YTTRIUM¹

(Data in metric tons of yttrium oxide (Y₂O₃) content unless otherwise noted)

<u>Domestic Production and Use:</u> The rare-earth element yttrium was not mined in the United States in 2004. Yttrium was used in many applications. Principal uses were in phosphors for color televisions and computer monitors, trichromatic fluorescent lights, temperature sensors, and X-ray-intensifying screens. Yttrium also was used as a stabilizer in zirconia, in alumina-zirconia abrasives, wear-resistant and corrosion-resistant cutting tools, seals and bearings, high-temperature refractories for continuous-casting nozzles, jet engine coatings, oxygen sensors in automobile engines, and simulant gemstones. In electronics, yttrium-iron-garnets were components in microwave radar to control high-frequency signals. Yttrium was an important component in yttrium-aluminum garnet laser crystals used in industrial cutting and welding, medical and dental surgical procedures, temperature and distance sensing, photoluminescence, photochemistry, digital communications, and nonlinear optics. Yttrium also was used in heating-element alloys, superalloys, and high-temperature superconductors. The approximate distribution in 2003 by end use was as follows: lamp and cathode-ray-tube phosphors, 77%; alloys, 5%; and miscellaneous, 18%.

Salient Statistics—United States:	<u>2000</u>	<u>2001</u>	<u>2002</u>	<u>2003</u>	2004 ^e
Production, mine					
Imports for consumption:					
In monazite	_	_	_	_	_
Yttrium, alloys, compounds, and metal ^{e, 2}	450	470	330	380	400
Exports, in ore and concentrate	NA	NA	NA	NA	NA
Consumption, estimated ³	450	470	330	380	400
Price, dollars:					
Monazite concentrate, per metric ton ⁴	400	400	400	400	400
Yttrium oxide, per kilogram, 99.0% to 99.99% purity ⁵	25-200	22-88	22-88	22-88	52
Yttrium metal, per kilogram, 99.0% to 99.9% purity ⁵	95-115	95-115	95-115	95-115	96
Stocks, processor, yearend	NA	NA	NA	NA	NA
Net import reliance ^{e, 6} as a percentage of					
apparent consumption	100	100	100	100	100

Recycling: Small quantities, primarily from laser crystals and synthetic garnets.

Import Sources (2000-03): ^e Yttrium compounds, >19% to < 85% weight percent yttrium oxide equivalent: China, 71%; Japan, 12%; France, 11%; Austria, 2%; and other, 4%. Import sources based on Journal of Commerce data (year 2003 only): China, 88%; Japan, 6%; Austria, 4%; Netherlands, 1%; and other, 1%.

Tariff: Item	Number	Normal Trade Relations <u>12-31-04</u>
Thorium ores and concentrates (monazite) Rare-earth metals, scandium and yttrium,	2612.20.0000	Free.
whether or not intermixed or interalloyed	2805.30.0000	5.0% ad val.
Yttrium-bearing materials and compounds containing by weight >19% to < 85% Y ₂ O ₃	2846.90.4000	Free.
Other rare-earth compounds, including yttrium oxide \geq 85% Y ₂ O ₃ , yttrium nitrate, and other		
individual compounds	2846.90.8000	3.7% ad val.

Depletion Allowance: Monazite, thorium content, 22% (Domestic), 14% (Foreign); yttrium, rare-earth content, 14% (Domestic and foreign); and xenotime, 14% (Domestic and foreign).

Government Stockpile: None.

YTTRIUM

Events, Trends, and Issues: Yttrium demand in the United States increased in 2003 and again in 2004 as the U.S. economy experienced growth towards yearend. Yttrium production and marketing within China continued to be competitive keeping international prices low, although China was the source of most of the world's supply. Yttrium was consumed primarily in the form of high-purity oxide and nitrate compounds.

World Mine Production, Reserves, and Reserve Base:

	Mine production ^{e, 7}		Reserves ⁸	Reserve base ⁸
	2003	<u>2004</u>		
United States	_	_	120,000	130,000
Australia	_		100,000	110,000
Brazil	4	4	2,200	6,200
China	2,300	2,300	220,000	240,000
India	55	55	72,000	80,000
Malaysia	5	5	13,000	21,000
Sri Lanka	_		240	260
Other	<u>26</u>	<u>26</u>	<u> 17,000</u>	20,000
World total (rounded)	2,400	2,400	540,000	610,000

<u>World Resources</u>: Large resources of yttrium in monazite and xenotime are available worldwide in ancient and recent placer deposits, weathered clay deposits (ion-adsorption ore), carbonatites, and uranium ores. Additional large subeconomic resources of yttrium occur in other monazite-bearing deposits, apatite-magnetite rocks, sedimentary phosphate deposits, deposits of columbium-tantalum minerals, and certain uranium ores, especially those of the Blind River District in Canada. It is probable that the world's resources are very large.

<u>Substitutes</u>: Substitutes for yttrium are available for some applications but generally are much less effective. In most uses, especially in electronics, lasers, and phosphors, yttrium is not subject to substitution by other elements. As a stabilizer in zirconia ceramics, yttria (yttrium oxide) may be substituted with calcia (calcium oxide) or magnesia (magnesium oxide), but they generally have lower toughness.

^eEstimated. NA Not available. — Zero.

¹See also Rare Earths and Scandium.

²Imports based on data from the Port Import/Export Reporting Service (PIERS).

³Essentially all yttrium consumed domestically was imported or refined from imported ores and concentrates.

⁴Monazite concentrate prices derived from U.S. Census Bureau data.

⁵Yttrium oxide and metal prices from Elements—Rare Earths, Specialty Metals and Applied Technology (a High Tech Materials online publication at www.rareearthsmarketplace.com), Rhodia Rare Earths, Inc., Shelton, CT, and the China Rare Earth Information Center, Baotou, China, and Hefa Rare Earth Canada Co., Ltd., Vancouver, Canada.

⁶Defined as imports – exports + adjustments for Government and industry stock changes.

⁷Includes yttrium contained in rare-earth ores.

⁸See Appendix C for definitions.