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Abstract: Linear dynamic wave and diffusion wave
analytical solutions are obtained for a small, abrupt
flow increase from an initial to a higher steady flow.
Equations for the celerities of points along the wave
profiles are developed from the solutions and related
to the kinematic wave and dynamic wave celerities.
The linear solutions are compared systematically in a
series of case studies to evaluate the differences
caused by inertia. These comparisons use the celeri-
ties of selected profile points, the paths of these points
on the x-t plane, and complete profiles at selected
times, indicating general agreement between the solu-
tions. Initial diffusion wave inaccuracies persist over
relatively short time and distance scales that increase
with both the wave diffusion coefficient and Froude
number. The nonlinear monoclinal wave solution par-
allels that of the linear dynamic wave but is applicable
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to arbitrarily large flow increases. As wave amplitude
increases the monoclinal rating curve diverges from
that for a linear wave, and the maximum Froude num-
ber and energy gradient along the profile increase and
move toward the leading edge. A monoclinal–diffu-
sion solution is developed for the diffusion wave equa-
tions, and dynamic wave–diffusion wave compari-
sons are made over a range of amplitudes with the
same case studies used for linear waves. General
dimensionless monoclinal–diffusion profiles exist for
each depth ratio across the wave, while correspond-
ing monoclinal wave profiles exhibit minor, case-
specific Froude number dependence. Inertial effects on
the monoclinal profiles occur near the leading edge,
increase with the wave amplitude and Froude number,
and are responsible for the differences between the
dimensionless profiles.

Cover: Abrupt river wave moving downstream in the Sacandaga River (New York) near its
confluence with the Hudson River. This surge was formed by a sudden flow increase of
Stewarts Bridge Dam several kilometers upstream. (Photo by M. Ferrick.)
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NOMENCLATURE

B monoclinal wave overrun unit discharge (m3/s·m)

    ̃c dimensionless celerity
cdif, cdyn celerity of a point on the linear diffusion wave, dynamic wave solution

profiles (m/s)
ck kinematic wave celerity (m/s)
c0 celerity of a disturbance in still water at the initial uniform flow depth

(m/s)
c+, c- dynamic wave celerity in the downstream, upstream directions (m/s)

    C*
, C dimensionless, dimensional (m1/2/s) Chezy conveyance coefficients
D noninertial or inertial wave diffusion coefficient (m2/s)
E ratio of energy gradient to bed slope gradient

F, F0 Froude number, initial uniform flow Froude number
F(x,t,φ), Fx, Ft implicit form of linear dynamic wave solution and its derivatives

G(x,t,φ), Gx, Gt implicit form of linear diffusion wave solution and its derivatives
g acceleration due to gravity (m/s)

I0, I1 zeroth-order, first-order modified Bessel functions of the first kind
Sf, S0 energy and channel bed gradients

t time (s)
U monoclinal profile celerity (m/s)

v, v0, vf flow velocity, initial uniform velocity, uniform velocity following the
wave (m/s)

v1 small increase in flow velocity from the initial uniform flow (m/s)
vr ratio of final to initial uniform flow velocities

v’, y’ velocity derivative (1/s), depth derivative with respect to X
x0, distance scale, dimensionless distance in dimensionless monoclinal

wave equation (m)
x distance along the channel (m)
X distance in a coordinate system moving at speed U with the monoclinal

wave (m)
y, y0, yf flow depth, initial uniform depth, and uniform depth following the

wave (m)

    
˜ ˜ ˜y q q, ,  steady dimensionless depth, monoclinal wave unit discharge, and steady unit

discharge
y1 small increase in flow depth from the initial uniform flow (m)
yr ratio of final to initial uniform flow depths

ycr depth variable representing the inertia of the monoclinal wave (m)
Y monoclinal wave depth parameter (m)

φ, φ0, φf dependent variable, initial and final boundary values of linear wave
equations

φt, φx, φtt, φxt, φxx first and second derivatives of φ with respect to x and t
η parameter of linear dynamic wave equation (s)

A(x), C(x), parameters of the linear dynamic wave solution
H, z, α, β

CI, C1, C2, C3, parameters of the monoclinal wave solution
C4, C5, C6, C7

v





INTRODUCTION

Much effort over several years has gone into the development and application of numer-
ical models for unsteady river flow problems. In particular, one-dimensional numerical
models that solve either the nonlinear dynamic wave or diffusion wave equations have been
applied over wide ranges of river and flow conditions. Criteria for choosing a model from
among these and other alternatives for given conditions have been obtained from analyses
of linearized equations (Ponce and Simons 1977, Ponce et al. 1978, Menendez and Norscini
1982, Kundzewicz and Dooge 1989). Dimensionless parameters of the nonlinear equations
have also been used for model selection (Woolhiser and Liggett 1967, Ferrick 1985). Several
authors have treated the diffusion wave–dynamic wave modeling decision as a choice be-
tween simplicity and accuracy. However, Lighthill and Whitham (1955) argued that
dynamic waves are subordinated when the flow is “well subcritical,” making the character-
istics of the dynamic wave system unsuitable as a basis for computation. Numerical
dynamic wave and diffusion wave models cannot be readily used to resolve relative accura-
cy issues or to identify optimal model selection criteria.

The dynamic wave equations include flow inertia terms, and form a second-order hyper-
bolic system with two sets of characteristics that trace the paths of dynamic waves on the
x-t plane. The diffusion wave equations neglect the inertia terms as small, resulting in a para-
bolic system that models a diffusing “mass wave.” As the magnitude of the wave diffusion
term decreases, this system approaches a zero-diffusion limit, the kinematic wave equation.
This first-order hyperbolic equation has a single set of characteristics, the subcharacteristics
of the dynamic wave equations, that trace the paths of kinematic waves on the x-t plane.
Dynamic waves and kinematic waves are both present during unsteady river flow, and it is
difficult to conceptualize their respective roles in the dynamic wave and diffusion wave
models. An improved understanding of these models would be an important step toward
resolution of relative accuracy and model selection questions.

Linearized forms of the dynamic wave and diffusion wave equations have been solved
analytically to obtain approximate river flows (Dooge and Harley 1967, Hayami 1951). With
variable coefficients treated as constants, linear solutions are strictly valid only for small
flow disturbances. However, these solutions are valuable because of their common structure
with corresponding nonlinear solutions. The linear dynamic wave solution is the most gen-
eral and provides a standard for comparison with simpler linear solutions, but systematic
comparisons have not been developed. Potential benefits include better definition of the
correspondence between models, and resolution of the time and distance scales where dif-
ferences are important. Relationships between dynamic wave and kinematic wave celerities
and the downstream translation of linear wave profiles have not been quantified because
equations for the celerity of points along these profiles are not available. Such celerity rela-
tions would clarify the roles of characteristics and subcharacteristics and provide insight
into the structure of each solution.
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Linear dynamic wave and diffusion wave solution comparisons cannot fully resolve the
relationship between these models because large-amplitude flow increases of practical
interest must be described by the nonlinear equations. This deficiency can be remedied in
part by considering the monoclinal rising wave, a nonlinear dynamic wave analytical solu-
tion (Chow 1959, Henderson 1966, Whitham 1974, Hunt 1987, and Agsorn and Dooge
1991). The monoclinal wave profile is an arbitrarily large transition between low steady,
uniform flow downstream and high steady flow upstream. This profile represents the bal-
ance between nonlinear wave steepening and diffusion, and has a known constant celerity
that increases with wave amplitude and the kinematic wave celerity. A comparison of a
corresponding nonlinear diffusion wave equation solution with the monoclinal wave
would identify temporally persistent inertial effects. The monoclinal wave solution does
not describe profile development nor provide the time and travel distance required to
attain a steady form. However, the combination of linear wave and monoclinal wave analy-
ses would quantify most aspects of relative dynamic wave–diffusion wave solution
behavior.

The purpose of this report is to utilize analytical solutions to better understand the struc-
ture and relative behavior of the dynamic wave and diffusion wave unsteady river flow
models. An abrupt flow increase between initial and final steady flows is used as an up-
stream boundary condition to maximize the contribution of inertia. We compare linear
dynamic wave and diffusion wave solutions in a series of subcritical flow case studies.
Equations for the celerity of points along each profile are derived for comparison and to
explore the relationships between these profile celerities and the dynamic wave and kine-
matic wave celerities. This development provides the capability to trace selected profile
points on the x–t plane, another means to compare the solutions. We also compare linear
wave profiles to depict relative behavior through time, and give small-amplitude mono-
clinal profiles to assess progress toward equilibrium. Our nonlinear monoclinal wave analysis
uses the same case studies as for linear waves, but considers a range of wave amplitudes. The
nonlinear diffusion wave equations are solved to obtain monoclinal-diffusion profiles
for comparison with the monoclinal wave. Relative steepening near the leading edge of the
monoclinal profile is caused by flow inertia that persists through time. Nonlinear effects
increase with wave amplitude, progressively separating monoclinal profile shapes, celeri-
ties, rating curves, and the Froude numbers and flow energy gradients along the profile
from those of linear waves. Dimensionless dependent variables of the linear and monocli-
nal solutions provide ease of comparison, while dimensional independent variables dis-
tance and time complement physical intuition. For generality we also develop and com-
pare fully dimensionless monoclinal and monoclinal–diffusion profiles.

LINEAR RIVER WAVE EQUATIONS

The continuity and momentum equations of unsteady flow in a wide rectangular open
channel with no lateral inflow or outflow are well known (Stoker 1957, Mahmood and
Yevjevich 1975):
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where depth y and cross-sectional average velocity v are dependent variables, Sf is the flow
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energy gradient obtained from the Chezy equation with a constant conveyance coefficient,
g is acceleration due to gravity, S0 is the channel bed slope, x is distance and t is time.

Lighthill and Whitham (1955) obtained a linear form of eq 1 and 2 by substituting for y
and v

    y y y= +0 1

    v v v= +0 1 (3)

where constant y0 and v0 represent steady uniform flow in a channel with constant slope
and resistance, and y1 and v1 represent small departures from that flow as
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The momentum equation (eq 5) describes linear dynamic waves. If we assume that the
inertia terms of eq 5 are small relative to the other terms, the momentum equation for linear
diffusion waves is obtained:
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The momentum equation for linear kinematic waves can be obtained from eq 6 by assum-
ing the depth gradient is small relative to the bed slope and can be neglected.

Following Lighthill and Whitham (1955) we combine eq 4 and 5 to eliminate either the
depth or velocity derivatives. The resulting second-order linear equations for depth or vel-
ocity are the same, and equivalent to the original system of first-order equations:

    
φ φ φ

η
φ φtt xt xx t k x+ + −( ) +( ) + +( ) =2

1
00 0 0 0 0v v c v c c (7)

where the dependent variable φ represents either v1 or y1, subscripts x and t indicate differ-
entiation with respect to those variables,     c gy0 0=  is the celerity of a disturbance in still
water, ck = 3v0/2 is the kinematic wave celerity, and η = v0/2gS0. Mendoza (1995) provided
an historical perspective on the development and solution of this hyperbolic equation,
which we call the linear dynamic wave equation. Higher-order dynamic waves travel
along two sets of characteristics described by
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− =
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−
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where the product of c– and c+, the dynamic wave celerities in the upstream (–) and down-
stream (+) directions for subcritical flow, appears as a coefficient in eq 7.

If the lower-order terms of eq 7 were absent, corresponding to large η, the general solu-
tion would have the form

    φ φ φ= − + −+ −1 2( ) ( )x c t x c t (9)

with a structure totally dependent on the dynamic waves. On the other hand, if the higher-
order terms were absent, corresponding to η → 0, the general solution would have the form

    φ φ= −0( )x c tk (10)
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depending only on lower-order kinematic waves, the subcharacteristics of eq 7. More gen-
erally both these wave types occur together, with small disturbances traveling along the
characteristics and the primary mass of the flow moving along the subcharacteristics.

The same procedure used in the development of eq 7 can be repeated with eq 6 replacing
eq 5, yielding

    φ φ φt + =c Dk x xx (11)

where     D c v y S= =0
2

0 0 02η /  is a noninertial diffusion coefficient. We call this parabolic ad-
vective-diffusion equation the linear diffusion wave equation. The dynamic wave celerities
that appear explicitly in eq 7 depend on flow inertia, and are absent from eq 11. The
Hayami (1951) solution of eq 11 is presented in Henderson (1966). Ferrick et al. (1984) de-
veloped an equation from eq 7 with the same form as eq 11 that included higher-order x-
derivatives. The presence of the inertia terms resulted in an inertial diffusion coefficient
that depends on the Froude number F0 = v0/c0:

    D c F= −( )0
2

0
21 4η / . (12)

Dooge (1973), Whitham (1974) and Menendez (1993) also obtained this inertial diffusion
coefficient using different methods.

SOLUTIONS FOR LINEAR
DYNAMIC AND LINEAR
DIFFUSION WAVES

We will examine the
linear dynamic wave and
diffusion wave solutions
for an instantaneous in-
crease between steady
states φ0 and φf at the up-
stream boundary (x = 0)
at t = 0. Before this in-
crease, steady-uniform
flow conditions down-
stream at φ0 are assumed.
This initial shock maxi-
mizes the importance of
inertia, the difference be-
tween the dynamic wave and diffusion wave models. The solutions φ(x,t) are required for
positive x and t, and for simplicity we define dimensionless   φ̃  as

  
φ̃ φ φ

φ φ
= −

−
0

f 0
(13)

with   ̃φ  = 1 at the upstream boundary and a solution interval of zero to one. In the remain-
der of this report we drop the tilde, but dimensionless φ is implied. Dimensional (x,t) and
dimensionless φ are used in Figure 1 to depict the initial and upstream boundary condi-
tions, and profile and shock development. Lines that trace the motion of constant φ profile
points, and profile celerity differences between these points, related to diffusion of the pro-
file, are indicated. Nonlinear wave steepening that opposes diffusion can cause a shock to
be sustained, but it is not present here. As a result, the imposed shock attenuates and the
profile separating the steady states elongates with time and distance.

4

1.0

0.9

0.7

0.5

0.3

0.1

0.0

φ

X (km)
0

∆

∆

t = 0 t = ∆t t = 2∆t

Figure 1. Initial and upstream boundary conditions of the linear equa-
tions, and dimensionless φ profile development with dimensional dis-
tance and time.



The Lighthill and Whitham (1955) subcritical flow (F0 < 1) solution of the linear dynamic
wave equation (eq 7) for steady-uniform initial flow with a unit-step increase in φ at the
upstream boundary is
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I1 is a first-order modified Bessel function of the first kind, and φ(0,t) is the upstream
boundary condition that is equal to 0 for

    
t

x
c

− <
+

0

and equal to 1 otherwise.
Given x and t we can obtain φ with eq 14, but different dependent variable designations

would be helpful for studying the solution. For example, insights could be obtained from
wave profiles at specified times and from constant φ trajectory traces on the x-t plane. Also,
it would be useful to calculate and relate the celerity of a point on the dynamic wave profile
to the dynamic wave and kinematic wave celerities. To obtain these results we write eq 14
as an implicit function:

    
F x t x A x
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The dynamic wave profile celerity of a point with constant φ can be obtained by differenti-
ating F(x,t,φ) and setting the result to zero as

    
c

dx
dt

F
Fdyn

t

x
= = − (16)

where Fx and Ft are the partial derivatives of F(x,t,φ) with respect to x and t, respectively.
Dividing eq 16 by the kinematic wave celerity yields dimensionless profile celerity
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The partial derivative Fx in eq 16 can be obtained from eq 15 as
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where

    
C x e x c( ) /= − +β α

2

and I0 is a zeroth-order modified Bessel function of the first kind. Similarly, the partial
derivative Ft in eq 16 can be obtained from eq 15 as
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In eq 18 and 19
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are assumed.
F(x,t,φ), Fx and Ft can be computed using subroutines given by Press et al. (1992) for 10-

point Gauss-Legendre integration and for polynomial approximation of modified Bessel
functions. We obtain the dynamic wave profile at selected times by fixing φ and t and calcu-
lating the corresponding x using eq 15 and 18 in Newton’s method. The half-interval
method can also be used to obtain these profiles if Newton’s method fails to converge.
Constant φ trajectory traces on the x-t plane are obtained by specifying φ and x, and finding
the corresponding t using Newton’s method with eq 15 and 19.

Carslaw and Jaeger (1959) gave the solution of the linear diffusion wave equation (eq 11)
subject to the initial and boundary conditions stated above, and we write it as an implicit
function:
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In parallel with the dynamic wave development above, for a given constant φ, the partial
derivative of G(x,t,φ) with respect to x can be obtained from eq 20, and following simplifica-
tion we obtain
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The partial derivative Gt can be obtained from eq 20 and simplified as
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We use the same development as above to obtain the dimensionless profile celerity for a
fixed value of φ on the diffusion wave profile, which in simplified form is
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The forms of the linear diffusion wave and dynamic wave solutions have little apparent
resemblance to each other. The kinematic wave celerity appears in each term of the diffu-
sion wave solution (eq 20), but not in the dynamic wave solution (eq 14). The dynamic
wave celerities in the downstream c+ and upstream c– directions both appear in z of the
dynamic wave solution, and c+ provides an upper bound on the speed of disturbances
moving downstream. There is no similar restriction on disturbances traveling downstream
in the diffusion wave solution. The diffusion coefficient D is an important parameter of the
diffusion wave solution, while ηc0 and η are corresponding parameters of the dynamic
wave solution. The Froude number F0 appears often in the dynamic wave solution, but is
absent from the diffusion wave solution unless the inertial diffusion coefficient is used.

NONLINEAR MONOCLINAL AND MONOCLINAL–DIFFUSION WAVES

Nonlinear monoclinal wave solutions that are analogous to the linear dynamic wave
and diffusion wave solutions will now be developed and compared. The term “monoclinal
wave” refers to the classical solution, and “monoclinal–diffusion wave” is the solution de-
veloped after neglecting the inertia terms of momentum equation (eq 2). A monoclinal
wave profile does not exist for the kinematic wave equation because diffusion is not
present to balance nonlinear steepening. For completeness we summarize the monoclinal
wave development of Whitham (1974), emphasizing the contribution of inertia to the solu-
tion.

We seek a solution that depends on a single variable X = x – Ut, where U is the constant
profile celerity, and rewrite eq 1 and 2 as

    − ′ + ′ + ′ = −[ ] =′Uy vy yv y U v( ) 0 (24)
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respectively, where Chezy conveyance coefficients, dimensionless     C*
 and dimensional C,

are related as
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C
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The first term on the left side of eq 25 follows from the inertia terms of eq 2. Integration of
eq 24 yields

y(U –v) = B (26)

where the constant of integration B represents a wave overrun unit discharge.
The profile celerity U is obtained from eq 26 using the flow states on either side of the

wave as

    
U

v y v y
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y y
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where the alternate forms are developed by eliminating either y or v using the Chezy equa-
tion. U in eq 27 is greater than vf, and hence all velocities along the profile. With eq 27 we
rewrite B in eq 26 as

    
B y y

v v
y y

g C S
y y

y y
g C S

v v
v v

= −
−







= ( )
+







= ( )

+
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0 f
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f 0
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2

0
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0
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0
1 2

1 1
2

0
1

(28)

Both U and B can be expressed in dimensionless form as

    

U
c

y
yk

r
3/2

r
=

−
−







2
3

1
1

(29)

    

B
v y

y y
y0 0

1
1

=
−

−
r r

1/2

r

( )
( )

. (30)

These parameters increase continuously with yr from minimums of 1 and 1/2 at yr = 1,
respectively, and are related to each other by a change of scale as

    

U
c

B
v yk

= +






2
3

1
0 0

. (31)

In eq 29 and 30 vr = vf / v0 can be substituted for yr by using the Chezy equation to obtain

v yr r
1/2= . (32)

Returning to the monoclinal wave equation development, we divide eq 25 by gS0, elim-
inate v and v’ from the inertia term using eq 24 and 26, and obtain

    

′
−







= −
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B
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. (33)

Equation 26 is used again to eliminate v from eq 33, which after rearranging becomes
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where

    

Y
y y

y y
y=

+( )
<0

2 0
f

f
1/2

0
1/2

and     ycr
3  = B2/g represents the contribution of inertia.

Rewriting eq 34 in terms of convenient dimensionless variables y* = y/y0 and     ̃x  = x/x0
yields
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dx
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where

    

Y
y

y

y

y
y
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2
0

0
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Lighthill and Whitham (1955) deduced the monoclinal profile length as the order of y0/S0.
Selecting the distance scale x0 = y0/S0 simplifies eq 35, which then describes dimensionless
monoclinal profiles that vary with yr and F0, and dimensionless monoclinal–diffusion pro-
files that depend only on yr.

The solution of eq 34 for the monoclinal wave and monoclinal–diffusion wave profiles
can be obtained by separation of variables and integration using partial fractions as

    

C X C C y y C y y C y Y

C y y C y y C y Y

1 2 3 0 4

5 6 0 7

+ = −( ) + −( ) + −( )

+ −( ) + −( ) + −( )

I f

f

log log log

(36)

where

    C S y y y Y y Y1 f f 0= −( ) −( ) −( )0 0

    
C y y y Y2 f cr 0= +( ) −( )3 3

    
C y y y Y3 0 cr f= − −( ) −( )3 3

    
C Y y y y4 cr f= −( ) −( )3 3

0

    C y y Y5 f= − −( )2
0

    C y y Y6 0 f= − −( )2

    C Y y y7 f= −( )2
0 .

CI is a constant that results from the integration and several algebraic manipulations. We
obtained CI by specifying X = 0 at y = 0.5(yf + y0). Other values of X are then obtained from
eq 36 by specifying the corresponding y. The contribution of inertia in eq 36 is eliminated by
setting ycr = 0, and the monoclinal–diffusion solution results. The solution for v is obtained
with y and eq 26, indicating that both monoclinal wave types have the same rating curve.

COMPARISON OF THE
LINEAR SOLUTIONS

The five cases used to com-
pare the linear dynamic wave
and diffusion wave solutions
are listed in Table 1. These cases
represent a wide range of con-
ditions, with initial velocities,
initial depths, and channel slopes that vary by factors of 6, 3 and 15, respectively. The corre-
sponding variations in the parameters η, D, and F0 by factors of 10, 30, and 6, are also large
and include most of the subcritical flow range. Cases I and II represent shallow, low-veloc-
ity flows. Parameters η, D and F0 each have relatively small values in case I. The channel

Table 1. Case studies used to compare solutions.

v0 y0 η D c0 ck c+
Case (m/s) (m) S0 (s) (m2/s) (m/s) (m/s) (m/s) F0

I 0.5 1.0 0.0005 51 500 3.13 0.75 3.63 0.16
II 0.5 1.0 0.0001 255 2500 3.13 0.75 3.63 0.16

III 3.0 1.0 0.0015 102 1000 3.13 4.5 6.13 0.96
IV 3.0 3.0 0.0005 306 9000 5.42 4.5 8.42 0.55
V 1.0 3.0 0.0001 510 15000 5.42 1.5 6.42 0.18
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slope for case II is decreased relative to case I, while other parameters remain unchanged,
corresponding to significantly increased η and D, with constant F0. Case III is a shallow
high velocity flow with channel slope and velocity increased relative to the first two cases.
Parameters η and D are near those of the first case, but F0 is at the high end of the range.
Case IV represents a deeper and higher velocity flow than case I at an equal channel slope,
corresponding to large η and D, with a midrange F0. Finally, the flow in case V is deep and
relatively slow with the highest η and D, and F0 near that of cases I and II.

Dimensionless profile celerities of selected points (φ = 0.1, 0.3, 0.5, 0.7, 0.9) were obtained
with eq 17 and 23 for dynamic waves and diffusion waves, respectively, and results for all
cases are presented in Figure 2. In early time, the leading edge of the diffusion wave profile
moves downstream at a celerity that initially exceeds and later is less than the dynamic
wave celerity c+. The dynamic wave and diffusion wave profile celerities of all points con-
verge toward each other and the kinematic wave celerity with time. At the midpoint φ = 0.5
both profile celerities rapidly approach the kinematic wave celerity and then remain con-
stant. Smaller φ profile celerities remain higher than those of larger φ, and diffusion contin-
ues beyond 30 km in all cases.

In case I the discrepancies between diffusion wave and dynamic wave profile celerities

10

Figure 2. Dimensionless celerities of selected linear diffusion wave and dynamic wave profile points
for all cases plus case III with the modified inertial diffusion coefficient. Note the changes in the
celerity scale between panels.



are minor at all points after 1 km of travel distance. Initial differences between the profile
celerities in case II occur as a result of the shock in the dynamic wave solution for φ up to
0.5, and some differences persist for 5 km downstream. Similar profile celerity disagree-
ment is also evident in case III, but celerity convergence after shock attenuation is inexact,
with a slightly larger range remaining in the diffusion wave solution. With the modified
inertial diffusion coefficient (eq 12) all case III diffusion wave and dynamic wave profile
celerities converge by 6 km, the distance for shock attenuation below φ = 0.1. The large D in
case IV causes leading edge diffusion wave profile celerities to greatly exceed the dynamic
wave celerity. The shock persists for 17 km downstream, again delaying profile celerity
agreement. The profile celerity change in case IV with the inertial diffusion coefficient was
negligible. The celerity comparisons for case V are similar to those of case IV, with larger
initial dimensionless profile celerities in both solutions, and celerity agreement at all points
following shock attenuation at 17 km.

Traces on the x-t plane of selected wave profile points in Figure 3 help to visualize the
effects of profile celerity differences. The time scales used for each case are related by the
kinematic wave celerities given in Table 1. The dynamic wave f from the origin at t = 0,
termed the dynamic forerunner by Stoker (1957), carries the initial shock downstream at a
constant celerity c+. A positive value of F(x,t,φ) immediately behind the forerunner indi-
cates that a given φ is on the forerunner. The φ-traces that successively separate from the

Figure 3. Traces on the x-t plane of selected linear diffusion wave and dynamic wave profile points and
the dynamic forerunner f for all cases plus case III with the modified inertial diffusion coefficient. Note
the changes in the time scale between panels.
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Figure 4. Comparison between origin positions of the moving coordinate system in the linear diffusion
wave (xdif) and dynamic wave (xdyn) models for all cases.

dynamic forerunner indicate a progressively diminishing shock amplitude. Afterward, f sep-
arates from the profile and no longer contributes to the solution. Overall, the x-t traces indi-
cate general agreement between the dynamic wave and diffusion wave solutions following
attenuation of the initial shock.

The case I traces of all corresponding dynamic wave and diffusion wave profile points are
essentially identical. The dynamic forerunner f in case I begins to separate from the profile in
the first 5 km, and leads by increasing distances farther downstream. At early time in case II
the diffusion profile celerity of the leading edge exceeds that of f, causing minor differences
between the traces. These differences disappear about 5 km from the origin, and thereafter the
traces of all points are identical. The forerunner and profile in case II progressively separate
beyond 10 km from the origin. The high F0 in case III reduces the rate of spread of the dynamic
profile, causing the diffusion traces of the front half to lead and of the back half to lag the
dynamic traces, and these trends persist. With the inertial diffusion coefficient the traces in
case III agree closely beyond 8 km, and the profile progressively separates from f beyond 15
km. In case IV a shock amplitude of 0.1 is carried by the forerunner for 16 km, with f separat-
ing from the profile beyond 25 km. Excess profile spreading in the diffusion solution, caused
by initial celerity differences and high diffusion coefficient, persists throughout and was not
greatly improved by the inertial diffusion coefficient. The case V dynamic wave and diffusion
wave traces compare similarly to those of case IV, except that differences higher on the profile
do not persist.

We can compare dynamic wave and diffusion wave profiles through time on a single figure
by using a moving x-coordinate system with origin at φ = 0.5. Comparisons of these origin x-
values through time (xdyn, xdif) are given in Figure 4. The origin traces of the dynamic wave
model were similar for cases with the same kinematic wave celerity. The absolute value of the
difference in origin position between the dynamic wave and diffusion wave models was al-
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ways less than 800 m, and diminished to less than 4 % of xdyn after 1 hour. The ratio of these
origin positions rapidly approached 1 from below in all cases. Larger diffusion coefficients
correspond to larger absolute differences in origin position early and generally larger ratio
differences from 1.

Dynamic wave and diffusion wave profiles at selected times are compared in the moving
coordinate system in Figure 5. The dynamic wave solution includes the initial shock on the
forerunner. At early time the leading edge of the diffusion profile always precedes that of the
dynamic profile by a distance that increases with D or η and the Froude number. The profiles
in case I rapidly converge and are nearly identical after 1200 s. In case II the shock front is
preserved for a longer time, and the profiles converge by 10,800 s. With high F0 in case III the
profiles tend to converge after the shock diminishes, but the dynamic wave profile retains
more steepness than the diffusion wave profile. Case III profiles with the inertial diffusion
coefficient are nearly identical after 3600 s. In case IV the shock persists for a longer time, and
profile convergence requires more than 10,800 s. The minor differences in profile steepness
remaining at large times can be minimized with the inertial diffusion coefficient. The case V
profile comparisons are similar to those of case IV, but with a low Froude number the inertial
diffusion coefficient is not needed for agreement at large times. Monoclinal wave profiles of

Figure 5. Linear diffusion wave and dynamic wave profiles and small-amplitude monoclinal wave profile m for all
cases plus case III with the modified inertial diffusion coefficient. Note the changes in the distance scale between panels.
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amplitude 0.1y0, representing fully diffused linear wave profiles at large times, are also
given for each case in Figure 5. The most prominent feature of these solutions is the low
profile slope, and the extended time indicated for the linear wave to attain this profile. Only
the higher Froude number linear profiles at 36,000 s even approach the small-amplitude
monoclinal profiles.

ANALYSIS OF THE MONOCLINAL SOLUTIONS

The numerator of the depth gradient in eq 34 does not change sign along the profile, but
a sign change in the denominator can result from the presence of inertia. This sign change
indicates a monoclinal wave profile that turns back upstream, becomes unstable, and forms
a shock. In contrast, the monoclinal–diffusion profile cannot become unstable because ycr is
not present. Initial monoclinal wave instability occurs at the toe of the profile when the
denominator goes to zero, and

    
y y y

B
g

= =




0

2 1 3

cr

/

. (37)

Following Hunt (1987) we evaluate the stability limit eq 37 using eq 28, and after some
algebra, the depth ratio across the wave yr is obtained as a function of F0
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1 2 2/
. (38)

The depth ratio range of stable monoclinal wave profiles decreases as Froude number in-
creases toward 2. Conversely F0 can be obtained as a function of yr with eq 35 as
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=
+( )r

1/2

r
. (39)

The stability limit in eq 37, evaluated using eq 26, yields U = v0+c0 as the maximum
profile celerity prior to instability. The range of stable profile celerities, bounded below by
the celerity of lower-order kinematic waves and bounded above by the celerity of higher-
order dynamic waves, can be written in dimensionless form as
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1
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< < +





U
c Fk

. (40)

Dimensionless profile celerity and overrun discharge given in Figure 6 increase continu-
ously with wave amplitude from lower limits of 1 and 0.5, respectively, at yr = yf/y0 = 1. The
upper limits are indicated for selected values of F0 by dots that follow from eq 40.

The difference between the monoclinal and monoclinal–diffusion solutions can be para-
meterized by considering the bracketed term in eq 33 rewritten using dimensionless vari-
ables
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where dimensionless depth     ̃y , defined analogously to   ̃φ  in eq 13, varies between 0 and 1.
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For monoclinal–diffusion waves eq 41 has a value of 1, and the deviation from 1 indicates
the relative importance of inertia. The same cases analyzed for linear waves are used to
depict monoclinal waves, with time deleted from the parameters considered and depth
ratio across the wave representing amplitude added. Evaluations of eq 41 for each case are
presented in Figure 7 as a function of yr for selected values of     ̃y , all with limit     1 40

2− F /  at yr
= 1. At low Froude numbers the part of the profile affected by inertia is very close to leading
edge (small     ̃y ), and then only when depth ratios are large. Differences between monoclinal
and monoclinal–diffusion profiles near the leading edge increase with yr and F0. Negative
values of eq 41 indicate that the profile point     ̃y  is located on a shock. Cases I and II have a
calculated stability limit of yr = 51, where the dimensionless shock amplitude is smaller
than 0.001. In case III with high F0 much more of the profile is affected by inertia, and larger
shocks occur at relatively small depth ratios. Case IV is intermediate between these condi-
tions, and case V is similar to cases I and II.

Monoclinal and monoclinal–diffusion dimensionless depth profiles for case I, presented
in Figure 8, are in exact agreement except for the leading edge at yr = 50, where the diffusion
solution leads. The front half of these profiles shorten and steepen as yr increases to 10. At
yr = 50 the wave front lengthens, and the steepest portion continues forward to the leading
edge. The profile comparisons and trends for case II in Figure 9 are identical to those of case
I, except that profile lengths are significantly increased as a result of much higher diffusion.
Case III, depicted in Figure 10, has monoclinal and monoclinal–diffusion profiles that pro-
gressively separate below a dimensionless depth of about 0.4. The leading edge of the
steeper monoclinal profile lags behind that of the diffusion profile. At yr = 5, outside the
stable profile range, overrun of the leading edge of the monoclinal profile indicates shock
formation up to a dimensionless depth of about 0.1. Case IV in Figure 11 is qualitatively

Figure 6. Dimensionless monoclinal profile celerity and overrun discharge
as a function of depth ratio. The stable profile range spans a depth ratio range
from 1 to an upper bound, indicated by the dots, that decreases as the Froude
number increases. Panel b is an expanded view of the shaded area of panel a.
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Figure 7. Evaluation of eq 41 as a function of depth ratio for selected dimensionless depths on the
monoclinal profile in each case. Note the changes in the depth ratio scale between panels.

Figure 8. Case I monoclinal and monoclinal–diffusion profiles at two
distance scales for depth ratios ranging between 1.1 and 50.



Figure 9. Case II monoclinal and monoclinal–diffusion profiles at two
distance scales for depth ratios ranging between 1.1 and 50.

Figure 10. Case III monoclinal and monoclinal–diffusion profiles at
two distance scales for depth ratios ranging between 1.1 and 5.
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Figure 11. Case IV monoclinal and monoclinal–diffusion profiles at
two distance scales for depth ratios ranging between 1.1 and 10.

similar to case III with distance scales substantially increased. At yr = 2 the profiles begin to
separate at a dimensionless depth of about 0.3, and an overrun of the leading edge occurs at
yr = 10 up to a dimensionless depth of 0.03. Case V, presented in Figure 12, is qualitatively
similar to cases I and II except that the largest diffusion coefficient produces the longest pro-
files of all the cases.

General results from these comparisons are that monoclinal and monoclinal-diffusion
profiles agree for all values of yr with F0 ≤ 0.2, and that profile length increases with η or D.
At small F0 the depth ratio needed to produce a shock is large, and the shock height and
overrun distance of the leading edge are small. These results agree with the Lighthill and
Whitham (1955) contention that dynamic waves are subordinated at “well subcritical”
Froude numbers. As F0 increases the monoclinal waves differ over a larger portion of the
profile, shocks occur at smaller depth ratios and their dimensionless amplitudes increase,
and for a given η the profile length decreases. General dimensionless monoclinal–diffusion
profiles for each depth ratio are given in Figure 13 as a function of     ̃x , and include the profiles
of all cases as indicated by eq 35. Similar dimensionless monoclinal profile plots in Figure 14
are almost as well-behaved, but differences near the leading edge occur for each yr due to
their F0 dependence.

Steady flow rating curves relate river stage or mean depth at a given location to a unique
discharge. The governing equation for linear waves holds with either v or y as the depen-
dent variable, indicating a fixed steady flow rating. In unsteady flow the discharge relating
to a given stage generally varies from that for steady flow, depending on the rate of rise or
fall of the hydrograph. We will develop and compare dimensionless monoclinal wave and
steady flow ratings. Using eq 26, an equation for the monoclinal wave unit discharge can be
written in terms of depth and depth ratio as



Figure 12. Case V monoclinal and monoclinal–diffusion profiles at
two distance scales for depth ratios ranging between 1.1 and 35.

Figure 13. General monoclinal–
diffusion profiles at two dimen-
sionless distance scales for depth
ratios ranging between 1.1 and 50.
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Defining dimensionless unit discharge with the same form as dimensionless depth, eq 2
becomes

    ̃ ˜q y= (43)

independent of the depth ratio. Using the Chezy equation we obtain a corresponding rela-
tionship for dimensionless unit discharge in steady flow conditions as a function of depth
ratio
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In the linear wave limit as yr approaches 1, the rating curves represented by eq 43 and 44 are
identical. These rating curves, given in Figure 15, indicate that for a given dimensionless
depth as yr increases the monoclinal wave unit discharge also increases relative to that for
steady flow.

Froude number and energy gradient along a linear wave are unchanged from those of
the initial steady flow. Large amplitude monoclinal waves with discharges along the pro-
file that greatly exceed those of steady flow at comparable depths can have significantly
larger Sf and F. We define E ≡ Sf/S0, and with the Chezy equation and eq 26 obtain
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Figure 14. Monoclinal profiles for all cases at two dimensionless distance scales for depth
ratios ranging between 1.1 and 10.



Figure 15. Dimensionless monoclinal and steady state rating curves for
depth ratios ranging between 2 and 50.

Figure 16 gives E as a function of     ̃y  for selected values of yr. The maximum E increases with
yr and moves from near the midpoint of the profile toward the leading edge. Conversely,
Figure 17 gives E as a function of yr for selected values of     ̃y . At small yr the largest E is
located near the midpoint of the profile. As yr increases E approaches a constant starting at
the midpoint of the profile and progressing toward the leading edge. At large depth ratios
E is inversely proportional to     ̃y , increasing toward the leading edge.

Figure 16. Energy gradient and Froude number parameter E along the monocli-
nal wave profile for selected depth ratios. Panel b is an expanded view of the shaded
area in panel a.

21



The dimensionless depth corresponding to maximum E for a given depth ratio can be
obtained by differentiating eq 45 with respect to     ̃y  and setting the result to zero as
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y y
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2

1
3

1r r
3/2 (46)

Figure 18. Dimensionless depth and corresponding maximum E as functions of depth ratio.
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Figure 17. Energy gradient and Froude number parameter E as a function of
depth ratio for selected dimensionless depths along the profile. Panel b is an ex-
panded view of the shaded area in panel a.



The maximum E is then obtained by substituting eq 46 into 45 and simplifying
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The location and value of Emax are given in Figure 18. Emax increases nearly linearly over
the yr range, and its location rapidly approaches the leading edge as yr increases from 1.
Both energy gradient and Froude number vary continuously along the monoclinal wave
profile, with amplitudes proportional to yr. Froude numbers that exceed 1 can occur on
stable profiles when F0 is large, as in case III.

CONCLUSIONS

The presence or absence of the inertia terms distinguishes dynamic wave and diffusion
wave models of unsteady river flow. Analytical solutions of the linear dynamic wave and
diffusion wave equations were compared for a small instantaneous increase from an initial
steady, uniform flow condition throughout the channel to a higher steady flow velocity,
and depth at the upstream boundary. The comparison used case studies that represented a
wide range of flow depth, velocity, channel slope, and wave diffusion coefficient, and
spanned the range of subcritical Froude numbers. Analytical solutions were also obtained
for nonlinear monoclinal wave and monoclinal–diffusion wave equations, and compari-
sons were again made using the same case studies with a wide range of wave amplitudes.
The linear solution comparisons focused on the evolution of the dynamic wave and diffu-
sion wave profiles with time and distance, while the nonlinear solution comparisons inves-
tigated the effects of wave amplitude and persistent inertia.

The linear solution comparisons included the celerity and the trace on the x-t plane of
selected points from the wave profile, and the complete dynamic and diffusion profiles at
selected times. The initial shock traveled downstream with the dynamic forerunner at c+,
the maximum celerity in subcritical flow. A limitation of the diffusion wave solution is
premature replacement of this shock by a profile having a range of point celerities that
exceed c+ near the leading edge. The diffusion wave and dynamic wave profiles remain
distinct until after the shock attenuates and their profile celerities converge. In cases where
the Froude number approaches 1, this convergence requires a diffusion coefficient cor-
rected for inertia. Points near the leading edge of each profile travel faster than those higher
on the profile, causing diffusion. These differences diminish over time and distance, and all
dynamic and diffusion profile celerities asymptotically approach that of a kinematic wave.
General agreement of the linear diffusion wave and dynamic wave solutions after attenua-
tion of the shock is indicated in all cases by common profile celerities and x-t traces, and by
profile covergence with time. The role of the characteristics in the linear solution becomes
negligible following shock attenuation at time and distance scales that increase with both η
and the Froude number.

The analysis of the nonlinear monoclinal wave solutions linked important inertial effects
at large time with increasing Froude number. As F0 increases corresponding monoclinal
and monoclinal–diffusion profiles separate near the leading edge, and these differences
increase with wave amplitude. Monoclinal profile instability occurs at higher F0, but mono-
clinal–diffusion profiles are always stable. General dimensionless monoclinal–diffusion
profiles exist for each depth ratio with distance scaled by y0/S0, but monoclinal profiles
deviate from these general profiles at higher F0. Several effects of wave amplitude on mon-
oclinal waves were also identified. The celerity of a small-amplitude monoclinal wave
equals that of a kinematic wave, and it increases continuously from this lower limit with
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wave amplitude. The steepness near the front of the monoclinal wave profile and the differ-
ence between monoclinal and steady flow or linear wave rating curves both increase as
amplitude increases. The energy gradient and Froude number at all points along the profile
also increase with wave amplitude, and the location of the maximum shifts continuously
toward the leading edge.
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Linear dynamic wave and diffusion wave analytical solutions are obtained for a small, abrupt flow increase from
an initial to a higher steady flow. Equations for the celerities of points along the wave profiles are developed from
the solutions and related to the kinematic wave and dynamic wave celerities. The linear solutions are compared
systematically in a series of case studies to evaluate the differences caused by inertia. These comparisons use the
celerities of selected profile points, the paths of these points on the x-t plane, and complete profiles at selected
times, indicating general agreement between the solutions. Initial diffusion wave inaccuracies persist over rela-
tively short time and distance scales that increase with both the wave diffusion coefficient and Froude number.
The nonlinear monoclinal wave solution parallels that of the linear dynamic wave but is applicable to arbitrarily
large flow increases. As wave amplitude increases the monoclinal rating curve diverges from that for a linear
wave, and the maximum Froude number and energy gradient along the profile increase and move toward the
leading edge. A monoclinal–diffusion solution is developed for the diffusion wave equations, and dynamic wave–
diffusion wave comparisons are made over a range of amplitudes with the same case studies used for linear
waves. General dimensionless monoclinal–diffusion profiles exist for each depth ratio across the wave, while cor-
responding monoclinal wave profiles exhibit minor, case-specific Froude number dependence. Inertial effects on
the monoclinal profiles occur near the leading edge, increase with the wave amplitude and Froude number, and
are responsible for the differences between the dimensionless profiles.
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