are: (1) the set of interevent-aperiodicity pairs
from the earthquake catalog, (2) for each interevent time-
aperiodicity pair, a set of 100 scaled clock change values
(mean clock change between 10 and 50) drawn from the
Landers stress change distribution, and (3) for the rate state
transient probability calculations, an estimate of the after-
shock decay rate on the San Andreas fault. The seismicity
rate of M � 2 earthquakes that occurred within 1 km of the
San Andreas fault plane is shown in Figure 19. The effects
of three large earthquakes are evident, with seismicity
spikes following the 1986 M = 5.6 North Palm Springs,
1992 M = 7.4 Landers, and 1994 M = 6.7 Northridge
earthquakes. In all three instances, seismicity rates are not
distinguishable from the background rate after �3 years;
thus rate state parameters consistent with a 3-year after-
shock decay rate are derived for the calculations (see
section 4.3.1 for details).

[49] After the stress change perturbations were applied,
distributions of probability values were compared with the
unperturbed, and differences analyzed for significance. The
approach taken differs from that of Hardebeck [2004], who
assumed a significance measure of one standard deviation
of probability change above the mean of many calculations;
here I look for significant skew in the array of answers,
which are typically not normally distributed. The probabil-
ity distributions were compared using a Kolmogoroff-
Smirnoff test, which is sensitive to distribution shapes,
particularly the mean, median, dispersion, and skewness
[e.g., Sachs, 1982]. The test statistic

D̂ ¼ max
F1

n1
� F2

n2

� �����
����; ð10Þ

where F1 and F2 are cumulative frequencies, and n1 and n2
are sample sizes, is compared to the critical value

D að Þ ¼ K að Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2

n1n2

r
; ð11Þ

where K(a) is a constant reflecting the level of significance.
If D̂ < D(a), then there is no demonstrable difference
between the two distributions at a given confidence level.
[50] In the first series of tests, stress change values

were drawn from the whole distribution of increases
shown in Figure 18, and multiplied by scales from 10
to 50, to get clock change values meant to cover a
reasonable range of about 0.1 to 0.5 MPa stress changes
relative to a �0.01 MPa/yr stressing rate. However, even
when scaled by 50, no significant difference between the
unperturbed and perturbed set of probability values could
be established above 80% confidence level as measured
with the Kolmogoroff-Smirnoff test. In a second set of
tests, only stress changes above the mean were used, and
values scaled by factors between 10 and 50 did cause
significant changes to the distribution of probability
values (Figure 20).
[51] Significant changes (80–90% confidence) to the

range of post-Landers probability on the San Andreas
fault were noted using the Dieterich and Kilgore [1996]
method to perturb probability when the mean of the stress
change distribution was scaled by a factor of 20 or greater
(Figure 20a). The short aftershock duration observed for
the San Andreas fault (Figure 19) means that most of the
rate state transient probability increase calculated from the
1992 Landers earthquake stress changes has extinguished
by the beginning of the 2004 calculation interval, and the
perturbations are much like a standard clock change
calculation. The duration of the Brownian step transient
calculation tends to be longer (Figure 17). Thus the same
clock changes applied cause more significant probability
changes (Figure 20b), ranging from 85% confidence when
scaled by a factor of 10, to 99% when scaled by 50. In
contrast, the time-varying clock change method of
Hardebeck [2004] has no permanent probability change
associated with stress changes. Thus, in 2004, 12 years
after the Landers earthquake, no significant change in
probability is noted with that method regardless of the
magnitude of stress change (Figure 20c).

Figure 19. Seismicity rate changes within ±1 km of the
San Andreas fault (trace shown in Figure 18). The
aftershock durations from three earthquakes are shown. In
all cases the rate returns to background within �3 years.
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[52] In summary, the results of the Landers-San Andreas
test indicate that, for a fault segment well-characterized by
paleoseismic observations, probability changes might best
be calculated in areas where the stress is changed in
excess of the segment mean. Depending on the probability
calculation technique used, mean stress change on a fault
segment needs to be at least 10–20 times greater than the
tectonic stressing rate for probability changes to be
significant. This means that the perturbed fault must be

quite close to the earthquake rupture as in the case of the
Izmit-Düzce pair, or the tectonic stressing rate must be
very low.

6. Conclusions

[53] An earthquake history that is well characterized by
paleoseismic and historical observations can be fit with a
broad range of interevent time and aperiodicity models, all

Figure 20. Perturbations of probability on the southern San Andreas fault using the Wrightwood
interevent time and aperiodicity pairs from Figure 1 and drawing at random from the distribution of
increased stress (greater than the mean increase) shown in Figure 18a. Changes to probability
distributions are shown for clock change scales ranging from 10 to 50 for three different calculation
methods: (a) the rate state method of Dieterich and Kilgore [1996], (b) the Brownian passage time step
model of Matthews et al. [2002], and (c) the time-variable clock change with rate state nucleation method
of Hardebeck [2004].
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with about equal chance of being correct. Thus earthquake
probability may best be expressed as a range of acceptable
answers [Savage, 1991, 1992]. Modeling of stress transfer
and tectonic stressing carries significant uncertainty. Addi-
tionally, different methods of integrating a sudden change in
fault stress in probability calculations give an array of
different answers. Nonetheless, incorporation of stress
transfer in earthquake probability calculations can be justi-
fied in circumstances where the calculated stress change on
a fault is at least 10–20 times greater than the calculated
tectonic stressing rate. In practical terms, this would be a
large earthquake or other stress perturbation happening
closer than a few tens of kilometers from a fault zone of
well-documented earthquake history that is loaded at a
moderate rate. In such cases, the range of probability
values is calculated to be altered with a high degree of
confidence.
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