

DEPARTMENT OF THE ARMY

SOUTH PACIFIC DIVISION, CORPS OF ENGINEERS

630 Sansome Street, Room 720 San Francisco, California 94111-2206

CESPD-ED-W (1110-2-240)

DEC 2 8 1990

MEMORANDUM FOR Commander, U.S. Army Corps of Engineers, ATTN: CECW-EH-W, 20 Massachusetts Avenue, NW, Washington DC 20314-1000

SUBJECT: Updating Hansen Dam Water Control Manual

- 1. Enclosed is the updated Hansen Dam Water Control Manual for file purposes.
- 2. If you have any questions on the above, please contact Mr. Jack Hsu at FTS 465-1550 or commercial (415) 705-1550.

FOR THE COMMANDER:

Encl

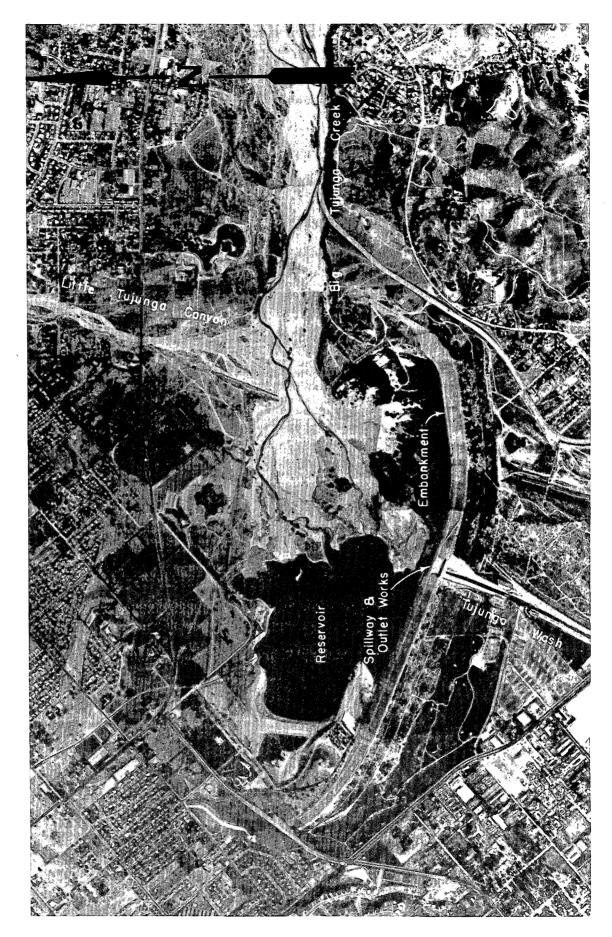
Director, Engineering

WATER CONTROL MANUAL

HANSEN DAM

TUJUNGA WASH, LOS ANGELES COUNTY, CALIFORNIA

NOVEMBER 1990


Prepared

by

U.S. Army Corps of Engineers

Los Angeles District

Reservoir Regulation Section

HANSEN FLOOD CONTROL DAM AND RESERVOIR (JAN 1969)

NOTICE TO USERS OF MANUAL

Regulations specify that this Water Control Manual be published in loose leaf form, and only those sections, or parts thereof, requiring changes will be revised and printed. Therefore, this copy should be preserved in good condition so that inserts can be made to keep the manual current.

EMERGENCY REGULATION ASSISTANCE PROCEDURES

In the event that unusual conditions arise, the Reservoir Regulation Section, Los Angeles District Office can be contacted by telephone at 213-894-4756. See plate 9-1 for other important telephone numbers for reservoir regulation assistance.

ORGANIZATION OF MANUAL

Indicated by Roman Numerals, this manual is divided into chapters. Within each chapter are numbered paragraphs, which are major topics discussed in the chapter. Figures cited in the text of each chapter are presented at the end of that chapter. Plates cited are located in the back of the manual. Exhibits are included in the back as appendices.

WATER CONTROL MANUAL

HANSEN DAM TUJUNGA WASH, LOS ANGELES COUNTY, CALIFORNIA

TABLE OF CONTENTS

		Page
TITLE PAGE	DATAInside Front	i
	OTOGRAPH	ii
· · · · · - · · · · ·	USERS OF THIS MANUAL	iii
	CONTENTS	iv
ABBREVIAT	IONS USED	ix
Paragraph	<u>Title</u>	Page
	I - INTRODUCTION	
1-01	Authorization	I-1
1-02	Purpose and Scope	I-1
1-03	Related Manuals and Reports	I-1
1-04	Project Owner	I-1
1-05	Operating Agencies	I-1
1-06	Regulating Agencies	I-1
	II - DESCRIPTION OF PROJECT	
2-01	Location	II-1
2-02	Purpose	II-1
2-03	Physical Components	II-1
2-04	Related Control Facilities	II-3
2-05	Real Estate Acquisition	11-3
2-06	Public Facilities	11-3
	III - HISTORY OF PROJECT	
3-01	Authorization	III-1
3-02	Planning and Design	III-1
3-03	Construction	III-1
3-04	Related Projects	III-1
3-05	Modifications to Regulation	III-3
3-06	Principal Regulation Problems	III-3

Paragraph	<u>Title</u>	Page
	·	
	IV - WATERSHED CHARACTERISTICS	
4-01	General Characteristics	IV-1
4-02	Topography	IV-1
4-03	Geology	IV-1
4-04	Sediment	IV-1
4-05	Climate	IV-2
4-06	Storms and Floods	IV-4
4-07	Runoff Characteristics	IV-5
4-08	Water Quality	IV-5
4-09	Channel and Floodway Characteristics	IV-5
4-10	Upstream Structures	IV-6
4-11	Downstream Structures	IV-6
4-12	Related Structures	IV-6
4-13	Economic Data	IV-7
	V - DATA COLLECTION AND COMMUNICATION NETWORKS	
5-01	Hydrometeorological Stations	V-1
5-02	Water Quality Stations	V-1
5-03	Sediment Stations	V-2
5-04	Recording Hydrologic Data	V-2
5-05	Communication Network	V-2
5 - 06	Communication With Project	V-2
5-07	Project Reporting Instructions	V-3
5-08	Warnings	V-4
	VI - HYDROLOGIC FORECASTS	
6-01	General	VI-1
6-02	Flood Conditions Forecasts	VI-1
6-03	Conservation Purpose Forecasts	VI-2
6-04	Long-Range Forecasts	VI-2
	VII - WATER CONTROL PLAN	
7-01	General Objectives	VII-1
7-02	Major Constraints	VII-1
7-03	Overall Plan for Water Control	VII-2
7-04	Standing Instructions to the Project Operator	VII-2
7-05	Flood Control	VII-2
7-06	Recreation	VII-3
7-07	Water Quality	VII-4 VII-4
7-08	Fish and Wildlife	V11-4

Parag	<u>raph</u> <u>Title</u>	<u>Page</u>	
7-09	Drought Contingency Plan	VII-4	
7-10	Hydroelectric Power		
7-11	Navigation		
7-12	Other		
7-13	Deviation from Normal Operation		
7-14	Rate of Release Change		
7-15	Water Control Planning Tools		
7-13	water control riaming roots	41110	
	VIII - EFFECT OF WATER CONTROL PLAN	•	
8-01	General	.VTTT-1	
8-02	Flood Control		
8-03	Recreation and Agriculture		
8-04	Water Quality		
8-05	Fish and Wildlife		
8-06	Water Supply		
8-07	Hydroelectric Power		
8-08	Navigation		
8-09	Frequencies		
8-10	Other Studies		
0-10	Other Studies	,. VIII-0	
	IX - WATER CONTROL MANAGEMENT		
9-01	Responsibilities and Organization	TY-1	
9-02	Interagency Coordination		
9-03	Interagency Agreements		
9-04	Commissions, River Authorities, Compacts, and		
7-04	Committees	TY2	
9-05	Reports		
9-03	Reports	1472	
	LIST OF FIGURES		
Figur No.			Page
2-1A	Upstream View of Hansen Dam Embankment, Looking Nor		II-4
2-1B	Upstream View of Hansen Dam Embankment, Looking Nor		II-
2-2	Hansen Dam Spillway, Looking Upstream		II-
2-3	Hansen Dam Spillway and Outlet Channel		II-
3-1	Hansen Spreading Grounds Diversion Structure		III-
3-2	Hansen Spreading Grounds Infiltration Pond		III-
3-3	Debris At Hansen Dam After February 17, 1980 Storm.		III-
3-4	Debris At Hansen Dam After March, 1, 1983 Storm		III-

FIGURES (Continued)

Figure No.	Title	Pag
9-1	Flood Control Pagin Constitut Report	·
9-1	Flood Control Basin Operation Report	IX-
9-2 9-3	Monthly Reservoir Operation Report	IX-
9-3 9-4	· ·	IX-
9-4 9-5	Record of Data from Digital Recorders	IX-
9-6	Reservoir Operations Report (daily)	IX-
9-7	Record of Calls	IX-
	LIST OF PLATES	
Plate		
No.	<u>Title</u>	
1-1	Related Manuals and Reports	
2-1A	Drainage Area Map	
2-1B	Drainage Area Map	
2-2	Storage Allocation	
2-3	General Plan	
2-4	Typical Sections	
2-5A 2-5B	Real Estate Limits Map	
2-58 2-6	Real Estate Easements, Permits and Licenses Spillway and Outlet Works, General Plan	
2-0 2-7	Spillway Ogee and Intake, General Plan	
2-8	Spillway Bridge, Plan and Elevation	
2-9	Longitudinal Section Through Outlets	
2-10	Spillway and Outlet Works, Part Plan of Outlet Channel	ı
2-11	Spillway and Outlet Works, Trash Rack Structure	
2-12A	Recreational Facilities Map	
2-12B	Recreational Map Symbols	
2-13	Elevations of Facilities In Hansen Dam	
3-1	Channel Capacities and Configurations, Tujunga Wash	
3-2A,B,	C, Channel Capacities and Configurations, Los Angeles River	
	A. Sepulveda Dam to Los Feliz Boulevard	
	B. Los Feliz Boulevard to Florence Avenue	
	C. Florence Avenue to Pacific Ocean	
3-3	Channel Capacities and Configurations, Pacoima Wash	
3-4	Reservoir Regulation Schedule and Instructions to Dam Operat	cor
3-5	Annual Sediment Removal from Hansen Dam (1981-1990)	
3-6	Area-Capacity Curve, Hansen Dam	
4-1A	Reservoir Sediment Data Survey, Hansen Dam	
4-1B	Reservoir Sediment Data Survey, Hansen Dam	

PLATES (Continued)

Plate	
No.	<u>Title</u>
4-2	Summary of Climatological Data at Burbank, California
4-3	Mean Annual Precipitation
4-4	Summary of Precipitation Data, Hansen Watershed Precipitation Frequency Values for Hansen Watershed
4-5 4-6	Annual Maximum Inflow, Outflow, and Storage of Water at Hansen Dam
4-7A	Big Tujunga Dam Maximum Peak Inflow (1917-1952)
4-7A 4-7B	Big Tujunga Dam Maximum Peak Inflow (1917-1952) Big Tujunga Dam Maximum Peak Inflow (1953-1987)
4-7C	Big Tujunga Dam Annual Outflow (1932-1965)
4-7D	Big Tujunga Dam Annual Outflow (1965-1987)
4-8	Variation in 10-Year Mean Peak Discharge
4-9A	Basin Unit Hydrograph, Drainage Area Between Hansen Dam and
	Biq Tujunga Dam
4-9B	Basin Unit Hydrograph, Drainage Area Above Big Tujunga Dam
4-10	Big Tujunga Channel Profile (Sta. 0+00 - Sta. 260+00)
4-11	Big Tujunga Channel Profile (Sta. 240+00 - Sta. 500+00)
5-1A	Precipitation, Reservoir, and Stream Gauges in and Near the
	Watershed above Hansen Dam
5-1B	Precipitation, Reservoir, and Stream Gauges in and Near the
	Hansen Watershed
5-2	Hydrologic Instrumentation Hansen Dam
5-3	Methods of Reporting Hydrologic Data
5-4	Rating Table for Big Tujunga Creek Below Hansen Dam
5-5	Rating Curve Stream Gauge Big Tujunga Creek Below Hansen Dam
5-6	Notification List for Hansen Dam
7-1	Hansen Dam Outlet Rating Curve for 1-5' x 8' feet Gated Outlet
7-2	Hansen Dam Outlet Rating Curve for 2-8' x 6' feet Ungated Outlets
7-3	Hansen Dam Spillway Rating Curve
8-1	Standard Project Flood (SPF) Routing
8-2	Probable Maximum Flood (PMF) Routing
8-3	Hansen Dam Operation Hydrograph, 22-26 January 1943
8-4	Hansen Dam Operation Hydrograph, 24-28 January 1969
8-5	Hansen Dam Operation Hydrograph, 23-27 February 1969
8-6	Hansen Dam Operation Hydrograph, 9-11 February 1978
8-7	Hansen Dam Operation Hydrograph, 1-4 March 1983
8-8	Discharge-Frequency Curve for Hansen Dam (Inflow and Outflow)
8-9	Discharge-Frequency Curve for Big Tujunga Dam (Inflow and Outflow)
8-10	Hansen Reservoir Inflow, Outflow, and Filling Frequency Values
8-11	Big Tujunga Reservoir Inflow, Outflow, and Filling Frequency Values
8-12	Elevation Frequency, Hansen Dam
8-13	Elevation Frequency, Big Tujunga Dam
8-14	Comparison of Historical and Design Floods at Hansen Reservoir
8-15	Comparison of Historical and Design Floods at Hansen Reservoir
9-1	Chain of Command for Reservoir Operations Decisions

LIST OF EXHIBITS

Exhibit No.	Subject
A	Standing Instructions to Project Operator for Water Control
В	Hansen Dam Water Control Plan Reservoir Regulation Schedule
C D	Pertinent Data, Big Tujunga Dam and Reservoir Pertinent Data for Other Reservoirs Affecting Los Angeles River
E	Streamflow Data for Tujunga Creek Stations
F	Environmental Evaluation
G	Chain of Correspondence For Approval of Water Control Manual
•	onder of correspondence for the property of the correspondence of
	ABBREVIATIONS USED
ac-ft	acre-feet
ALERT	Automatic Local Evaluation in Real-Time
ŒΕ	U.S. Army Corps of Engineers
DWP	Department of Water and Power, City of Los Angeles
EM	Engineering Manual
ER	Engineering Regulation
ETL	Engineering Technical Letter
ft ³ /s ft.	cubic feet per second feet
LACDA	Los Angeles County Drainage Area
LACDPW	Los Angeles County Department of Public Works
LACECD	Los Angeles County Flood Control District
LAD	Los Angeles District, U.S. Army Corps of Engineers
LATS	Los Angeles Telemetry System
NGVD	National Geodetic Vertical Datum of 1929
NOAA	National Oceanographic and Atmospheric Administration
nws	National Weather Service
PMF	Probable Maximum Flood
ppm	parts per million
QPF	Quantitative Precipitation Forecast
RDF	Reservoir Design Flood
ROC	Reservoir Operations Center Standard Project Flood
SPF SPS	Standard Project Flood Standard Project Storm
USGS	U.S. Geological Survey
VHF	Very High Frequency
WSE	Water Surface Elevation

I - INTRODUCTION

1-01 AUTHORIZATION

This Hansen Dam Water Control Manual was prepared in compliance with the following directives: Engineering Regulation (ER) 1110-2-240, "Engineering & Design, Water Control Management", dated 08 October 1982, Engineering Manual (EM) 1110-2-3600, "Engineering and Design, Management of Water Control Systems," dated 30 November 1987, Engineering Technical Letter (ETL) 1110-2-251, and "Engineering and Design, Guide For Preparing Water Control Manuals", dated 14 March 1980.

1-02 PURPOSE AND SCOPE

This water control manual provides a detailed plan for regulation of Hansen Dam and Reservoir on Tujunga Wash for the purpose of flood control. Hansen Dam is located approximately 4 miles southeast of the town of San Fernando, California, just below the confluence of Big and Little Tujunga Creeks. Major topics in this manual include: authorization, history, and description of the project; watershed characteristics; hydrometeorology; data collection and communication networks; hydrologic forecasting; the water control plan; and responsibilities and coordination for water control management.

1-03 RELATED MANUALS AND REPORTS

Manuals and reports with data and information relevant to the information in this manual are listed chronologically on plate 1-1.

1-04 PROJECT OWNER

Hansen Dam and Reservoir was constructed and is owned and operated by the U.S. Army Corps of Engineers, Los Angeles District (LAD).

1-05 OPERATING AGENCIES

- a. The LAD is responsible for the operation and maintenance of the dam, reservoir, and outlet works. The outlet gates are operated manually, as needed.
- b. The Los Angeles County Department of Public Works (LACDPW) is responsible for the operation and maintenance of the diversion works for the Hansen Spreading Grounds (1,500 ft. downstream of the dam). The Department of Water and Power, City of Los Angeles (DWP) is responsible for the operation and maintenance of the Tujunga Spreading Grounds, 3 miles downstream of the dam.

1-06 REGULATING AGENCIES

- a. The LAD is responsible for developing the flood control regulation plan for Hansen Dam and Reservoir. The LAD is responsible for the flood control regulations and operation of the dam.
- b. The LACDPW is responsible for the regulation of the diversion works for the downstream Hansen Spreading Grounds, which are used for groundwater replenishment.

II - DESCRIPTION OF PROJECT

2-01 LOCATION

Hansen Dam is located near the northern edge of the San Fernando Valley on Tujunga Wash, about one mile below the confluence of the Big Tujunga and Little Tujunga Washes, and about four miles southeast of the town of San Fernando. The boundary of the drainage area is formed by the San Gabriel Mountains on the north and west, and by the Verdugo Mountains and a secondary range of the San Gabriel Mountains on the south and east. The location of the project is shown on plate 2-1A. The drainage area is shown on plate 2-1B.

2-02 PURPOSE

Hansen Dam is an essential element for flood control in the Los Angeles River drainage basin. In conjunction with Sepulveda and Lopez Dams, Hansen Dam is vital for the flood protection of lower portions of the San Fernando Valley and the City of Los Angeles. Storage regulation given by the flood control basins permits efficient use of the Los Angeles River Channel. The storage allocation for Hansen Dam is shown on plate 2-2.

Currently, no facilities for the generation of hydroelectric power at Hansen Dam exist, nor are any contemplated. Furthermore, no navigation of any sort is possible or allowed in Hansen Reservoir or in Tujunga Wash, either upstream or downstream of Hansen Dam.

2-03 PHYSICAL COMPONENTS

a. Embankment. The dam is a compacted impervious earth-fill structure. It is 10,475 ft. long at the crest (elev. 1,087.0 ft. NGVD, i.e., National Geodetic Vertical Datum of 1929). The maximum height above streambed is 97 ft. It extends in a general east and west direction at right angles to Tujunga Wash. The axis of the dam follows a gentle curve in order to connect the abutments of the dam with a prominent rock outcrop located near the center of the dam. At the east end, the dam abuts against a range of small hills and on the west end, the dam terminates on a gentle sloping hill. Rock is exposed on the hillside at the east abutment and is found at shallow depths on the west abutment. Between the ends of the dam and the central rock outcrop, the axis of the dam crosses the lower end of a typical debris cone. The upstream face of the dam has a slope of 1V on 3H and is covered with a 2-ft. 6-inch layer of riprap over a 6-inch spall blanket. The downstream face has a slope of 1V on 6H from the rock toe to elevation 1,020, a slope of 1V on 5H from elevation 1,020 to 1,050, and a slope of 1V on 3H to the dam crest. berms, each 20 ft. wide, run parallel to the axis of the dam, one on the upstream face at elevation 1,040 and two on the downstream face at elevations 1,020 and 1,050 ft.

The general plan, typical sections, and real estate limits are shown on plates 2-3, 2-4, and 2-5, respectively. Photographs of the embankment are shown in figure 2-1A and B.

b. Spillway. The spillway structure, with a crest elevation of 1,060 ft., is located near the center of the dam on a prominent rock outcrop just west of the Tujunga Wash channel. The approach channel, leading to the crest, is a 302-foot wide rectangular section with invert sloping from the earth berm at elevation 1,040 ft. to the point of intersection with the concrete crest section at elevation 1,060 ft. The crest is a Creager and Justin ogee section with an overall length of 302 ft. and six 3-foot wide crest piers, making a net length of 284 ft. A concrete lined rectangular spillway channel, which includes the outlet channel at its center, is designed to carry the spillway discharge beyond the earth embankment. The spillway channel consists of a 302-foot constant width section to the toe of the ogee section, and an 897-foot transition to a width of 180 ft. at the end of the channel. The spillway channel invert extends 233 ft. from the toe of the ogee section on a slope of 0.08584 and then 664 ft. on a slope of 0.02681, being parallel to the outlet channel invert, and terminating at elevation 964.0 and connects with the improved channel.

Details, dimensions, and other information related to the spillway are shown on plates 2-6, 2-7, and 2-8. Figures 2-2 and 2-3 show photographs of the spillway.

- c. Outlet Works. The outlet structures and spillway are located west of the Tujunga Wash Channel in Hansen Knob, which is on the axis of the dam and approximately bisects it. The outlet structures include an approach channel, an intake structure with operating house and vent house, eight gated and two ungated outlet conduits, and an outlet channel. The outlet conduits are installed through the overflow spillway section (see fig. 2-3), located symmetrically with respect to the spillway center line and aligned to discharge into Tujunga Wash. The gated conduits are located in the center of the outlet section in two groups of four. All conduit entrances are elliptical in shape and have been provided with a semicircular trash rack structure. The throat entrances to the ungated conduits are 8 ft. by 8 ft. in order to allow larger discharges through these conduits. A 60-foot long section, dropping to the approximate elevation of the gated conduits, is used as the transition from the 8 ft. by 8 ft. entrance throat to the 8 ft. wide by 6 ft. high outlet section. The combined maximum capacity of the outlets is 22,000 ft³/s at a reservoir water surface elevation of 1,060 ft. (i.e., at the spillway crest), of which 4,900 ft³/s passes through the ungated openings and 17,100 ft³/s passes through the gated openings. Plates 2-9, 2-10, and 2-11 show pertinent information pertaining to the reservoir outlet works. Figure 2-3 is a photograph of the Hansen Dam outlet works.
- d. Water Supply Facilities. Hansen Dam's regulation objectives are to maximize flood protection and enhance recreational usage. These objectives are to be accomplished by operating Hansen Dam to release all flood waters as rapidly and safely possible. In the past, Hansen Dam has also been operated in the interest of water conservation by utilizing the storage allocated for sediment. Runoff would be temporarily stored for groundwater recharge downstream. However, due to the large accumulation of sediment in Hansen Dam, it is no longer possible to impound water for conservation without infringing on flood control capability and recreation facilities. The large sediment accumulation has created a situation in which even relatively small

impoundments for conservation adversely impact on usage and maintenance of recreation facilities located within the basin. Operation for water conservation also tends to increase the rate of sediment deposition, thereby shortening the usable life of the project. Maintenance costs, including reservoir cleanout, are being borne by the agencies responsible for flood control and recreation, without participation from the beneficiaries of water conservation operation. The Corps has a strong interest in water conservation, but until a solution is found to the sedimentation problems, LAD will not be able to operate for water conservation.

2-04 RELATED CONTROL FACILITIES

There are three related control facilities: (a) Big Tujunga Dam, which is upstream from Hansen Dam, is operated by LACDPW as a flood control reservoir, in addition to its water conservation purpose; (b) the Hansen Spreading Grounds, which are owned and operated by the LACDPW; and (c) Lopez Canyon Diversion Channel which diverts runoff from a 2.4 square mile areas into Hansen flood control basin.

2-05 REAL ESTATE ACQUISITION

Hansen Dam and Reservoir project lands comprise 1468 acres as shown on plate 2-5.

2-06 PUBLIC FACILITIES

The recreation conditions at Hansen Dam have changed considerably during the past 48 years. The once expansive (Holiday) lake has all but disappeared, equestrian trails have expanded, and new facilities have been constructed within the basin.

Adjacent to the downstream face of the dam embankment is an 18-hole golf course with clubhouse, parking area, and driving range. An overlook area is located just north of the intersection of Osborne Street with Glenoaks Boulevard. The overlook has a paved parking area and provides nonvehicular, public access to the crest service road. Within the basin, the existing facilities include: six ballfields, an outdoor theatre, restrooms, two parking areas, an equestrian center, and several picnic areas. Prior to 1983 there was a lake used for swimming and boating, but due to sedimentation, the lake no longer exists. There were two large parking lots near the lake, one for the swimming area, and the other for the boat launching area. The boat trailer lot has been virtually eradicated by the deposition of large amounts of sediment in the area and a large portion of the swimming area lot has also been impacted by sediment inundation. See plates 2-12A, B, and plate 2-13 for current and proposed facilities in the reservoir with their respective elevations.

Figure 2-1a. Upstream View of Hansen Dam Embankment, Looking Northeast

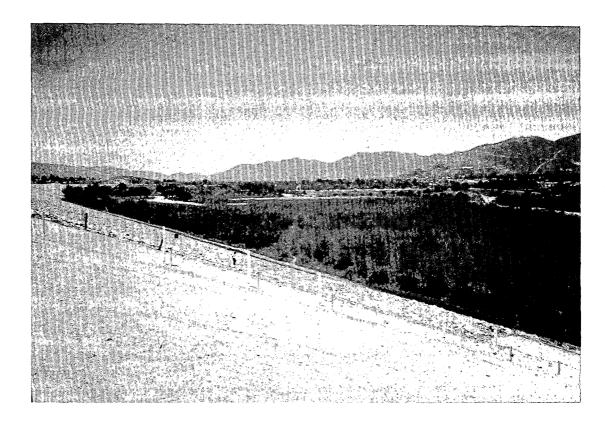
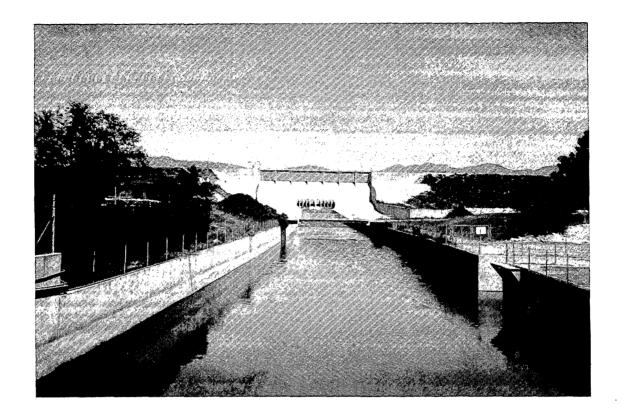



Figure 2-1b. Upstream View of Hansen Dam Embankment, Looking Northwest

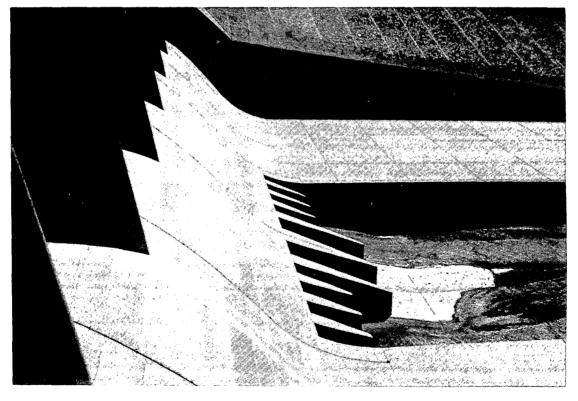


Figure 2-3. Hansen Dam Spillway and Outlet Channel.

III - HISTORY OF PROJECT

3-01 AUTHORIZATION

Hansen Dam was authorized by the Flood Control Act, approved 22 June 1936 (Public Law 738, 74th Congress) and extended and amended by subsequent Flood Control Acts of 1937, 1938, 1941, 1944, and 1946. The plan for construction, in accordance with the recommendations contained in the report dated 11 April 1940 by the Chief of Engineers, and submitted in House Document 838, 76th Congress, 3rd session, was authorized by the Flood Control Act, approved 18 August 1941.

3-02 PLANNING AND DESIGN

In 1935 and 1936, LAD and the Los Angeles County Flood Control District (LACFCD) became partners in a large Works Progress Administration contract to design a comprehensive flood control plan for Los Angeles County. During the next three years, a comprehensive flood control system was designed for the Santa Ana, San Gabriel, and Los Angeles Rivers (of which Hansen Dam is a part). This included a Definite Project Report for the control of the Los Angeles River, submitted in December 1936, which was revised in 1939 to include the influence and data of the March 1938 flood. Other design reports include: "Analysis of Design of Tujunga Wash Improvement - Hansen Dam" - Volume I and II, dated 2 May 1939, superseded by Volume III, dated 1 June 1940; "Analysis of Design of 5 ft. by 8 ft. Service Gates for Hansen Dam," issued January 1939; "Analysis of Hydraulic Design for Hansen Flood Control Basin", issued 18 March 1940.

3-03 CONSTRUCTION

Construction for Hansen Dam started on 20 September 1939, with work completed and accepted by the U.S. Army Corps of Engineers on 5 September 1940. The project was constructed by Guy F. Atkinson Company, and copies of the construction contract (Contract No. W-509-Eng-689) and construction drawings (File Nos. 424/66 through 424/104 and 425/1) are on file in the LAD Office, in the Design Section.

3-04 RELATED PROJECTS

Plate 2-1 shows related projects for the entire Los Angeles County drainage are (LACDA).

- a. <u>Big Tujunga Dam</u>. Big Tujunga Dam is located on Big Tujunga Creek, approximately 15 miles upstream of Hansen Dam. The concrete arch structure, completed in 1931, is operated and maintained by the LACDPW for flood control and water conservation. Big Tujunga Dam has a storage capacity at spillway crest of 6,240 ac-ft with a maximum outflow of 24,250 ft³/s. Information pertaining to Big Tujunga Dam and Reservoir is given in Exhibit A.
- b. <u>Hansen Spreading Grounds</u>. Hansen Spreading Grounds is owned and operated by the LACDPW. The facility is located approximately 1,500 ft. downstream of Hansen Dam. A radial gate across Tujunga Wash can divert flow

into the spreading grounds. Photographs of the diversion structure and the spreading facility are shown in figures 3-1 and 3-2. pertinent information concerning Hansen Spreading Grounds is listed below:

Maximum basin intake capacity	$400 \text{ ft}^3/\text{s}$
Maximum basin outlet discharge	150 ft ³ /s
Allowable water quality sediment limit	400 ppm
Storage capacity	330 ac-ft
Maximum percolation rate	250 ft ³ /s
Basin gauge height limits*	4-5 ft

^{*}Basin gauge height limit refers to the depth of water in the basin during spreading operations.

- c. <u>Tujunga Wash Channel</u>. The Tujunga Wash channel, for Hansen Dam to the Los Angeles River, was constructed in 1952. The channel capacities and configuration are shown on plate 3-1. The channel capacities and configurations for the Los Angeles River from Sepulveda Dam to the Pacific Ocean are shown on plate 3-2, A, B, and C. The original capacity of the unimproved channel immediately downstream of the dam was 12,000 ft³/s. Flowing improvement of the channel in 1952, the capacity rose to 22,000 ft³/s. The channel capacity was revised in 1988 during LACDA review studies to 20,800 ft³/s to reflect current freeboard criteria. The rectangular channel is lined with reinforced concrete.
- d. <u>Tujunga Spreading Grounds</u>. Tujunga Spreading Grounds is owned and operated by the Department of Water and Power, City of Los Angeles (DWP). It is located approximately 3 miles downstream of Hansen Dam. Although DWP is capable of spreading water from Tujunga Wash, it does not, and has not since 1983, due to the high sediment concentration of flood control release. If DWP were to spread water, the water's origin would be surplus water from DWP's reservoirs via the California Aqueduct.
- e. <u>Pacoima Diversion Channel</u>. Pacoima Wash is an improved channel from Lopez Dam to Paxton Street where it is diverted to Tujunga Wash by the Pacoima Diversion Channel. The channel capacities and configuration are shown on plate 3-3. This channel was constructed in 1954 as a part of the LAD Lopez Dam Project. The channel capacity is 17,000 ft³/s at the confluence of Tujunga Wash.
- f. <u>Branford Spreading Grounds</u>. Branford spreading Grounds are owned and operated by the LACDPW. The facility is located near the Pacoima Diversion Channel/Tujunga Wash confluence. Branford Spreading Grounds obtains its water from a local storm drain system. The facility discharges water into the Pacoima Diversion Channel and has no capability of diverting water from the channel. The facility's maximum inflow and outflow is 1,540 ft³/s and the outlet invert elevation is 835 ft. NGVD. Its location is shown on plate 3-3.
- g. <u>Lopez Canyon Diversion Channel</u>. The Lopez Canyon Diversion Channel drainage area, located between Lopez Dam and Hansen dam, is bout 2.4 square miles. About 80 percent of the area is on the southern slope of the

San Gabriel Mountains. The gradient of the steam ranges from approximately 1,700 ft/mi (0.32) in the headwaters to 250 ft/mi (0.05) near the outlet into Hansen flood control basin. Its location is shown on plate 2-1.

3-05. MODIFICATIONS TO REGULATIONS

For the 1940-1951 period, Hansen Reservoir was operated to completely regulate minor floods by utilizing the nearly 4,00 ac-ft available for debris pool storage. The stored water of minor floods was released to the spreading grounds downstream, operated by the LACDPW and the DWP. For large floods that raised the reservoir water surface above the ungated outlets (elev. 1,011 ft. NGVD), the gates were to be operated to maintain a maximum outflow of 12,000 ft³/s, required to prevent the spillway from going into operation for the reservoir design flood prior to 1952. As indicated in the preceding section, after the improvement of Tujunga Wash downstream of the dam in 1952, the regulation schedule was modified to provide for a maximum release of 22,000 ft³/s. The current reservoir operation schedule was revised in 1988 to limit the maximum release to 20,800 ft³/s. This schedule, in the form of water surface elevation versus outlet discharge, is based exclusively on operation for flood control and is shown in plate 3-4.

3-06. PRINCIPAL REGULATION PROBLEMS

Hansen Dam has performed adequately since its construction. The dam has never spilled, and there have never been any structural deficiencies or major hydraulic malfunctions.

However, based on the results of the April 1983 reservoir sedimentation survey, current storage capacity below the spillway crest elevation of 1,600 ft. is approximately 25,500 ac-ft, which is about 23 percent less than the initially allocated net flood control storage capacity of 33,100 ac-ft. Figures presented on plates 4-1A, 4-1B are indicative of the fact that sediment has accumulated behind the dam at an average rate of 255 ac-ft per year during the 1940-1978 period. Beginning in 1981 and continuing through 1983, the date of the most recent survey, excavation to remove sediment started. Total sediment removed during this period is estimated to be 333 acft. Excavation has continued since 1983; the estimated annual sediment removals are given on plate 3-5. Excavation is continuing and since excavation began in 1981 it is projected to remove 7,320 ac-ft through 1990 thereby returning hansen reservoir close to original flood control capacity. Because of the uncertainties of sediment removed and the inconsistency of the 1982 survey with these figures, no sedimentation rate was determined since 178. For this manual, the sedimentation rate of 255 ac-ft/yr, for the period 1940-1978, is indicative of the long term sedimentation rate. The results of the 1983 reservoir sedimentation survey are graphically presented on plate 3-6. This plate showns the relationships between water surface elevation, surface area, and storage capacity based on this survey,. It is evident that sediment has accumulated behind the dam at a rate much faster than the 100-acft per year initially anticipated during the dam's design, and that current flood control storage capacity of the reservoir is barely adequate to control the Standard Project Flood (SPF) event without exceeding downstream channel capacity. Consequently, in recent years the reservoir regulation plan has

been altered. No storage will be used for water conservation until local interests formally agree to participate in the removal of sediment deposits accumulated in the reservoir that are attributable to water conservation operation.

Another regulation problem is the repetitive blocking of the trash rack by floatable debris. The debris problem at Hansen Dam has threatened the water control regulation of the project on at least two occasions in the past. During the flood of 1980, while all gates were fully open, inflow (up to 11,350ft³/s) transported floatable debris into the trash rack, nearly sealing off the outlet works. The debris problem at the project can be described as follows: Hansen Dam has the heaviest sediment load (255 ac-ft/yr) of COE dams in LAD. Figure 3-3 shows debris being removed with a crane on February 18,1980 after the storm of February 17, 1980. A significant amount of debris is evident. Phone poles and large trees were observed to be included in the debris. During large flood events, debris has to be cleared from in front of the trash racks in order to prevent a "dam" being formed in front of the outlets. Very little flow was coming through the intakes works in spite of the fact that water level in the reservoir was up to the top of the trash racks (elev. 1,031). A crane was positioned at elevation 1,040 to remove debris which again had blocked the intakes. Eventually, a huge plug was released downstream causing bankfull flow when it finally flushed loose as the result of openings and closings of the gates in an effort to release the debris piled against the trash racks.

The tops of the trash racks are adjacent to a berm at elevation 1,040 ft. Just beyond the berm is the concrete approach to the spillway ogee (elev. 1,060 ft.) The field crew was working between the rising water and the spillway, with the crane positioned on the berm in the last accessible space from which to clear the outlets of debris. If the water had been allowed to rise further, with the outlets still plugged, the water could have flowed over the berm, and the crew would have had to evacuate. The crane cable was attached to the top 10-foot sections of the trash racks, which were pulled out as a last resort. The water and debris plunged downward into the ungated outlets and soon the system was able to discharge water again. During this same flood, the clamshell bucket got caught in debris and was tipping the crane. It had to be cut loose and was swept into the outlet works down through the ungated outlet.

The March 1, 1983 flood again required use of a crane to remove debris from in front of the trash racks. Figure 3-4 shows debris being removed with cranes on March 4, 1983 after that storm.

Suggested solutions to the debris problem have included: remove the trash racks all together; remove the upper and lower 10-foot sections of each trash rack tier similar to what was done at Sepulveda and Santa Fe Dams; remove the upper 10-foot sections of trash racks while making the lower 10-foot sections hinged, to allow cleaning of outlet works with heavy equipment in summer season; allow reservoir vegetation to grow to build a "natural" trash rack in the reservoir.

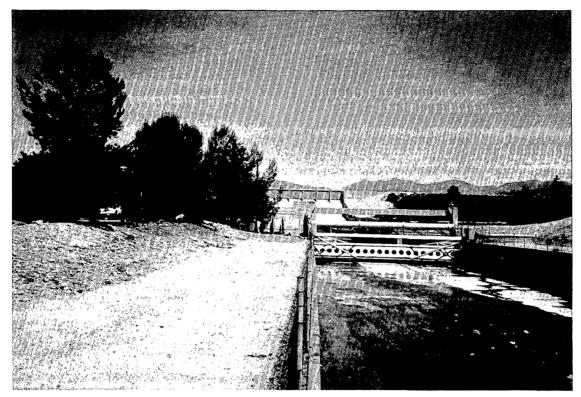


Figure 3-1. Hansen Spreading Grounds Diversion Structure.

Figure 3-2. Hansen Spreading Grounds' Infiltration Pond.

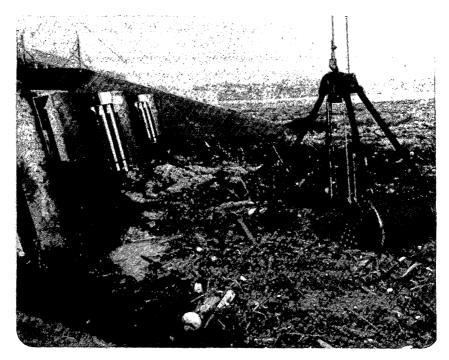


Figure 3-3. Debris at Hansen Dam after February 17, 1980 storm.

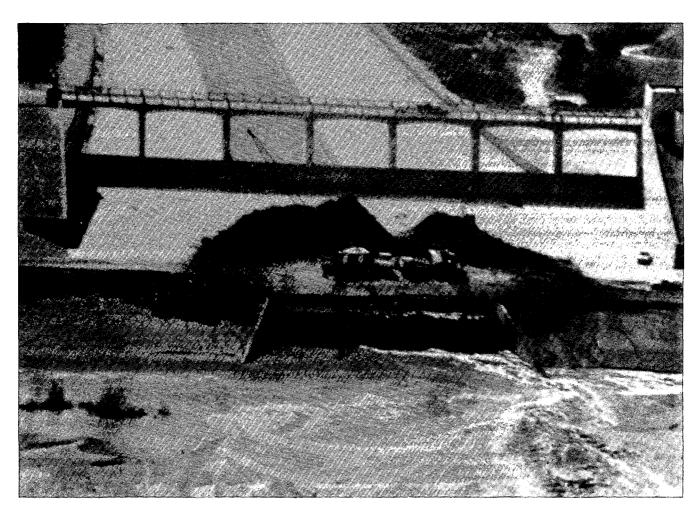


Figure 3-4. Debris at Hansen Dam after March 1, 1983 storm.

IV - WATERSHED CHARACTERISTICS

4-01 GENERAL CHARACTERISTICS

Hansen Dam is located on the edge of San Fernando Valley on Tujunga Wash, a principal tributary of the Los Angeles River system. The San Gabriel Mountain Range forms the northern drainage divide of the watershed and reaches an elevation of over 7,124 ft. NGVD upstream of Big Tujunga Dam, the largest structure in the Hansen Dam watershed. The drainage divide on the west is formed by the ridge between the Lopez Dam and Hansen Dam watersheds. On the east, the drainage divide is the high ridge between the Hansen Dam watershed and that of the upper San Gabriel River watershed. To the south Tujunga Wash flows across a broad alluvial fan and urbanized valley area before emptying into the Los Angeles River downstream of the dam. Little Tujunga Creek, the other major tributary in the watershed, joins Big Tujunga Creek within Hansen Reservoir. The longest watercourse in the watershed is the Big Tujunga Creek mainstem. It has a length of 31.5 miles, and an average slope of 148 ft. per mile (0.028).

4-02 TOPOGRAPHY

Approximately 140 square miles of the 152 square mile drainage area above Hansen Dam consists of steep, mountainous terrain, dissected by deep, narrow ravines containing the numerous watercourses tributary to this watershed. The remainder of the watershed consists of a relatively flat alluvial fan surface and valley fill area, much of which is occupied by urban development. Elevations in the mountains vary from 7,124 ft. at Pacifica Mountain (the highest point in the watershed) to 990 ft. at the dam site.

4-03 GEOLOGY

Hansen Dam is located in a basin formed by a series of tiered bluffs descending from the San Gabriel Mountains in the north to the dam site in the south. The Hansen Dam Basin foundation is comprised of alluvium consisting of sand, gravel, and boulders. Overbank areas tend to consist of the same material with somewhat larger amounts of silt and clay in the matrix. The dam itself is tied into two outcrops of Modelo sandstone. Soils at the dam tend to be well-graded alluvial materials receptive to the growth of vegetative cover. Soils in the mountains tend to be shallow, stony, and poorly developed.

4-04 SEDIMENT

Sediment production within the Hansen Dam watershed varies considerably, depending primarily on the terrain. In the urbanized valley areas, sediment production is at a minimum, and may be expected to decline even further with a continued increase in areas devoted to urban uses. In the steep mountainous segment of the watershed, sediment production can be quite high, particularly following periods in which wildfire impacts the watershed, and also following periods of high-intensity rainfall. The fire history of Hansen Dam watershed was computed to have burned 95 percent of the watershed over a period from 1878 through 1975. On September 9-12, 1968, the Limerock Fire burned 2,846

acres which included the entire western side of Little Tujunga Creek. This burn contributed sediment and debris to the January 24-28, 1969 storm runoff. Subsequent small fires in the watershed also occurred along the Little Tujunga Creek and Lopez Canyon drainages making the northwest edge of the Hansen Dam watershed the most likely source of much of the debris problems within Hansen Reservoir. On November 23-27, 1975 the Mill Fire burned 6,370 acres along a stretch from Hansen Dam watershed to Pasadena. This fire burned 95 percent of the area between Hansen Dam and Big Tujunga Dam as well as acreage behind Big Tujunga Dam. Subsequent runoff events in 1978, 1980, and 1983 have carried excess debris and sediment due to fire damage. Big Tujunga Dam and Reservoir initially intercepts much of the sediment produced by the 82.3 square miles drainage area upstream of Hansen Dam. Slucing of this sediment has not been permitted by the Corps because no agreement for sediment removal from Hansen Reservoir has been made with Los Angeles County Flood Control District.

Reservoir surveys for Hansen Dam were performed in September 1940, July 1941, October 1943, November 1945, January 1962, August 1969, October 1978, July 1982 and April 1983. Pertinent parts of Eng Form 1787, Reservoir Sediment Data Summary for Hansem Dam, are given on plates 4-1A, B. The plates show an average sedimentation rate of 255 ac-ft per year for the period 1940-1978. An average sedimentation rate has not been determined after 1978 because of the approximations of sediment removal and the inconsistancies with the 1982 survey. See section 3-06.

The loss in storage capacity due to sediment deposition within Hansen Reservoir amounts to 28.9 percent of total gross (1940) storage capacity as of April 1983. This figure would exceed 31 percent had it not been for excavation performed since 1982 to restore capacity.

4-05 CLIMATE

The climate of the drainage area above Hansen Dam is generally temperate and semi-arid, with warm, dry summers and cool, moist winters.

a. Temperature. Average daily minimum/maximum winter temperatures (in degrees Fahrenheit) range from about 40/65 near the dam to about 20/45 in the higher mountains. The corresponding summer temperatures are about 65/95 and 55/80, respectively. All-time low/high extremes in temperature are about 15/120 near the dam, and about -15/105 in the highest mountain valleys.

Plate 4-2 shows average and extreme temperature data for Burbank, California (located about 8 miles south of Hansen Dam), the nearest station with complete climatological data. The regular U.S. Weather Bureau station at Burbank was closed in 1965, so the climatological data on plate 4-2 extends only through 1964.

b. Precipitation. Plate 4-3 (from LACDPW) shows the mean annual precipitation over the Hansen Dam drainage area. Within the drainage area, mean annual precipitation ranges from slightly more than 15 inches near the dam to more than 36 inches in the San Gabriel Mountains southeast of Big Tujunga Dam.

Plate 4-2 lists the mean and maximum observed monthly precipitation for Burbank, California. Plate 4-4 lists the same for Hansen Dam and for 3 stations within the Hansen drainage basin. These plates indicate that there can be great year-to-year variability in monthly, as well as annual precipitation. Not listed on these plates are the minimum observed monthly precipitation values, which for most stations are at most 0.01 or 0.02 inches for every month of the year.

Plate 4-5 is a precipitation depth-duration-frequency tabulation for the centroid of the watershed above Hansen Dam. In it are listed the computed point-value precipitation depths for durations of from 5 minutes to 24 hours, and for return periods of from 2 to 100 years. Data for this table were obtained from National Oceangraphic and Atmospheric Administration (NOAA) Atlas 2.

- 1. Winter Storms. Most precipitation in southern California coastal drainages occurs during the winter season, primarily from November through early April, as mid-latitude cyclones from the northern Pacific Ocean move inland over the area. Most of these storms are the general winter type, characterized by hours of light-to-moderate precipitation, but with many heavy showers and thunderstorms within the storm system.
- 2. Summer Storms. Two types of summer storms can affect southern California, although they are relatively rare.
- (a) Local Thunderstorms. During humid periods between July and September, the deserts and eastern mountains of southern California experience occasional thunderstorms. On a few occasions, these may drift westward into the coastal drainages, including the Hansen Dam watershed. These thunderstorms can at times result in very heavy rain for short periods of time over small areas.
- (b) General Storms. General summer storms in southern California are quite rare, but on occasion a tropical storm from off the west coast of Mexico can drift far enough northward to bring rain, occasionally heavy, to southern California, sometimes with very heavy thunderstorms embedded. The season in which these storms are most likely to occur is mid-August through early October, although there have been some effects in southern California from tropical storms as early as late June and as late as early November.

On rare occasions, southern California has received light rain from non-tropical general summer storms, some of which have exhibited some characteristics of general winter storms.

- 3. Snow. Snow in southern California is relatively uncommon at elevations below 4,000 ft. and is extremely rare below 2,000 ft. Although even the valley floor has experienced light snow on isolated occasions, snowfall and snowmelt are not considered to be a significant hydrologic factor in the Hansen Dam drainage.
- c. Evaporation. Few formal studies of evaporation have been made in the San Fernando Valley. Because Hansen Reservoir is normally dry, with any impoundments generally lasting less than 24 hours, evaporation is not a major

consideration at this site. Studies for nearby locations indicate that mean daily evaporation ranges from about one-tenth inch in winter to about one-third inch in summer. On days of very strong, dry Santa Ana winds, evaporation can be considerably greater than one inch.

d. Wind. The prevailing wind in the San Fernando Valley is the sea breeze. This gentle onshore wind is normally strongest during late spring and summer afternoons, with speeds in the western San Fernando Valley typically 10 to 15 miles per hour.

The Santa Ana is a dry desert wind that blows from out of the northeast, most frequently during late fall and winter. This type of wind does not normally occur when water is impounded behind Hansen Dam. The characteristic low humidities and strong gusts of Santa Ana winds (which can exceed 70 miles per hour at times) usually create very high fire hazards, but can also be instrumental in drying a saturated watershed, thus reducing the flood hazard from later events.

Rainstorm-related winds are the next most common type in southern California. Winds from the southeast that are ahead of an approaching storm average 20-30 mph, with occasional gusts to more than 40 mph. West to northwest winds that are behind storms can sometimes exceed 35 mph, with higher gusts.

4-06 STORMS AND FLOODS

All of the major inflow and impoundment events in the history of Hansen Dam have been the result of general winter storms.

Prior to the construction of the dam, there were a number of major storms and floods on Tujunga Wash and the Los Angeles River, including those of January 1862 (commonly refered to as the greatest storm in southern California history since records began in the late 1700's), February and March 1884, January and February 1914, January 1916, December 1921, February 1927, December 1933-January 1934, and February and March 1938. There was also one significant summer tropical storm that occurred in September 1939, but no widespread flooding in this area was caused by this event.

a. Storm and Flood of February-March 1938. The flood of 27 February-3 March 1938 was the most destructive of record on the Los Angeles River, Tujunga Wash, and many other streams in southern California. Its occurrence played a major role in the justification for the construction of Hansen Dam.

The storm developed as a series of low-latitude north Pacific disturbances, bringing several bands of intense rainfall to southern California during a 5-day period. The intense band of 1-2 March produced an estimated peak flow of 54,000 ft³/s on Tujunga Wash, approximately 2,000 ft. below Hansen Dam (U.S.G.S. Gauge No. 11097000). This flow, combined with heavy runoff from the upper Los Angeles River and other tributaries, produced a very destructive flood on the Los Angeles River throughout the southeastern San Fernando Valley, downtown Los Angeles, and downstream locations.

b. Storms and Floods since 1941. Several of the major storms and floods that have occurred on Tujunga Wash since the completion of Hansen Dam in 1940 are discussed in section 8-02 of this manual.

4-07 RUNOFF CHARACTERISTICS

Runoff from the watershed is characterized by high flood peaks of short duration that result from high-intensity rainfall on the watershed. Flood hydrographs are typically of less than 12 hours duration and are usually less than 48 hours duration. Inflow rates drop rapidly between storms, and inflow during the dry summer season is usually less than 10 ft³/s. Long-term average inflow to Hansen Dam for the period 1946 through 1988 is 27,450 acre-feet per year. Plate 4-6 lists the annual maximum of inflows, outflows, and contents at Hansen Dam from 1941 through 1986. Plates 4-7A and 4-7B display maximum peak inflow while plates 4-7C and 4-7D display the annual outflow for Big Tujunga Dam.

The greater Los Angeles area has historically experienced long-term wet and dry periods. Plate 4-8 illustrates the historic regional response of flood peaks from the 1870's to the 1970's.

In general, antecedent precipitation is required as a prerequisite for the occurrence of large floods from this watershed. With substantial antecedent precipitation resulting from a series of winter storms, precipitation loss rates may decrease to as low as 0.15 inch per hour by the end of a major storm. The basin unit hydrograph for the watershed between Hansen Dam and Big Tujunga Dam is shown on plate 4-9A; the unit hydrograph for the watershed above Big Tujunga Dam is shown on plate 4-9B.

4-08 WATER QUALITY

Because Hansen Reservoir is strictly a flood control project that rarely impounds water for more than 24 hours, it has no appreciable effect on water quality. The water quality of the runoff entering the reservoir is generally of poor quality. The water is characterized as hard with iron and manganese concentrations high. Routine base flow (usually less than 10 ${\rm ft}^3/{\rm s}$) is typically high in salinity content, whereas storm runoff is generally low in salinity content.

Two diversions exist for ground water recharge facilities. Hansen spreading grounds are used to recharge local base flow and captured storm runoff. Tujunga spreading grounds are used to recharge imported water.

4-09 CHANNEL AND FLOODWAY CHARACTERISTICS

The Tujunga Wash channel downstream from Hansen Dam is a rectangular concrete lined open channel. Channel capacities increase from 20,800 ft³/s just below Hansen Dam to 28,200 ft³/s at the confluence of the Los Angeles River (pl. 3-1). Travel times for significant flows are also shown on plate 3-1, and include a total time of 0.4 hours from Hansen Dam to the Los Angeles River. Plates 4-10 and 4-11 show the Big Tujunga Channel profile from Hansen Dam to the Los Angeles River.

4-10 UPSTREAM STRUCTURES

Big Tujunga Dam. The project is a water conservation and flood control facility of the LACDPW and is on Big Tujunga Creek, 15 miles above Hansen Dam. Exhibit C contains pertinent data on Big Tujunga Dam.

4-11 DOWNSTREAM STRUCTURES

a. Whittier Narrows Dam. This unique flood control facility was built by the COE in 1957 at the narrows of the San Gabriel River and Rio Hondo in Los Angeles County, just north of Pico Rivera (see pl. 2-1). The facility is Federally owned and is operated and maintained by the COE. Pertinent data for Whittier Narrows Dam are included in Exhibit D.

This dam has the capability of diverting San Gabriel River inflow westward for discharge into Rio Hondo. During moderate and high reservoir impoundment behind the dam, the waters from the two rivers combine within the reservoir, and can be let out into either of the two downstream channels. Thus a major portion of, and at times the total inflow from the entire upper Rio Hondo and San Gabriel River drainages can, when necessary or desired, be passed into the lower Rio Hondo, and ultimately into the lower Los Angeles River. During significant flows, however, the outflow from Whittier Narrows Dam is normally discharged into both the Rio Hondo and the San Gabriel River. Thus, along with Hansen Dam, Whittier Narrows, and Sepulveda Dam are regulated to control floods on the lower reaches of the Los Angeles River.

- b. Santa Fe Dam. This Federally owned, COE operated flood control facility is on the San Gabriel River upstream of Whittier Narrows Dam. It is regulated in conjunction with Whittier Narrows Dam, and thus, at times, indirectly in conjunction with Hansen and Sepulveda Dams.
- c. Other Projects. There are numerous other water supply reservoirs upstream of Whittier Narrows and Santa Fe Dams on Rio Hondo, San Gabriel River, and their tributaries. These can be seen on plate 2-1, and pertinent data for these reservoirs are included in Exhibit D, page D-5.

4-12 RELATED STRUCTURES

- a. Sepulveda Dam. Sepulveda Dam is a major flood control dam owned, operated, and maintained by the LAD. It was constructed in 1941. It is located on the Los Angeles River, 43 miles above the mouth of the river, and 6 miles above the confluence of Tujunga Wash and Los Angeles River. The dam is in the south central portion of the San Fernando Valley, just northwest of the junction of the Ventura Freeway (U.S. Hwy. 101) and the San Diego Freeway (I-405) (see pl. 2-1). Pertinent data for Sepulveda Dam is included in Exhibit D. There are other water supply reservoirs upstream of Sepulveda Dam. These can be seen on plate 2-1, and pertinent data for these reservoirs are included in Exhibit D.
- b. Pacoima Dam. This project is a water supply and flood control facility of DPW and is located on Pacomia Wash upstream of Lopez Dam. Pertinent data for Pacomia Dam is included in Exhibit D. It was constructed in 1929.

c. Lopez Dam. This dam was constructed on Pacoima Wash in 1954 in the far northeastern San Fernando Valley, 6.4 miles above the confluence of Pacoima Wash with Tujunga Wash. This gated facility is owned by the Federal Government and maintained by the LAD as part of the overall Los Angeles County Drainage Area (LACDA) flood control project. Pertinent data for Lopez Dam is included in Exhibit D.

4-13 ECONOMIC DATA

- a. <u>Population</u>. No population figures are tabulated specifically for the watersheds above or below Hansen Dam. The San Fernando Valley is estimated to have a population of approximately 1,081,000, according to the 1980 Census, with the 1987 population of the 500-year flood overflow area of 11 square miles along Tujunga Wash between Hansen Dam and the Los Angeles River estimated at 54,000. Portions of the following towns and cities are within this 500-year flood overflow area; Arleta, Pacoima, Panorama City, Sun Valley, Tujunga, and Los Angeles. The population of the greater San Fernando Valley, including Sunland, Tujunga, and Lakeview Terrace, is approximately 1,133,000.
- b. Agriculture. Agriculture was at one time a major activity in the San Fernando Valley, but declined sharply between 1946 and the early 1970's, as urban growth in the valley displaced the existing farmland. There remains a very small amount of commercial agriculture in the far western valley, along with many small private orchards, vineyards, and vegetable gardens. There are a few remaining small private horse ranches in the northwestern San Fernando Valley.
- c. <u>Industry</u>. Industry has increased dramatically in the San Fernando Valley since World War II and is scattered throughout all portions of the valley. There is little heavy industry concentrated in any portion of the San Fernando Valley. There are a number of moderate-sized factories in the central and northeastern portions of the valley, and a large amount of light industry (especially electronics and related fields) is scattered throughout all portions of the valley.
- d. Flood Damages. Since completion of the dam in 1941, there has been relatively little in the way of damaging flows on Tujunga Wash. As of FY 86, approximately \$176,384,000 in damages has been prevented, primarily to single family and multi family residential structures. Within the 500-year flood plain below Hansen Dam are; 355 light industrial structures, 886 commercial structures, and 122 public buildings. The value (1987) of these light industrial, commercial, and public buildings is \$421,000,000.

V - DATA COLLECTION AND COMMUNICATION NETWORKS

5-01 HYDROMETEOROLOGICAL STATIONS

- a. <u>Facilities</u>. Plates 5-1A, B show the precipitation, reservoir (water surface elevation), and stream gages in and near the watershed above Hansen Dam. These gages, along with their latitudes, longitudes, and elevations, are listed on plate 5-1B. Many of the stations consist of more than one type of gage, such as a recording and a non-recording precipitation gage.
- b. <u>Reporting</u>. Hydrologic data from Hansen Dam and the upstream and downstream watersheds are observed and reported in 4 different ways as illustrated on plates 5-2 and 5-3.
- (1) <u>Manual</u>. The Hansen Dam Tender observes precipitation, water surface elevation, and gate settings, and reports these to the District Office, as described in section 5-06.a.
- (2) <u>Recording Instruments</u>. The recording instruments store data on paper tape, which is removed at predetermined intervals (once each month, October-April, plus once during the summer) and maintained on file by the District.
- (3) Telemetry System. Hydrologic data measured at the dam and other gages are transmitted to the Los Angeles District Office (LAD) by the Los Angeles Telemetry System (LATS). These gages automatically transmit reports at predetermined 24-hour intervals. The event mode is the primary data sources for the telemetry system. As a gage registers an event, current data are radio-transmitted to a repeater from which it is sent via microwave to the LAD Office. Each gage is programmed to trigger whenever 0.04 inches of precipitation, or a 0.25-foot change in water surface elevation is recorded. All gages can also be interrogated at any time for current data via polled mode.
- (4) <u>ALERT System</u>. There is also an event-reporting gage system throughout southern California sponsored by the National Weather Service. This system is referred to as the ALERT (Automatic Local Evaluation in Real Time) System. Access to this information can be obtained through the REPORT program on the Water Control Data System computer.
- c. <u>Maintenance</u>. Each operating agency is responsible for the maintenance of its own gages and/or telemetry radio equipment. In many cases, the gage is owned by the U.S. Geological Survey, and the telemetry attachments are owned by the LAD or LACDPW. Plates 5-4 and 5-5 show stage/discharge relationships for Big Tujunga Creek below Hansen Dam.

5-02 WATER QUALITY

There are no water quality stations in the watershed above Hansen Dam.

5-03 SEDIMENT STATIONS

There are no sediment stations in the watershed above Hansen Dam. There are sediment ranges in Hansen Reservoir. Variations in minimum water level elevation (pls. 4-1A, B) have occurred because of rapid sedimentation and because the lake which existed inside the reservoir (until it completely filled in with sediment in the 1970's) was read with a staff gage extending lower than the invert elevation 990 ft. The high sedimentation rate and lake readings cause difficulty in relating area capacity curves from year to year within the reservoir.

5-04 RECORDING HYDROLOGIC DATA

Each agency maintains records of its own data (sec. 5-01 above). The NWS data are placed in archives at the National Climatic Center in Asheville, North Carolina. Precipitation and other data are published monthly by the National Climatic Center in Climatological Data and Hourly Precipitation Data.

The State of California, Department of Water Resources, publishes the data from the ALERT telemetry gage network on a monthly basis. The LACDPW maintains their recording and non-recording data bases, and furnishes data to other agencies upon request. The LAD maintains a data base from its recording and telemetry gages and provides selected data to the NWS for publication. Real Time Reports received from the ALERT gages and the LATS gages are stored in a database on the LAD Water Control Data System Computer. The LAD also enters data from its manual observations on various forms, which are maintained on file in the Reservoir Regulation Section of the LAD Office. These forms are discussed further in section 9-05 and illustrated in figures 9-1 through 9-7.

5-05 COMMUNICATION NETWORK

The LAD maintains a voice radio communication network for its entire operation activities. This routinely includes communications between the District Office and the various dam tenders, as well as vehicles in the field.

During periods of significant runoff, communication with the dam tenders becomes vital. The existing radio network, which has proven itself reliable, is backed up by a second radio network; both of these are backed up by the local telephone system.

Power at the District Office is backed up by an emergency generator system; and if all fails at the District Office, there is a complete radio system at the LAD Base Yard. The Base Yard is located a few miles east of the District Office.

5-06 COMMUNICATION WITH PROJECT

a. <u>Regulating Office With Project Office</u>. During the flood season (15 November through 15 April), a routine radio call is made at least once each weekday from the LAD District Office to the dam tender at Hansen Dam.

The Hansen Dam operator is also the operator for Lopez Dam. This "Morning Report" is usually made at 0810 hours, Monday through Friday. Other routine or non-routine radio or telephone calls are made as needed. Since Lopez Dam is an ungated facility, there are no telephone or electrical services at the site. Direct communication with the operator while he or she is at Lopez Dam is possible by calling the Mobile Radio (WUK 4121) assigned to this operator.

In the event that all communications with the LAD office, including the LAD Base Yard, should be interrupted, a set of "Standing Instructions to Project Operator for Water Control" has been compiled for Hansen Dam and a copy of these instructions is included in this manual as Exhibit A. The LAD organization chart and important phone numbers for reservoir operations decisions at Hansen and Lopez Dams are given on plate 9-1.

- b. <u>Between Project Office and Others</u>. The Hansen Dam Tender is required to notify personnel at the Los Angeles County DWP spreading grounds downstream of Hansen Dam prior to making each gate change. The dam tender is instructed not to increase releases until confirmation is received that their diversion gate has been adjusted. In case of flood releases it is imperative that the diversion gate be raised prior to initiation of flood control releases.
- Between Regulating Office and Others. Before and during the early stages of any reservoir impoundment, the LAD notifies other agencies and selected private interests of the impending rises in the reservoir water surface elevation and corresponding outflow. A list of the agencies to notify, with applicable office and home telephone numbers, is published annually in the LAD's <u>Instructions</u> for Reservoir Operations Center Personnel (the so-called "Orange Book") and is shown on plate 5-6. During major runoff events, the LAD Reservoir Operations Center (ROC) is in constant contact with the LACDPW Hydraulics Branch to fully coordinate the operations of both agencies. The LACDPW is directly tied into the LAD radio and telephone system. The LAD ROC is also in direct radio contact with channel observers dispatched to patrol the Los Angeles River during large floods. Channel observers are the eyes and ears of the ROC. It is their responsibility to observe the effects of floodwater and debris action and to keep the District Office informed so that proper decisions can be made relative to the operation of the reservoirs. Based on their report, decisions can also be made relative to sending crews out to repair vulnerable points in a channel or levee system, or to initiate evacuation of a surrounding neighborhood.

5-07 PROJECT REPORTING INSTRUCTIONS

During periods of water operations, communications between the LAD office and each affected dam tender are made on a frequent basis. Normal communications occur once each hour, and more frequent communications are sometimes required. If a gate change is required, the ROC staff broadcast the gate change instructions to the dam tender. When the gate change is completed, the dam tender calls back to the ROC with information on the change. The dam tender records pertinent information associated with the gate change on the form shown in figure 9-1. This report form is subsequently

submitted to the LAD Baseyard Office, Water Control Data Unit, Reservoir Regulation Section.

Other special instructions to dam tenders are conducted in a similar manner. This network of radio communications is also used by the dam tender to report any failure of machinery or other equipment, or any other unusual conditions at the dam.

5-08 WARNINGS

The responsibility for issuing all weather watches and warnings, and all flood and flash flood watches and warnings, rests with the NWS. Local emergency officials of cities and counties are responsible for issuing any other public safety warnings, including unusual overflows, evacuations, unsafe roads or bridges, and toxic spills. The LAD is responsible for providing these officials with up-to-date information, and forecasts where possible, of water rises within Hansen/Lopez Reservoirs and release rates into the channel downstream of Hansen Dam. The LAD ROC would notify the Emergency Management Branch, Los Angeles Police Department to initiate evacuation if a dam break is imminent.

VI - HYDROLOGIC FORECASTS

6-01 GENERAL

a. Role of LAD. The LAD does not make any formal hydrologic forecasts, published or unpublished, for Hansen Dam. Despite the lack of formal hydrologic forecasts, the LAD does carefully monitor the reservoir water surface elevation in Hansen Reservoir, and does notify other agencies of any significant changes or anticipated changes as described in section 5-06.

The LAD continues to improve its monitoring capabilities of conditions not only at Hansen Dam, but in adjacent watersheds. Improved and increased numbers of automatic telemetry rain and stream gauges help in this manner not only directly, but also in the development of computerized rainfall-runoff forecast models. The long-term goal of the LAD is to be able to provide relatively accurate predictions of inflows and reservoir water surface elevations as far in advance as possible. It is intended that these predictions will become accurate and reliable enough that they can be shared with the NWS, the LACDPW, city and county emergency officials, and others, to be used as basis for reservoir systems operations during the upcoming years.

The LAD Meteorologist prepares special quantitative precipitation forecasts (QPF's) for Los Angeles River drainages and other watersheds, including the hansen Dam watershed. These are used in determining the potential for significant runoff into Hansen and other reservoirs.

b. <u>Role of Other Agencies</u>. No agency has any specific forecast responsibility for water surface elevations in hansen Reservoir or for discharges in Tujunga Wash, either upstream or downstream of Hansen Dam. The NWS issues Flash Flood Warnings for rivers and other watercourses in the San Fernando Valley.

The IAD does receive real-time weather reports and forecasts, as well as historical weather data, from the NWS. This is accomplished by means of weather facsimile pictures and teletype data and forecasts transmitted by the NWS and received by a IAD facsimile recorder and teletype printer. Close coordination is maintained with the NWS forecast office located in Los Angeles.

Historical precipitation and streamflow data are available from the LACDPW. These data, while not of use in real-time, are important to studies of historical storms and floods which aid in the development and refinement of computerized rainfall-runoff forecast models.

6-02 FLOOD CONDITIONS FORECASTS

Forecasts of flood hydrographs are currently not made. However, routine evaluation of precipitation, resulting inflow, and forecast precipitation provide valuable subjective predictions of flood situations. Using such information, the LAD Reservoir Operations Center (ROC) can predict if an on-going flood will increase of decrease over the next 24 hours.

6-03 CONSERVATION PURPOSE FORECASTS

Because Hansen Dam is strictly a flood control facility, forecasts for other purposes including water conservation are not made.

6-04 LONG-RANGE FORECASTS

Because the watershed above Hansen Dam is relatively small, and because water is impounded behind Hansen Dam for short time periods, there is little direct need for long-range forecasts in the operation of Hansen Dam. Only in the event of major impoundment at hansen Reservoir, as well as simultaneously at other reservoirs affecting the downstream channel and Los Angeles River, would a forecast of more than one day be of immediate significance to the regulation of Hansen Dam. In such a case, the forecast of another impending major storm or lack of such a storm might influence the release rate of water from Hansen Dam. The primary consideration of the release rates from all of the dams in the Los Angeles River system is to prevent or minimize downstream damages.

VII - WATER CONTROL PLAN

7-01 GENERAL OBJECTIVES

The primary objective of Hansen Dam is flood control, specifically, the minimization of flood damages for portions of the San Fernando Valley along Tujunga Wash and the Los Angeles River. In this regard, water is temporarily stored behind Hansen Dam during periods of high inflows and is released more slowly through the downstream Tujunga Wash Channel.

There is no objective to operate the dam to reduce inundation damages to its improved reservoir lands. All usage of reservoir land is intended to have a purpose secondary to its role as the bottom of the flood control reservoir. All costs associated with reservoir inundation are intended to be routine maintenance costs associated with a clear understanding of risk and subsequent willingness to locate within the flood control reservoir.

7-02 MAJOR CONSTRAINTS

Significant problems have arisen at the project over recent years, including:

- a. Loss of storage space due to sedimentation. Based on the results of the April 1983 reservoir sediment survey, current flood storage capacity below the spillway crest elevation of 1,060 ft. is approximately 25,500 ac-ft which is 23 percent less than the initially allocated flood control storage capacity (33,100 ac-ft). See plate 3-6 for the area-capacity curve reflecting 1983 conditions. Under 1983, conditions the SPF would reach a maximum water surface elevation of 1.057.25 ft., a maximum storage of 23,600 ac-ft, and a peak outflow of 20,640 ft $^3/s$.
- b. Repetitive clogging of the outlet conduits with dense silt. Due to a 10-month impoundment period following the major flood of 1978, an 18-ft. deep cohesive silt deposit completely clogged the gated outlet conduits. In 1982, following a 1-1/2 month impoundment, some conduits were observed to be 80 percent clogged with material.
- c. Repetitive blocking of the trash rack by floatable debris. During the flood of 1980, while all gates were fully open, inflow (up to 11,350 ${\rm ft}^3/{\rm s}$) transported floatable debris into the trash rack, nearly sealing off the outlet works. This occurrence is described in detail in section 3-06. During 1982, inflow as low as 500 ${\rm ft}^3/{\rm s}$ carried floatable debris, clogging the lower 10 ft. of the trash rack.
- d. A variety of downstream difficulties associated with the dam's sediment outflow. In 1980, a policy of leaving all gates in the fully open position was adopted to minimize reservoir siltation, including silt packing in the outlet conduits. Subsequently, the problem of debris clogging the trash rack due to the direct impingement of fast-moving inflow was experienced. Local agencies also complained that the free-flowing stream picked up sediment from the reservoir bottom and transported the sediment into the downstream channel. Several downstream problems were noted. Groundwater

recharge basins silted in. Water that would have previously been diverted for recharge was bypassed to the ocean because of its high suspended sediment content and because it was released at rates exceeding diversion capability (up to 400 cfs). Low flow in the downstream concrete channels silted in. Abrasion to the downstream concrete channel inverts was accelerated.

7-03 OVERALL PLAN FOR WATER CONTROL

Hansen Dam is regulated for flood control on Tujunga Wash and in the Los Angeles River. Plate 2-2, which depicts the storage allocations for Hansen Reservoir, shows that the entire space of the reservoir below the elevation 1,060 ft. (the spillway crest) is devoted to flood control. It is also the maximum water surface elevation for a Standard Project Flood (SPF). Between elevation 1,060 and 1,081.2 ft. (the maximum surface elevation for a Probable Maximum Flood (PMF)) is the spillway design surcharge pool. Here flood control is no longer the prime objective in deference to passing as much water out of the reservoir as is required to assure the safety of the dam. The 5.8 ft. between elevation 1,081.2 and 1,087 ft. is reserved for freeboard.

Hansen Dam is regulated in coordination with other projects protecting Tujunga Wash and the middle Los Angeles River. These projects include Pacoima, Big Tujunga, Lopez, and Devil's Gate Dams. Their locations are shown on plate 2-1A.

There may be instances where some reduction in releases may be considered necessary from a systems perspective. These conditions are discussed in section 7-13.

7-04 STANDING INSTRUCTIONS TO THE PROJECT OPERATOR

In the event that all communication with the District Office, including the Base Yard, should be interrupted, a set of Standing Instructions to the Project Operator for Water Control have been compiled for each dam. A copy of these instructions for Hansen Dam is included in Exhibit A of this manual.

7-05 FLOOD CONTROL

The plan for controlling floods on Tujunga Wash below Hansen Dam is presented in this section. The objective of the operating water control plan is to minimize flow damages. Project releases will be regulated to protect downstream communities. An attempt should be made to inform LACDPW and the Los Angeles City DWP of the release and of possible impacts to these agencies' spreading grounds downstream.

The project should be operated according to he Reservoir Regulation Schedule in Exhibit B. This is achieved by allowing the reservoir to build a pool by keeping the eight gates open at 1.0 ft. until the water surface elevation reaches 1.010.5 ft. After the water surface elevation reaches 1.010.5 ft., all gates are opened fully to 8.0 ft. until the downstream channel capacity of 20,800 ft³/s is reached at a pool elevation of 1053.0. ft. The gates are progressively closed as the water surface elevation rises until, at elevation 1,066, the gates are fully closed. At this point, spillway flow

plus ungated outflow approximately equal to downstream channel capacity occurs. On the falling limb of the inflow hydrograph, the same gate schedule is followed as the rising limb down to a pool elevation of 1,053.0 ft. All gates are left fully open at 8.0 ft below a water surface elevation of 1,053.0 until the reservoir is empty. Exhibit B provides a schedule that achieves this regulation. The schedule was revised in 1988 to reflect the following: to conform to a revised downstream channel capacity of 20,800 ft³/s; to have no more than four gates operated at a time; and to prevent debris and sediment from building up and clogging the outlet works. Keeping the gates open at 1.0 ft. until the water surface elevation reaches 1.010.5 is intended to minimize the floating debris problem, and keeping the gates fully open as the reservoir empties is intended to minimize the conduit sedimentation problem.

Hansen Reservoir should be drained as rapidly as possible, consistent with the achievement of downstream flood control. If runoff conditions are expected to cause flow to exceed the downstream channel capacity based on downstream channel observers and anticipated side inflow, releases should be reduced, so as not to contribute to the flooding. The objective is to safely empty the reservoir in preparation for the next flood and to prevent the outlet works from becoming clogged from sediment deposition.

A forecast to make regulation decisions may be either a series of computer generated inflow hydrographs (expected in the future) or a reasonable judgmental assessment of on-going rainfall and runoff, based upon available information. In either case, the ROC of the LAD would be responsible for developing the forecast and for determining confidence in it toward its application to reservoir water control decisions. The intent is to consider all appropriate information in implementing the water control plan described above.

7-06 RECREATION

Approximately 1,450 acres are under lease to the City of Los Angeles for recreation development. Existing recreation development consists of an 18-hole golf course, two parks, a recreation center with ballfields, an amphitheater, and a miniature trail concession. There is significant equestrian use adjacent to the basin, and many trails meander through the reservoir. Some of the trails run through existing quarry operations and are often relocated by the City of Los Angeles to prevent conflicts.

As mentioned previously, the sole purpose of Hansen Dam is flood control. No water is impounded behind the dam for the purpose of recreation. A 130-acre recreational lake was maintained behind the dam up until the 1970's when it succumbed to sedimentation. The Water Resources Development Act of 1986, Report 99-1013, Section 847, provides for the sale of dredged material at Hansen Dam to be appropriated by Congress to the Secretary of the Army to construct, operate, and maintain recreational facilities at the Hansen Dam project. A proposal to excavate another lake in the basin is in process at this time. Other facilities proposed at this time are individual and group picnic areas and primitive camping areas. Plans are currently in preparation for a bike path and an equestrian trail which will run from one end of the dam to the other.

The channel of Tujunga Wash downstream of Hansen Dam is strictly a flood control channel, and provides no water oriented recreation use. Thus no releases are made for recreational purposes.

7-07 WATER QUALITY

Because Hansen Dam has two ungated outlets, it cannot be operated to contain contaminant spills, unless the water surface elevation remains below 1,011 ft. (invert of the two ungated outlets). Hansen Dam is not operated for water quality objectives.

7-08 FISH AND WILDLIFE

No Hansen Dam water control objectives exist for fish and wildlife, either within the reservoir, or within the channel of Tujunga Wash downstream. The Environmental Assessment that accompanies this water control manual contains detailed information on species types found within the Hansen Dam project area.

7-09 DROUGHT CONTINGENCY PLAN

Hansen Dam does not contain any storage allocation for water supply, however, the Water Resources Development Act of 1986, Report 99-1013, Section 847 authorizes the Secretary of the Army to facilitate water conservation and groundwater recharge measures at Hansen Dam project in coordination with the City of Los Angeles, California and the Los Angeles County Flood Control District, to the extent consistent with other project purposes. Tujunga Wash downstream of the dam is concrete-lined but diversion possibilities exist at the Hansen and the Tujunga Spreading Grounds (see secs. 3-04 b. and d.). Currently, no storage is used for water conservation until local interests formally agree to participate in the removal of sediment deposits accumulated in the reservoir that are directly attributable to water conservation operation. However, in the event of a drought, the possibility of impounding water for water conservation would be considered. Any such plan would be evaluated to ensure that the flood control purpose of the project would not be compromised.

7-10 HYDROELECTRIC POWER

No facilities for the generation of hydroelectric power at Hansen Dam exist, nor are any contemplated.

7-11 NAVIGATION

No navigation of any sort is possible or allowed in Hansen Reservoir or in Tujunga Wash, either upstream or downstream of Hansen Dam.

7-12 OTHER

Maintenance and construction on the downstream channel of Tujunga Wash normally occur during the dry season of late spring and summer. During such periods, the eight Hansen Dam gates may be closed in order to reduce releases in support of such downstream activities.

7-13 DEVIATION FROM NORMAL OPERATION

The regulation schedule for Hansen Dam is outlined in Exhibit B and discussed in section 7-05.b. However, it is possible, and would be desirable, under certain limited circumstances, for the release rate from Hansen Dam to be decreased below what is called for in Exhibit B.

In addition to the prevention of downstream damages, there are other possible reasons for deviation form the normal release plan at Hansen Dam:

- a. <u>Emergencies</u>. In the event of a potential drowning, toxic spill, or other accident in which high flows on Tujunga Wash downstream of Hansen Dam could prevent rescue or could cause further injury, the eight gates at Hansen Dam could temporarily be partially or totally closed. This would reduce, but not eliminate, the flow to the downstream channel if the reservoir water surface were above an elevation of 1,011, the elevation of the ungated outlets. Such emergency action should be taken immediately, unless such action would likely result in worse conditions. Notifications to all concerned agencies of emergency actions must be made as soon as possible.
- b. <u>Unplanned Minor Deviations</u>. Unplanned events that could create a temporary need for minor deviations from the schedule published in Exhibit B include emergency bridge repairs, the restoration of utility lines across Tujunga Wash, and certain unplanned necessary maintenance and inspection. Hansen Dam may be operated to support these activities, provided that flood protection is not jeopardized, and provided that no significant threat is made to endangered wildlife species in the reservoir (see sec. 8-05).
- c. <u>Planned Deviations</u>. The same arguments apply to planned construction, maintenance, inspections, etc., as described in section 7-13.b. Such planned activities should be scheduled for the dry season, whenever possible. The dry season is normally May through October, although on a rare occasion, a tropical storm with heavy rain and high runoff potential can occur during the late summer or early fall.

7-14 RATE OF RELEASE CHANGE

The eight hydraulic gates at Hansen Dam move at a rate of 0.8 ft/min. The dam tender can safely operate one gate at a time in succession, operating controls on one until the desired setting is reached, then operating the adjacent gate. When the water elevation in the reservoir has reached 1010.5 ft, this physical limitation on speed of operation prevents a sudden jump in downstream releases from 1,260 cfs to 7,920 cfs. In a major flood, with all gates open to 8.0 feet, the two ungated outlets will begin to discharge at elevation 1011.0 feet as inflow increases. The concrete lining

of the downstream channel precludes concern over bank erosion or sloughing due to sudden gate changes, however the downstream channel capacity of 20,800 cfs maximum must not be exceeded and may be influenced by side inflow. Therefore gradual decreases in gate openings at Hansen Dam, based upon downstream reports by channel observers, may be desired even prior to gate closings scheduled when elevation 1053.0 feet is reached.

7-15 WATER CONTROL PLANNING TOOLS

Specific planning tools have been utilized in the development of the flood control plan. These tools are also used to evaluate and regulate rules planned deviations and also facilitate operation of the dam during emergencies and unplanned deviations. Water control planning tools used for Hansen Dam include:

- a. Outlet Rating Curves (pl. 7-1 and 7-2).
- b. Spillway Discharge Curve (pl. 7-3).
- c. Area-Capacity Curves (pl. 3-6).
- d. Downstream Channel Capacity Plate (pl. 3-1).

VIII - EFFECT OF WATER CONTROL PLAN

8-01 GENERAL

The sole purpose of Hansen Dam is flood control, and by far the greatest effect and benefit of the dam is the protection of life and property downstream of the facility. The major aspects of flood control at Hansen Dam for both the reservoir and spillway design floods, as well as several major historical floods, are discussed in section 8-02. Any other effects or benefits of Hansen Dam are decidedly secondary to those of flood control, but they are briefly described in sections 8-03 through 8-08.

8-02 FLOOD CONTROL

- a. <u>Original Reservoir Design Flood</u>. The design of Hansen Flood Control Basin was based upon what was called, in those days, a "maximum probable flood". The hydrologic bases used in the development of the original reservoir design flood is briefly summarized as follows:
- 1. The design flood was computed from a four-day design storm, with the volume and intensity at their maximum on the fourth day.
- 2. The design storm had an average maximum 24-hour rainfall of 10.57 inches over the drainage area.
- 3. The rainfall for the 3 days preceding the maximum (fourth) rainfall day was based on a statistical analysis of rainfall data which indicated percentages of 20, 30, and 50 percent of the maximum day. To represent the most adverse conditions, these percentages were appraised in the order of increasing magnitudes, culminating in the fourth (100 percent) day.
- 4. Runoff coefficients for the modified rational procedure used were based on the rainfall to runoff relations computed for the adjacent drainage area above San Gabriel Dam No. 2, which indicated the highest runoff coefficients for the March 1938 flood.
- 5. Base flows on the fourth day of 40 ft³/s/square mile for the drainage area above Big Tujunga Dam and 20 ft³/s/square mile for the drainage area below Big Tujunga Dam were assumed.
- 6. The Big Tujunga Dam was assumed full (to spillway crest) at the start of the storm, and the flood was routed over the spillway.

The original reservoir design flood was routed through Hansen Flood Control Basin using the adopted method of operation as follows:

- (a) At the beginning of the flood, all gates were open;
- (b) When the water surface elevation (WSE) reached 1,024.5, the gates would be operated to maintain a constant outflow of $12,000 \, \text{ft}^3/\text{s}$, including the ungated outlets;

(c) After the reservoir receded below WSE 1,024.5, all gates would be fully opened. Using this method of operation, the maximum WSE reached was 1,059.7.

b. <u>Standard Project Flood</u>. When Hansen Dam was originally designed, the SPF concept had not yet been developed. Sometime later, probably in about 1946, before the improvements to Tujunga Wash downstream from Hansen Dam were designed, a SPF was determined for Hansen Dam.

The standard project storm (SPS) selected was the 21-25 January 1943 storm which was centered in the mountains and foothills a few miles east - northeast of Hansen Dam. The storm was transposed to the drainage area above Hansen Dam using mean annual precipitation as a transposition factor.

Unit hydrographs, shown on plates 4-9A and 4-9B, were determined using the average Mountain S-graph and basin n-values of 0.055 above Big Tujunga Dam and 0.050 above Hansen Dam below Big Tujunga Dam. The Big Tujunga Dam subarea hydrograph was routed through Big Tujunga Reservoir assuming the reservoir was full to spillway crest at the beginning of the flood. The outflow hydrograph was then channel routed using the Modified Puls Method to Hansen Dam Reservoir and combined with the hydrograph for the intervening subarea. The resulting Hansen Reservoir inflow hydrograph has a peak inflow of 53,000 ft 3 /s and a direct runoff (excludes baseflow) 4-day volume of 57,200 ac-ft. With baseflow, the total 4-day volume is 92,500 ac-ft. This inflow hydrograph is still considered appropriate.

With the improvement of Tujunga Wash below Hansen Dam, the maximum release could be increased from 12,000 ft³/s to 22,000 ft³/s. A reservoir routing performed with a maximum release of 22,000 ft³/s, assuming the original 50-year sediment allocation of 5,000 ac-ft, would yield a maximum WSE of less than 1,057. However, the 1969 survey revealed that sediment accumulation had already exceeded 5,000 ac-ft. Therefore, a new sediment yield estimate based on the survey data was used to revise the 50-year sediment allowance to 10,500 ac-ft and calculate a 100-year sediment allowance of 21,000 ac-ft. Routing the SPF through Hansen Reservoir with the revised sediment allocations yield maximum WSEs of 1,057.7 and 1,064.76 for the 50-year sediment and 100-year sediment allowances, respectively.

The regulation schedule for Hansen Dam was revised in 1988 to conform to a revised downstream channel capacity of $20,800 \text{ ft}^3/\text{s}$.

Plate 8-1 depicts the results of routing the SPF at Hansen Dam for the 50- and 100-year sediment distributions, using the 1988 revised regulation schedule and the revised sediment allowances. The maximum inflow to the dam is still 53,000 ft 3 /s on the second day of the flood, with a maximum discharge through the outlet works now controlled to 20,800 ft 3 /s. For a 50-year sediment allowance, the maximum WSE is 1,057.38, or 2.6 ft. below the spillway crest. For a 100-year sediment allowance, the maximum WSE is 1,065.50 ft., having a spillway discharge of 12,000 ft 3 /s, but a combined discharge of 20,800 ft 3 /s, equal to the downstream channel capacity. Using the 1983 survey results to determine the elevation-storage relationship and the 1988 revised Regulation Schedule, the maximum WSE is 1057.38. Note on plate 8-1 that for a

50-year sediment allowance, the water surface reaches an elevation of 1,010.5 and then begins to recede prior to the peak. This occurs in accordance with the Regulation Schedule shown on plate 3-4, which requires all gates to be at 8.0 ft. at a water surface elevation of 1,010.5. Following the Regulation Schedule, the gates would remain open until the water surface rises to the point requiring a gate change or the reservoir is drained. In this case, the Schedule causes outflow to exceed inflow for a short period and a dip in the curve results.

- c. <u>Spillway Design Flood</u>. The spillway at Hansen Dam was designed in 1939 for a peak outflow of 101,000 ft³/s, having a surcharge of 21.8 ft. on the ogee crest. An additional 5.2 ft. of freeboard to account for wave runup and wind setup set the top of the dam at elevation 1,087 ft.
- 1. Original Criteria. The original spillway design flood was based on a "computed spillway flood," determined from rainfall 25 percent greater than the Reservoir Design Storm. The "computed spillway flood," resulted from a hypothetical four-day storm that had a basin average of 13.2 inches of rain during the maximum 24 hours. The adopted spillway design flood was determined by increasing the "computed spillway flood" by 50 percent, resulting in a peak inflow of 129,600 ft³/s and a maximum one-day volume of 76,800 ac-ft.

In recent times, spillways have been designed using the PMF concept, with the National Weather Service (NWS) providing the Probable Maximum Precipitation. In a 1978 study, the adequacy of the Hansen Dam spillway was reviewed under modern criteria. This led to the development of a PMF for Hansen Dam.

2. <u>PMF Criteria</u>. Plate 8-2 depicts the hydrograph of the computed inflow for the Probable Maximum Flood over the drainage area above Hansen Dam, reservoir water surface elevation, and outflow that results when the PMF is routed through Hansen Reservoir.

The probable maximum precipitation was based upon a hypothetical 72-hour rain storm developed from the criteria published by the NWS in https://hypothetical 72-hour rain storm developed from the criteria published by the NWS in https://hypothetical Report No. 36, entitled "Interim Report - Probable Maximum Precipitation in California" (1961, revised 1969). This storm was critically centered over the drainage above Hansen Dam.

The unit hydrograph was the same as for SPF except that lag times were reduced by 15 percent.

For the PMF routing, the reservoir was assumed initially full to elevation 1,060.0 ft. (spillway crest) and the flood control outlet works were considered completely blocked by debris.

The PMF generates a maximum inflow to Hansen Reservoir of $105,000 \, \mathrm{ft}^3/\mathrm{s}$ late on the third day of the storm (see pl. 8-2) and a total volume of 246,000 ac-ft. The maximum water surface elevation in the reservoir rises to 1,081.2 ft., storing 44,990 ac-ft behind the dam. The maximum outflow over the spillway is $99,700 \, \mathrm{ft}^3/\mathrm{s}$.

d. Other Floods.

1. <u>22-26 January 1943</u>. The storm of 22-26 January 1943 was in many respects the most severe of record in the coastal drainages of southern California. It occurred when a series of warm Pacific cyclones from Hawaii collided with a cold storm moving south from British Columbia, Canada producing strong winds and heavy rain over most of California.

Plate 8-3 depicts the runoff of this storm. The total 21-23 January precipitation ranged from less than 11 inches in the northern and central San Fernando Valley to more than 25 inches in the Santa Monica Mountains of Sepulveda Dam. Rainfall was heaviest during the first few hours of 23 January, with a less intense but longer-lasting period of generally heavy rain during the last 6 hours of that day.

Because of unseasonably dry antecedent conditions, infiltration rates were high at the beginning of the storm. This is reflected in a relatively moderate peak inflow rate to Hansen Dam following the intense burst of rain early on 22 January. Progressive saturation of the ground, brought on by prolonged and increasingly heavy rain on 22 January, resulted in an increasing rate of inflow late in the day. The maximum of the computed mean hourly inflow values was 18,900 ft³/s during the third hour of 23 January.

The maximum water surface elevation of 1,036.5 ft. was reached at noon on the 24th, when 18,743 ac-ft of water was stored behind the dam. The outflow released to the channel downstream was regulated to 1,600 $\rm ft^3/s$ until the pool was drained.

2. 23-26 January 1969. The period of 18-27 January 1969 was exceptionally wet throughout southern California, as a series of warm storms from south of Hawaii were funneled into this area. After moderate to heavy rain 18-22 January, (followed by a one-day break), rain resumed 23 January, with several moderate rain bands and one long-lasting, heavy band that climaxed early 25 January. The flood hydrographs are shown on plate 8-4. The total precipitation for the period of 23-26 January in southern California ranged from just over 6 inches at Hansen Dam to more than 23 inches in the San Gabriel Mountains southeast of Big Tujunga Dam, according to an isohyetal map prepared by Los Angeles County Flood Control District.

By the time of the 24-25 January rain, the ground throughout the Hansen Basin and elsewhere was heavily saturated, with a high runoff potential. Hansen basin runoff potential was high due to the heavily saturated ground when the 24-25 January storm began. Big Tujunga Dam measured a peak inflow rate of 19,500 ft³/s from 1000 to 1100 hours on the 25th, and inflow at Hansen peaked three hours later, averaging 17,970 ft³/s from 1300 to 1400 hours (pl. 8-4). At 1700 hours the Hansen Reservoir water surface peaked at 1,018.3 ft. NGVD, with 9,015 ac-ft of water stored; the maximum outflow of 11,040 ft³/s occurred at 1800 hours 25 January.

3. 23-25 February 1969. In late February 1969 several back-to-back storms moved into southern California from the west, with the rainfall of early 25 February by far the heaviest. The total precipitation for 23-25

February ranged from less than 5 inches at Hansen Dam to 20 inches along Angeles Crest Highway southeast of Big Tujunga Dam.

The combination of a thoroughly saturated watershed from the heavy January 1969 rains and continued moderate rain and snow during February 1969 resulted in a very high runoff potential when the very heavy rain burst occurred on the morning of 25 February. The flood down Big Tujunga Canyon pushed the water surface level behind Big Tujunga Dam to a height of 2,301.4 ft., 11.4 ft. above its spillway. Outflow there reached an average of 17,200 ft³/s from 0500 to 0600 hours Mean hourly inflow at Hansen peaked at 26,012 ft³/s from 0700 to 0800 (pl. 8-5), and its highest water surface elevation was 1,030.8 ft. NGVD at 1100 hours. Maximum storage was 14,872 ac-ft at 1100 hours, and maximum outflow from Hansen was 16,000 ft³/s at noon on 25 February.

4. 9-11 February 1978. After several moderately heavy storms during January and early February 1978, one low-latitude Pacific storm developed west of southern California and moved into the area during the night of 9-10 February. After a day of heavy rain in the San Gabriel Mountains on 9 February, in which Opid's Camp (near the San Gabriel-Big Tujunga watershed divide) received 10.8 inches, a major cloudburst struck the Hansen and adjacent watersheds during the first two hours of 10 February, with generally 1.0 to 1.5 inches of rain. Some stations measured up to 1.4 inches in 30 minutes. Total precipitation in and around the Hansen watershed ranges from 5-6 inches at the dam to 14 inches in the higher mountains southeast of Big Tujunga Dam.

As the result of the 10 February cloudburst, which occurred on saturated ground just beginning to recover from a major burn in November 1975, several streams in the Hansen watershed experienced severe flash floods and mud flows. Some campgrounds were totally washed away, with several fatalities. Inflow to Hansen Dam averaged $40,220~\rm ft^3/s$ from 0300 to 0345 hours on 10 February (pl. 8-6), and the mean of $35,050~\rm ft^3/s$ for the hour ending at 0400 is the greatest on record. The maximum water surface elevation for this flood event reached $1,023.9~\rm ft$. NGVD at 0630 hours on 10 February. At this time, $8,211~\rm ac$ -ft of water was stored behind the dam, according to the storage/elevation survey of August 1969. The maximum outflow from the dam increased to $13,540~\rm ft^3/s$ at 0600 hours on 10 February.

- 5. March 1978 February 1980. Four more significant storm and flood periods occurred in southern California during the following two years. These occurred 28 February 5 March 1978, 5 January 1979, 30 January 2 February 1979, and 13-21 February 1980. The Hansen watershed experienced heavy rain, and the inflow to Hansen Dam was significant in each of these events.
- 6. Storm and Flood of 28 February 3 March 1983. A low-latitude Pacific storm, reminiscent of those of 1938 and 1978, moved into southern California at the end of February and first of March 1983, with generally 10-20 inches of rain over the Hansen watershed. Big Tujunga Dam recorded 18.40 inches for the period. The heaviest rainfall occurred with the passage of a strong occluded cold front during the morning of 1 March, with peak intensities well in excess of 1 inch per hour.

The inflow to Hansen Reservoir consisted of three peaks between 2000 hours 1 March and 0500 hours 2 March (pl. 8-7). The middle peak, which occurred at midnight 1-2 March, was the greatest, with an estimated maximum inflow of 27,900 ft³/s. The maximum water surface elevation of 1,039.7 ft. NGVD at 0700 hours, 2 March is the highest yet observed for Hansen Reservoir. The storage of 13,261 ac-ft is the third greatest amount of water ever impounded Hansen Dam. The maximum outflow from the reservoir was 18,100 ft³/s at the time of the maximum water surface elevation.

8-03 RECREATION AND AGRICULTURE

a. <u>Recreation</u>. None of the recreational facilities in Hansen Reservoir depend upon runoff water impounded behind the dam, though there is a proposal to excavate a small lake in the basin at this time. Thus there are no direct recreational benefits that result from the dam or its operation at present. The recreational facilities were constructed because the land within the reservoir could not be used for other purposes. Thus there is an indirect recreation benefit accruing to the project.

The effects of the dam and its operation upon the recreational facilities within the reservoir are by necessity all negative; that is, some of these facilities are occasionally flooded by the impoundment of water behind the dam for flood control. These recreational facilities, however, were constructed and are operated with this understanding.

b. Agriculture. The same arguments cited above regarding recreation also apply to the agricultural products that are cultivated on Hansen Reservoir lands. Because the overall acreage of agriculture within the reservoir basin is small compared to the needs of the local populations, the impact of Hansen Dam and its operation upon the overall food production and consumption in the region is negligible.

8-04 WATER QUALITY

There are no benefits of Hansen Dam to water quality of Tujunga Wash. On the other hand, Hansen Dam and its operation should not in any way contribute to the degradation of the water quality of the river.

8-05 FISH AND WILDLIFE

The reservoir lands that constitute the Hansen Flood Control Basin are characterized by natural vegetation which survive in the environment of a flood control basin where there is no objective to operate the dam to reduce inundation damages to improved reservoir or recreational lands. The flood control basin contains several vegetational associations including willow riparian woodland, riparian scrub, alluvial wash, coastal sage scrub, oak woodland and oil field grassland. Additionally, established areas of vegetation occur at landscaped areas and in places on the dam face itself.

Associated wildlife include the side-blotched lizard, cottontail rabbit, jackrabbit, California ground squirrel, gopher, coyote and mule deer. About 24 resident bird species have been identified along with numerous migrant

species. There are no fish within the flood control basin, though Big Tujunga wash is a perennial stream and supports the small native fish species; arroyo chub, Santa Ana sucker and speckled dace.

Inundation will have the potential to kill or displace ground dwelling animals or may result in the temporary loss of willow canopy, the prime habitat of several bird species. The only listed or threatened species that can be potentially affected within Hansen reservoir is the least Bell's vireo. However, the habitat in question is not proposed critical or designated critical habitat by the U.S. Fish and Wildlife Service. Also, there is no permanent loss of habitat since some of the wildlife is migrating, many species in the basin are adapted to flooding and habitat regeneration is relatively quick.

8-06 WATER SUPPLY

Because Hansen Dam is not operated for water supply, there are no direct effects or benefits of the dam or its operation upon the water supply of the San Fernando Valley or other parts of the greater Los Angeles Basin. The District will attempt to inform LACDPW and other downstream entities when flood control releases are to be made. However, there will be no restrictions in scheduled releases to mitigate for possible adverse impacts downstream. When conditions are favorable, low releases from below the debris pool can be coordinated with Los Angeles LACDPW and Los Angeles County DWP to facilitate use of their spreading grounds.

8-07 HYDROELECTRIC POWER

There is no existing or contemplated hydroelectric power generation at Hansen Dam.

8-08 NAVIGATION

There is no navigation on Tujunga Wash or in Hansen Reservoir at any time.

8-09 FREQUENCIES

a. Peak Inflow and Outflow Probabilities. Plate 8-8 is a graph of the peak inflow and outflow frequencies at Hansen Dam, computed from 1985 Los Angeles County Drainage Area (IACDA) review study. Plate 8-9 is a graph of the peak inflow and outflow frequencies at Big Tujunga Dam, computed from a 1985 LACDA Review Study. The values of these curves at specific return periods are listed on plates 8-10 and 8-11, respectively. Comparison of historical and design floods at Hansen Reservoir are presented on plates 8-14 and 8-15. Exhibit E contains stream flow data for stations on Tujunga Creek.

Due to the newly determined downstream channel capacity of 20,800 cfs, decreased from 22,000 cfs, the elevation frequency curve using the new regulation plan would be slightly higher for events with a frequency of occurrence (exceedence interval) of less than once in 400 years.

- b. <u>Pool Elevation Duration and Frequency</u>. Plate 8-12 is the computed elevation frequency curve for Hansen Dam. Plate 8-13 is the computed elevation frequency curve for the Big Tujunga Dam. The values of the curves at specific return periods are listed on plates 8-10 an 8-11, respectively.
- c. <u>Key Control Points</u>. Exhibit E shows a stage/discharge rating table for the USGS stream gauge on Tujunga Wash below Hansen Dam.

8-10 OTHER STUDIES

- Examples of Regulation. Discharge-frequency values presented in this manual were derived from on-going (1985) investigations in the U.S. Army Corps of Engineers Los Angeles County Drainage Area Study. The "Interim Report on hydrology and Hydraulic Review of Design Features of Existing Dams for Los Angeles County Drainage Area Dams," dated June 1978, presents the derivation of the PMF and SPF used in this manual. The "Los Angeles County Drainage Area (LACDA) Review" dated February 1988, revised 1989, assesses current adequacy of channel capacities in the entire LACDA system. The Corps' "LACDA Review Feasibility Study", which was commissioned by Los Angeles County to study ways to improve the flood control capabilities of the IACDA system in view of increased urbanization, is anticipated to be available in FY 1991. Alternative solutions studied included reregulation of corps reservoirs as a system, deepening channels, widening channels and increasing levee heights. There is also a mini-report being prepared which studies in greater detail reregulation of the Corps reservoir projects to improve the flood control capability of the LACDA system.
- b. <u>Channel and Floodway Improvement</u>. No floodplain management studies addressing the downstream channel have been conducted by the U.S. Army Corps of Engineers since the downstream channel was constructed. Several Flood Insurance Studies have been completed to date by the Corps of Engineers and Los Angeles County Flood Control District (now part of the Department of Public Works) for the Federal Emergency Management Agency (FEMA). FEMA is also preparing Flood Insurance Rate Maps (FIRM Maps) to consider specific flood depths for flooded areas. The maps will have a scale of 1" 500' and will be used as part of the National Flood Insurance Program (NFIP).

IX - WATER CONTROL MANAGEMENT

9-01 RESPONSIBILITIES AND ORGANIZATION

a. Corps of Engineers. Hansen Dam is owned, operated, and maintained by the LAD, which has complete regulatory responsibility for the dam and the reservoir.

Reservoir regulation and water control decisions at Hansen Dam and other COE facilities in the LAD are conducted by the Reservoir Regulation Section. Plate 9-1 shows an organizational chart depicting the chain of command for Reservoir Regulation.

Gate operation instructions to the dam tender are issued by the Reservoir Operations Center (see secs. 5-06 and 5-07). In the event that communications between the Reservoir Operations Center and Hansen Dam are interrupted, a set of Standing Instructions to the Project Operator for Water Control are included in Exhibit A. The Hansen Dam Reservoir Regulation Schedule is presented in Exhibit B. Dam tenders are part of the Operation Branch, Construction-Operations Division.

- b. Other Federal Agencies. The COE has complete responsibility for the operation of Hansen Dam. Although the COE receives data and information from other Federal and local agencies and informs these agencies of major decisions affecting Hansen Dam, no other agency has any responsibility in the operation of Hansen Dam. The U.S. Geological Survey (U.S.G.S.) operates stream gauges in the LACDA.
- c. State and County Agencies. LACDPW has maintenance responsibility for the Tujunga Channel downstream of Hansen Dam and maintains and operates a number of projects in the drainage area, including Hansen Spreading Grounds. Exhibits C and D show pertinent data related to LACDPW projects.
- d. City of Los Angeles. A large portion of the Hansen Reservoir lands, owned by the Federal Government and operated by the COE, is leased to the City of Los Angeles for recreational purposes. The Corps reserves the right to inundate this land. Also, the DWP maintains and operates Tujunga Spreading Grounds.
- e. Private Organizations. There is no involvement of private organizations in the regulation of Hansen Dam.

9-02 INTERAGENCY COORDINATION

The LAD coordinates with other Federal, State, County, and local organizations, as well as with the press (media), concerning the water control for Hansen Reservoir.

a. Local Press and Corps of Engineers Bulletins. The Public Affairs Office of the LAD is responsible for interfacing with the press regarding operations at Hansen Dam and flows in the channel downstream of the dam. This is accomplished through interviews and the occasional issuance of press releases. The LAD does not issue flood watches, warnings or other status reports or forecasts to the general public. These are the responsibility of the NWS.

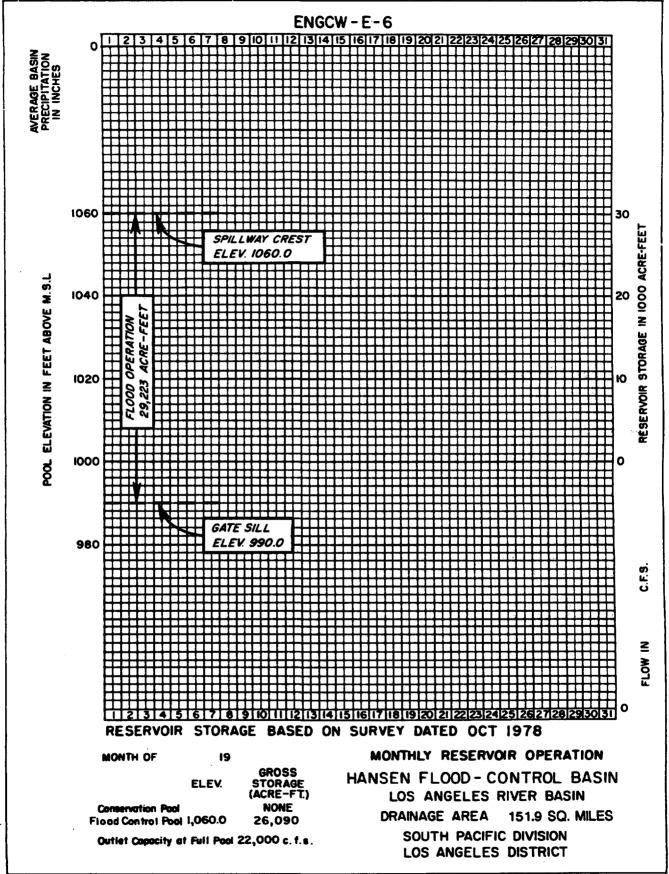
- b. National Weather Service. The LAD utilizes NWS data and forecasts in the operation of Hansen Dam, including the real-time telemetry data from gauges installed in the watershed by the LACDPW in cooperation with the NWS. The LAD shares data with the NWS and other agencies both on a real-time basis and after the fact.
- c. U.S. Geological Survey. The LAD receives streamflow data from the U.S.G.S., primarily on a historical basis in southern California. The LAD coordinates with the U.S.G.S. in many different ways, and shares its data with the U.S.G.S.
- d. Los Angeles County Department of Public Works. The LAD and LACDPW closely coordinate the operation of their reservoir projects and the maintenance and patrolling of their channels in the LACDA. The LAD informs the City of Los Angeles of any anticipated and actual impoundments.

9-03 INTERAGENCY AGREEMENTS

No interagency agreements exist with the exception of the land leased to the City of Los Angeles for recreational purposes.

9-04 COMMISSIONS, RIVER AUTHORITIES, COMPACTS, AND COMMITTEES

Hansen Dam is not involved in any commissions, compacts, or other formal multi-agency agreements.


9-05 REPORTS

The LAD prepares and files several types of reports. Each month during the runoff season, November through April, a flood situation and runoff potential report is prepared and sent to the South Pacific Division (SPD) of the COE.

Seven specific forms are also prepared in conjunction with the LAD's reservoir operation at Hansen Dam. A copy of each of these forms is included in figures 9-01 through 9-07. These include: Flood Control Basin Operation Report (prepared by each dam tender), Monthly Reservoir Operation (operational hydrographs), Rainfall Records (from manual readings of glass tube rain gauges), Record of Data from Digital Recorders, Reservoir Computations, Reservoir Operation Reports, and Record of Calls (both radio and telephone).

The LAD also collects and files charts from recording instruments at Hansen Dam (and other dams), including precipitation, reservoir surface elevation, and gauge height. Daily precipitation totals and, as needed, other data (such as unusually high intensities) are manually extracted from the precipitation charts, and the charts are sent to the National Climatic Data Center of NOAA. The other charts are maintained on file at the LAD District Office in the Reservoir Regulation Section.

				FLOOD	NO OS	CONTROL	8	ASIN	OPERATION	VTION		REPORT				ļ		<	eports SI		Neports Control Symbol SPLCO - 7	
												Month	Ę					٤				OPI
أذة ا	servoir	Reservoir W.S. Elev	v Outlet										Gate operation	perati	Ou							ERA
=	Time Ty	Type Gage of reading	1 me	Sage height	E E	No. 1	No.2	10.3	No.u	NO.5	No.6	Gat No.7	Cate opening in feet	No.9	n feet No.10	No. 11	NO.12	No.13	NO. 14	NO.15	NO.16	TOR
1 1	-											+					++		_			
- 1	+	+	_		_																	
1			-		-									1								
			<u> </u>																			
	-	:											1	\top						_		
1 1	-		-																			
- 1	-		-																			
i	-	-	+											1						_		
i	-	-	-																			
1										:												
- 1	-		 -	-	-																	
	-	: 							!													
			! 	1			!															
1																						
. !			!		j			İ			i		1						_			
	+	-	1										-							\perp		
1	+		<u> </u>																			
1 1	$\frac{1}{1}$		 																			
1	+	+	 												T							
	+		_																			
	+		-																			
1			-																			
ı i	H												\uparrow	1								
1 6	┦;	-	-											1								
E .	KCMAKKS:							•														
ű																						

RAINFALL RECORD

STAT	ION			- · · · · · · · · · · · · · · ·	HOURL	Y DAILY	DATE
HR	DA	TIME OF READING	GAGE READING	STORM TOTAL	SEASON TOTAL	OBSERVER	REMARKS (SNOW, TEMP., ETC.)
0000	1						
0100	2						
0200	3						
0300	4						
0400	5	· · · · · · · · · · · · · · · · · · ·	-		<u></u>		
0500	6						
0600	7						
0700	8						
0800	9						
0900	10						·
1000	11						
1100	12						
1200	13						
1300	14						
1400	15		#a.				
1500	16						
1600	17						
1700	18						
1800	19						
1900	20						
2000	21						
2100	22						
2200	23						
2300	24						
2400	25						
	26						
	27						
	28						-
	29						
	30						·
	31						
тот	'nL						

RE	CORD OF DA	ATA FROM DIGITAL RE	CORDERS	NAME OF DAM	
ATE	TIME	WATER SURFACE	GAGE HEIGHT	PRECIPITATION	OPERATOR
-					
	 				
					<u> </u>
	 				
					
	-				
					İ
					
	 				
					 -
	<u> </u>				ļ
					
		·			}
	 	-			
				<u> </u>	
					<u> </u>
					T
					
					1
					-
	<u> </u>	,			
····	1				
	 	<u> </u>			
	 				
	1 1			1	<u> </u>

						HOU	IRLY						·
AM								TIME	OF READI	NG (IF DAIL	4)	DATE	
OMP	JTED	BY		CHEC	KEC 3Y			DATA	SOURCE	·			•
					INS	T. OUTF	LOW		STORAGE	E CHANGE	· · · · · · · · · · · · · · · · · · ·	,	<u> </u>
ĸ.	DA.	ELEV.	STORAGE	GATE STEP NO.	OUT- LETS	DOWN:	STREAM FLOW	HRS.		CFS	AV. OUT- FLOW	AV.	GATE
REV	ous	FT.	AC. FT.		CFS	FT.	CFS	 			CF5	CFS	FT.
EP								}			·	 	
	1			ļi		ļ		ļ				 	
	2					ļ		 		 		1	1
	3			 	· 	 		1		1		1	}
	4	· · · · · · · · · · · · · · · · · · ·				 							}
	5		 			 							}
	7	 	 			 							}
	8		 -			 							<u> </u>
	9		 			┼──		 					}
	10		 			 		<u> </u>				<u> </u>	} -
	11		 			 	 	1	ļ			 	<u> </u>
	12	 	 					┪		<u> </u>		ļ	}
	13		 	1		 		}				ļ	├ ──-
	14		i —	†		1		1	ļ				
	15					†		} -	}	ļ		 	_
	16							}	 -	ļ		 	1
	17		 			1		1		}			-
	18		<u> </u>			1		}					-
	19							}	 -	 			-
	20							}		-			-
	21		i					}	ļ			+	-{
	22							<u> </u>	 	 			-
	23							 	 	 		+	1
	24			ļ		<u> </u>		}	 	 		 	-
	25			<u> </u>		1	ļ	1		 			1
	26		ļ	ļ	<u> </u>	 	ļ	╁──	 	+	 	 	1
	27		<u> </u>	<u> </u>			ļ	╁──		 	 	 	┪
	28		 	 	<u></u>	<u> </u>	 	 	 	 	 	- 	
	29	·		<u> </u>		<u></u>	<u> </u>	1	 -	1	 	+	1
	30			 	ļ	ļ	 	1-	 	1			┦
	31	<u> </u>	L	1		<u> </u>	<u>!</u>	 	L	ـــبــــــــــــــــــــــــــــــــــ	ļ		
AM,	RKS								TOTA	1 L			

			RESERVOIR OPERATI	OPERATION	N REPO						
	RADIO		A TOLIS CATAIN			RAINFALL	: 77			40	
	CALL	DAM	ELEVATION	RECORDER		פרש	GLASS TUBE		GATE SETTINGS (Printed values show initial settings	NGS nitial settings	
	WUK		(FT. MSL)	READINGS	RECORDER	SINCE LAST REPORT (INCHES)	STORM TOTAL (INCHES)	SEASON TOTAL (INCHES)	of gates prior to floc	od runoff)	
	411	SEPULVEDA		WS GH					GATES OPEN 9.0 FT	0	
	412	HANSEN		8/4 GH					GATES OPEN 8.0 FT.		
	419	SANTA FE		WS GH					#14 OPEN 0.5 FT.		ĺ
	416	BREA		WS					GATES OPEN 2.0 FT.	0	
	417	FULLERTON		WS HO					GATES OPEN 1.1 FT.		
	418	CARBON CANYON		WS GH					#1 OPEN 0.5 FT.		
	421	PRADO		WS GH					GATES 1 & 6 OPEN 1.0 FT. REM. GATES CLOSED		
	420	SAN ANTONIO		WS OH					GATES CLOSED		
IX-			w, PIT								
-8		RIO HONDO POOL	E. PIT		-				E OPE	<u>.</u>	
		жоян	COMB.	Н					GATES 2, 3, & 4 OPEN FT.		
	415	AN F	TELEMARK								
		11 <u>11</u> 1H	W. STAFF			×××	×××	×××	GATE #8 OPEN 0.30 FT.		
		S SAN GABRIEL POOL	E. STAFF				-				
			COMB.	ВН							
			RES: S						GATES OPEN 0.5 FT HOOK:		
	429	PAINTED ROCK	B. P17	X X X X	XXXX			-	ANEMOMETER: TEMPERATURE:		
FI											
GUF		(s I		3				GATE NO. 3 BYPASS CFS HOOK:		٠,
RE 9	<u>ئ</u>	ALAMO	RES:	× × × ×	XXXX				ANEMOMETER:		
-6		, , ,				91 (1011)	10000				١

REPLACES EDITION JUL 75, WHICH IS OBSOLETE.

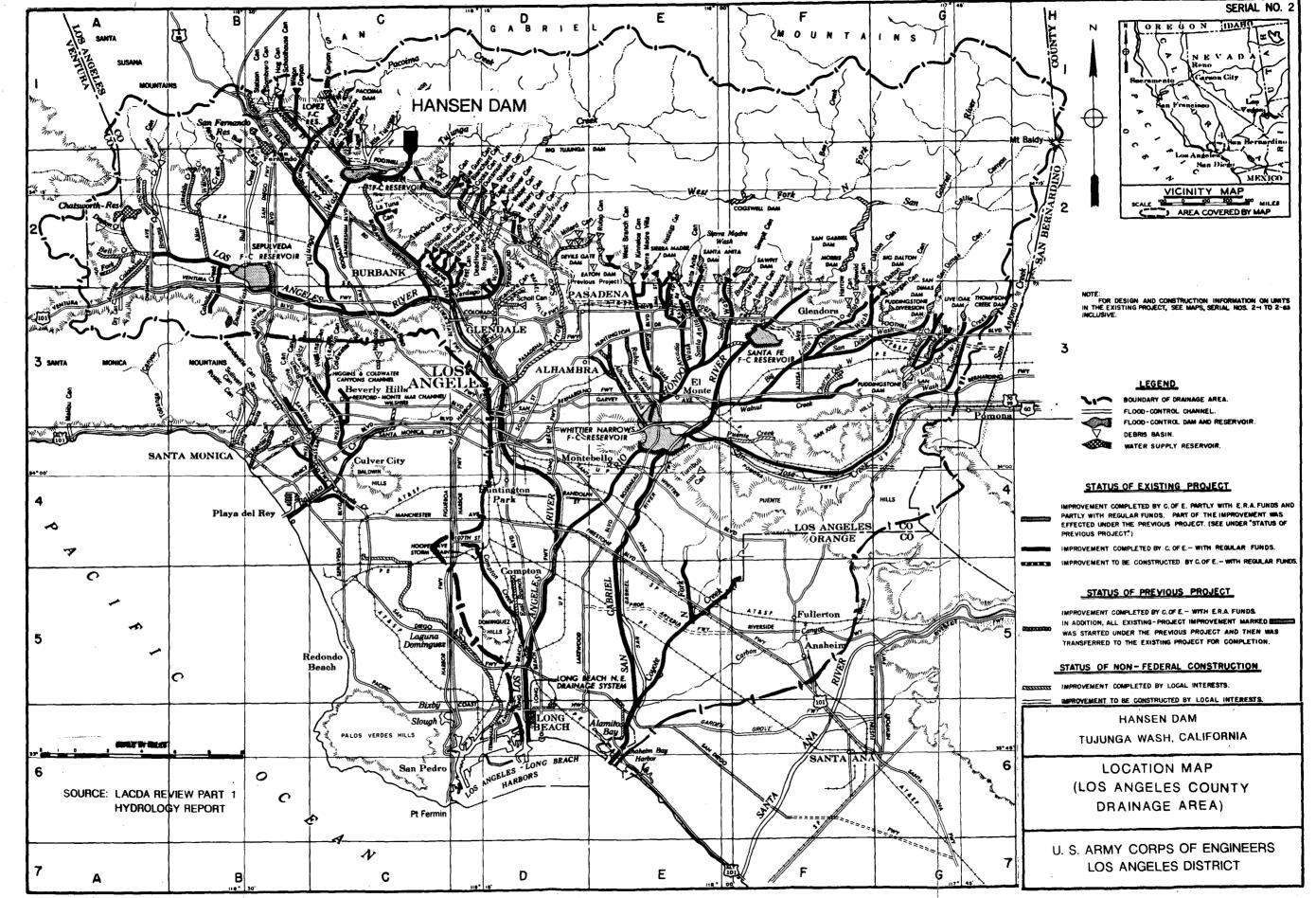
| RECORD OF CALLS Radio Telephone Date Telephone |--|
|--|

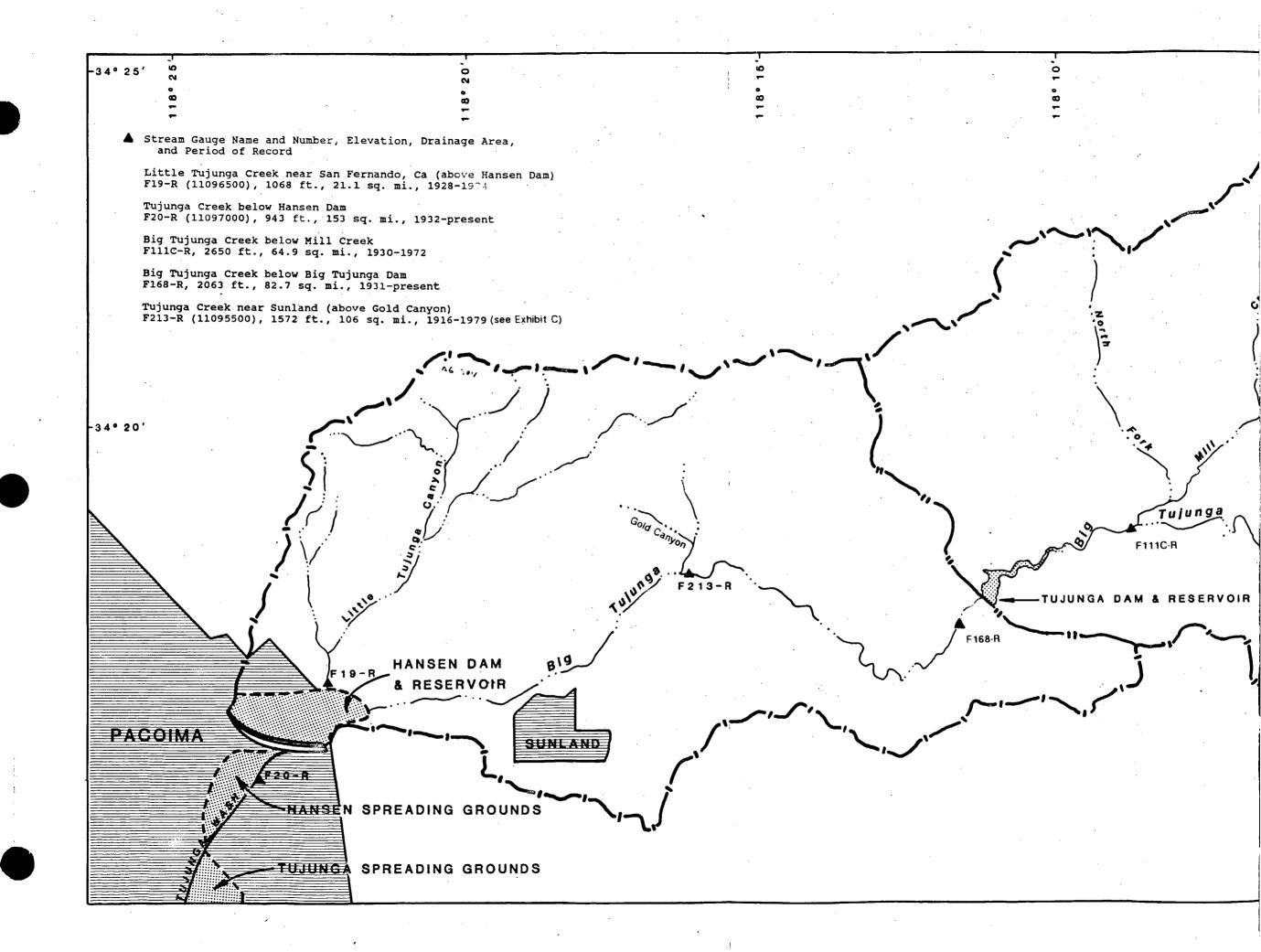
FIGURE 9-7

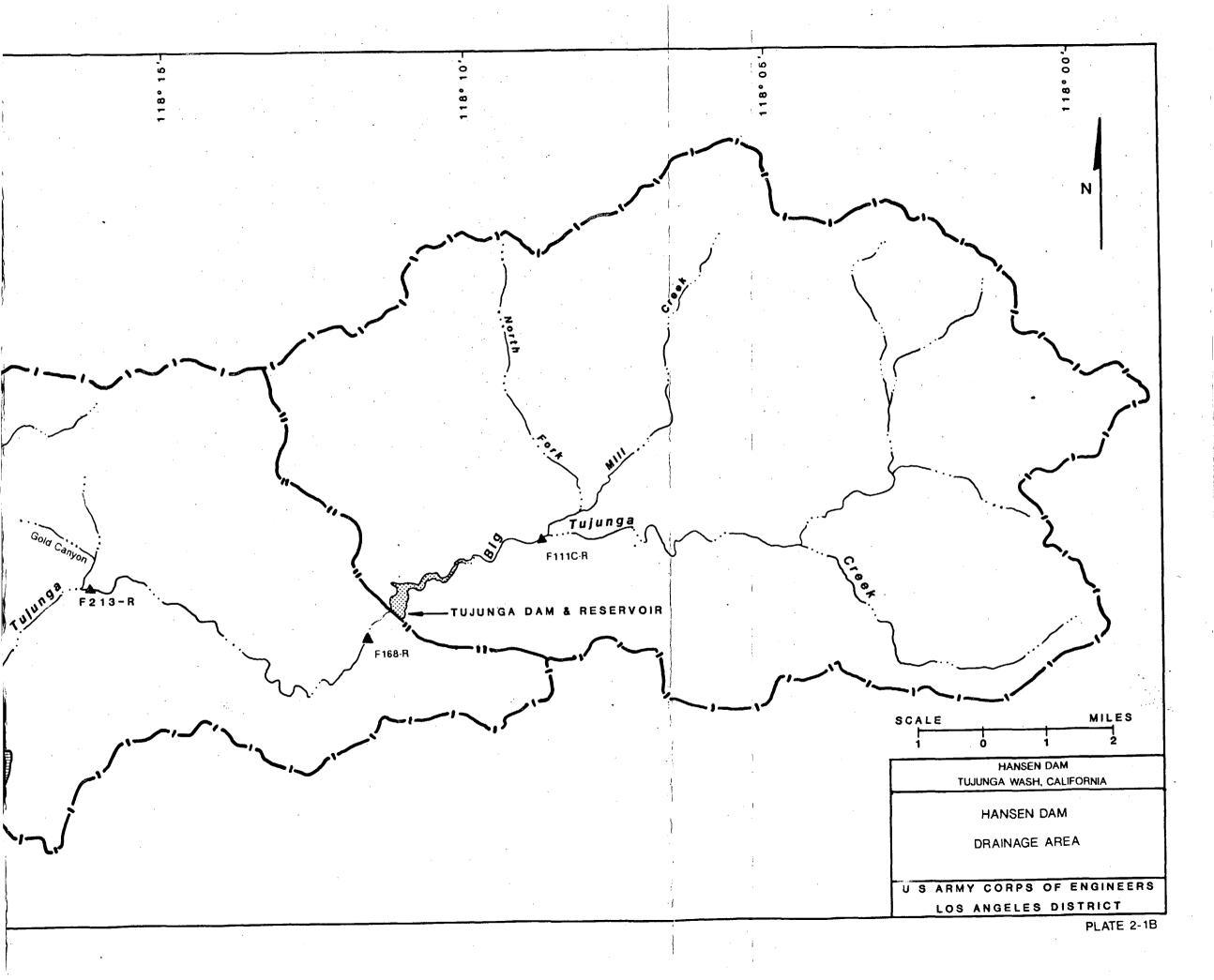
SPL 20 APR 50 188 PREVIOUS EDITIONS ARE OBSOLETE

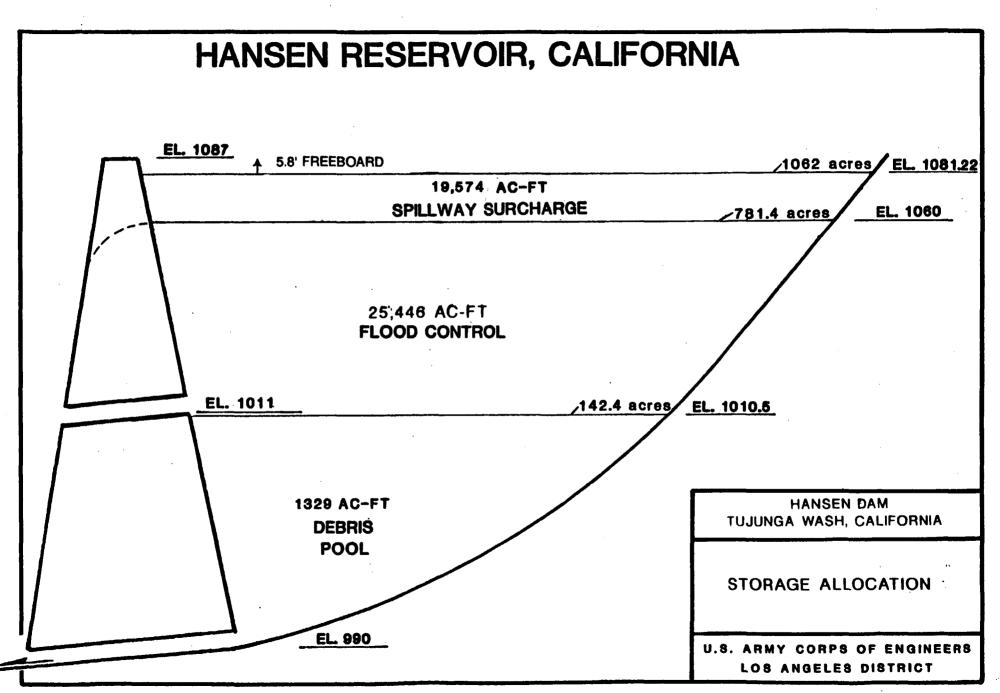
Related Manuals and Reports.

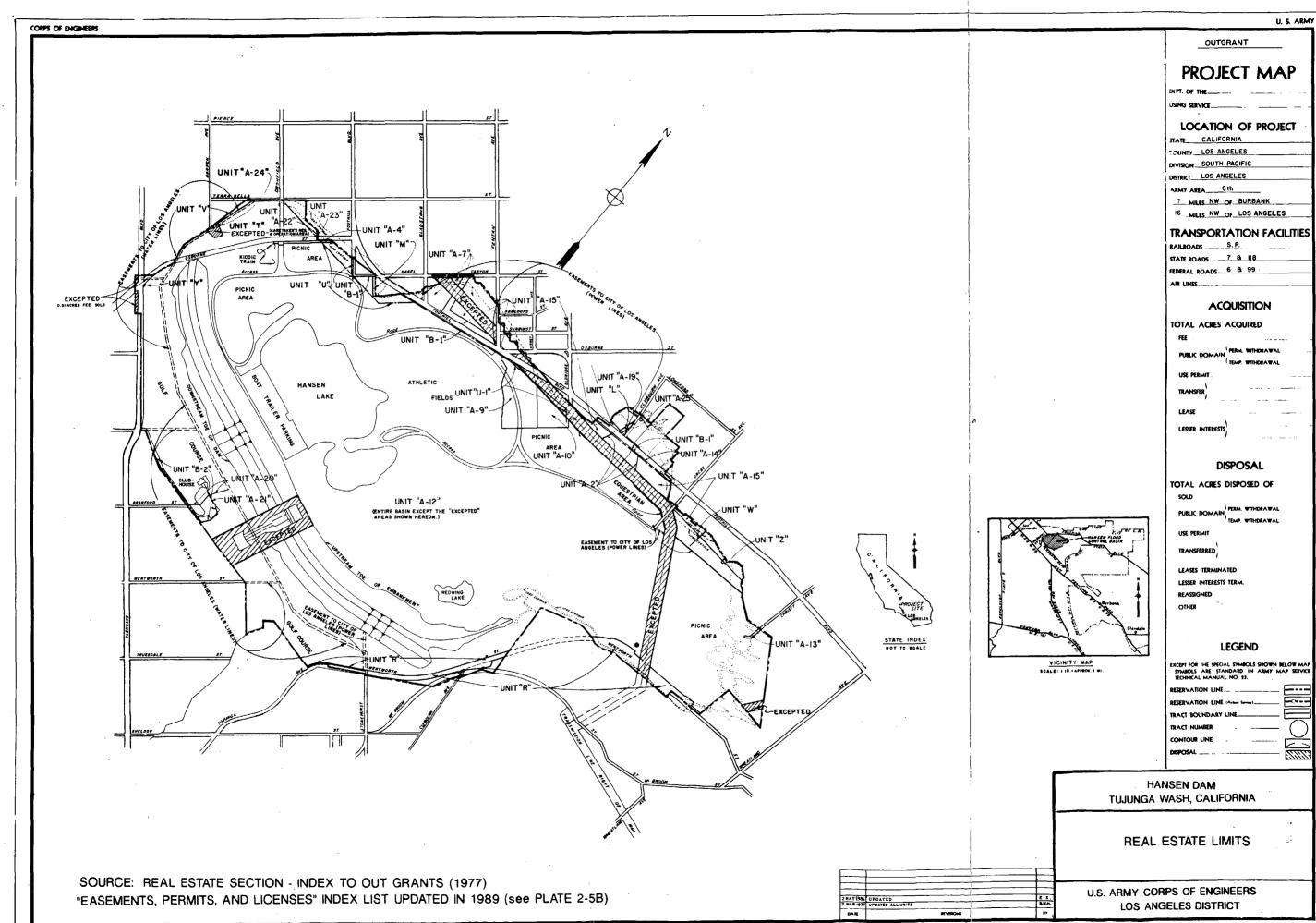
- U.S. Army Corps of Engineers, Los Angeles District, "Analysis of Design of Tujunga Wash Improvement - Hansen Dam" - Volumes I and II, 2 May 1938.
- 2. U.S. Army Corps of Engineers, Los Angeles District, "Analysis of Design of 5 feet by 8 feet Service Gates for Hansen Dam," January 1939.
- 3. U.S. Army Corps of Engineers, Los Angeles District, "Hydrology in the Los Angeles County Drainage Area," March 1939.
- 4. U.S. Army Corps of Engineers, Los Angeles District, "LACDA, Tujunga Wash Improvement; Specifications to Accompany Change Order No. 7 (Revised 10-23-39), Hansen Dam Contract No. W-509-Eng-689," October 1939.
- 5. U.S. Army Corps of Engineers, Los Angeles District, "Analysis of Hydraulic Design for Hansen Flood Control Basin," 18 March 1940.
- 6. U.S. Army Corps of Engineers, Los Angeles District, "Tujunga Wash Improvement, Hansen Dam, Analysis of Design," June 1940.
- 7. U.S. Army Corps of Engineers, Los Angeles District, "Hydrology, Upper Los Angeles River and Tributaries, Burbank-Western Channel to Sepulveda Dam," December 1946.
- 8. U.S. Army Corps of Engineers, Los Angeles District, "Specifications for Tujunga Wash Improvement, Los Angeles River to Hansen Dam; Gates, Footbridge, and Appurtenances at Hansen Spreading Ground Headworks," February 1952.
- 9. U.S. Army Corps of Engineers, Los Angeles District, "Los Angeles County Drainage Area, California, Flood Control, Design Memorandum No. 1, Hydrology for Lopez Canyon Diversion Channel," March 1959.
- 10. U.S. Army Corps of Engineers, Los Angeles District, "Operation and Maintenance Manual for Hansen Dam Flood Control Basin, Tujunga Wash Improvement," April 1963.
- 11. U.S. Army Corps of Engineers, Los Angeles District, "LACDA, CA, Hansen Dam Master Plan," February 1975.
- 12. U.S. Army Corps of Engineers, Los Angeles District, "Interim Report on Hydrology and Hydraulic Review of Design Features of Existing Dams for LACDA Dams," June 1978.
- 13. U.S. Army Corps of Engineers, Los Angeles District, "Los Angeles River Improvement, Los Angeles County, CA, Hansen Dam, Seismic Evaluation, Phase I Report," January 1982.
- 14. U.S. Army Corps of Engineers, Los Angeles District, "Hansen Dam Modeling Study; Impact of Water Supply vs Flood Control Operational Modes on Sediment Deposition in the Reservoir Area," June 1983.
- 15. U.S. Army Corps of Engineers, Los Angeles District, "LACDA, CA, Hansen Dam, Preliminary Formulation Report," September 1984.
- 16. U.S. Army Corps of Engineers, Los Angeles District, "Hansen Dam, LACDA, CA, Dam, Outlet, and Spillway, Periodic Inspection Report No. 4," May 1985.
- 17. U.S. Army Corps of Engineers, "Los Angeles County Drainage Area, California, Review Part 1 Hydrology Report," February, 1988.


RELATED MANUALS AND REPORTS


U. S. ARMY CORPS OF ENGINEERS


LOS ANGELES DISTRICT


HANSEN DAM TUJUNGA WASH, CALIFORNIA


PLATE 1.

		EASEMENTS, PERMITS & LICENSES			
UNIT	GRANTEE	GRANT	TERM	ACRES	MAP REF.
B-1	SOUTHERN CALIFORNIA EDISON CO.	EASEMENT FOR TELEPHONE LINES UNNUMBERED	€/11/46 - 0610 96	, 1.01	UNK
B-2	CITY OF LOS ANGELES DEPT. OF WATER & POWER	LETTER PERMIT FOR POWER LINE FOR GOLF COURSE FACILITIES DA-04-353-CIVENG-64-109	2/26/64 - Indefinite	Undeter- mined	UNK
ŗ	CITY OF LOS ANGELES	EASEMENT-PUBLIC ROAD OR STREET UNNUMBERED	7/15/48 - Indefinite	0.27	219-K-13
М	WALTER E. LINN, ALMA L.	EASEMENT FOR ACCESS ROAD & WATER PIPELINE UNNUMBERED.	12/7/48 - 12-06-98	0.34	219-K-14
R	CITY OF LOS ANGELES	EASEMENT FOR EXTENSION OF WENTWORTH ST. DA-04-353-CIVENG-60-56	09-08-58 - Indefinite	14.84	219-K-20
F- 1	CITY OF LOS ANGELES	EASEMENT FOR STORM DRAIN OUTLET STRUCTURE DA-04-353-CIVENG-62-56	7/6/61 - Permanent	0.01	219-K-22
;;;	CITY OF LOS ANGELES	EASEMENT FOR 24" SANITARY SEWER LINE DA=04-353=CIVENGR62-131	7/3/60 - Permanent	0.73	219-K-23
Ÿ	SOUTHERN CALIFORNIA GAS CO.	EASEMENT FOR 4" GAS PIPELINE DA=04=353-CIVENG=61-184	3/28/61 - 03-27-01	0.35	219-K-24
1.5	CITY OF LOS ANGELES	DA-04-353-CIVENG-65-128	2/5/65 - Permanent	0.08	219-K- 25
ï	CITY OF LOS ANGELES	EASEMENT FOR PUBLIC STREET DA=04=353-CIVENG=62-14)	8/23/62 - Permanent	0.01	219-K-27
2	CITY OF LOS ANGELES	EASEMENT FOR STORM DRAIN DA-04-353-C VENG-65-129	2/10/65 - Permanent	0.01	219-K-28
A+2	CITY OF LOS ANGELES	EASEMENT FOR SEWER LINE /SANITARY DA04-353-CIVENG-65-110 INTERCEPTOR	12/21/64- Permanent	1.30	219-K-29
<u> 4</u> -4	CITY OF LOS ANGELES	EASEMENT FOR STREET PURPOSES DA-04 353-CIVENG-66-95	12/1/65 - Permanent	0.27	219-K-31
A-7	VALLEY CREST TREE CO.	LEASE FOR AGRICULTURE /HORTICULTURE	12-01-86/10-31-90	9,59	219-K-34.4
A-9	HOMER ENDO	LEASE FOR AGRICULTURE HORTICULTURE DACK09-1-85-28	05=01=85/04=30-90	13.93	219-K-36.4
A-10	VALLEY CREST TREE CO.	LEASE FOR AGRICULTURE /NURSERY DACW09=1=88-16	11-20-87/11-19-92	6.51	219-K-37.3
A-12	CITY OF LOS ANGELES DEPT OF PARKS & RECREATION	LEASE FOR RECREATIONAL FACILITIES DACWO9-1-69-45	01-05-67/01-04-17	1355.43	219-K-40.1
A-13	LOS ANGELES COUNTY FLOOD CONTROL DISTRICT	EASEMENT FOR STORM DRAIN DACWO9-2-70-40	2/24/70 - Indefinite	0.57	219-K-41
A-14	GENERAL TELEPHONE COMPANY	EASEMENT FOR COMMUNICATION FACILITIES DACWO9-2-89-32	10-08-88/10-07-93	0.26	219-K-42
A-15	STATE OF CALIFORNIA DEPT. OF TRANSPORTATION	EASEMENT FOR CONTROLLED DACKO9-2-75-8 ACCESS HIGHWAY (ST. RTE. 210)	9/10/74 - Indefinite	22.11	219-K-43.1
P	CITY OF LOS ANGELES DEPT. OF WATER AND POWER	EASEMENT FOR WATER PUMPING STATION UNNUMBERED	07-09-51/07008001	0.09	UNK
A-19	CITY, OF LOS ANGELES	EASEMENT FOR STORM DRAIN DACWO9-2-72-51	4/13/72 - Permanent	0.164	219-K-47
A-20	CITY OF LOS ANGELES DEPARTMENT OF WATER & POWER	EASEMENT FOR WATER MAIN DACWO9-2-76-64	7/27/76 /07-26-26	0.301	219-K-48
A-21	CITY OF LOS ANGELES DEPARTMENT OF WATER & POWER	EASEMENT FOR POWER LINE DACK09-3-82-31	11-01-86/10-31-91	0.076	219-K-49
A-22	CÎTY OF TOS ANGELES	EASEMENT FOR SUBSURFACE SEWER STRUCTURE DACWO9-2-84-7	10-12-83/10-11-2033	0.024	219-K-52
A-23	JH DEVELOPMENT INC. & ORANGE GROVE ENTERPRISES INC. HECTOR J. AQUILINO	DACWO92-84-45 EASEMENT FOR DRAINAGE STRUCTURE	4-6-84/ 4-5-2034	0.024	219-K-53
A-24	GEORGE R. BROWN	DACWO9-1-88-26 EASEMENT FOR TRAILER SPACE DAM TEXTER	02-05-89/02-06-90	UNK	NO DRWG.
A-25	SHEILA U. MEARS	UNK	UNK	0,42	219-K-55
U-1	CITY OF LOS ANGELES	POWERLINE DACWO9-2-88-33	11-03-88/11-02-13	UNK	219-K-56

HANSEN DAM
TUJUNGA WASH, CALIFORNIA

EASEMENTS, PERMITS,
AND LICENSES (1989)
(for PLATE 2-5A)

U. S. ARMY CORPS OF ENGINEERS
LOS ANGELES DISTRICT

PLATE 2-5B

The Plate you are attempting to access is not currently available.

For additional information, please contact the Los Angeles District Public Affairs Office at (213) 452-3908.

The Plate you are attempting to access is not currently available.

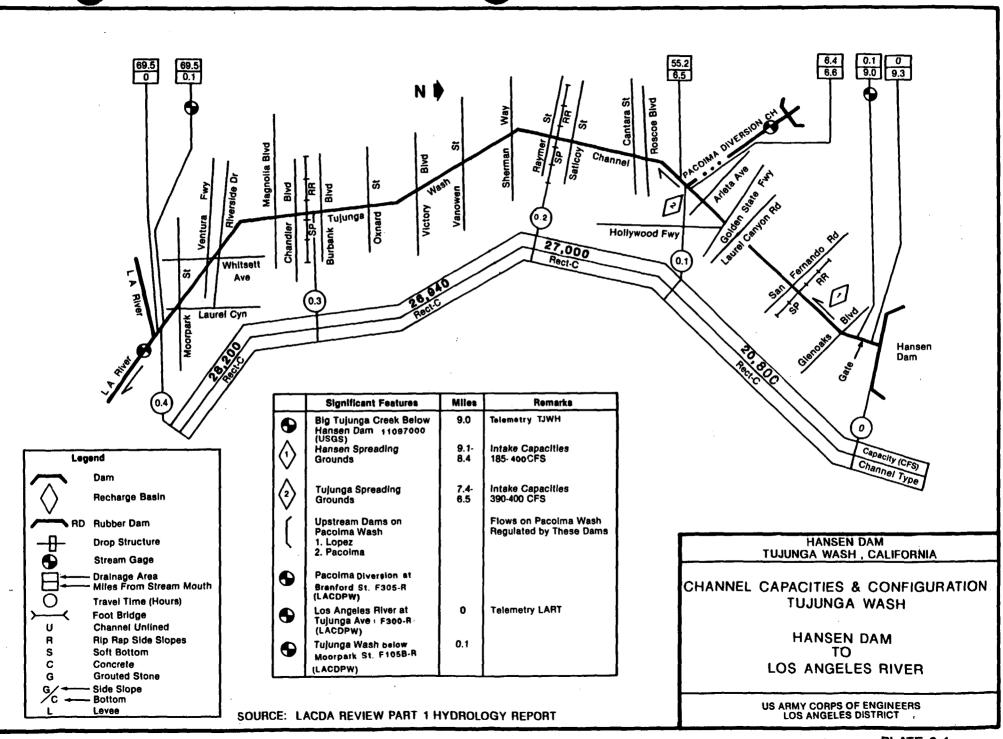
For additional information, please contact the Los Angeles District Public Affairs Office at (213) 452-3908.

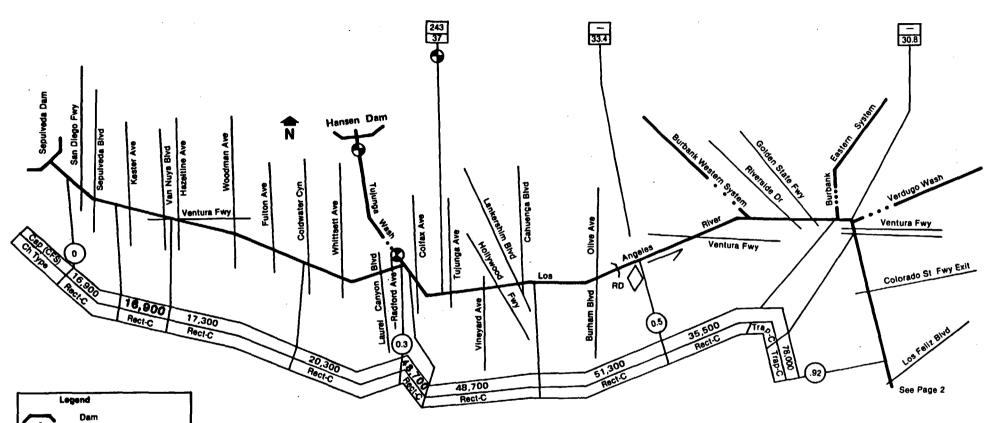
INVENTORY MAPKEY

Notes concerning trail systems in basins Notes concerning right of way Notes concerning adjacent use Notes concerning proposed right-of-way use Notes concerning proposed adjacent use Existing Bike Path Proposed Bike Path Existing Equestrian Trail 00000 Proposed Equestrian Trail **Existing Foot Trail** Beginning of Reach Access into Right-of-way Undercrossing Direction of Undercrossing (inside/outside levee) Tunnel Bridge Park or Golf Course **Equestrian Facility** Boundary of Recreation Area Boundary of Study Area within Flood Control Basin NP Neighborhood Park CP Community Park RP Regional Park GC Golf Course BF Ballfield (Baseball, football, etc.) HC Hardcourt (Handball, basketball, etc.) TC Tennis Court CS Comfort Station PL Parking Lot PA Picnic Area CA Camping Area OM Operations and Maintenance (within recreation area) AR Archery Range MF Model Field **High School** HS College COL

> HANSEN DAM TUJUNGA WASH, CALIFORNIA

RECREATIONAL MAP SYMBOLS


SOURCE: LACDA RECREATION REVIEW 1988


Elevations Of Recreational And Other Facilities In Hansen Reservoir

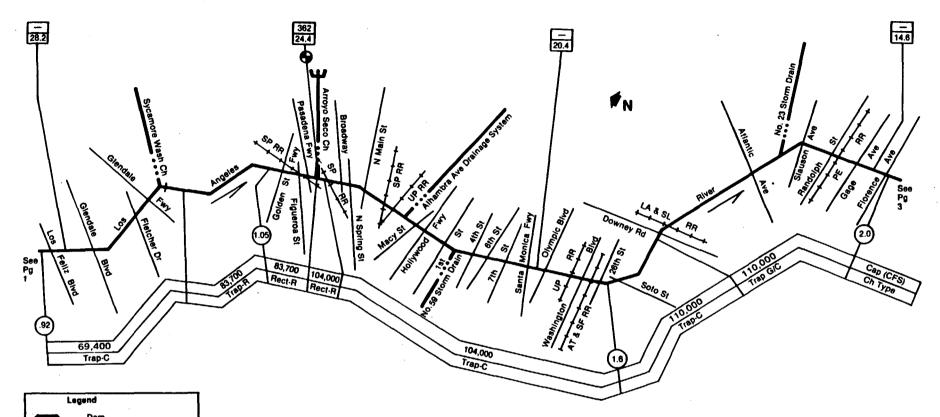
Elev. (Ft. M.S.L.)	Structure In Basin
990.0	Invert Outlet Works
997-1030	Trails Within Lake Area
1000	Beach From Former Lake
1011	Ungated Outlets
1012-1017	Trails East Of Spillway
1012-1072	Hiking & Equestrian Access To Basin
1040-1080	Natural Area Orcas Ave. Park
1044-1088	Picnic & Day Camp Area
1055-1070	Paved Parking - Day Use Only
1060	Spillway Crest
1060-1070	Hansen Dam Sports Center Outdoor Theater Athletic Field Football Field
1061-1108	Equestrian Area
1062-1067	West Lake Development Maintenance Yard - Admin. Bldg.
1065-1070	Picnic Areas
1075-1080	2 Little League Fields
1087	Top Of Dam

HANSEN DAM TUJUNGA WASH, CALIFORNIA

ELEVATIONS OF FACILITIES
IN HANSEN RESERVOIR

	Dam
$\langle \rangle$	Recharge Basin
RD	Rubber Dam
	Drop Structure
•	Stream Gage
▎⋣≔	Drainage Area Miles From Stream Mouth
10	Travel Time (Hours)
/	Foot Bridge
U	Channel Unlined
R	Rip Rap Side Slopes
S	Soft Bottom
C	Concrete
G	Grouted Stone
%=	Side Slope Bottom
	Levee

	Significant Features	Miles	Remarks
) RD	Headworks Spreading Grounds	33.4	Intake Capacity 40 CFS at Rubber Dam
Š	Los Angeles River at Tujunga AVE F300-R (LACDPW)	37	Telemetry LART
•	Tujunga Wash below Moorpark St F105B-R (LACDPW)	37.8	Flows Regulated by Hansen, Big Tujunga, Pacolma and Lopez Dams
•	Big Tujunga Creek Hansen Dam 1109		usgs)


SOURCE: LACDA REVIEW PART 1 HYDROLOGY REPORT

HANSEN DAM Tujunga wash, california

CHANNEL CAPACITIES & CONFIGURATION LOS ANGELES RIVER

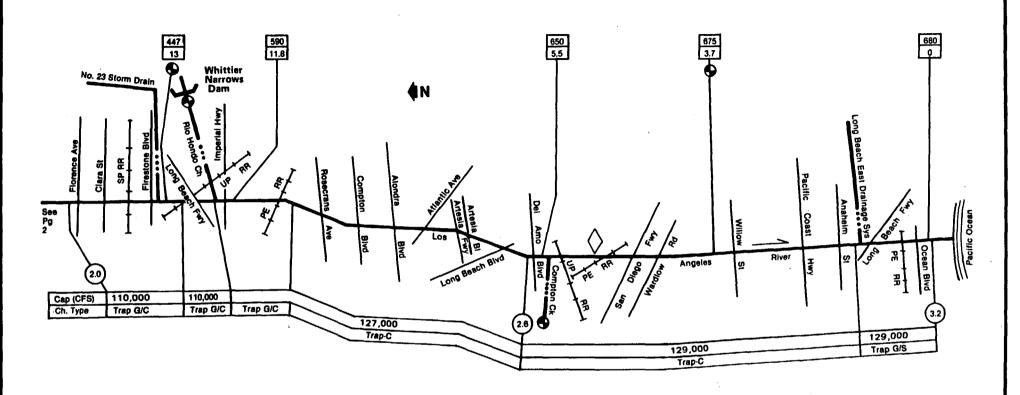
SEPULVEDA DAM TO LOS FELIZ BLVD

Leg	end
	Dam
$ \Diamond \rangle$	Recharge Basin
RD	Rubber Dam
 -	Drop Structure
•	Stream Gage
	Drainage Area Miles From Stream Mouth
10	Travel Time (Hours)
> <	Foot Bridge
υ	Channel Unlined
R	Rip Rap Side Slopes
S	Soft Bottom
С	Concrete
G	Grouted Stone
G/ 	Side Slope
	Bottom
	Levee

	Significant Features	Miles	Remarks
•	Los Angeles River Above Arroyo Seco F57C-R (LACOPW)	24.4	Telemetry LARA
	Arroyo Seco Channel	24.3	Flow Regulated by Devils Gate Dam (Max Q = 43,000 CFS)

HANSEN DAM Tujunga wash, California

CHANNEL CAPACITIES & CONFIGURATION LOS ANGELES RIVER


LOS FELIZ BLVD TO FLORENCE AVE

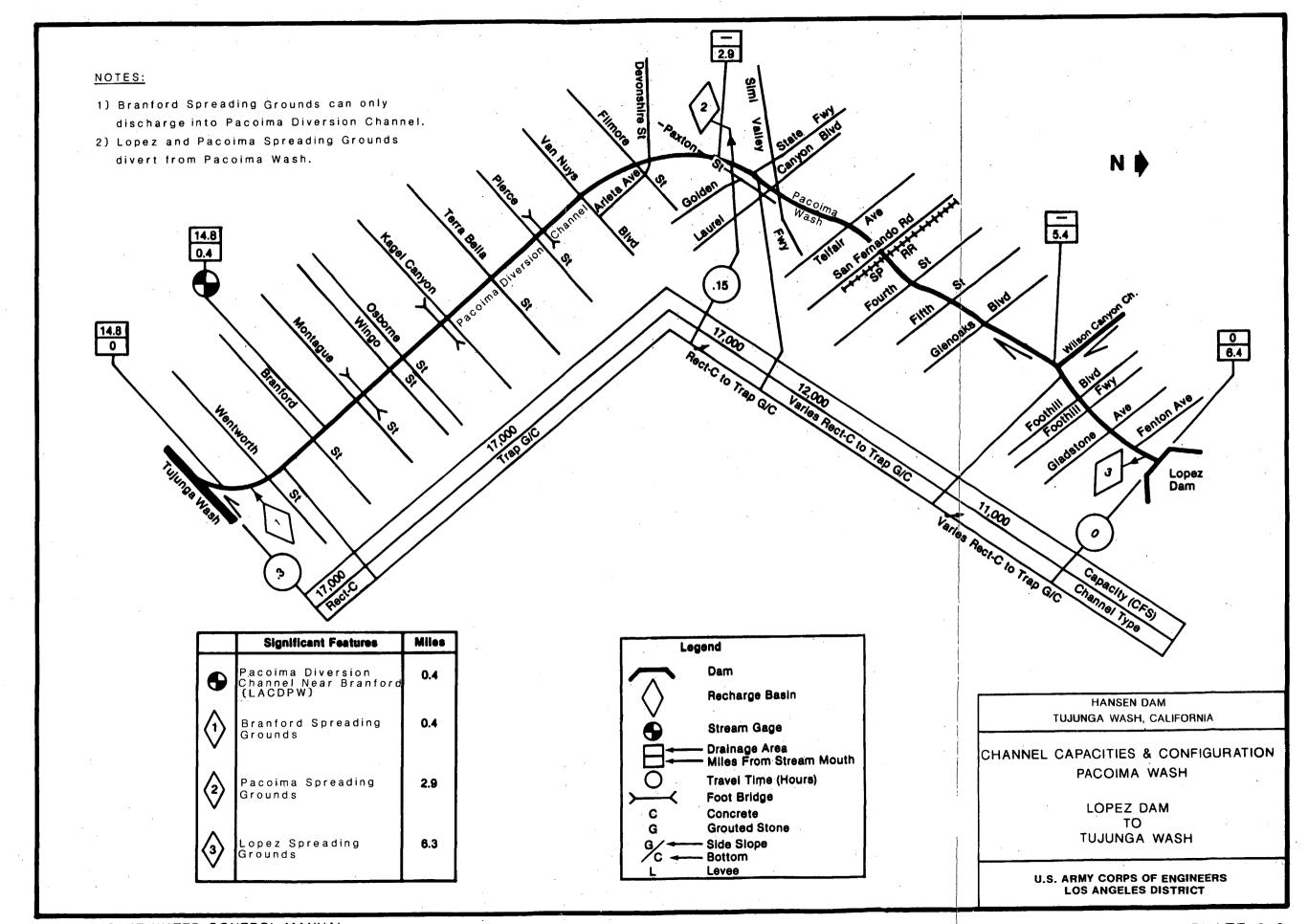
U.S. ARMY CORPS OF ENGINEERS LOS ANGELES DISTRICT

SOURCE: LACDA REVIEW PART 1 HYDROLOGY REPORT

PLATE 3-2B

Leg	end
	Dam
$ \Diamond $	Recharge Basin
RD	Rubber Dam
	Drop Structure
Ō	Stream Gage
	- Drainage Area - Miles From Stream Mouth
· O	Travel Time (Hours)
> <	Foot Bridge
U	Channel Unlined
R	Rip Rap Side Slopes
8	Soft Bottom
С	Concrete
G	Grouted Stone
G/	· Side Slope
/	- Bottom
L	Levee

	Significant Features	Miles	Remarks
•	Los Angeles River DelOW Firestone F34D-R	13	Telemetry LARF
•	Firestone F34D-R Rio Hondo below Whittler Narrows Dam 11102300 (USGS)	12.1	Telemetry RHDB Flows Regulated by Whittier Narrows Flood Control Reservoir
	Dominguez Gap	4.7- 5.1	Intake Capacities 3-20 CFS
V	Spreading Grounds		
•	Los Angeles River /below Wardlow F318-R(LACDPV	3.7 ()	Telemetry LARW
ě	Compton Creek Near Greenleaf F37B-R (LACT	PW)	Telemetry CCKG


HANSEN DAM Tujunga wash, California

CHANNEL CAPACITIES & CONFIGURATION LOS ANGELES RIVER

FLORENCE AVE TO PACIFIC OCEAN

U.S. ARMY CORPS OF ENGINEERS LOS ANGELES DISTRICT

SOURCE: LACDA REVIEW PART 1 HYDROLOGY REPORT

April 1990

Hansen Dam Reservoir Regulation Schedule (For rising and falling stages)

	: When reservoir	:	-:-		:		:		:		:		:		:		:	Total	:	
Step		:	:		Gat	e settin	g f	for gates	a	s indicat	ec	l	:		:		:	Computed	:	Downstream
No.		:	:		:		:	-	:		:		:		:		:	discharges	:	gauge
	: elevation	:	:		:		:		:		:		:		:		:		:	height**
	: Feet - NGVD	No. 1	:	No. 2	:	No. 3	:	No. 4	:	No. 5	:	No. 6	:	No. 7	: No	. 8	:	ft3/s	:	Feet
	:	:	:		:		:		:		:		:		:		:		:	
	:	: Feet of	: F	eet of	: <u>F</u>	eet of	: 1	Peet of	:	Feet of	:	Feet of	:	Feet of	: Feet	of	:		:	
	:	opening	: 0	pening	: 0	pening	: 3	pening	:	opening	:	opening	:	opening	: oper	ning	:		:	
	:	:	: -		: -		: -		:		:		:		:		:		:	
	: Follow Step during	ng rising	sta	iges	:		:		:		:		:		:		:		:	
	:		:		:		:		:		:		:		:	_	:		:	
1	: 990.0 - 1,010.5 :	: 1.0	:	1.0	:	1.0	:	1.0	:	1.0	:	1.0	:	1.0	: 1	•0	:	0 to 1,260	:	0.97 - 2.52
	:	:	:		:		:		:		:		:		:		:			
	: Follow Steps 2 to 9	during	risi	ng or fa	<u>alli</u>	ng stage	8		:		:		:		:		:		:	
	:	:	:	_	:		:		:		:		:		:	_	:	7 000 . 00 700	:	r (1 0 00
	: 1,010.5 - 1,053.0*:		:	8.0	:	8.0	:	8.0	:	8.0	:	8.0	:	8.0		.0		7,920 to 20,730		5.61 - 9.30
3	: 1,053.0 - 1,060.0 :	8.0	:	7.0	:	7.0	:	8.0	:	8.0	:	7.0	:	7.0	: 8	.0		9,370 to 20,520		8.88 - 9.22
																		pillway,Gated &	:	
															_	_		ngated	:	
	: 1,060.0 - 1,061.0 :		:	6.0	:	6.0	:	8.0	:	8.0	:	6.0		6.0	: 8			9,400 to 20,430		8.89 - 9.20
	: 1,061.0 - 1,062.0 :		:	6.0	:	6.0	:	7.0	:	7.0	:	6.0	:	6.0		.0		8,960 to 20,740		8.78 - 9.29
	: 1,062.0 - 1,063.0 :		:	6.0	:	6.0	:	4.0	:	4.0	:	6.0	:	6.0	: 5.			8,160 to 20,430		8.56 - 9.20
	: 1,063.0 - 1,064.0 :		:	3.0	:	3.0	:	4.0	:	4.0	:	3.0	:	3.0		.0		7,580 to 20,280		8.41 - 9.15
	: 1,064.0 - 1,065.0 :		:	0	:	3.0	:	4.0	:	0	:	3	:	0		.0		7,590 to 20,680		8.42 - 9.26
9	: 1,065.0 - 1,066.0 :	: 0	:	0	:	3.0	:	1.0	:	0	:	3	:	0	: ()		7,300 to 20,660	:	8.35 - 9.26
																		pillway and	:	
								_						_	_			ngated flow	:	
10	: 1,066.0 -1,067.0 :		:	0	:	0	:	0	:	0	:	0	:	0	: (8,690 to 22,420	:	8.70 - 9.71
	: Above 1,067.0 :	. 0	:	0	:	0	:	0	:	0	:	0	:	0	: ()	: 2	2,420+	:	9.71+
	:;		:		:		:		:		:		:_		:		:		:	

*During falling stages the gates shall be left fully open to drain the reservoir completely. Then the gates shall be set at 1.0 feet.

Source for elevations up to 8.30 feet from USGS Rating Table No. 5; for elevations greater than 8.30 feet values were extrapolated from USGS data. * It may be necessary to regulate discharge according to downstream emergency conditions as authorized by the District Office.

DAM OPERATOR INSTRUCTIONS

- 1. Communication with the District Office is available.
- a. Notify the Reservoir Operations Center when a gate change will be required according to the schedule.
- b. Notify the Reservoir Operations Center if unable to set the gates as instructed.
- 2. Communication with the District Office is not available.
- a. Try to reestablish communications through the Los Angeles County Flood Control DPW (WUK470)
- b. (i) Rising stages. Allow a period of one hour to pass to reestablish communications with the District Office. If, after one hour, communication is not reestablished, follow the gate operation schedule.
- (ii) Falling stages. Maintain current downstream gauge height until communication is reestablished.
- c. If one or more of the gates cannot be operated, adjust the remaining gates gradually and uniformly until the downstream gauge height agrees with scheduled values. Keep a close check on gauge height and change the gate opening as often as required. If the downstream gauge height is unobtainable, adjust the gates that are functioning so that the sum of the gate openings will equal the sum of the openings shown in the schedule.

3. Trash Blockage.

If outlets become blocked with trash, increase gate openings to maintain scheduled downstream gauge height.

4. Notification to Los Angeles County DPW and to Los Angeles City DWP.

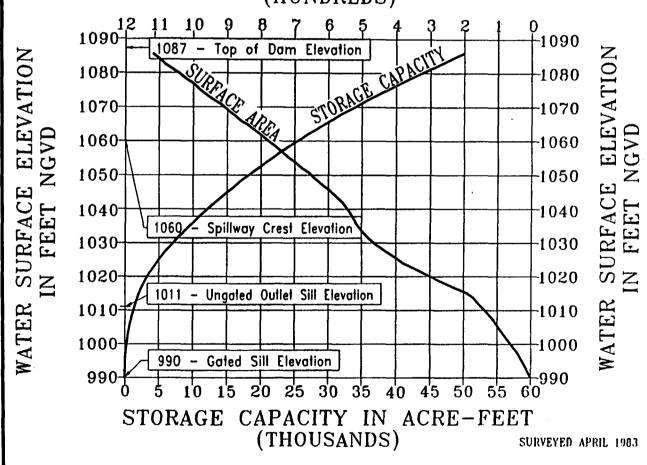
Notify personnel at Los Angeles County DPW and Los Angeles City DWP of the impending flood releases so that these agencies can take whatever action is necessary to mitigate damage to their spreading grounds downstream.

	OUTLETS	
•	(Looking Downstream)	
		Elev. 1,011.0
Elev. 990'	Ungated 8' x 6' 7 6 5 4 3 Each Gated Outlet 5' x 8'	2 1
	pacification of the A. A.	

Estimated and Projected Annual Sediment Removal from Hansen Dam (1981 - 1990)

		ue.
1984 1985 1986 1987 1988	1981 1982 1983	Year
337,267 406,933 1,382,071 1,792,504 2,381,695	131,600 197,000 208,400	yd 3
	•	Sediment
		Removed
209 253 857 1111 1477	82 122 129	Ac-Ft
	·	†

^{*} Projected, based on Operations Branch records


HANSEN DAM

TUJUNGA WASH, CALIFORNIA

ANNUAL SEDIMENT REMOVAL FROM HANSEN DAM (1981-1990)

HANSEN DAM

SURFACE AREA IN ACRES (HUNDREDS)

SOURCE: 1983 RESERVOIR SEDIMENT SURVEY

HANSEN DAM
TUJUNGA WASH, CALIFORNIA

AREA-CAPACITY CURVE

U. S. ARMY ENGINEER DISTRICT LOS ANGELES, CORPS OF ENGINEERS RESERVOIR SEDIMENT DATA SUMMARY

Reservoir Sediment Data Summary, Hansen Dam DEPARTMENT OF THE ARMY
CORPS OF ENGINEERS

NAME OF RESERVOIR

DATA SHEET NO.

~													ET NO.	
	1.	OWNER				2. ST	REAM .			3.	STATE			
DAM	4.	SEC. T	WP.	RANG	Ε	5. NE	AREST P. O.		7	6.	COUNT	ΓY		
ت	7.	LAT. °	, "TO	NG.	, ,,	8. TO	P OF DAM E	LEVATI	ON	9.	SPILLV	VAY CREST	ELEV.	
	10.	STORAGE ALLOCATION	11.	ELEVATION TOP OF F	4	. ORIGI			ORIGINAL CITY ACRE-FEI	4	GROSS ACRE-FI	STORAGE, EET	15. DATE STORAGE E	BEGA
	a.	FLOOD CONTRO	DL	1_060	· .	7	94	3	33,100		33,	100		
≃	b.	MULTIPLE USE		1,000				1			35,8	800	Sep 4	40
2	c.	POWER											7	
ESERVOIR	d.	WATER SUPPLY											16. DATE I	
RE	e.	IRRIGATION				,								
	f.	CONSERVATION												
	g.	INACTIVE		990		19	98		2,700			700	Sep 4	10
	17.	LENGTH OF RE	SERVOIR	1.3			MILES	AV. WIE	OTH OF RESER	VOIR	1.0	0		MILE
ED	18.	TOTAL DRAINA	GE AREA	151	9		SQ. MI.	22. ME	EAN ANNUAL P	RECIP	TATION		11	ICHI
-	19.	NET SEDIMENT	CONTRIB			50.9	SQ. MI.	23. ME	EAN ANNUAL R	UNOF	-		11	чСНІ
ER	20.	LENGTH		MILES A	V. WIDTH		MILES	24. ME	EAN ANNUAL R	UNOF			A	CF
WAT	21.	MAX. ELEV.		1,	MIN. ELEV.			5. AN	NUAL TEMP.	MEAN		RANGE		
^	26.	DATE OF SURVEY	27. PERIOD YEARS	28. ACCL. YEARS	29. TYPE SURVI		30. NO. OF R		31. SURFACE AREA, AC		2. CAPA ACRE	ACITY, E-FEET	33. C/I. RATI ACFT. PER A	
	_	Can 40	Omic		Con	tour	5'		794		35,8	800		
		- 1 31 F					5 ·		786	- 1	35,2			
		Jul 41	0.8	0.8	1	tour	5'		789	- 1	34,			
		Oct 43	1	i .	ł		5.		786		33,5	. 1		
ı		Nov 45	2.1	5.2	1				780		33,2			
-		Jan 62	16.2	21.4 28.91		ontour 2'			782		29,7			
		Aug 69	9 17	38 08	B.	tour			770	.	25,	- 1		
	26.	DATE OF	34. PER	IOD				.ow.	ACRE-FEET	O DATE, AC)F			
		SURVEY		IUAL ITATION	a. MEAN A	NNUAL	b. MAX. AN	NUAL	c. PERIOD TO	OTAL a	. MEAN	ANNUAL	b. TOTAL TO	DA
-		Sep 40	Orig	inal s	irvov							İ		
		Jul 41	48.03	IIIGI S	di vey				91,040	,	93,30	00	91,04	10
		Oct 43	27.03		38,88	٥	75,93	n '	89,430		59,87	1	180,47	
٤¦		Nov 45	26.22		1	Ÿ	, , , , , ,	•			,-	1		
N N		110 1 15			1 35.40	n l	59.72	n i	1		50.72	20 l	•	LO .
- 1		Jan 62	1		35,40 6,85		59,72 34,25		74,340		50,72	,	254,31	
uI		Jan 62	18.54		35,40 6,85		59,72 34,25		1		50,72 17,09	,	•	
֡֡֓֓֡֡֡֡֡֡֡֡֓֓֓֡֡֡֡֓֓֓֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡	26.	Jan 62	1	PERIO	6,85	5	•	8	74,340	D L	17,09	96	254,31 365,36	51
	26.		18.54		6,85	5 Y LOS	34,25 s, acre-fi	8 EET	74,340 111,051	SED.	17,09	TS TO DA	254,31 365,36	EET
	26.	DATE OF	18.54 37 a. PERIO		6,85 D CAPACIT b. av. ann	5 Y LOS	34,25 s, acre-fi	8 EET	74,340 111,051 38. TOTAL	SED.	17,09	TS TO DA	254,31 365,36	EET
	26.	DATE OF SURVEY	18.54 37. a. PERIO Orig:	D TOTAL	6,85 D CAPACIT b. av. ann	5 Y LOS	34,25 s, acre-fi	8 EET	74,340 111,051 38. TOTAL	SED.	17,09 DEPOSI	TS TO DA	254,31 365,36	EET
		DATE OF SURVEY	18.54 37. a. PERIO Origi	D TOTAL inal s	6,85 D CAPACIT b. av. ann	5 LOSS	34,25 s, acre-fi	8 EET YEAR	74,340 111,053 38. TOTAL a.TOTAL TO D	SED.	17,09 DEPOSI	TS TO DA	254,31 365,36 TE, ACRE-F c. PER SQ. MIL 4.1 3.9	EET
SURVEY		DATE OF SURVEY Sep 40 Jul 41	37. a. PERIO Orig:	D TOTAL inal s 600	6,85 D CAPACIT b. av. ann urvey	Y LOSS	34,25 S, ACRE-FI	8 EET YEAR	74,340 111,053 38. TOTAL a TOTAL TO D	SED.	DEPOSI	TS TO DA	254,31 365,36 TE, ACRE-F c. PER SQ. MI.	EET
		DATE OF SURVEY Sep 40 Jul 41 Oct 43	18.54 37. a. PERIO Orig:	D TOTAL inal s 600 100	6,85 D CAPACIT b. AV ANN urvey 55 30	Y LOSS	34,25 S, ACRE-FI c.PER SQ. MI 3.7	EETYEAR	74,340 111,051 38. TOTAL a.TOTAL TO D 600 1,700 2,300 2,535	SED.	17,09 DEPOSI - AV. AN	TS TO DA NNUAL 500 570 460	254,31 365,36 TE, ACRE-F c. PER SQ. MI. 4.1 3.9 3.2 0.8	EETYEA
		DATE OF SURVEY Sep 40 Jul 41 Oct 43 Nov 45	18.54 37. a. PERIO Orig:	D TOTAL inal s 600 100 600 235	6,85 D CAPACIT b. AV ANN urvey 55 30 1 47	Y LOSSIUAL 0 0 4.5	34,25 S, ACRE-FI c.PER SQ. MI 3.7 2.0 0.0 3.2	8 EET YEAR 8 6 1 2	74,340 111,051 38. TOTAL a.TOTAL TO D 600 1,700 2,300 2,535 6,100	SED.	17,09 DEPOSI AV. AN	TS TO DA NNUAL 500 570 460 118 211	254,31 365,36 TE, ACRE-F c. PER SQ. MI. 4.1 3.9 3.2 0.8 1.45	EET
o l		DATE OF SURVEY Sep 40 Jul 41 Oct 43 Nov 45 Jan 62	18.54 37. a. PERIO Orig:	inal s 600 100 600 235 665 RY WGT,	6,85 D CAPACIT b. AV ANN urvey 55 30 1 47	Y LOSS NUAL 0 0 0 4.5 0	34,25 S, ACRE-FI c.PER SQ. MI 3.7 2.0 0.0 3.2 SPERSQ. M	8 EET YEAR 8 6 1 2	74,340 111,051 38. TOTAL a.TOTAL TO D 600 1,700 2,300 2,535	SED. DATE b	17,09 DEPOSIT	TS TO DA NNUAL 500 570 460 118 211	254,31 365,36 TE, ACRE-F c. PER SQ. MI. 4.1 3.9 3.2 0.8	EET YEA

								-										
		43.		EPTH D	ESIGN	ATION F	RAN	GE I	N FEE	T BE	LOV	N, AN	D ABO	VE, CRE	ST EL	EVATIO	N	
26. DATE OF SURVEY	ľ	-70		-50 50	-30	30-Cre	st	:								L_		
				PERC	ENT C	OF TOTAL	L S	EDIN	IENT I	LOCA	TED	WITH C	HIN DE	PTH DE	SIGNA	TION		
Sep 40		Orig	inal	Lsurv	ey													ļ
Jul 41		65	35		0	0												
Oct 43		51	49	,	0	0		İ						ļ				
Nov 45		37	48	3 1	0	5										-		
Jan 62		56	44	- 1	0	0]		- 1					1	
Aug 69		25	45	5 2	5	5		1- 3	<u></u>			22161	*1A1 1E	NOTH /) ^E BES	EBVO	<u> </u>	
26. DATE OF	1	44.		REACH			PE	RCE	NT OF	TOI	AL (ORIGI	NAL LE	NGIT				-125
SURVEY		0-10	10-20	20-30	30-40	40-50	50-	60	60-70	70-8	30 E	80-90	90-100	-105		1	5 -120	1-145
				PERC	ENT O	F TOTAL	_ St	EDIM	ENI L	OCA	IED	Wiir	IIN KL	I DE	Siditi	11014	1	
]			1					.	, ·]]
	-														,			1 1
	- 1]]		1, 1				i				ŀ		}	1]]
	[. 1		1 1			1		1	i							1	
	1			1				-								1		
45.	1	L			R	ANGE IN	l RI	ESER	VOIR	OPE	RATI	ON		<u> </u>	L			
WATER YEAR	R	MAX.	ELEV.	MIN. E		INFLOW.						М	AX. ELE		MIN. EL		INFLOW,	
1945-46		1010		989.		12,	12,206			1957-58		1	1012.55		975.60		-	133
1946-47	1	998	,	989.		17,	,16	0	195	1958-59		ì	997.50		982.75		2,	165
1947-48		993	1	986.		1,	,72	22	1959-60			983.52		981.69			330	
1948-49	- 1	991		977.			å	3	1960-61			985.30		982.16		486		
1949-50		992		973.	24	250		٥ 	1961-62		1011.19			981.82		25,153		
1950-51		998	.71	963.	15		1	34	1962-63				988.70		982.44			765
1951-52		1023	.78	Dry		32,		1	1963-64			985.35			982.32		645	
1952-53		999	.27	979.		1	,43	1 1		4-6			92.83		981.		1,484	
1953-54		996	.37	982.		5	, 09		1965-66			1017.57			982.		57,363	
1954-55		.985	.79	977.	.68			12		6-6			13.58	1	990.			175
1955-56		999	.00	975.				00.		57-6		1	07.33		988.	· ·		,581
1956-57		992	.98	976.		1		95		8-6		l	03.78		986.	81	180,	.314
46.						ELEVATI	ON.	ARE	A-CAP								_,	
ELEVATION	1	AREA	C/	APACITY	ELE	EVATION		AR	EA	1_	CAPA	ACITY	_}	VATION		AREA		PACITY
990		0	T	0	T	1035		,	29	1.		702		180	1	1013		4,614
995		47		158		1040		56	55			430	10	85		1071	49	,831
1000	ĺ	81		467	1	1045		60	07			357			Ì			
.1005		115		962		1050		66	60	3	L9,	516	1		1		-	
1010		154	-	1630		1055	'	7.	18			965	1			`.	1	
1015		221	1	2538		1060		7	76			695					1	
1020		331		3914	1	1065	1		34			720	1		1		1	
1025		427		5819		1070	1	9(00			044			1		-	
1030		492		8136		1075	Ш	9!	58	3	39,	691	<u> L'</u>		<u> </u>			
47 DEMARKS	ANE	REFE	RENCE	.s										•				
1/ Ttem	19	- Tnc	lude	s 82 £	Sa. N	Mi. ab	ov	e B	ig Tı	ıjur	nga	Dam	ı; how	ever,	, pra	ctica	ally a	FTE

1/ Item 19 - Includes 82 Sq. Mi. above Big Tujunga Dam; however, practically sediment inflow is passed downstream by sluicing operations.

HANSEN DAM TUJUNGA WASH, CALIFORNIA.

RESERVOIR SEDIMENT DATA SURVEY

48. AGENCY MAKING SURVEY 49. AGENCY SUPPLYING DATA

RESERVOIR SEDIMENT DATA SUMMARY DEPARTMENT OF THE ARMY CORPS OF ENGINEERS

(Continued)

NAME OF RESERVOIR

DATA SHEET NO.

	1.	OWNER	*			2. ST	REAM			·····		3. STATE		
DAM		SEC. TW	EAREST P.O.					6. COUNTY						
		LAT. °	"LO	RANG	,	" 8. TO	OP OF DAM E	LEVA	TION			9. SPILL	WAY CREST	ELEV.
		STORAGE		ELEVATIO	N .	12. ORIG	INAL	13	ORI	GINAL	14	. GROSS	STORAGE,	15. DATE
	10.	ALLOCATION	1	TOP OF F			AREA, ACRE					ACRE-		STORAGE BEGAN
ŀ	а.	FLOOD CONTROL						\top						
≅		MULTIPLE USE	1					T						
2	c.	POWER												16. DATE NOR-
ESERVOIR	d.	WATER SUPPLY						_						MAL OPER. BEGAN
RE	e.	IRRIGATION						_						_
	f.	CONSERVATION						\bot						-
	g.	INACTIVE									L_			
	17.	LENGTH OF RES	ERVOIR							OF RES				MILES
ED		TOTAL DRAINAG								AUNUA			·	INCHES
NATERSHED	19.	NET SEDIMENT	CONTRIB							AUNUA				INCHES ACF T.
	20.	LENGTH		MILES	V. WIDTH					ANNUA				ACF 1.
WA	21.	MAX. ELEV.			MIN. ELEV		1			AL TEM			RANGE	I
	26.	DATE OF SURVEY	27. PERIOD YEARS	28. ACCL. YEARS	29. TYP SUF	E OF RVEY	30. NO. OF F OR CONTO				ACE ACRES	32. CAF ACF	PACITY, RE-FEET	33. C/I. RATIO, ACFT. PER ACFT.
		Jul 82	3.75	41.83	Con	tour	2'			776		26,6		
		Apr 83	0.75	42.58	ŧ							25,4	46	
		-		ļ]						,]		}
				1					- }					İ
				1						٠.				
li				-	į									
				<u> </u>										<u> </u>
	26.	DATE OF	34. PEF	RIOD NUAL			WATER INF							TO DATE, ACFT.
		SURVEY	PRECIF	PITATION										b. TOTAL TO DATE 834,197
1		Aug 69		.58	41,		180,			318,	•		,666 ,223	922,414
		Oct 78		.47	25, 58,		163, 115,			218,			,287	1,141,399
_		Jul 82	30	.51) 30,	390	1117,	00.	´	210,	7 7 7	-	,	
DATA														
											*			
SURVEY				25216	L	NTV LO	CS ACRE		- -	TOT	AL SED	DEPOS	O OT STIS	ATE, ACRE-FEET
UR	26.	DATE OF SURVEY	37.				c. PER SQ. N							c. PER SQ. MIYEAR
S		SURVET	a. PERIO	DD TOTAL	b. AV. A	NNUAL	C. PER SQ. N	/11Y t	AK a.	TOTAL	O DATE	D. AV.	ANNOAL	c. r ch og. mi. rem
		Oct 78	3.6	613	394	.00	2.70	,	1	9,71	3 ·	25	55.07	1.75
l		Jul 82		608			on incre	ase	ed s	torag	e car	acity	· .	
		Apr 83		249								ļ		}
		<u>-</u> -	τ,	247					.					
					l l									
		BATE 07	39 AV 5	ORY WGT.,	40 SED	DEPTO	NS PER SQ. I	MI	YR. 4	STORA	GE LOS	S, PCT.	42. SED	. INFLOW, PPM
	25.	DATE OF SURVEY		R CU. FT.	a. PERI		b. TOTAL T							b. TOT. TO DATE
					 		- ··		\top					
		ļ			1									
					1		1		I		1			
					1						l	•		
							}							
ıi					1		}							

26 2475 25	43.	DE	PTH D	ESIG	NOTAN	RANG	E IN	FEE	ТВ	ELC	W, A	ND ABO	VE, CR	ST EL	EVATI	ON	
26. DATE OF SURVEY	-70				30-Cr				Т					T			
		1			OF TOTA		DIMI	ENT I	LOCA	ATE	D WIT	HIN DE	PTH DE	SIGNA	TION		
	†	Γ	\neg				Т		Ť	-	T			T	T		
	12	34		45	9						ł		1				
Jul 82	Exca	vatio	on in	cre	sed s	tora	ge	capa	acı	τу	.			1	i		
		İ	- (. [ı					1			·
		ł		1		}								1			
		1		1		}								1			
	44.	R	FACH	DESIG	NATION	PER	CEN	T OF	TOT	ΔI	ORIG	INAL LE	NGTH (DE RES	FRVC	IR	
26. DATE OF SURVEY	<u> </u>				40-50			_									0 -125
SURVET	0-10 /	10-20			OF TOTA					1		I				-12	0 -123
	+		T		1012	L SLL	1	1	<u> </u>		7 1111	T NEX	011 02	Oldita	T	- 	
	1 1	1	ļ			1						1			1	1	1
			1									1					
								- [- 1					1	1	1 1
															1	1	
		•	l				ı										
45.	<u> </u>			P	ANGE IN	J RFS	FRV	OIR ()PF F	RAT	ION	<u></u>	i				
WATER YEAR	MAX. E	IFV T	MIN. E		INFLOW							1AX. ELEV	, 	MIN. EL	EV.	INFLOW	, ACFT.
1969-70	1007			.97		886		1981				010.60		996.			755
1970-71	1007			.23	1 '	996						,				•	į
1971-72	1004			3.50	1	273							- 1				
1972-73	1015			2.91		626							- 1				
1973-74	1010	1		3.35		829	-				1		- 1				1
1974-75	1007			1.77	i i	565	1				1						
1975-76	1007	1		1.57		222	-										
1975-76	1007	- 1		.45		635											1
1977-78	1023			1.92	1		1						1		,		
1978-79	1016			.10		429									.		ŀ
1979-80	1025	1		5.31		,	.										i
	999			7.00		054					1		1				ĺ
1980-81	333	.03			1						<u></u>						
46.		,	····		ELEVATI	T											
ELEVATION	AREA	CAP	ACITY	ELE	VATION		AREA	\		CAP	ACITY	ELEV	ATION	Ai	REA	CA	PACITY
																	- 1
	•			l								1				Ì	1
												ļ				1	- 1
İ		İ										1				`	i i
												1					
						!										- }	ł
1]												1	
																	1
<u></u>				L		L						<u> </u>					
47. REMARKS AN	D REFERE	ENCES															1
						i											
										Г			HAI	ISEN [MAC		
												TUJU	NGA W			ORNIA	
										\vdash							
										l		_					
						;					RES	ERVO	IR SE	DIME	NT E	ATA S	SURVEY
						!											
						1											
						j				+							
40 ACENOV MAN	NC SUD	/EV								1	U.	S. AR	MY CO	ORPS	OF E	ENGINE	EERS
48. AGENCY MAK										1		LO	S ANG	ELES	DIS	TRICT	
49. AGENCY SUPP	LTING DA	NIA				-				1							

ENG FORM 1787

PREVIOUS EDITIONS ARE OBSOLETE.

Summary of Climatological Data at Burbank, California, Hansen Flood Control Basin, Los Angeles County Drainage Area, California.*

Month :	Temperat	u	re		Precipitation				
:	Mean	:	1100010	:	Record	:	Mean	:	Maximum
	Monthly	:	Highest	•	Lowest	:	Monthly	:	Monthly
:	Degrees Fahren-	:	Degrees Fahren-	:	Degrees Fahren-	:		:	
:	heit	:	heit	:	<u>heit</u>	:	Inches	:	Inches
Jan:	53.8	:	92	:	22	:	3.77	:	14.16
Feb:	56.3	:	92	:	27	:	3.33	:	15.19
Mar:	57.5	:	96	:	22	:	2.52	:	12.87
Apr:	60.6	:	100	:	32	:	1.24	:	5.66
May:		:	106	:	39	:	0.28	:	3.79
Jun:	69.3	:	111	:	43	:	0.04	:	0.31
Jul:	75.1	:	108	:	45	:	0.01	:	0.05
Aug:	75.2	:	110	:	46	:	0.14	:	2.97
Sep:	73.1	:	113	:	45	:	0.24	:	3.89
Oct:	67.1	:	108	:	33	:	0.31	:	2.42
Nov:	59.6	:	98	:	29	:	1.94	:	10.63
Dec:	54.7	:	92	:	22	:	1.96	:	6.84
:		:		:		:		:	

*34·12'N latitude 118·22'W longitude; elevation 699 feet above mean sea level. NOTE: Period of record is 30 years (1951-1980)

HANSEN DAM
TUJUNGA WASH, CALIFORNIA

SUMMARY OF CLIMATOLOGICAL DATA
AT BURBANK, CA

LOS ANGELES DISTRICT

Summary of Precipitation Data at Hansen Dam and Three Stations in Watershed above Dam.

LACDPW Number	Station Name	Lat (N)	Long (W)	Elev (feet)	Period of Record
46D-E	Big Tujunga Dam	34-17-40	118-11-14	2315	1924 - 1988
436C	Hansen Dam	34-16-08	118-23-59	1110	1938 - 1988
488B	Kagel Canyon Ptl Stn	34-17-45	118-22-30	1450	1943 - 1987
54C	-	34-20-55	118-02-54	4325	1916 - 1987

MEAN AND MAXIMUM OBSERVED MONTHLY AND ANNUAL PRECIPITATION VALUES (INCHES)
PLUS MAXIMUM OBSERVED DAILY VALUES (INCHES), BY MONTH:

LACDPW NO:		46D-E		<u>436C</u>				
	MEAN	MAXI	MUM	MEAN	MAXI	MUM		
		Monthly	Daily		Monthly	Daily		
JAN	5.58	33.39	14.39	2.81	14.39	3.84		
FEB	5.86	21.12	11.24	2.96	13.16	4.83		
MAR .	4-60	20.38	10.83	2.33	11.92	5.61		
APR	2.31	9.86	3.60	1.17	6.25	2.30		
MAY	0 66	6.59	4.38	0.33	2.88	1.84		
JUN	0.14	1.80	1.08	0.07	0.55	0.25		
JUI.	0.06	0.15	0.15	0.03	0.24	0.24		
AUG	0.14	1.60	1.28	0.07	2.90	2.77		
SEP	0.43	5 61	3.19	0.22	3.44	3.03		
OCT	0.97	6.07	5.28	0.49	2.29	1.39		
NOV	2.83	24.86	5.59	1.43	12.63	4.91		
DEC	5.01	15.58	8.19	2.53	7.94	3.45		
ANNUAL	28.59	60.	68	14.44	46.	45		
LACDPW NO:		488B			54C			
	MEAN	MAXI	MUM	MEAN	MAXI	MUM		
		Monthly	Daily		Monthly	Daily		
JAN	3.24	12.50	4.22	3.63	17.87	9.69		
FEB	3.40	13.81	4.02	3.82	14.82	8.13		
MAR	2 68	12.03	4.83	3.00	15.50	5.90		
APR	1.35	6.54	2.75	1.51	13.04	5.48		
MAY	0.38	4.38	2.15	0.43	4.80	2.60		
JUN	0.08	0.62	0.45	0.09	0.68	0.45		
JUL	0.03	0.19	0.17	0.04	2.15	2.15		
AUG	0.08	3.15	2.64	0.09	2.00	1.60		
SEP	0.25	3.30	1.97	0.28	6.38	5.25		
OCT	0.57	2.18	1.18	0.63	4.50	2.25		
NOA	1.64	10.75	2.05	1.84	13.66	6.93		
DEC	2.91	7.54	3.86	3.26	17.30	7.43		
ANNUAL	16.61	42.	.47	18.62	40.56			

NOTES: 1. Minimum observed monthly values are approximately zero at each stn.

HANSEN DAM
TUJUNGA WASH, CALIFORNIA

SUMMARY OF PRECIPITATION DATA HANSEN WATERSHED

Data were obtained from Los Angeles County Dept. of Public Works (LACDPW).

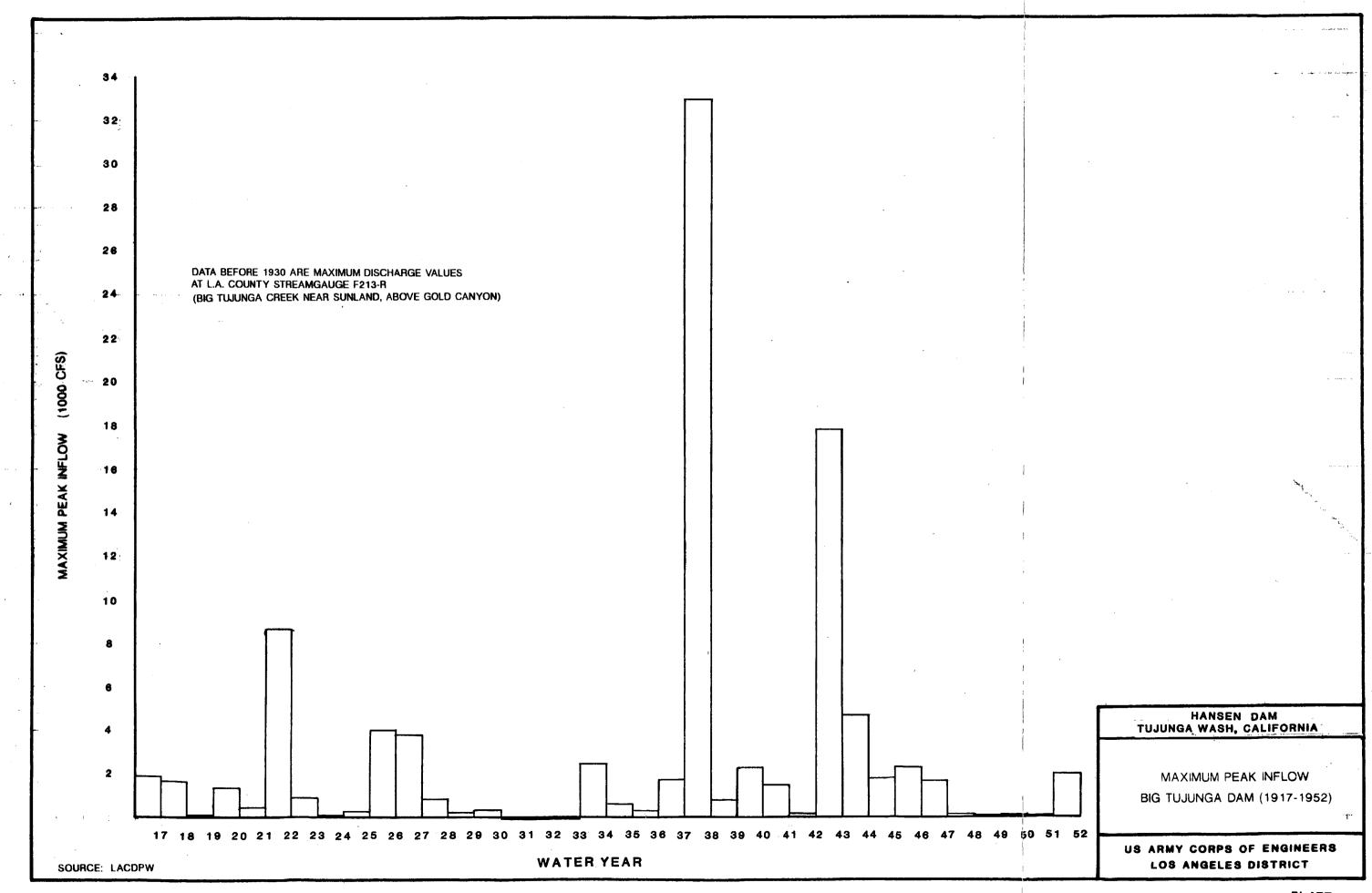
Precipitation Frequency Values (Inches) for Hansen Watershed.

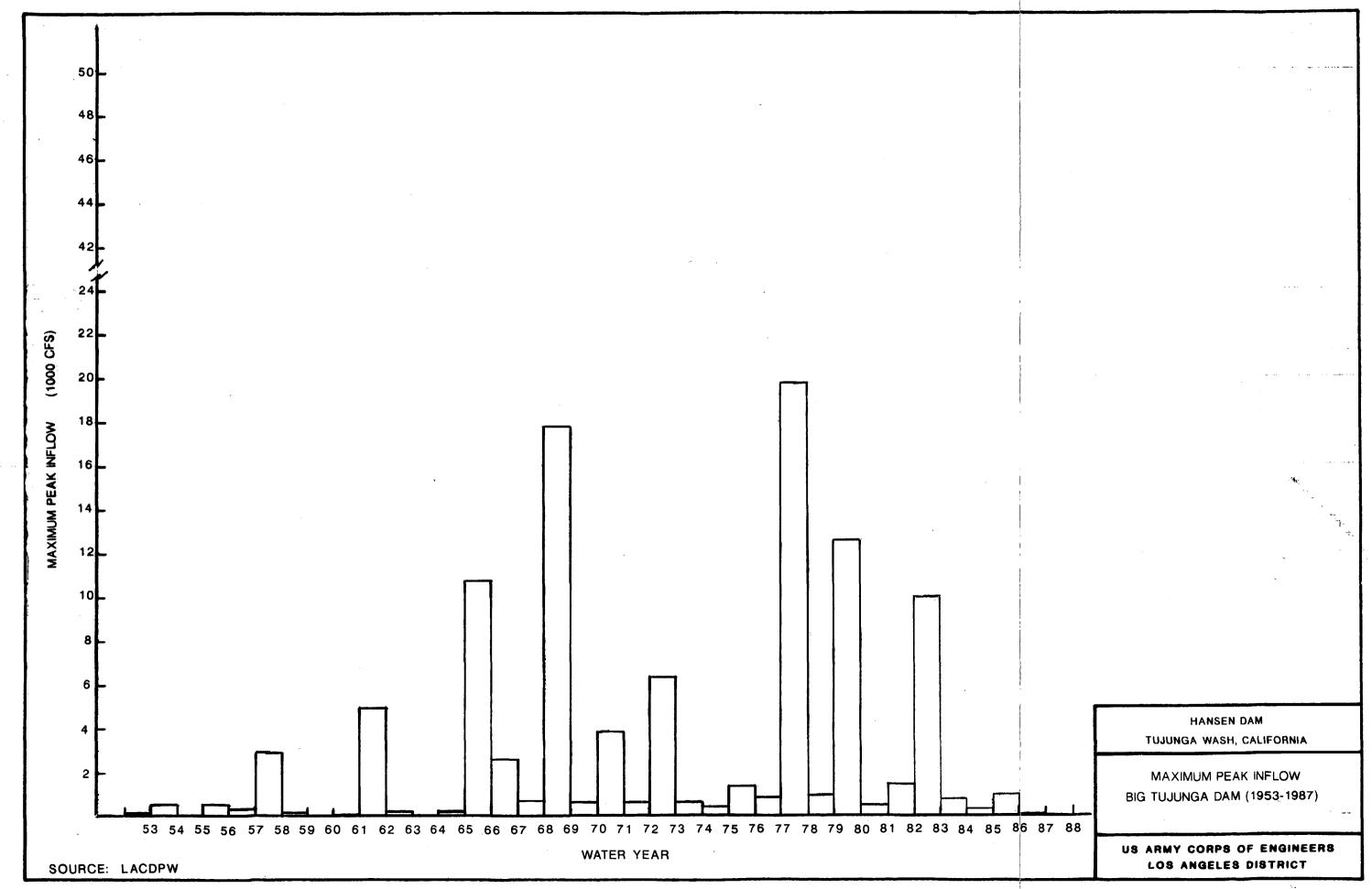
DURATION	2 - YR	5 - YR	RETURN PE 10-YR	RIOD 25-YR	50-YR	100-YR
5-MIN	0.19	0.29	0.36	0.45	0.51	0.58
10-MIN	0.30	0.46	0.46	0.70	0.80	0.90
15-MIN	0.37	0.58	0.71	0.88	1.01	1.14
30-MIN	0.52	0.80	0.98	1.23	1.40	1.58
1-HR	0.66	1.02	1.25	1.55	1.77	1.99
2-HR	0.99	1.53	1.88	2.34	2.67	3.00
3-HR	1.30	2.01	2.47	3.08	3.53	3.96
6 - HR	2.03	3.15	3.89	4.82	5.52	6.20
12-HR	3.04	5.01	6.28	7.96	9.19	10.40
24-HR	4.04	6.87	8.74	11.10	12.86	14.60

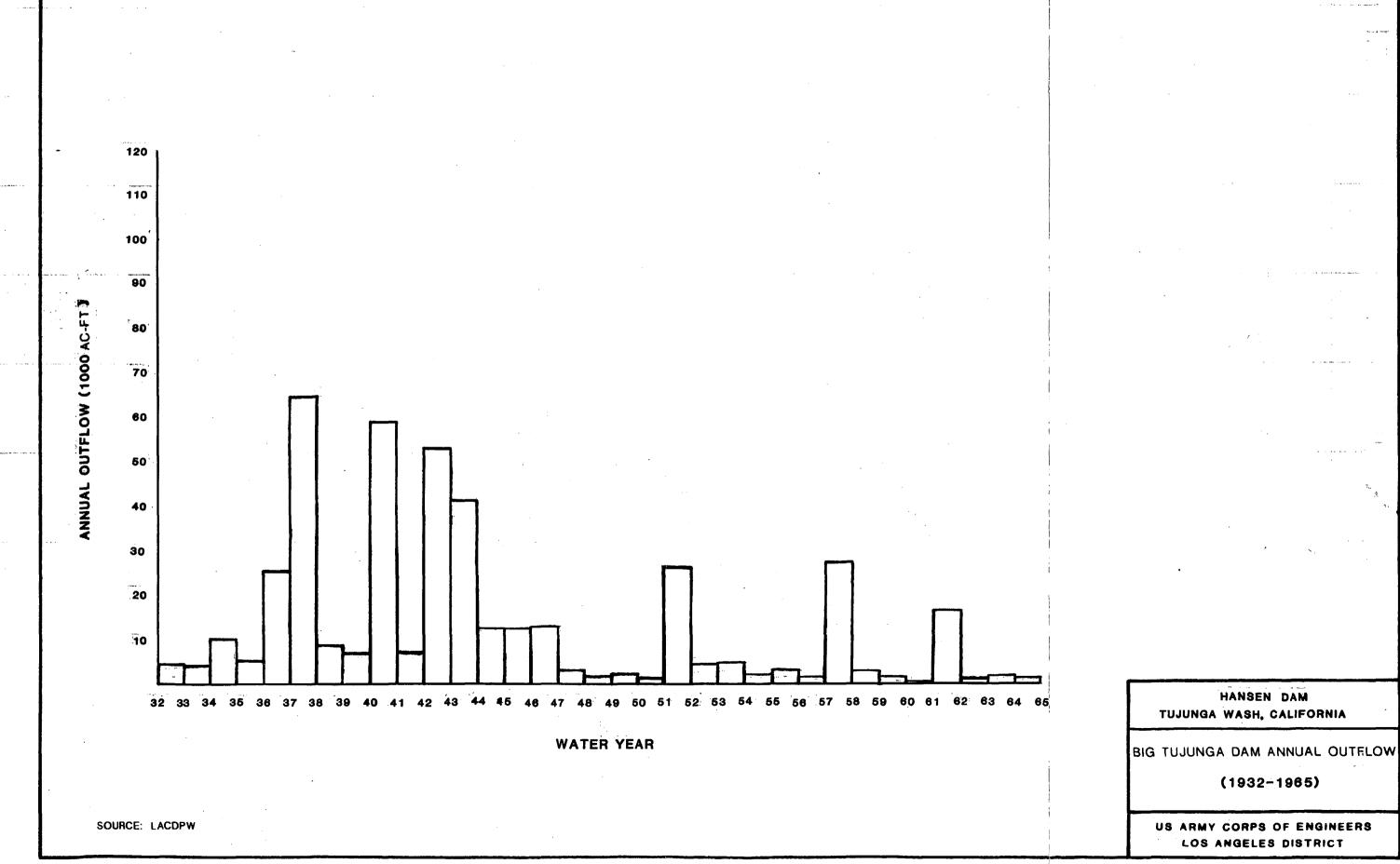
NOTES:

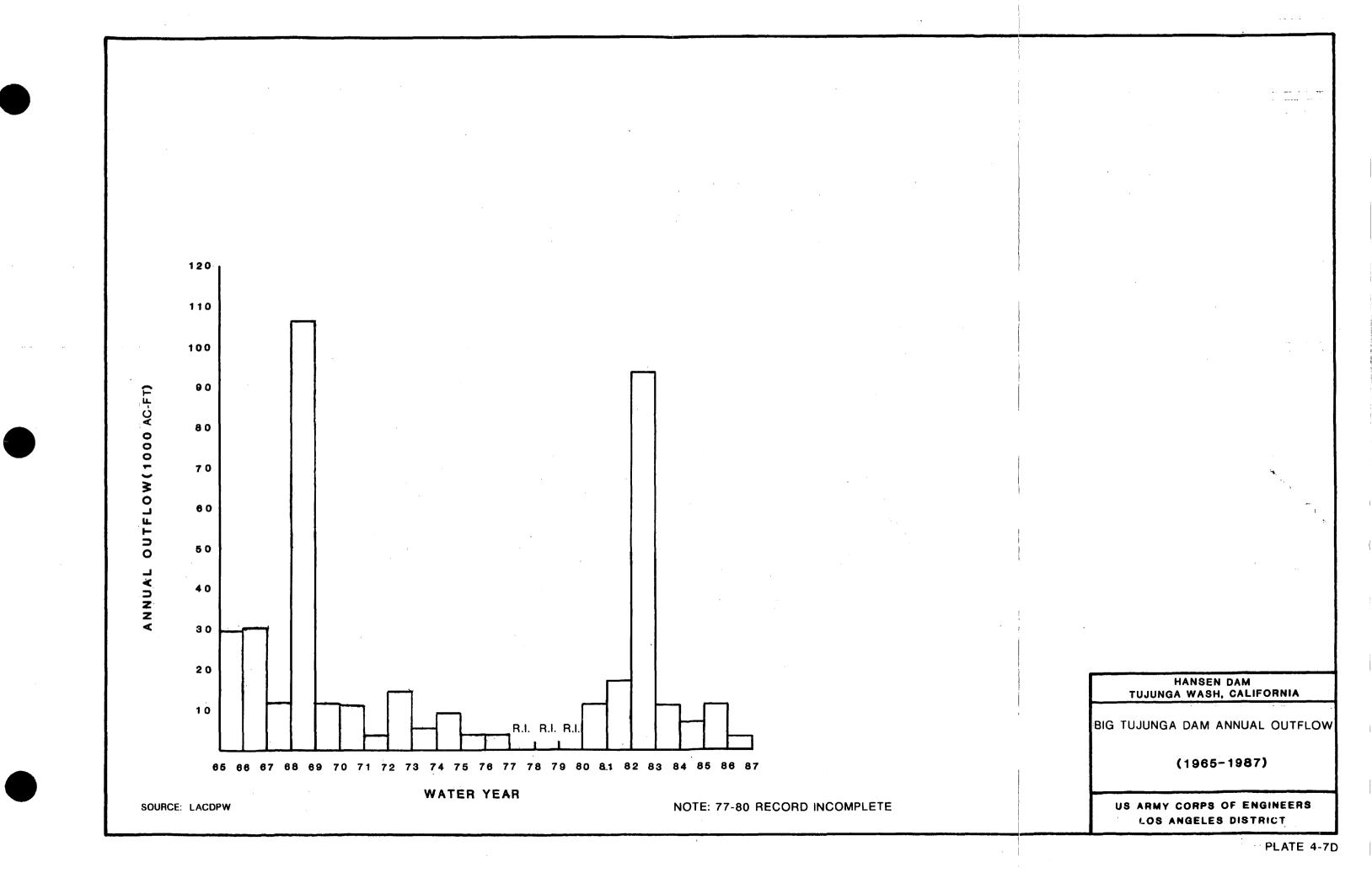
- Values from NOAA Atlas 2 data, are for a site at the centroid of the watershed above Hansen Dam at latitude 34019'N, longitude 118011'W, elevation 3900 feet.
 - 2. All values are for annual series.

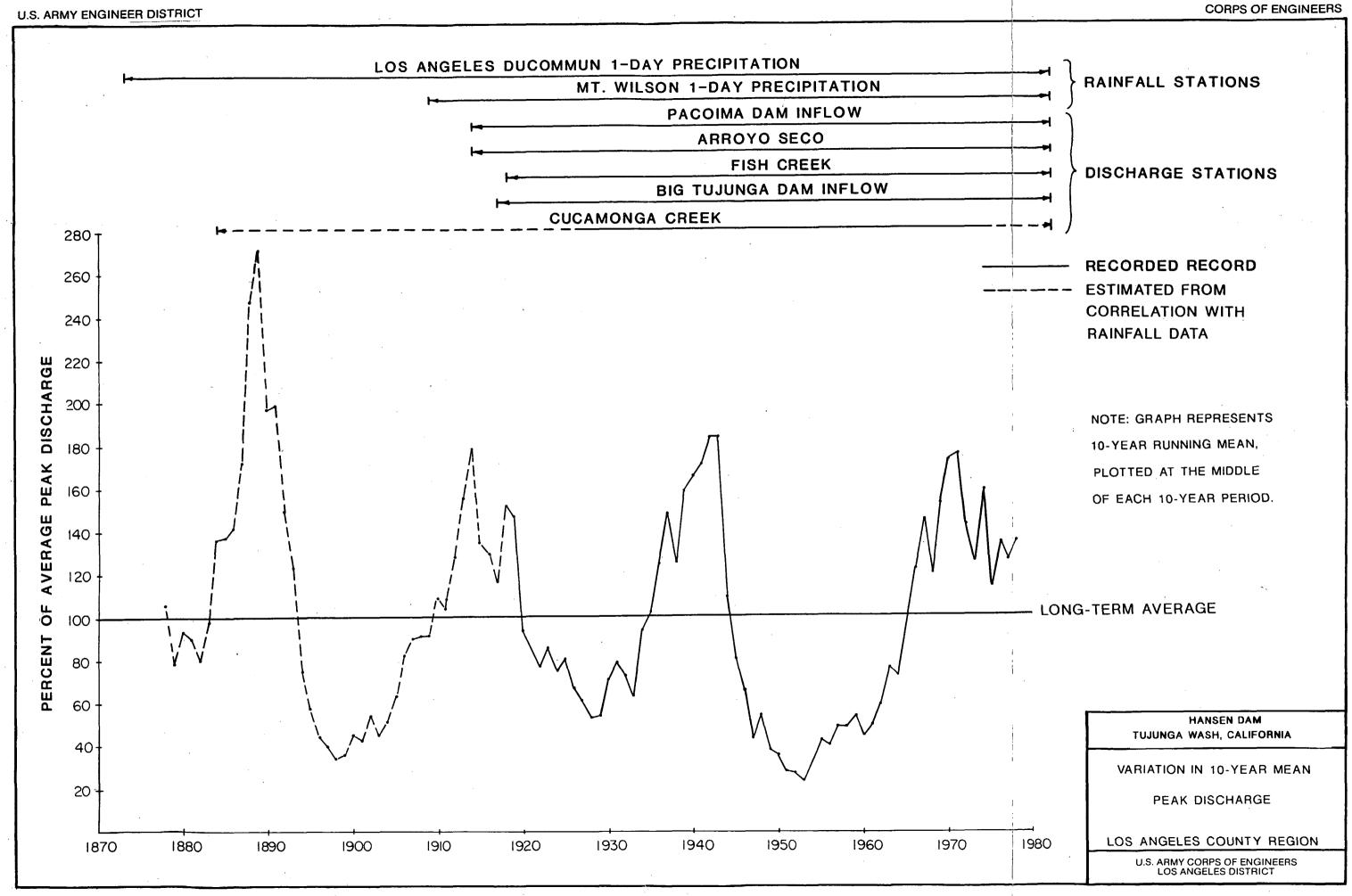
HANSEN DAM.
TUJUNGA WASH, CALIFORNIA

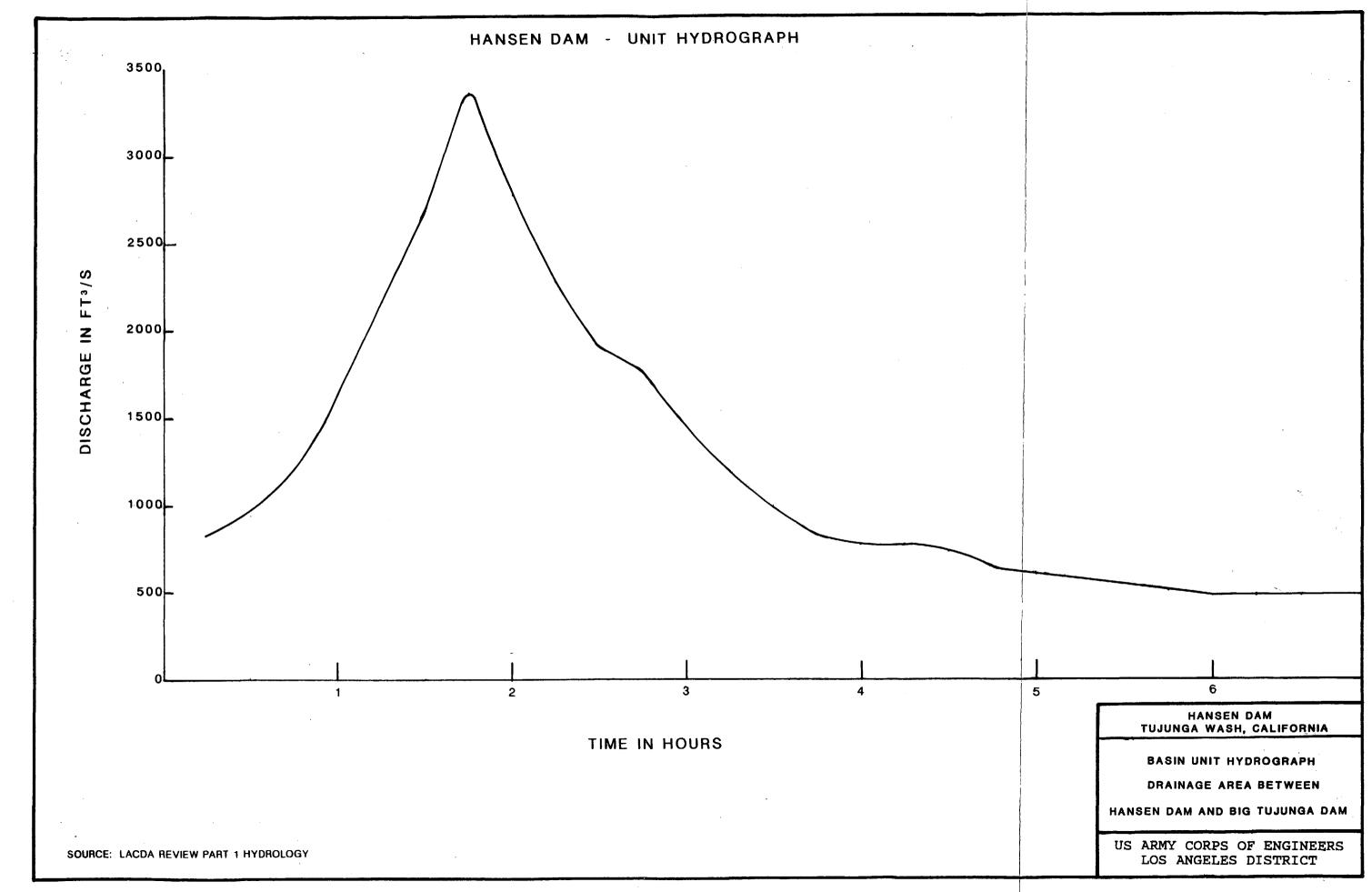

PRECIPITATION FREQUENCY VALUES
FOR HANSEN WATERSHED

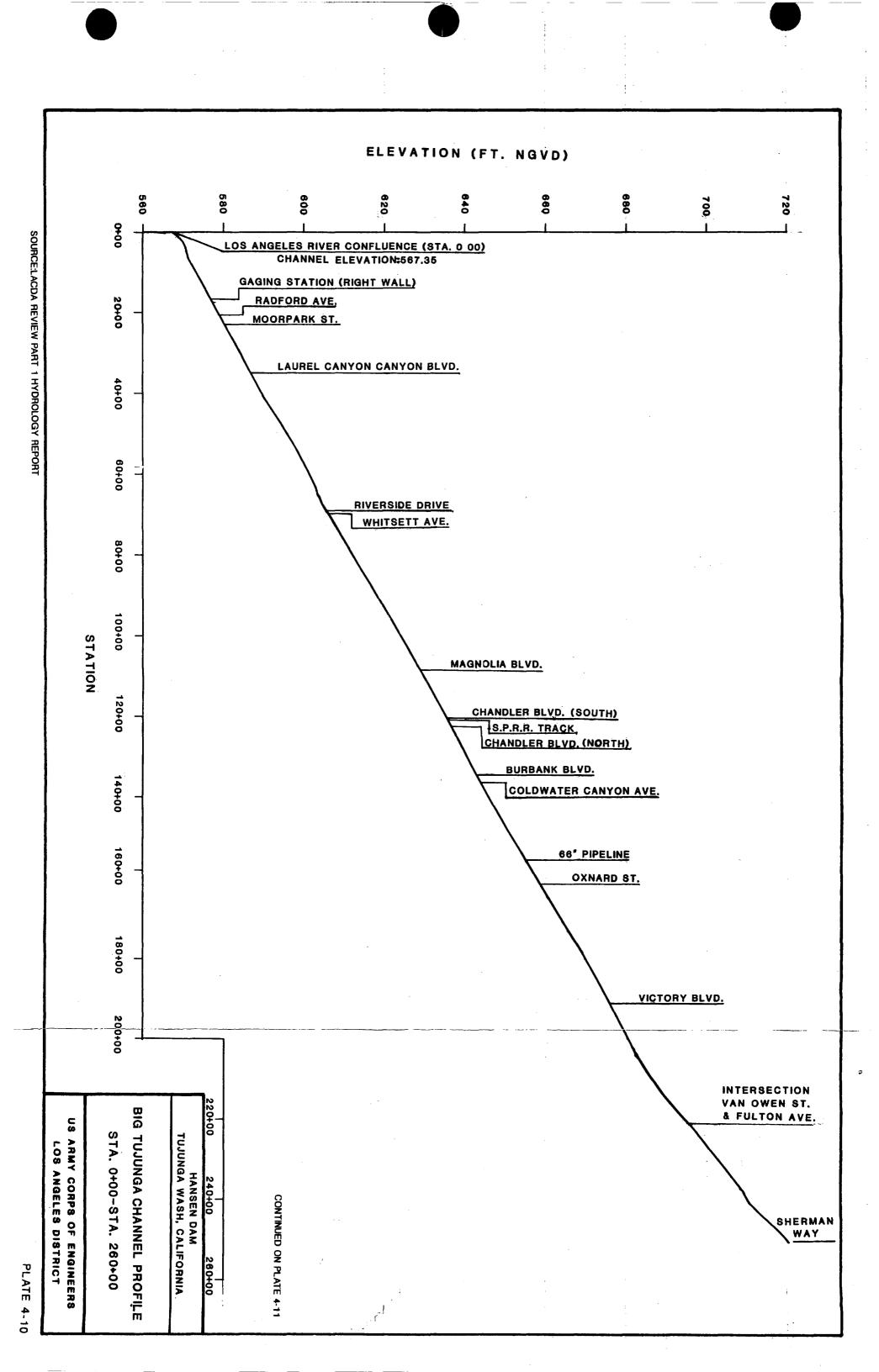

ANNUAL MAXIMUM INFLOW, OUTFLOW, AND STORAGE OF WATER AT HANSEN DAM

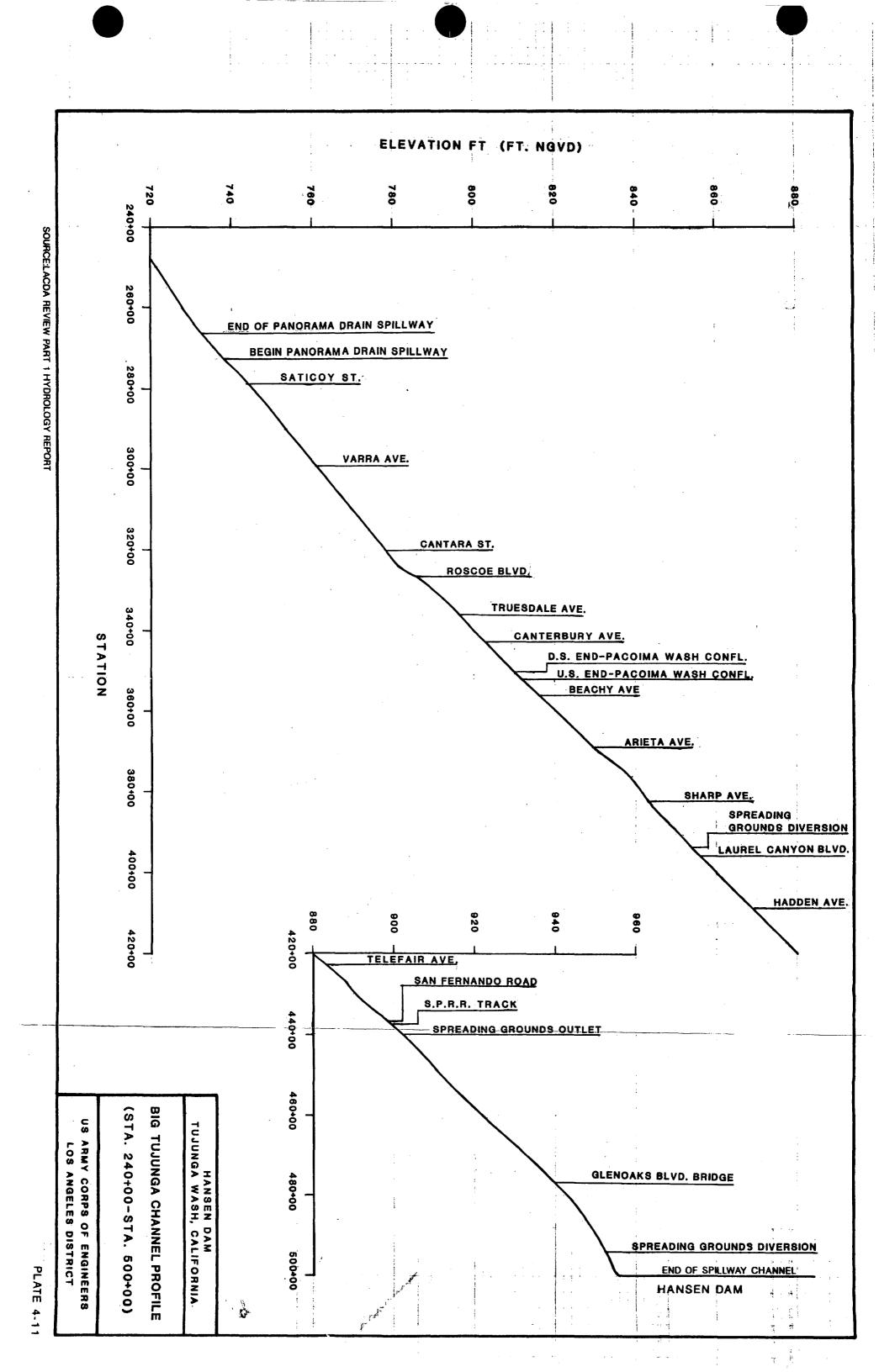

	Peak		Peak		Maximum Water Surface	Max.		Annual
Water Year	Inflow (cfs)		Outflow (cfs)		Elevation (ft., NGVD)	Storage (ac-ft)	Date	Inflow (ac-ft)
1941-42	678	28 Dec	. 58	31 Dec	992.40	2126	30 Dec	9870
1942-43	18860	23 Jan	1640	25 Jan	1036.47	18743	24 Jan	75930
1943-44	6600	22 Feb	1020	24 Feb	1022.32	11622	23 Feb	59720
1944-45	1320	2 Feb	707	5 Feb	1004.02	4807	l Oct	14310
1945-46	1200	30 Mar	610	23 Dec	1010.62	6876	7 Apr	12206
1946-47	608	27 Dec	455	28 Dec	996.67	2934	27 Dec	17160
1947-48	33	5 Feb	2	5 Feb	990.40	1812	6 Jun	1722
1948-49	4	26 Feb	0		986.72	1275	1 Oct	93
1949-50	18	6 Feb	0		977.86	415	4 Mar	250
1950-51	4	29 Jan	0		973.24	132	1 Oct	34
1951-52	2835	18 Jan	2550	25 Jan	1023.90	12354	22 Jan	32175
1952-53	110	15 Nov	. 3	27 Apr	999.27	3541	9 Jan	1430
1953-54	286	4 Mar	471	3 Mar	995.82	2751	10 Mar	5090
1954-55	960	18 Jan	2	3 days	985,79	1139	23 Jan	712
1955-56	411	26 Jan	4	2 days	993.83	2364	1 Feb	2100
1956-57	32	l Mar	2	12 Jan	981.80	557	18 Mar	495
1957–58	1327	4 Apr	1450	4 Apr	1012.54	7556	16 Apr	34113
1958-59	339	16 Feb	333	25 Feb	997.51	3123	25 Feb	2165
1959-60	13	11 Jan	0		983.52	808	28 Aug	330
1960-61	39	5 Nov	0		985.98	1167	27 Nov	486
1961-62	4603	10 Feb	3159	12 Feb	1011.19	6275	12 Feb	25153
1962-63	173	9 Feb	0		988.69	1219	14 Feb	765
1963-64	64	20 Jan	0		985.35	862	3 Apr	645
1964-65	146	9 Apr	0		992.83	1755	13 Apr	1484
1965-66	5200	22 Nov	3147	24 Nov	1017.54	8705	30 Dec	57363
1966-67	3133	6 Dec	405	22 Dec	1013.58	7140	9 Dec	41175
1967–68	1050	21 Nov	305	22 Apr	1007.33	5014	23 Nov	16581
1968-69	26012	25 Feb	15993	25 Feb	1030.78	14872	25 Feb	180372
1969-70	1640	6 Nov	144	3 Mar	1007.32	2761	5 Mar	16886
1970-71	2771	29 Nov	212	l Mar	1009.36	3209	1 Dec	14996
1971-72	482	27 Dec	275	29 Dec	1004.62	2239	29 Dec	2273
1972-73		11 Feb	269	21 Feb	1015.34	4882	12 Feb	15626
1973-74		7 Jan	404	1 Apr	1010.48	3480	8 Jan	7829
1974-75		6 Mar	205	17 Mar	1007.06	2707	16 Mar	6565
1975-76		l Mar	213	19 Feb	1006.72	2638	19 Feb	5222
1976-77		3 Jan	205	20 Sep	1008.35	2980	11 May	5635
1977-78		10 Feb	13541	10 Feb	1023.90	8211	10 Feb	163185
1978-79		27 Mar	1481	21 Feb	1016.64	2931	29 Mar	55429
1979-80		16 Feb	5025	17 Feb	1025.30	5950	17 Feb	115809
1980-81		29 Jan	372	29 Jan	998.99	390	4 Mar	10054
1981-82		17 Mar	3981	17 Mar	1010.60	1724	18 Mar	3 9 7 55
1982-83		1 Mar	18104	2 Mar	1039.70	13261	2 Mar	182946
1983-84		28 Dec	397	5 Oct	1012.80	1680	27 Dec	21923
1984-85		19 Dec	1084	20 Dec	1006.20	802	20 Dec	22583
1985-86	1473	30 Jan	1212	25 Feb	1008.40	1050	17 Feb	22432


U. S. ARMY CORPS OF ENGINEERS LOS ANGELES DISTRICT OUTFLOW, AND STORAGE OF ANNUAL MAXIMUM INFLOW, WATER AT HANSEN DAM HANSEN DAM TUJUNGA WASH, CALIFORNIA


PLATE 4-6







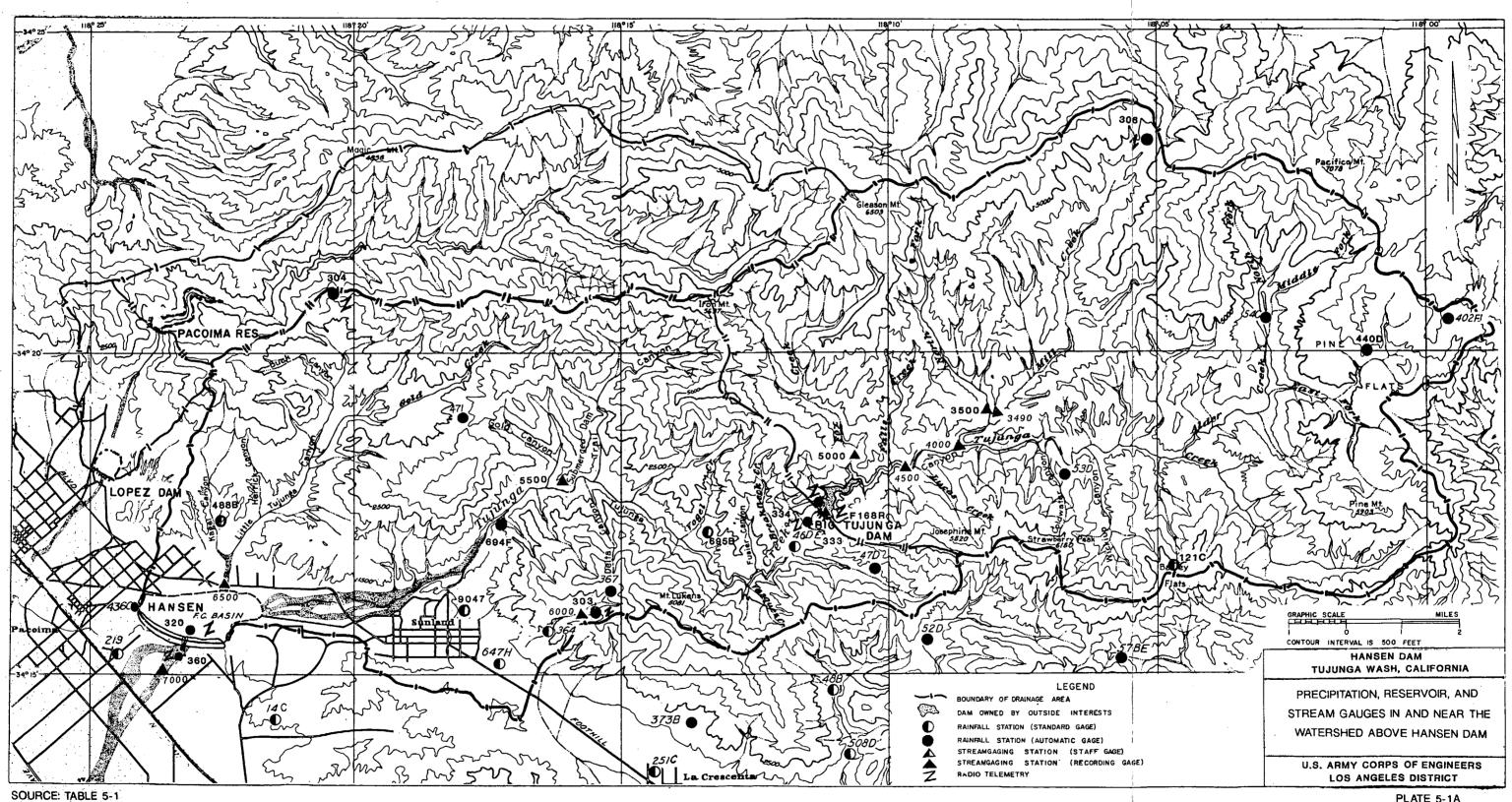


PLATE 5-1A

Precipitation, Reservoir, and Stream Gauges In and Near the Watershed Above Hansen Dam.

					-						
Designation	Name	Lati- tude	Longi- tude	Elev- ation	Descrip- tion	Designation	Name	Lati- tude	Longi- tude	Elev- ation	Descrip- tion
# 1 (303)*	Haines Canyon	34-16-03	118-15-20	3480	Precip.	#19 (47D)**	Clear Creek City School	34-16-38	118-10-12	3150	Precip. Stream
# 2 (304)*	Mendenhall Ridge	34-20-57	118-18-23	4320	Precip.	#20 (54c)**	Loomis Ranch	34-20-55	118-11-16	4325	Precip.
# 3 (306)*	Mill Creek Summit	34-23-19	118-05-12	5400	Precip.	1120 (340)	Alder Creek	31 20-33	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.3_3	Stream
# 4 (319)*	Hansen Dám Out	34-15-23	118-23-13	960	Stage	#21 (219) **	Pacomia Wash	34-15-21	118-24-24	955	Stream
# 5 (320) *	Hansen Dam	34-15-37	118-23-06	960	Precip.	#22 (365C)**	Mt. Lukens	34-16-05	118-14-06	5040	Stream
# 6 (332) *	Big Tujunga Dam Lvl	34-17-40	118-11-14	2315	Level	#23 (367)**	Upper Haines Cyn	34-16-18	118-15-07	3440	Precip. Stream
# 7 (333) *	Big Tujunga Dam Out	34-17-19	118-11-38	2315	Stage	#24 (402F)**	Ceder Springs	34-21 - 21	117-52-34	6780	Precip.
# 8 (334)*	Big Tujunga Dam	34-17-40	118-11-14	2315	Precip.	#25 (436c)**	Hansen Dam	34-16-08	118-23-59	1110	Precip.
# 9 (357) *	Hansen Yard	34-15-22	118-23-13	950	Wind	#26 (440D)**	Chilao-USFS Camp	34+20-00	118-01-23	5220	Stream
#10 (360) *	Hansen Yard	34-15-22	118-23-13	950	Precip.		_	34 <u>+</u> 18 - 57	118-18-02	2750	
#11 (361)*	Hansen Yard	34-15-22	118-23-13	950	Rhum	#27 (471) **	Little Tujunga Goln Creek	34-10-01	110-10-02	2150	Precip.
#12 (362)*	Hansen Yard	34-15-22	118-23-13	950	Temp.	#28 (488B)**	Kagel Canyon Patrol Stn.	34-17-45	118-22-30	1450	Stream
#13 (363) *	Hansen Yard	34-15-22	118-23-13	950	Solar	#29 (647J)**	Tujunga	34-15-45	118-17-34	1685	Stream
#14 (364) *	Hansen Yard	34-15-22	118-23-13	950	Pressure	#30 (694F)**	Big Tujunga Cyn	34-17-22	118-17-17	1525	Precip.
#15 (F168R)	Tujunga Cr. below Big Tujunga				Punch Tape	#31 (695B)**	Tujunga Cyn Vogel Flat	34-17-12	118-13-22	1850	Stream
#16 (34)**	Hansen Dam COE	34-15-22	118-23-04	1090	Wind, Gauge Height	#32 (1121C)**	_	34-16-40	118-04-40	5525	Stream
					Precip.	#33 (W9047)**	Tujunga	34-16-99	118-17-99	1820	Stream
#17 (72) **	Tujunga Wash D/S	X	Х	Х	Gauge	#34 (7000)***	Big TJC Bl.	34+15-13	118-23-17	943	Stream
##O / No. 33	Hansen Dam (COE)	011 47 15	440 44 46		Height		Hansen Dam		ти	HANSEN JUNGA WASH	DAM I, CALIFORNIA
#18 (46DE)**	Big Tujunga Dam	34-17-40	118-11-16	2315	Precip. Stream	NOTE: *LACF	CD ALERT Station and	d Designatio	n.		ON RESERVE

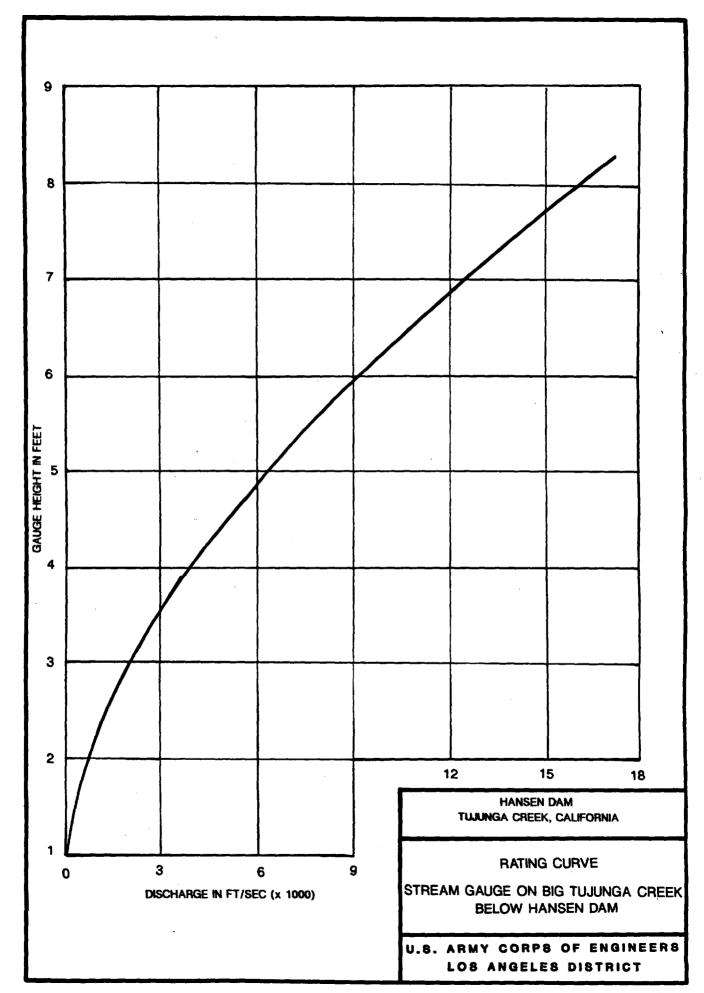
PRECIPITATION, RESERVOIR, AND STREAM GAUGES IN AND NEAR THE HANSEN WATERSHED

^{**}LAD, COE Gauge and Designation.
***USGS Gauge and Designation.

Hydrologic Instrumentation of Hansen Dam

Parameter	Gauge Type	Report Mode	Stored Record (period available)	Comments	
Vater Surface Elevation	Staff Boards	Visual	Flood Control Basin Operation Report SPL 19 (1941-present)		
	Stevens A-71 recorder	Visual	Reservoir Operation Report SPL 424 (1941-present) paper strip chart (1941-present) punch tape (1974-present)		
	D.R.*	Telemetry	telemetry data file	·	
Downstream gauge height	Digital Recorder*	Visual Telemetry	Flood Control Basin Operators Report SPL 19 (1941-pres.) punch tape (1974-present) telemetry data file		e, publishes the daily record unch tape for USGS station 11097000
Outlet Gate opening	Gate Opening Indicator	Visual	Flood Control Basin Operators Report SPL 19 (1941-present)		
	Leitz Recorders			Leitz are operational with Leopold & Stevens recorders)	but will eventually be replaced Type F recorders (chart drum
_					·
recipitation	tipping bucket gauge connected by magnetic sensor to D.R.*	Telemetry	Reservoir Operation Report SPL 424 (1941-present) punch tape (1974-present) telemetry data file	Tipping bucket type in used previously	stalled in 1985, float type gauge
	Belfort recording	None	paper chart (1941-present)		valuated for daily rainfall amount nt to NWS in Asheville, N.C. for
					HANSEN DAM TUJUNGA WASH, CALIFORNIA
	glass raintube	Visual	Rainfall Record SPL 31 (1941-present)		
Digital Recorder	- A device that converts g in paper tape.	auge motion into cod	ed digital information and records this periodically as a patt	tern of punched holes	HYDROLOGIC INSTRUMENTATION
					U. S. ARMY CORPS OF ENGINEERS LOS ANGELES DISTRICT

Methods of Reporting Hydrologic Data


	• • • • • • • • • • • • • • • • • • • •			
		Reservoir Water Surface Elevation	Streamflow Water Surface Elevation	Gate Heights
			*	
Manual	Glass Tube Pre- cipitation Gauge	Staff Gauge	Staff Gauge	Gate Height Indicators
Recording	Precipitation Digital Recorder	Water Surface Recorder	Gauge Height Digital Recorder	Gate Height Recorder
	Universal Record Precipitation Ga			
Telemetry	Precipitation Telemetry HNSN	Water Surface HNSN	Stream Gauge Telemetry TJWH	
Interrogated $^{\circ}$	Precipitation Digital Recorder	Water Surface Digital Recorder	Water Surface Gauge Height Recorders	
	Telemetry	Self-Timed	Telemetry	
Fixed-Time Self-Reporting	At Dam	Interrogated	Down Stream Gauge	HANSEN DAM TUJUNGA WASH, CALIFORNIA
Event-Reporting	Alert System	Alert System		METHODS OF REPORTING HYDROLOGIC DATA
	• •			

Rating Table for Big Tujunga Creek below Hansen Dam

Gauge	Channel	Gauge	Channel
Height (ft)	Flow (cfs)	Height (ft)	Flow (cfs)
1 00	0.0		
1.00	0.0	4.70	5477.0
1.10	19.0	4.80	5728.0
1.20	47.0	4.90	5983.0
1.30	86.0	5.00	6243.0
1.40	138.0	5.10	6507.0
1.50	200.0	5.20	6776.0
1.60	273.2	5.30	7050.0
1.70	358.0	5.40	7328.0
1.80	446.9	5.50	7610.0
1.90	545.0	5.60	7897.0
2.00	646.4	5 <i>.</i> 70	8189.0
2.10	753.2	5.80	8484.0
2.20	864.5	5.90	8785.0
2.30	982.1	6.00	9089.0
2.40	1106.0	6.10	9398.0
2.50	1236.0	6.20	9711.0
2.60	1372.0	6.30	10030.0
2.70	1514.0	6.40	10350.0
2.80	1661.0	6.50	10680.0
2.90	1815.0	6.60	11010.0
3.00	1974.0	6.70	11340.0
3.10	2138.0	6.80	11680.0
3.20	2308.0	6.90	12020.0
3.30	2483.0	7.00	12370.0
3.40	2664.0	7.10	12720.0
3.50	2850.0	7.20	13080.0
3.60	3042.0	7.30	13440.0
3.70	3238.0	7.40	13800.0
3.80	3440.0	7.50	14170.0
3.90	3646.0	7.60	14540.0
4.00	3858.0	7.70	14910.0
4.10	4075.0	7.80	15290.0
4.20	4297.0	7.90	15680.0
4.30	4523.0	8.00	16060.0
4.40	4754.0	8.10	16460.0
4.50	4991.0	8.20	16850.0
4.60	5232.0	8.30	17250.0
		0.00	2,230.0

HANSEN DAM TUJUNGA WASH, CALIFORNIA

RATING TABLE FOR BIG TUJUNGA CREEK BELOW HANSEN DAM

Notification List for Hansen Dam (see Orange Book for home phone numbers)

a. At start of releases notify:

Department of Water and Power (N. Hlywd)	818-503-1824
(24 Hour)	213-481-4900
L.A. County Department of Public Works	818-458-6177
Emergency Operations Center	818-458-5503
L.A. County Emergency Operation Bureau	213-946-7935
L.A. County Sheriff	213-974-4211
L.A. Police Department (Foothill)	818-989-8861
Sewer Maintenance Robert Parrish	213-485-5881
or Robert Watts	213-485-5892
or Ray Jellison	213-485-5888

b. At water surface elevation 1005 feet notify:

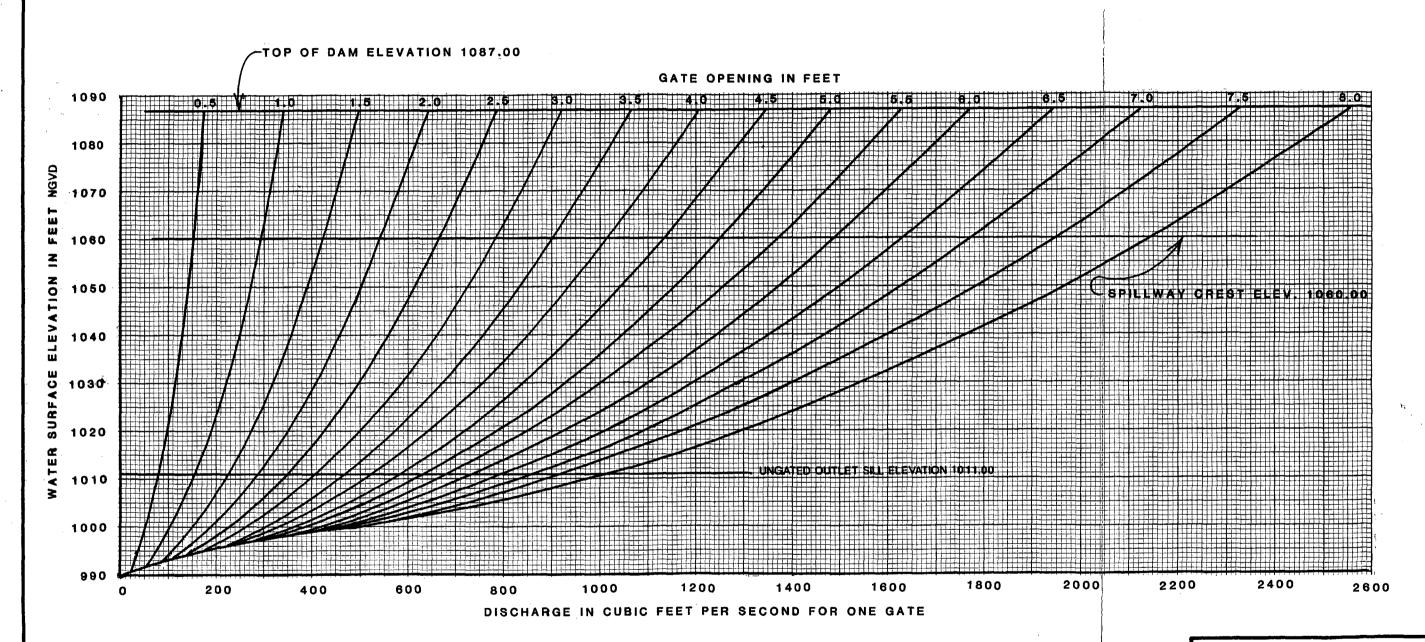
California	Department of Fish and Game	213-590-5151
Department	of Parks and Recreation (L.A.)	213-665-5188
Department	of P&R (Van Nuys) Tom Craig	818-989-8189
_	or Martin Castille	818-989-8190

c. If water will reach elevation 1010 feet notify:

Sediment Removal Contractor, Bill Blomgren 818-353-1921 A.E. Schmidt 818-983-0297 U.S. Army Corps of Engineers CON-OPS Division Lowell Flannery 213-894-4926

- d. If water will reach elevation 1039 feet notify:
 - L.A. District Special Dam Inspection Team

 Team Leader Vance Carson 213-894-5533

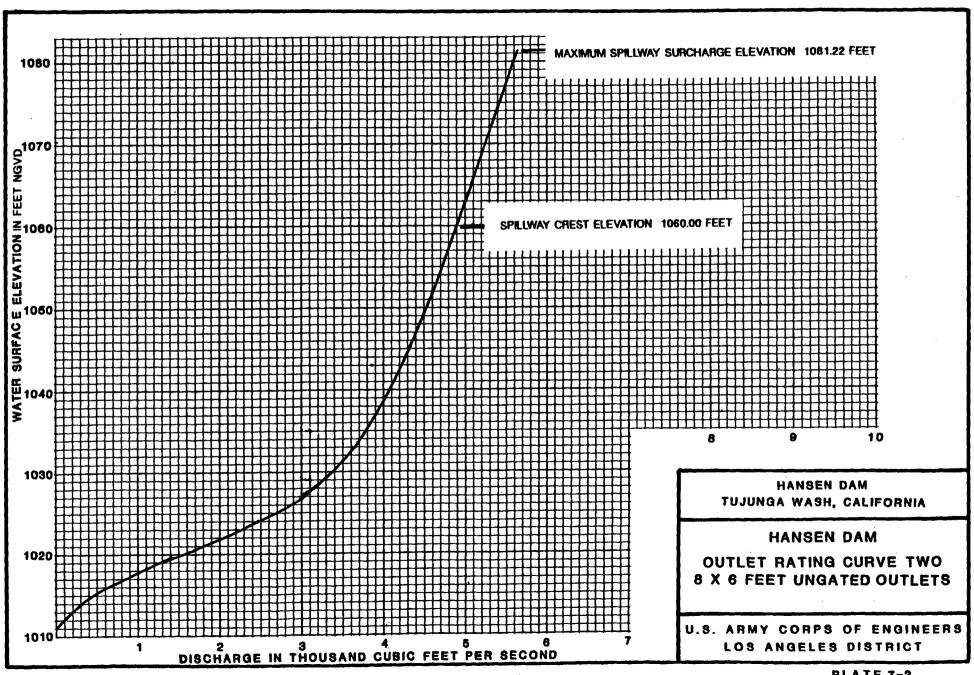

 Jim Berkland 213-894-4068

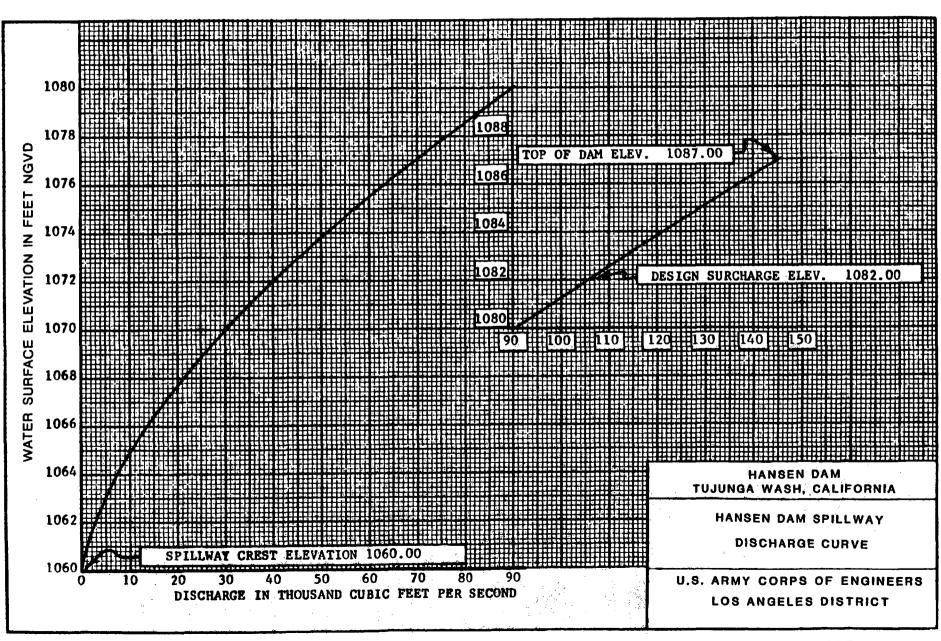
 Algis Bliudzuis 213-894-6979
- e. If spillway flow (elev. 1067) or dam break is imminent notify:

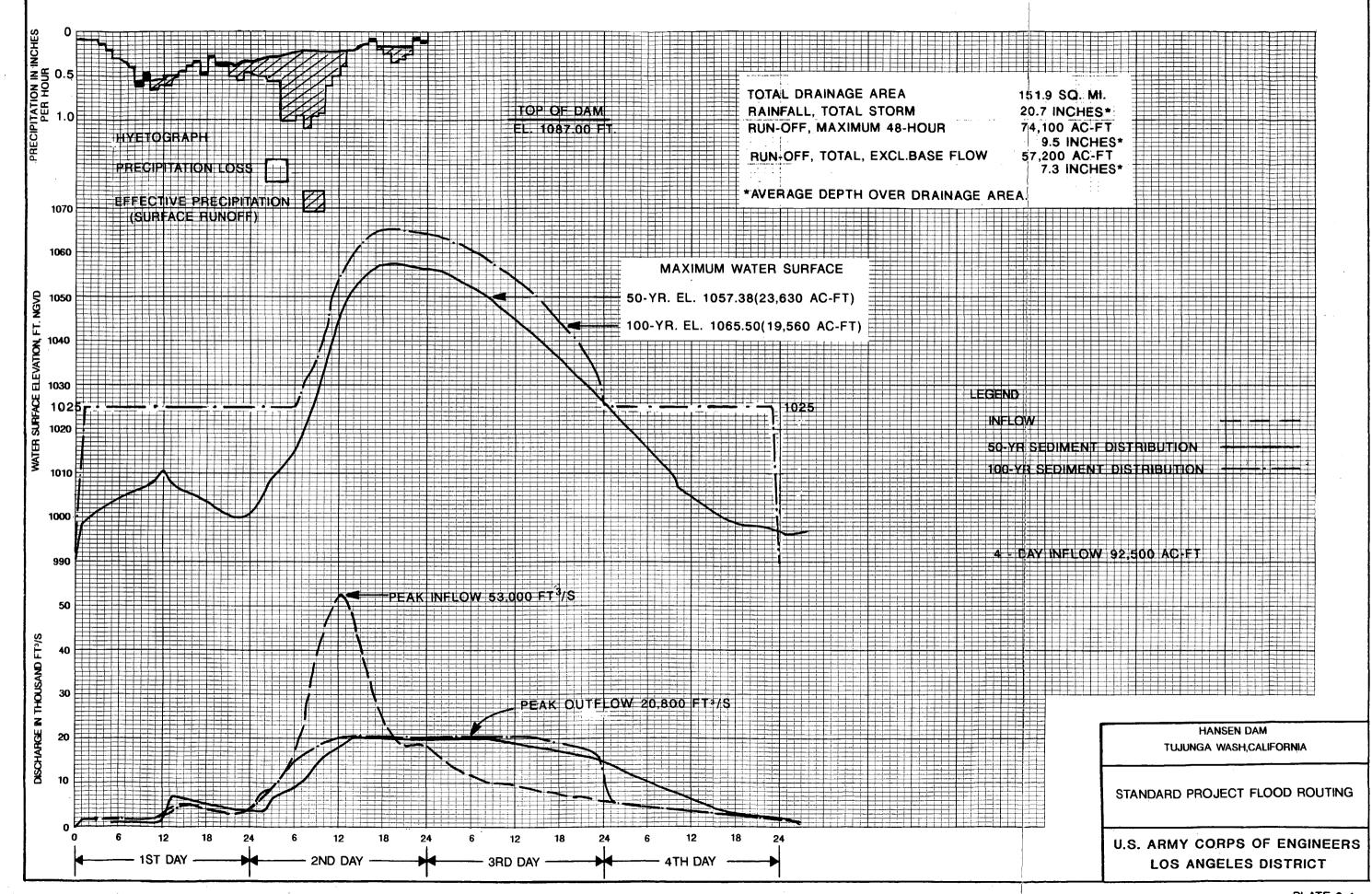
L.A. Police Dept. (Ask for Foothill Div.) 818-989-8861 U.S. Army Corps of Engineers, Chief Emergency Management Branch Warren Hagstrom 213-894-3440

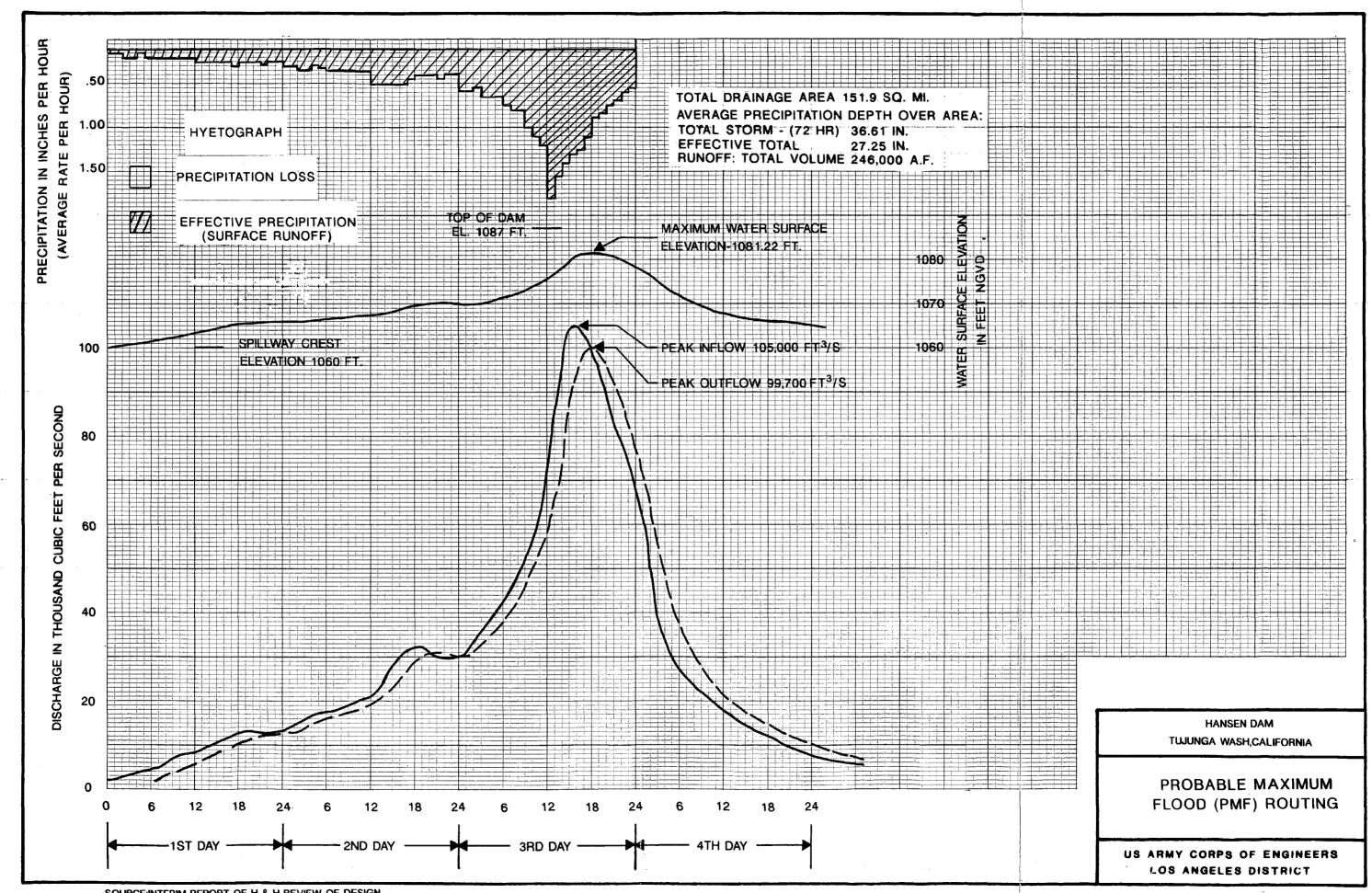
> HANSEN DAM TUJUNGA WASH, CALIFORNIA

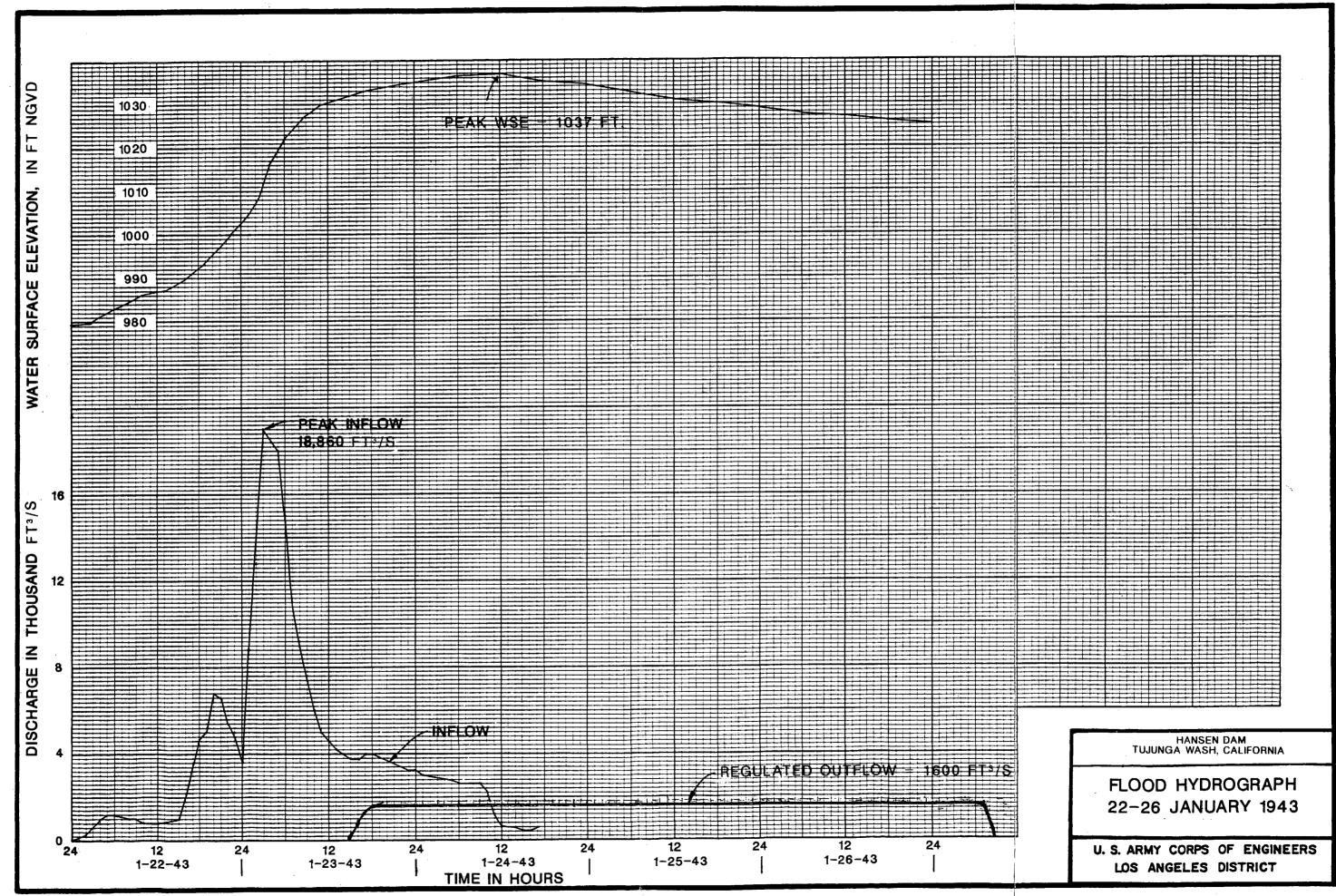
> > NOTIFICATION LIST

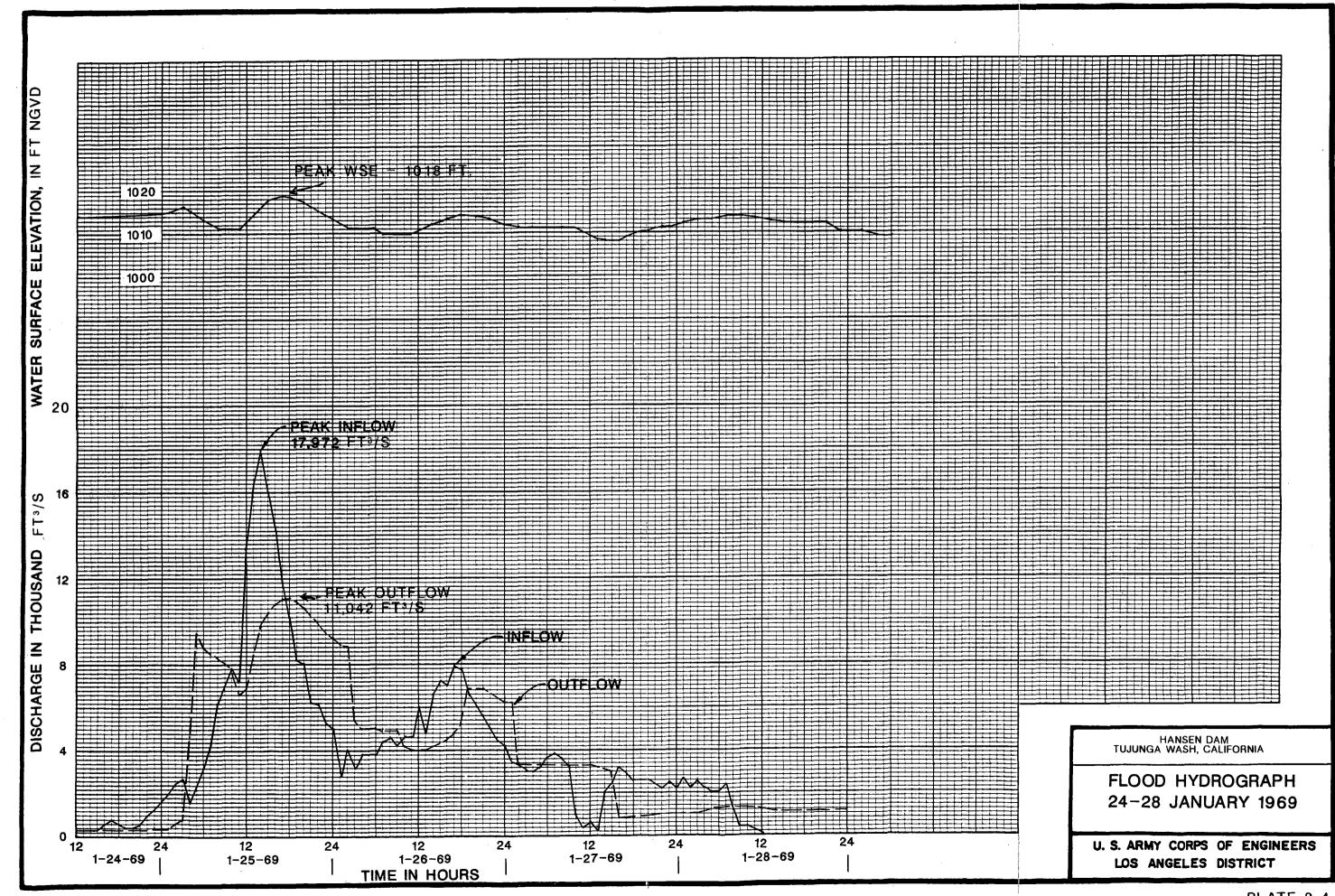

NOTE: TOTAL OUTFLOW IS THE SUM OF DISCHARGES FOR THE EIGHT GATED

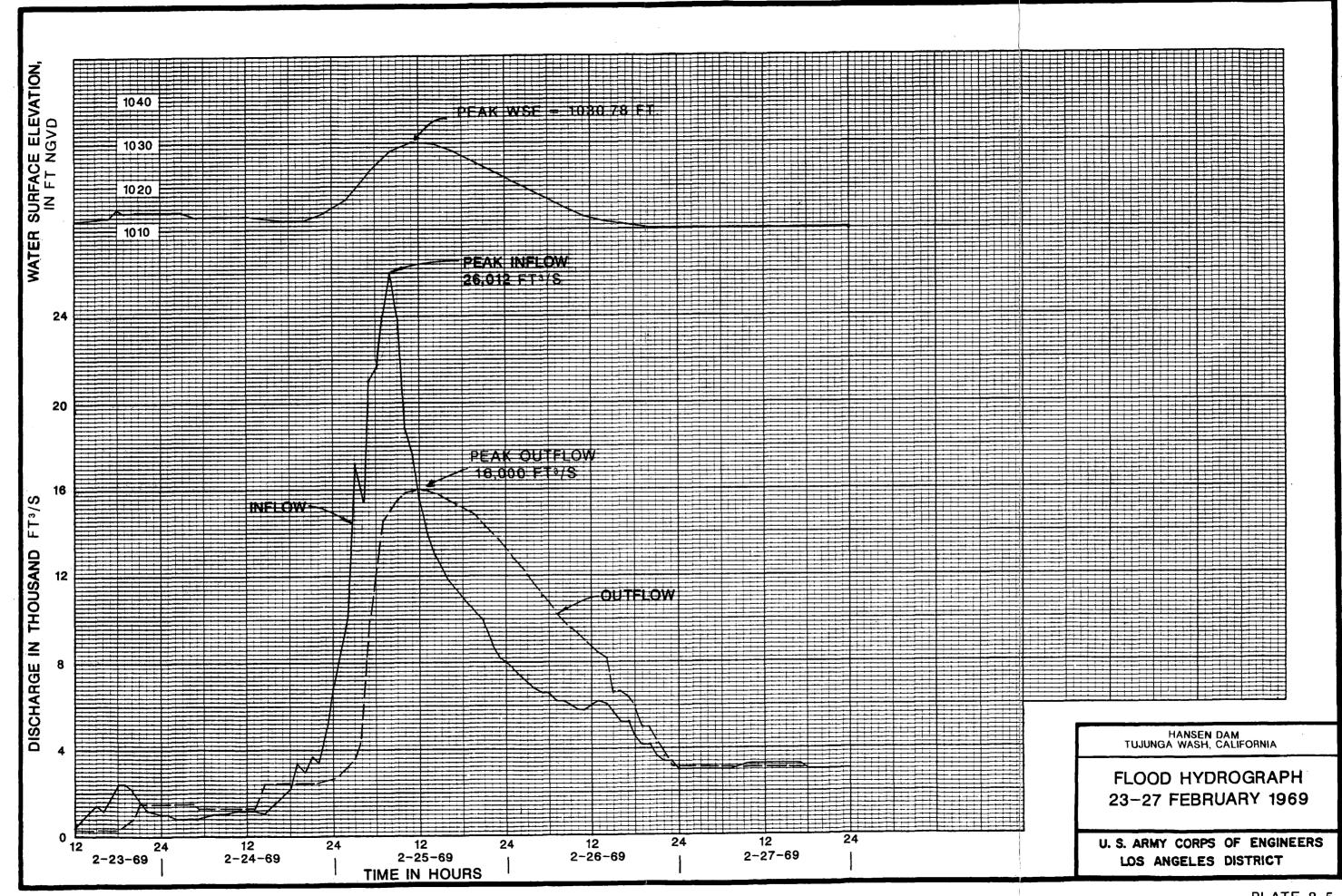

CONDUITS PLUS THE TWO UNGATED CONDUITS AND SPILLWAY FLOW

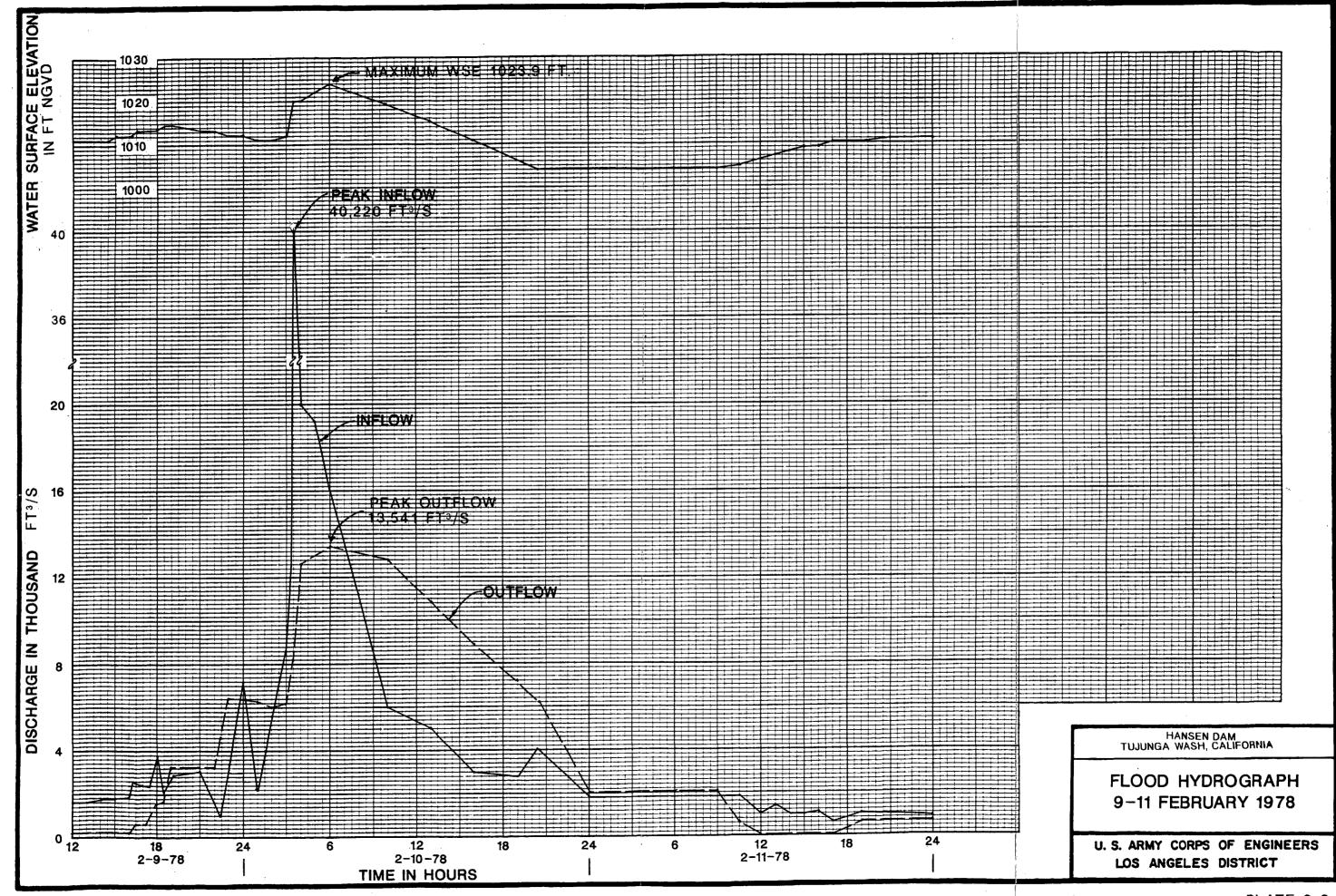

HANSEN DAM Tujunga Wash, California

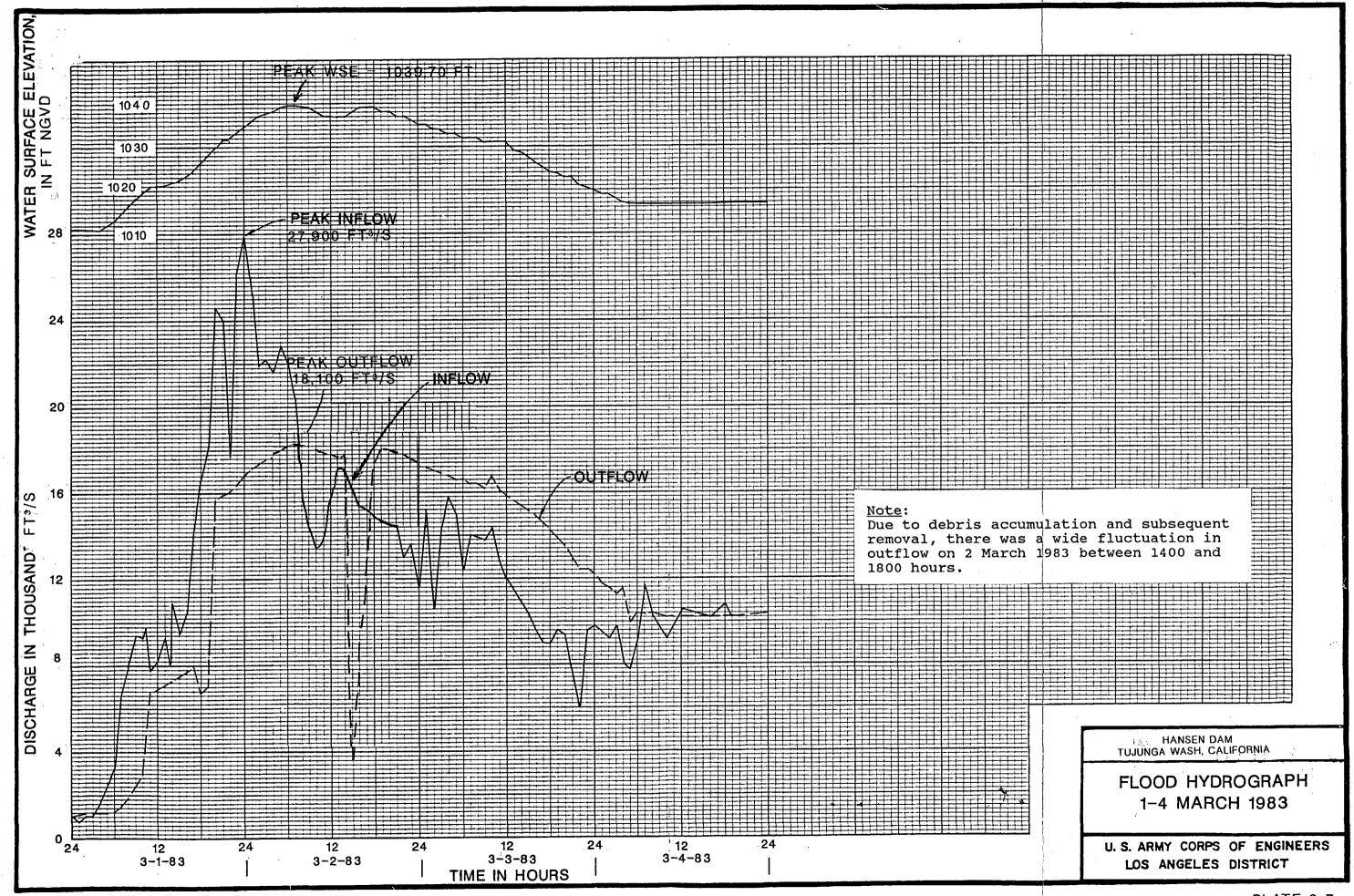

HANSEN DAM OUTLET RATING CURVE

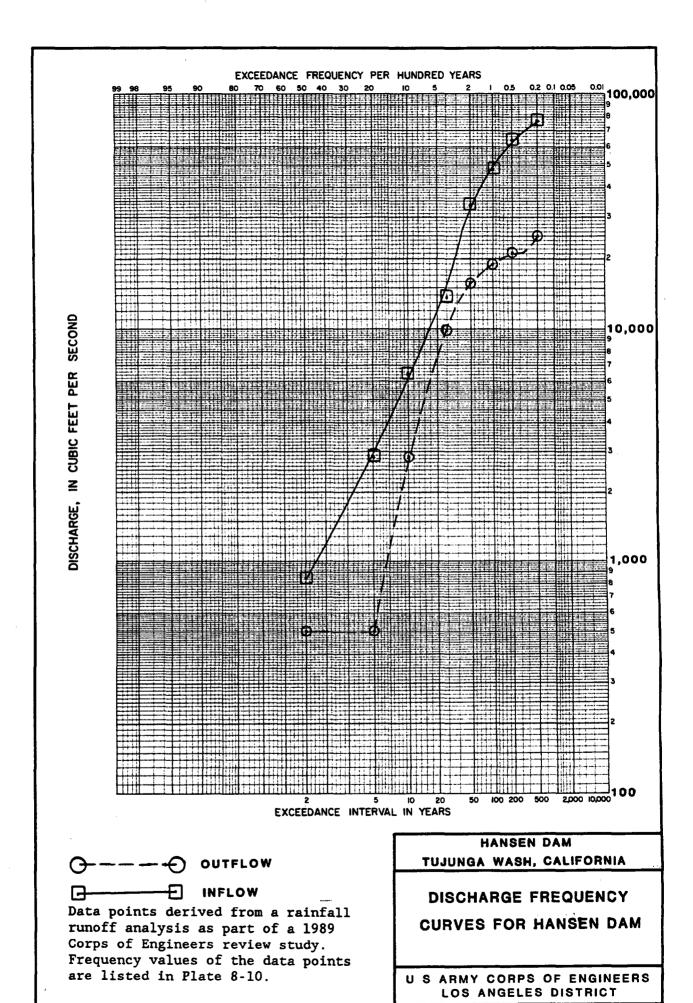

1-5X8 FEET GATED OUTLET

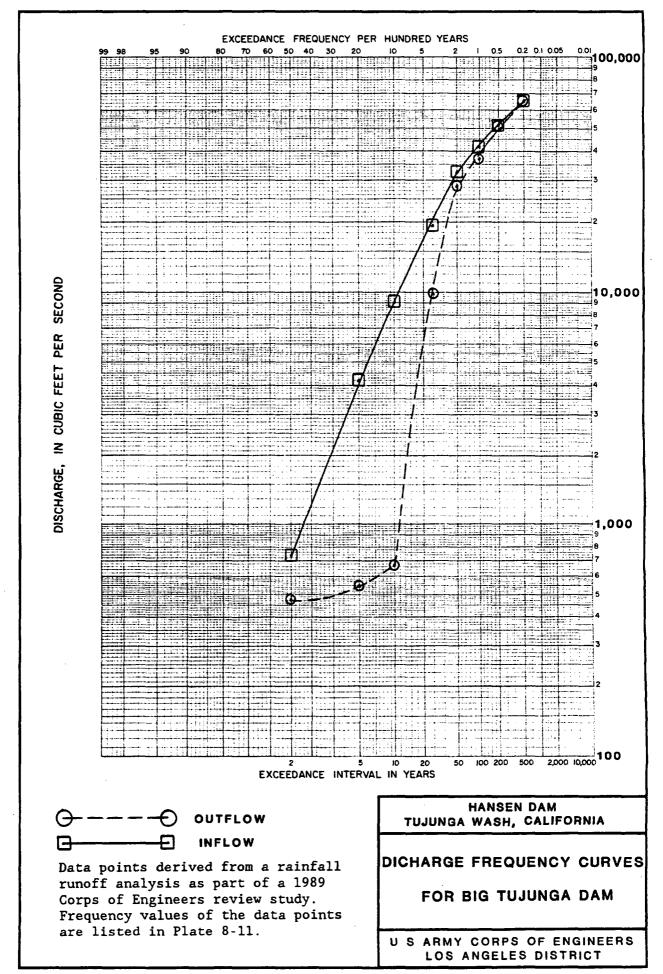












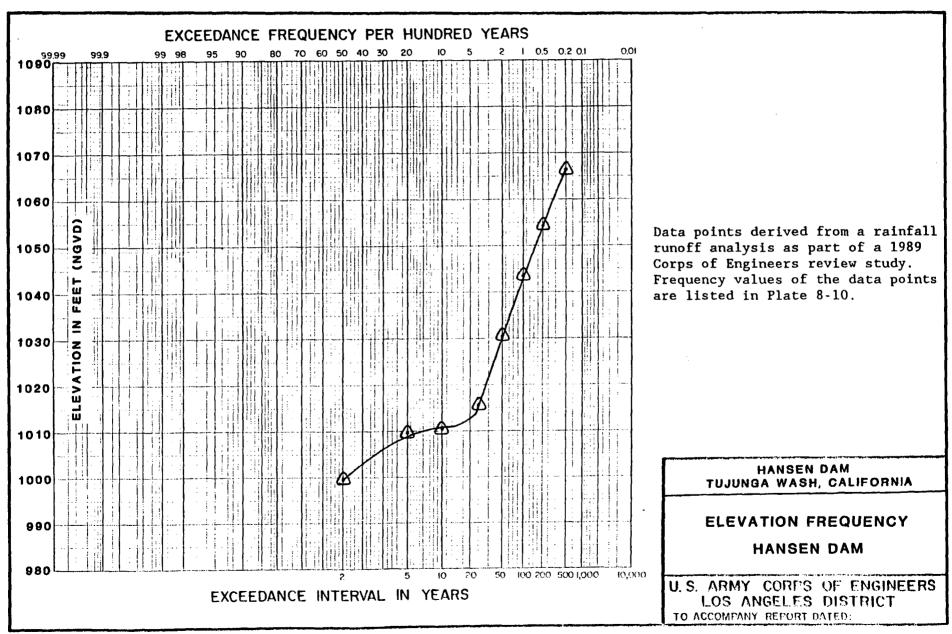
Inflow, Outflow, and Filling Frequency Values for Hansen Reservoir

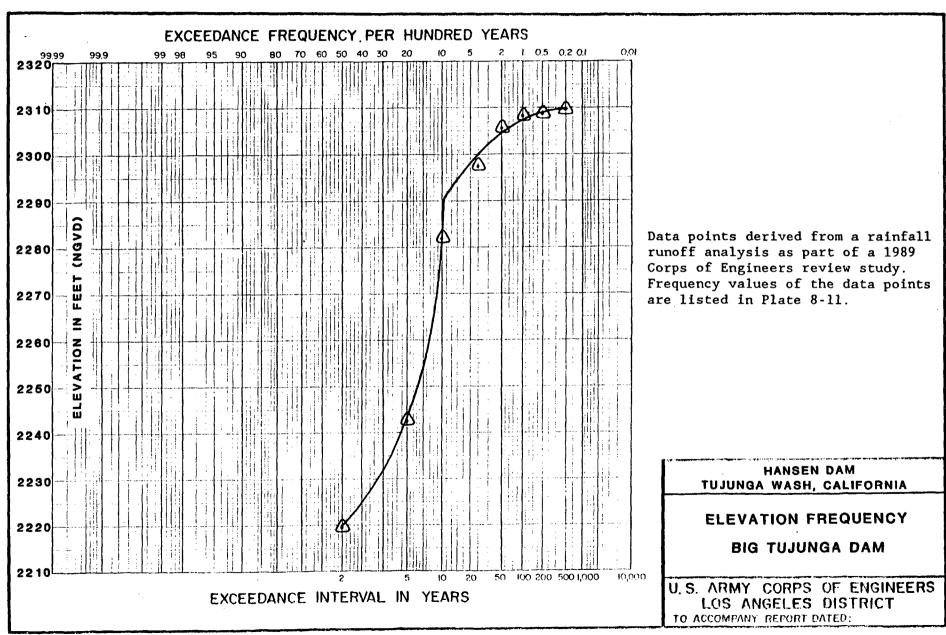
Return Period (Years)	2	5	10	20	50	100	200	500
Peak Inflow (ft ³ /s)	865	2,840	6,350	13,800	33,500	47,900	64,000	76,500
Peak Outflow (ft ³ /s)	500	500	2,860	9,840	15,800	18,900	21,100	25,000
Peak Eleva- tion (feet, NGVD)	999.4	1009.7	1010.5	1015.6	1030.3	1043.7	1054.2	1066.0

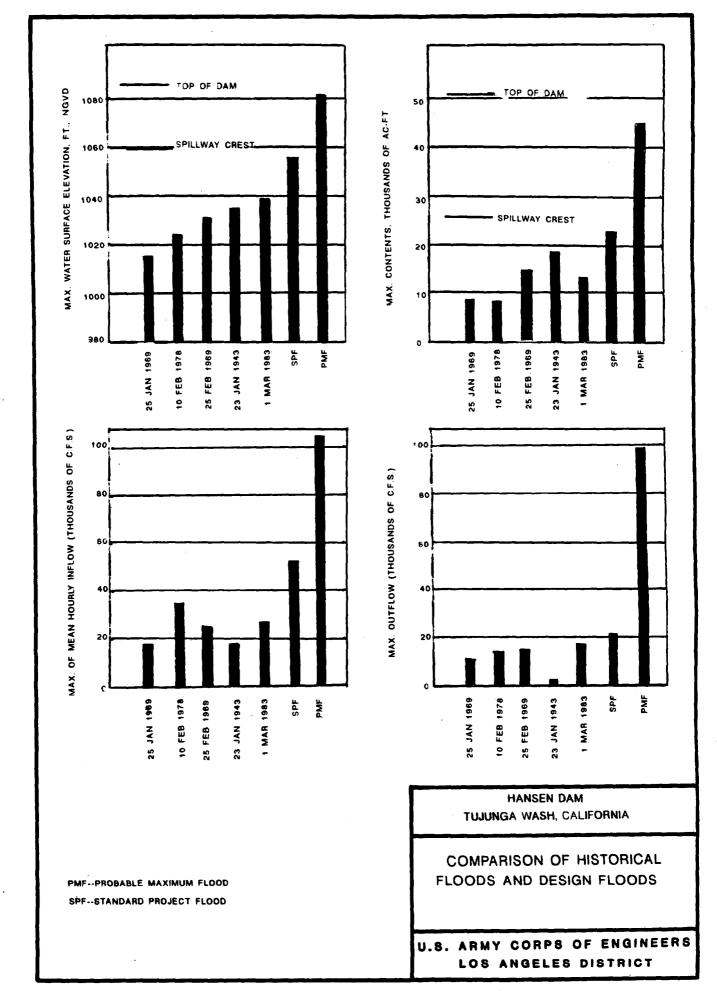
Note: These values, representing 1980 watershed conditions, were obtained from the peak inflow and outflow analysis of Plate 8-8 and from the frequency filling curve of Plate 8-12. The curves were drawn as best-fit lines through data points derived from a rainfall-runoff analysis as part of a 1989 Corps of Engineers LACDA review study.

HANSEN DAM TUJUNGA WASH, CALIFORNIA

HANSEN RESERVOIR
INFLOW, OUTFLOW, AND
FILLING FREQUENCY VALUES


Inflow, Outflow, and Filling Frequency Values for Big Tujunga Reservoir


Return Period (Years)	2	5	10	20	50	100	200	500
Peak Inflow (ft ³ /s)	730	4,160	9,050	19,300	32,200	41,400	51,700	65,200
Peak Outflow (ft ³ /s)	470	540	665	9,820	28,400	36,300	51,700	65,200
Peak Eleva- 2 tion (feet, NGVD)		2242.3	2281.9	2297.7	2305.5	2308.1	2308.5	2309.8


Note: These values, representing 1980 watershed conditions, were obtained from the peak inflow and outflow analysis of Plate 8-9 and from the frequency filling curve of Plate 8-13. The curves were drawn as best-fit lines through data points derived from a rainfall-runoff analysis as part of a 1989 Corps of Engineers LACDA review study.

HANSEN DAM TUJUNGA WASH, CALIFORNIA

BIG TUJUNGA RESERVOIR
INFLOW, OUTFLOW, AND FILLING
FREQUENCY VALUES

Comparison of Historical Floods and Design Floods Hansen Reservoir

	Plate No.	Water Surface Elevation (feet)	Contents (acre- feet)	Inflow* (cfs)	Outflow (cfs)
Probable Maximum Flood	8-02	1081.22	44,990	105,000	99,700
Standard Project Flood	8-01	1057.25	23,350	53,000	20,640
23 January 1943	8-03	1036.47	18,743	18,860	1,640
25 January 1969	8-04	1018.28	9,015	17,972	11,042
25 February 1969	8-05	1030.78	14,872	26,012	15,993
10 February 1978	8-06	1023.90	8,211	35,050**	13,541
1 March 1983	8-07	1039.70	13,261	27,900	18,104

HANSEN DAM TUJUNGA WASH, CALIFORNIA

COMPARISON OF HISTORICAL AND DESIGN FLOODS AT HANSEN RESERVOIR

^{*} Maximum of mean hourly values ** Maximum inflow for 40 minutes: 40,220 cfs

Chain of Command for Reservoir Operations Decisions

Corps of Engineers Los Angeles District

Title

Office Phone Number:

District Engineer

(213) 894-5300

Water Control Decisions

Gate Operations

<u>Title</u>	<u>Phone</u>	<u>Title</u>	Phone
Chief, Engineering Division	(213) 894-5470	Chief, Construction- Operations Division	(213) 894-5600
Chief, Hydrology and Hydraulic Branch	(213) 894-5520	Chief, Operations Branch	(213) 894-5620
Chief, Reservoir Regulation Section	(213) 894-6915	Chief, Operations & Maintenance Section	(818) 401-4008
Chief, Reservoir Regulation Unit	(213) 894-6916	Dam Tender Foreman	(818) 401-4006
regulation outt		Hansen Dam Tender	(818) 767-3810

HANSEN DAM TUJUNGA WASH, CALIFORNIA

CHAIN OF COMMAND FOR RESERVOIR OPERATIONS DECISIONS

STANDING INSTRUCTIONS TO THE PROJECT OPERATOR FOR WATER CONTROL

HANSEN DAM

TUJUNGA CREEK

Los Angeles River Basin

Exhibit A to the Water Control Manual for Hansen Dam

Los Angeles District Office U.S. Army Corps of Engineers

July 1990

STANDING INSTRUCTIONS TO THE PROJECT OPERATOR FOR WATER CONTROL HANSEN DAM

TABLE OF CONTENTS

<u>Paragraph</u>	<u>Title</u>	<u>Page</u>
	I. <u>BACKGROUND AND RESPONSIBILITIES</u>	
1-01	General Information	A-1-1
1-02	Role of the Project Operator	A-1-2
	(1) Normal Conditions	A-1-2
	(2) Emergency Conditions	A-1-2
	II. DATA COLLECTION AND REPORTING	
2-01	Normal Conditions	A-2-1
2-02	Emergency Conditions	A-2-1
2-03	Regional Hydrometerological Conditions	A-2-2
	III. WATER CONTROL ACTION AND REPORTING	
3-01	Normal Canditions	A-3-1
3-01	Normal Conditions	A-3-1
3-02	Emergency Conditions	A-3-1 A-3-2
	Inquiries	
3-04 3-05	Water Control Problems	A-3-2
4-115	Communication Outers	ハーマーツ

STANDING INSTRUCTIONS TO THE PROJECT OPERATOR FOR WATER CONTROL HANSEN DAM

I. BACKGROUND AND RESPONSIBILITIES.

1-01 General Information.

(1) This exhibit is prepared in accordance with instructions contained in EM 1110-2-3600, paragraph 9-2, (Standing Instructions to Project Operators for Water Control), and ER 1110-2-240, and pertains to duties and responsibilities of dam tenders associated with the operation of Hansen Dam.

Operational instructions to dam tenders are outlined with specific emphasis on flood emergencies when communication between the dam tender and the LAD Reservoir Operation Center (ROC) have been disrupted. This exhibit is designed to be used as an operational guide for the dam tender to use in implementing the Hansen Dam Reservoir Regulations Schedule (Exhibit B). Associated plates are contained in the main body of the water control manual.

The dam tender is required to have available at the damsite this water control manual and exhibit, and the current version of other manuals that complement these standing instructions. These manuals are:

(a) "Instructions for Reservoir Operations Center Personnel"; (b) "Operation and Maintenance Manual for Hansen Dam"; and (c) Hansen Dam Flood Emergency Plan. Any deviation from Standing Instructions will require approval of the District Commander.

- (2) The purpose of Hansen Dam is regulating flood stage flows through Tujunga Creek, and minimizing flood damage downstream of the structure. Hansen Dam is an essential element for flood control in the Los Angeles River drainage basin. In conjunction with Sepulveda and Lopez Dams, Hansen Dam is vital for the flood protection of lower portions of the San Fernando Valley and the City of Los Angeles. Storage regulation given by the flood control basins permits efficient use of the Los Angeles River Channel. The storage allocation for Hansen Dam is shown on plate 2-2.
- (3) Plate 9-01 is an organizational chart depicting the chain of command for reservoir regulation decisions.

Gate operation instructions to the dam tender are issued by the Reservoir Regulation Unit. Dam tenders are part of the Operations Branch, under the Construction-Operations Division.

(4) Hansen Dam is located near the northern edge of the San Fernando Valley on Tujunga Wash, about one mile below the confluence of Tujunga and Little Tujunga Washes, and about four miles southeast of the town of San Fernando, in Los Angeles County. The boundary of the drainage area is formed by the San Gabriel Mountains on the north and west, and by the Verdugo Mountains and a secondary range of the San Gabriel Mountains on the south and

east. The location of the project is shown on plate 2-1A. The drainage area is shown on plate 2-1B.

- (5) Debris accumulation on the trash racks can be an operational concern. Repetitive blocking of the trash racks by floatable debris has threatened the water control regulation of Hansen Dam in the past when it was necessary to bring heavy cranes to pull debris from in front of the trash racks in order to discharge flood waters. Due to past forest fires, Hansen Dam has the heaviest sediment load of COE dams in LAD. These fires have also contributed to floatable debris, which must be monitored and physically removed until trash rack modifications can be implemented.
- (6) Hansen Dam was constructed and is owned and operated by the U.S. Army Corps of Engineers, Los Angeles District (LAD), which has complete regulatory responsibility. Hansen Dam is operated for local flood control on Tujunga Wash and is part of the Los Angeles County Drainage Area (LACDA) system for flood control in the Los Angeles River Drainage Area.

1-02 Role of the Project Operator.

- (1) <u>Normal Conditions</u>. The Project Operator (Dam tender) will be instructed by the Reservoir Regulation Unit as necessary for water control actions under normal conditions. The dam tender will verify that all equipment at the project is in good operating condition; test-operate gates and electrical facilities in the control house, and inspect all structures and equipment according to a pre-established schedule; and refer to the Operation and Maintenance Manual for instructions on actual operation procedures for all equipment.
- (2) <u>Emergency Conditions</u>. The dam tender will be present at the dam during periods of significant runoff, as instructed by the Operations Branch; operate the dam in accordance with instructions from the Reservoir Regulation Section; and follow the Reservoir Regulation Schedule provided in Exhibit B during periods of communication disruption.

II. DATA COLLECTION AND REPORTING.

2-01 Normal Conditions.

(1) During normal conditions, measurements are made on week days at 0800 hours local time by the dam tender to determine reservoir staff reading (water surface elevation), float well or manometer gauge "tape" reading, incremental precipitation since last report, total accumulated precipitation for the season, the settings of each outlet gate, and the times of these measurements.

This information will be logged on the appropriate forms and reported by radio to the Reservoir Regulation Unit, WUK4ROC as requested.

- (2) The dam tender will also maintain records, including water surface elevations, outflow gauge heights, precipitation amounts, outlet gate settings, and log all radio and telephone communications on forms prescribed below.
- (a) The Record of Calls Form (SPL-188). This form is used each time a message is transmitted or received by radio or telephone. The purpose of every call will be noted, whether for a radio check, reservoir report, etc.
- (b) Flood Control Basin Operation Report Form (SPL-19). The dam tender should log all of the information on this form each time a water surface elevation measurement is taken or a gate change has been completed.
- (c) Rainfall Record Form (SPL-31). This form should be filled in each time a rainfall measurement is taken from a glass tube rainfall gauge.
- (d) Record of Data From Digital Recorders Form (SPL 648). This form is filled in once daily at 08:00 when the dam tender reads the recorder drum on the digital punch tape record and logs the number read onto Form SPL 648.
- (e) All of these forms should be submitted monthly to the Water Control Data Unit CESPL-ED-HR (BASEYARD) of the Reservoir Regulation Section for archival storage. A copy of each of these forms is included in the Hansen Dam Water Control Manual in within figure set 9-1 through 9-7.

2-02 <u>Emergency Conditions</u>.

During flood events, the dam tender should follow instructions as issued by the Reservoir Regulation Section on measurement type and frequency. When reporting to the Reservoir Regulation Section, the dam tender should clearly describe the silt and debris situation at the trash racks, gates, and downstream gauges. When instruments are not working or are stuck in the silt, the operator should not report the erroneous reading, but should rather state the instrument or staff problem. Care should be taken to avoid issuing misleading reports due to siltation at the reservoir staff boards. When debris or silt causes flows to be deceptively perched above the invert, or causes a loss of contact with the staff board, the dam tender should report

a descriptive message identifying the limitations, and quantifying the estimated reservoir depth. If the radio system, including the dam tender's mobile unit, malfunctions, the Reservoir Regulation Section will contact the operator via telephone. It is especially important to maintain all records discussed above during emergency conditions.

2-03 Regional Hydrometerological Conditions.

Dam tenders will be informed by the Reservoir Regulation Section of regional hydrometerological conditions that may/will impact Hansen Dam. If regional conditions change, the dam tender should notify Reservoir Regulation Section of those conditions.

III. WATER CONTROL ACTION AND REPORTING.

3-01 Normal Conditions.

Except during times of emergency when fast action is critical, the Reservoir Regulation Section must approve all gate changes. The Reservoir Regulation Section will originate the request for a gate change, and will provide settings for the gates whenever a gate change is necessary. The dam tender should implement gate changes immediately following acknowledgment of instructions. Delaying a gate change may have serious impacts on affected activities. If other concurrent activities cause a delay in implementation of a gate change, the dam tender should advise the Reservoir Regulation Section by calling radio call sign WUK4ROC and request guidance.

Once a gate change is completed, the dam tender should radio back to the Reservoir Regulation Section (WUK4ROC) to report the time the change was completed, the staff and tape readings, the downstream discharge reading, and the current settings of all 8 gates. All individuals involved should strive to achieve accuracy and complete clarity regarding gate settings.

The eight vertical lift gates are hydraulically controlled from the control house. The dam tender should refer to the O&M Manual for instructions on actual operating procedures.

3-02 <u>Emergency Conditions</u>.

During flood events and other emergency conditions water control actions and reporting are vital to the successful operation of the dam reservoir.

If flooding conditions or some other emergency occurs at the dam, the dam tender should notify the Reservoir Regulation Section as soon as possible with a description of the conditions.

During an emergency condition such as a hazardous chemical spill or a potential drowning where immediate action is necessary, the dam tender should make the appropriate gate changes and report in to the Reservoir Regulation Section as soon as possible.

During a flood event, it is important to maintain the procedures for data collection and water control actions (gate changes) used during normal conditions. Hansen Dam is operated in flood events with all eight gates at standby (1.0 feet open) position until the debris pool elevation of 1010.5 feet NGVD is reached, at which point all gates are opened to 8.0 feet. See Exhibit B.

The Reservoir Regulation Section should keep the dam tender apprised of operational objectives and critical operational constraints whenever possible. This will afford the dam tender a greater opportunity to recognize and identify potential problems in the field. The Reservoir

Regulation Section may also provide additional water surface elevation criteria, instructing the dam tender to alert them via radio channel WUK4ROC when the reservoir pool reaches the indicated level. Such an action would normally be conducted during periods of intense storm runoff, and would require the operator to remain at the control house.

3-03 Inquiries.

All significant inquiries received by the dam tender from citizens, constituents or interest groups regarding water control procedures or actions must be referred directly to the Reservoir Regulation Section.

3-04 Water Control Problems.

The Reservoir Regulation Section must be contacted immediately by the most rapid means available in the event that an operational malfunction, erosion, or other incident occurred that could impact project integrity in general or water control capability in particular.

Emergency departures from the regulation instructions issued by the Reservoir Regulation Section may be required, because of equipment failures, accidents, or other emergencies requiring immediate action. Under these situations, the dam tender should contact the Reservoir Regulation Section via radio for instructions. When communications are broken, or the situation demands immediate action, the dam tender may proceed independently. The Reservoir Regulation Section should be notified of such actions as soon as possible. All other emergency deviations from normal procedure should be approved in advance by the Reservoir Regulation Section. The District Engineer, Los Angeles District, U.S. Army Corps of Engineers, may make temporary modifications to the water control regulations. Permanent changes are subject to approval by the Division Engineer, South Pacific Division, U.S. Army Corps of Engineers.

The dam tender should immediately alert the Reservoir Regulation Section via radio channel WUK4ROC whenever the requested gate change cannot be fully implemented due to mechanical or other physical problems. For example, debris occasionally prevents total gate closure. The Reservoir Regulation Section will evaluate the problem and provide further instructions to the dam tender.

3-05 <u>Communication Outage</u>.

Coordination of flood control operation is under the direction of the Reservoir Regulation Section, Corps of Engineers, Los Angeles District. During flood periods, close contact will be maintained between operating personnel at Hansen Dam and the Reservoir Regulation Section in Los Angeles. If communication is broken between the dam tender and the Reservoir Regulation Section, initially continue releases in accordance with the last instructions from the Reservoir Regulation Section, and make every attempt to re-establish communications. If this effort is unsuccessful for one hour, the dam tender

should use water surface elevations to make releases following the Reservoir

Regulation Schedule (Exhibit B).

Emergency notifications are normally made by the Reservoir Regulation Section. However, if the dam tender loses communication with the Reservoir Regulation Section, and an emergency notification situation arises, such as an imminent dam failure or uncontrolled spillway flow (water surface elevation above 1060 feet NGVD), the dam tender should make the necessary notifications. The parties listed below are to be immediately notified upon declaration of an uncontrollable emergency.

Los Angeles Police Department (ask for Foothill Division)

818-989-8861

Corps Emergency Management Branch

213-894-3440

Notifications should include: (a) description of the type and extent of existing or impending emergency; (b) advisement for evacuation from the flood plain; (c) information on the time of initial release of hazardous amounts of water; (d) the depth of water behind the dam; and (e) the dam tender's name and telephone number.

Upon completing the above notifications, attempt to re-establish communications with the Reservoir Regulation Section. Document all notifications made, and refer to the Orange Book (Instructions for Reservoir Operations Center Personnel) for more information on additional emergency notifications. The dam tender should not leave the dam unless his safety is in jeopardy.

EXHIBIT B

Reservoir Regulation Schedule and
Instructions to Dam Operator

Hansen Dam Reservoir Regulation Schedule (For rising and falling stages)

												•	
water surface	••	••		Gate setting	ting f	or gates	as indicated	dicate	' U		••	: Computed :	Downstream
is between	••			••	••			••		••	••	: discharges :	gauge
elevation	••	••			•						- 1		nergne
Feet - NGVD	: No. 1	. No.	5. 2	No. 3		No. 4	. No.	5	No. 6	No.	S NO.	: It3/s	reer
	Feet of	·· ··	Feet of	Feet of	•• ••	Feet of	: : Feet of	. ; of	Feet of	Feet of	Feet of		
	opening:	••	opening	: opening	••	opening	: opening	Ing	opening	: opening	: opening	····	
opporto proporto proporto contrato	in the first	0	ŏ	•	••			•• ••			••	·· ··	
OTTOM SEED I dail	112 1151115	31.05	91					•			••	•	
990.0 - 1,010.5	. 1.0		1.0	1.0	••	1.0	1.0		1.0	1.0	1.0	: 0 to 1,260	0.97 - 2.52
	••	••		••	••		••	**		••	••	••	
Follow Steps 2 to 9 during rising or falling stages	9 during	rising	or fa	lling st	ages			••		••	••	•• •	
40 630	0		c	د م		α	α 		0.8		0 . 8	7.920 to 20,730	5.61 - 9.30
1,010.5 - 1,033.0) a			7.0	7.0	0,8	: 19,370 to 20,520	8.88 - 9.22
1,055.0 - 1,060.0	0.00		•		•	•	•	•	?))	: Spillway, Cated &:	
												: Ungated :	
0,000 = 1,061,0	C 8		0-9	0.9	••	8.0	. 8		0.9	0.9	8.0	: 19,400 to 20,430:	8.89 -
061.0 - 1.062.0	7.0		9 0	9	••	7.0	. 7		0.9	0.9	. 7.0	: 18,960 to 20,740;	
			0.9	0.9	••	4.0	. 4		0.9	0.9 :	5.0	: 18,160 to 20,430;	8.56 -
1			0.6	0.6	•	0.4	7		3.0	3,0	. 5.0	: 17,580 to 20,280;	8.41 -
-	, .	•	2 -	0.00	• •	4.0	0	•••	m	0:	5.0	: 17,590 to 20,680:	8.42 -
1 1				0,0		1.0	0	•••	m	o •	0	: 17,300 to 20,660:	8.35 - 9.26
•	•		,									: Spillway and	
0 630 1- 0 330 1	٠		c		•	c			a	0	•	: ungated flow : 18,690 to 22,420:	8.70 - 9.71
Above 1,067.0	• •				• ••	0			0	0	0 :	: 22,420+	9.71+
: Above 1,067.0	o 	••		0	••	0	••		ס	o ••••	> ••••••••••••••••••••••••••••••••••••	174,22	<u>. </u>

*During falling stages the gates shall be left fully open to drain the reservoir completely. Then the gates shall be set at 1.0 feet.

**Source for elevations up to 8.30 feet from USGS Rating Table No. 5; for elevations greater than 8.30 feet values were extrapolated from USGS data.

*** If may oe necessary to regulate discharge according to downstream emergency conditions as authorized by the District Office.

EXHIBIT B

DAM OPERATOR INSTRUCTIONS

1. Communication with the District Office is available.

a. Notify the Reservoir Operations Center when a gate change will be required according to the schedule.

 \mathbf{b}_{ullet} Notify the Reservoir Operations Center if unable to set the gates as instructed.

2. Communication with the District Office is not available.

a. Try to reestabilish communications through the Los Angeles County Flood Control DPW (WUK470).

b. (1) Rising stages. Allow a period of one hour to pass to reestablish communications with the District Office. If after one hour communication is not reestablished follow the gate operation schedule.

(11) Falling stages. Maintain current downstream gauge height until communication is reestablished. c. If one or more of the gates cannot be operated adjust the remaining gates gradually and uniformly until the downstream gauge height agrees with scheduled values. Keep a close check on gauge height and change the gate opening as often as required. If the downstream gauge height is unobtainable adjust the gates that are functioning so that the sum of the gate openings will equal the sum of the openings

3. Trash Blockage.

If outlets become $| exttt{blocked}$ with trash, increase gate openings to maintain scheduled downstream guage height.

4. Notification to Los Angeless County DPW

Notify personnel at the Los Angeles County DWP spreading grounds prior to making each gate change. Do not increase release until confirmation is received that their diversion gate located in the downstream channel has been

Elev. 1,011.0 Each Gated Outlet 5' (Looking Downstream) OUTLETS Ungated Elev. 990'

EXHIBIT C

Pertinent Data, Big Tujunga Dam and Reservoir

LOS ANGELES COUNTY FLOOD CONTROL DISTRICT

MEMORANDUM

Mr. Mas Nagami

August 17, 1983

FROM:

C. J. Wilt

Hydraulic Division

File No. 63.121

Big Tujunga Dam and Reservoir

Operations Plan

poproved

TLE

Recommendation

Concur

It is recommended that the operation plan for Big Tujunga Dam and Reservoir described herein be approved.

Capital Flood Operations

No release plan would be effective for routing the capital flood through the dam with the peak inflow Q of 43,800 cfs passing virtually unchanged during the routing.

Deviation from the operation plan described below to accommodate large events will be implemented at the discretion of the operations engineer.

Operations Plan

The proposed plan is similar to current practice (memorandum dated October 18, 1976, File No. same as above, from H. C. Martin to Mr. C. F. Eshelby) with emphasis placed on water conservation compatibility. The No. 1 valve is used to control the outflows from the smaller more frequent storms while the No. 2 and No. 3 outlets are reserved for the larger storms to prevent spillway flows, or in an emergency to reduce drawdown times. Frequent use of the No. 3 valve during it is used at 100 per cent open. the smaller storms increases its chance of failure. Therefore, if it is needed

My At the beginning of the season, the water surface in the dam will be held at the minimum cushion pool elevation of 2205 feet. As the storm season progresses, the water surface will be held below the State restricted elevation of 2213 will be returned to elevation 2205 feet. feet whenever possible, and as water conservation activities allow, the level 2213 Fr 1273 AF

A. Rising Reservoir

1053 AF

2290F- 5688AF

There is no change over the existing plan for this phase of the operation. The activities are designed to minimize spillway flow and to minimize excessive downstream discharge.

- During periods of low inflow, the reservoir will be held below elevation 2213 feet by using the No. A2 valve (25 cfs capacity at elevation 2213 feet).
- When the reservoir reaches elevation 2213 feet. water will be released in accordance with the following schedule:

Elevation (Feet)	Storage ** (Acre-Feet)	Valve No. 1 (% Open)	Q (cfs)
2213	1450	12	60
2215	1521 ·	25	125
2217	1594	50	250
2219	1670	100	470 .
· 2290	5750	100	690
2291	5832	0	400*

- Spillway flow.
 - 3. As the storm progresses, and inflow rates, weather forecasts, or other conditions suggest that spillway flow may be prevented, by an increase in the above release rates, Valves Nos. 2 and 3 will be opened at the discretion of the operations engineer.
 - 4. Drawdown of the reservoir will follow the release schedule described below unless the safety and protection of downstream facilities warrant a temporary reduction or suspension of outflow. Conversely, a forecast of rain may necessitate drawdown releases greater than outlined below.

... B. Falling Reservoir

Drawdown of the reservoir will be accomplished as follows:

- 1 hat 1. Valve No. 1 will be operated to limit the outflow to between 300 cfs in larger storms or initial inflow in smaller storms (whichever is less) to accommodate water conservation activities at Hansen Spreading Grounds. The duration for this release is to be for a maximum of 2 days.
- 2. After 2 days in the 300 cfs discharge mode, the outflow is to be limited to 200 cfs or initial inflow (whichever is less) for the next 30 days in order to draw the reservoir down at a reasonable rate. Any further releases for the following 30 days are to be limited to 150 cfs or inflow following the same rationale.

The proposed operating plan is based on the following considerations:

For normal storms (most probable storm events), the reservoir water surface will be above elevation 2213 feet for 2 to 5 days at an average elevation of 2234 feet, assuming no follow-up storm. Further, we could expect on the average of once in 10 years to experience an event that, using the proposed operating criteria, would cause the water surface to exceed elevation 2213 feet for a total of about a month with an average water surface elevation of 2222 feet. These types of events would produce spillway flow.

** Storage figures from table dated 4/5/83

Mr. Nagami Page 3 August 17, 1983

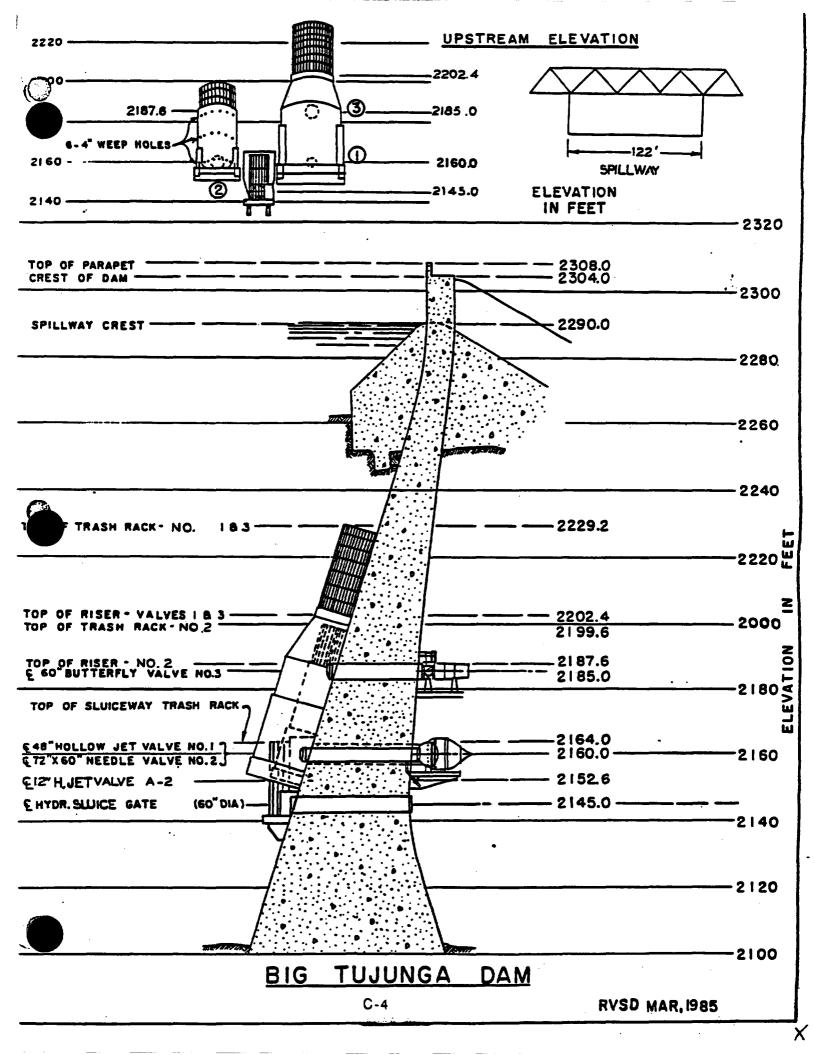
Channel Restrictions

Flows in excess of 600 cfs begin to flood the Oro Vista Street crossing of Big Tujunga Wash impeding access to residents of Ebey and Doane Canyons. Since the discharge of the No. 1 valve is 470 cfs when first fully opened, the road should remain passable during most smaller storms. However, as the reservoir water surface elevation builds and flows from local drainage areas increase, the access could temporarily be lost.

James T. Sparks Operations Section Extension 4190

AMB:eq

Attach.


cc: Operation and Maintenance

Program Management

Hydraulic (2) (Operations, Files)

Water Conservation (2) (Erhard, Division)

General Files

Department of Public Works

FLOOD CONTROL DAN

	DATA S			
REPAL		BOND ISSUE -	1001	
ME - BIG TUJUNGA DAM CATION - BIG TUJUNGA CANYON J	O MI. M.E. OF SURLAND		.1924 A - 82.3 SQ. NI. :	TECH
ream — big tujunga creek			290 FT. TO ELEV.	7078 FT.
rpose — Plood Control and Co pe — Concrete Variable Re		ABOVE N	EAN BEA LEVEL	
NSTRUCTION				
CAN - JANUARY 1930		CONSTRUCTED	BY L.E. DIXON CO.	
MPLETED - JULY 1931			ineer – K.J. Warr	
ST - \$: ST PER A.F. F.C.	1,166,915.95 156.42		OMPUTATIONS — LAC DIVISION	70
ST PER A.F. F.C. CONSERV.	187.01	-		•
STS BASED ON ORIGINAL SURVEY DATA	<u> </u>			
MENS TONS		EXCAVATION A	ND FILL AS CONSTR	UCTED
LEST RT. ABOVE ORIG. STREAMED LEST RT. ABOVE FOUNDATION	200.0 FT.			81,318 C.T.
EST LENGTH (LESS SPILLMAY)	251.0 FT. 505.0 FT.	TOTAL VOL. (9,293 C.Y. 5,574 C.Y.
UST VIDTU	8.0 PT.	CHARGER OF	LEGANDATIONCH	
TIGHT OF PARAPET WALL ARE TRICKNESS AT ELEV. 2060 FT.	4.0 FT. 73.0 FT.			
muts				
				MAX. DISCR. AT
	_	RISER OR INLET	É ELEV.	SPILLMAY SLEY.
NO. TYPE	<u> 5122</u>	ELEVATION	ANTAS	CFS
FLOOD OPERATION VALVES				
(4) 1 WOLLOW JET	48"	(1) 2202.4	2160.0	690.
IA SLIDE GATE (H) 2 MEEDLE VALVE	48" 72"	2202.4 (1) 2187.6	2160.0 2160.0	1175.
2 NEEDLE VALVE (3) 2A BUTTERFLY VALVE	72-	2187.6	2160.0	_
(5) 3 BUTTERFLY VALVE	60"	(1) 2202.4 2202.4	2185.0 2185.0	1035
M WIB. GATE	62"	2201	410300	
SERVICE VALVES				••
(6) A2 HOLLOW JET	12" 12"	2187.6 2187.6	2152.6 2153.1	38.4
(2) AZA GATE VALVE S.G. SLUICE GATE	6'= 6'	. 2142.5	2145.0	_
		····	MAX. DISCH. AT	
SPILLWAY	SILL	SPILLWAY ORIGINAL CAP.	ASSURED ILV.L.	
HO. TYPE	ELEY. LENGTH	A.7.	CPS	
1 OPEN OGZE WEIR	2290.0 122.0	6240.	24,250 CFS	
ELEVATIONS				
	ELEV. (FT.)			
ORIGINAL STREAMSED	2104-0	•		
LOWEST EXCAVATION CREST	2053.0 2 3 04.0			•
TOP OF PARAPET	2308.0			
ASSUMED N.V.L.	2304.0			•
REMARKS				

OF THE 12" M.J. ON 5/23/73.

(3) 72" MTD. BUTTERFLY INSTALLED OCTOBER 1956.

(4) 48" MULLOW JET VALVE INSTALLED JUNE 1957.

(5) 60" MTD. BUTTERFLY INSTALLED NOVEMBER 1960.

(6) 12" BOLLOW JET VALVE INSTALLED S/23/73 TO REPLACE ORIFICE PLATES.

2289.97 DBCS - 2290.0 SPILLMAY BATUM. SPILLMAY DATUM ENGVM.

LATEST STATE APPROVAL MAY 13, 1976. RESTRICTED BLEV. 2213 FT.

REVISED OCTOBER 1984

EXHIBIT D

Pertinent Data for Other Reservoirs
Affecting the Los Angeles River

Table 1 SEPULVEDA DAM AND RESERVOIR LOS ANGELES COUNTY, CALIFORNIA

PERTINENT DATA SEPTEMBER 1988

Construction Completed	30 December 1941
Stream System	Los Angeles River 152
Reservoir:	132
Elevation	
Top of crest gates (raised position)ft., NGVD	710.0
Flood control poolft., NGVD Spillway design surcharge levelft., NGVD	710.0
Top of damft., NGVD	716.7 725**
Crest gates begin to automatically) L.J-
iowerft., NGVD	712.0
Crest gates complete automatic	
loweringft., NGVD	715.0
Top of crest gates (raised position)acres	1,335
Flood control poolacres.	1,335
Fixed spillway crestacres	765
Fixed spillway design surcharge levelacres	1,710
Top of damacres Purchased real estate	2,447
Capacity, gross	2,097
Top of crest gates (raised position)acre-feet	17,425 (2.15*)
Flood control poolacre-feet	17,425 (2.15*)
Fixed spillway crestacre-feet	6,857 (0.85*)
Spillway design surcharge levelacre-feet.	27,563 (3.40*)
Top of dam	44,727 (5.52*) 0
Dam: - Type	Earthfill
Height above original streambedft	57
Top lengthft	15,440
Top widthft	_30
Freeboardft Spillway: - type	7.3 Concrete ogee
Crest lengthft	399
Crest elevationft., NGVD	700
Design surchargeft	6.7
Design discharge	99,540
Outlets: Uncontrollednumber	jı.
Size	6'W x 6.5'H
Entrance invert elevationft., NGVD	668
Controllednumber	4
Sizeft	6'W x 9'H Vertical lift
Gate type	Vertical III
Conduits - (Rectangular)	
Number and Size	
Ungated	4 - 6'W x 6.5'H 4 - 6'W x 9'H
Gatedft.	4 - 6'W X 9'H 40
Maximum capacity at spillway crest	16,500
Regulated capacity at spillway crest	16,500
Standard project flood:	•
Duration (inflow)days.	60 ann (0 han)
Total volume (including base flow)acre-feet Inflow peak	68,200 (8.41*) 50,000
Probable maximum flood:	30,000
Duration (inflow)days	4
Total volumeacre-feet	163,200 (20.13*)
Inflow peakc.f.s	114,000
Historic maximums: Maximum inflow	E9 070
Date	58,970 2-16-80
Maximum release	15,320
Date	2-16-80
Maximum water surface elevationft., NGVD	705.1
Date	2-16-80
Maximum storageacre-feet Date	11,470 2-16-80
finches of runoff	2-10-00
**December 1980 survey shows variation in elevation of top of	
northeast of Control House to 725.5 feet southwest of Contro	l House.
***There are no easements acquired in the reservoir area. All acquired in fee title.	real estate is
ecdarien til tec fifte.	

WHITTIER NARROW DAM AND RESERVOIR LOS ANGELES COUNTY, CALIFORNIA

PERTINENT DATA. JUNE 1987

Stream System	
Reservoir:	554
Elevation	
Water supply pool (Rio Hondo)ft., m.s.l	201.6
Water supply pool (San Gabriel)ft., m.s.l	213.5
Flood control poolft., m.s.l	228.5
	229
Spillway design surcharge levelft., m.s.l.	238.9
Top of Damft. m.s.l.	239
Area	-3,
Water supply (Rio Hondo)acres	252.0
Water supply (San Gabriel)acres	89
Flood Controlacres	2,411
Top of gates (gates closed)acres	2,470
Spillway design surcharge levelacres	3,622.8
Top of damacres	3,630
Capacity, gross	
Water supply (Rio Hondo)acre-feet	2,498 (0.09*)
Water supply (San Gabriel)acre-feet	532 (0.02*)
Flood control poolacre-feet	34,947 (1.18*)
Top of gates (gates closed)acre-feet	36,160 (1.22*)
Spiilway design surcharge levelacre-feet	66;702 (2.26*)
Top of damacre-feet.	67,060 (2.27*)
Allowance for sedimentacre-feet	0
Dam: - Type	Earthfill
Height above original streambedft.	56.0
Top lengthft Top widthft	16,960 16
Freeboardft.	0.1
Outlets: (Rio Hondo)	0.1
Type of gates	Tainter
Number and size of gates	4 ~ 30'W x 20'H
Size of outlets	30'W x 19'H
Gate sill elevationft., m.s.l	184.0
Regulated outflow	40,000
Maximum capacity (el. 229.0)	74,700
Spillway: (San Gabriel)	
Type of gates	Tainter
Number and size of gates	9 - 50' x 29'
Gate sill elevation	200.0
Top of gates (gates closed) elevationft., m.s.l Discharge at design surchange (el. 234.0)c.f.s	229 251,000
Maximum discharge capacity (el. 239.0)	307,900
Standard project flood:	301,300
Duration (inflow)days	Įį.
Total volumeacre-feet.	198,000 (6.70*)
Inflow peak	40,000
Probable maximum flood:	•••
Duration (inflow)days	4
Total volumeacre-feet	910,000 (3.80°)
Inflow peakc.f.s	365,000
Historic maximums:	
San Gabriel:	
Maximum release	11,500
Date	1-25-69
Maximum water surface elevationft. m.s.l	216.5
DateRio Hondo:	1-25-69
Maximum release	38,800
Date	2-17-82
Maximum water surface elevationft. m.s.l	213.5
Date	1-25-69

^{*}inches of runoff

LOPEZ DAM AND RESERVOIR LOS ANGELES COUNTY, CALIFORNIA

PERTINENT DATA JULY 1985

Stream system	Pacoima Wash 34
Streambed at Damft., m.s.l Flood control pool (spillway crest)ft., m.s.l Spillway design surcharge levelft., m.s.l Top of damft., m.s.l	1,253.72 1,272.92 1,293.48 1,298.92
Area	
Spillway crest	41.3 70.7 80.1
Capacity, gross Spillway crestacre-feet	441 (0.24*)
Spillway design surcharge levelacre-feet	1,613.3 (0.89*)
Top of damacre-feet Allowance for sediment (50-year)acre-feet	2,021.4 (1.12*) 794 (0.44*)
Dam: - type	Earthfill
Height above original streambedft	50 1,330
Top lengthft Top widthft	1,330
Freeboardft.	6.1
Spillway: - type	Broad-crested
Crest lengthft.	110
Design surchargeft	19.9
Design dischargec.f.s	31,000
Outlets:	
Number and size-diameterft	1-5' diameter 428
Lengthft.	
Entrance invert elevationft., m.s.l Standard project flood:	1,253.92
Duration (inflow)days	3
Total volumeacre-feet	14,000 (7.78*)
Inflow peakc.f.s	11,200
Probable maximum flood	
Duration (inflow)days	1
Total volumeacre-feet	19,900 (10.97*)
Inflow peakc.f.s	30,400
Historic maximums:	
Maximum releasec.f.s	3,900
Date	3-1-83
Maximum water surface elevationft., m.s.l	1,277.7 3-1-83
NGVC	J UJ

^{*}inches of runoff

SANTA FE DAM AND RESERVOIR LOS ANGELES COUNTY, CALIFORNIA

PERTINENT DATA MAY 1983

Stream System	San Gabriel River
Drainage areasq. miles	236
Reservoir: Elevation	
Debris poolft., m.s.l.	456
Water supply-poolft., m.s.l	466
Flood control pool (spillway crest)ft. m.s.l	496
Spillway design surcharge levelft., m.s.l	508.4
Top of damft., m.s.l	513
Area	5.5
Debris poolacres	331.2
Water supply poolacres	473.9
Spillway crestacres	1,084
Spillway design surcharge levelacres	1,258
Top of damacres	1,298
Capacity, gross	
Debris poolagre-feet	4,351.1 (0.35*)
Water supply poolacre-feet Spillway crestacre-feet	8,291.4 (0.66°) 32,109 (2.55°)
Spillway design surcharge levelacre-feet	46,712 (3.71°)
Top of das	53,088 (4.22*)
June 1978	33,000 (4.22-)
Allowance for sediment (50-year)acre-feet	8,000 (0.64*)
June 1978	
Allowance for sediment (100-year)acre-feet	16,000 (1.27*)
1969 Reduction in storage due to sedimentacre-feet	4222
Dam: - Type	Earthfill
Height above original streambedft	¹ 92
Top length	23,800
Top widthR	30
Freeboardft Spillway: - type	4.6
Crest length	1.200
Design surchargeft.	
Design Discharge	(221,800 p
Outlets:	
Gates - Type	Vertical lift
Number and size	16 - 6'W x 9'H
Gate sill elevationft., m.s.l	421
Conduits	
Number and size	76 - 7.33'W x 7.33'H
Length	515
Maximum capacity at spillway crest	41,000
Standard project flood:	41,000
Duration (inflow)days	3.5
Total volumeacre-feet	171,400 (13.62*)
Inflow peak	96,000
Probable maximum flood:	,0,000
Duration (inflow)days	4
Total volumeacre-feet	556,000 (44.174)
Inflow peakc.f.s	222,000
Historic maximums:	
Maximum discharge on recordc.f.s	30,900
Date	1-26-69
DateDate	473.97
₽₫↓₹444444444444444444444444444444444444	12-19-66

^{*}inches of runoff

D-5

CHARACTERISTICS OF MAJOR STORAGE PROJECTS LOS ANGELES COUNTY

				1										PECEDUATE	aro			
PR	PROJECT				DAM				SPILLWAI			FI FV	FIFVATION	NEGENA	CTOBACE			MAY
NAME OF DAM	STREAM	DRAINAGE AREA (89. m1.)	TYPE	HEIGHT (ft.)	CREST ELEVATION (ft. msl)	OUTLET SILL (ft. ms1)	LENGTH (ft.)	TYPE	CREST ELEVATION (ft. ms1)	DESIGN CAPACITY (cfs)	PRIMARY PURPOSE(S)	MAX. NORMAL POOL (ft. ms1)	MAX. DESIGN POOL (ft. msl)*	MAX. NORMAL POOL (ac-ft)	DESIGN SURCHARGE (ac-ft)*	DAM CREST ELEVATION (ac-ft)	MAX. SCHEDULE RELEASES (cfs)	RELEASES INCLUDING SPILLWAY (cfs)*
Big Dalton	Big Dalton Creek	4.49	C, A, G	146.0	1711.0	1613.0**	480.0	n	1706.0	5310.0	FC, WS	1706.0	1711.0	915.0	119.2	1037.0	888.0	6198.0
Big Tujunga	Big Tujunga Creek	82.30	C,A	200.0	2304.0	2160.0**	505.0	Ω	2290.0	24,250.0	FC, WS	2290.0	2304.0	5750.0	1186.0	0.9069	2900*0	27,150.0
Cogswell	San Gabriel River-West Pork	39.20	∝	265.0	2405.0	2148.0	585.0	n	2385.0	29,500.0	FC, WS	2385.0	2398.0	8853.0	2031.0	N/A	8725.0	38,225.0
Devil's Gate	Arroyo Seco	31.90	c,A,G	100.0	1070.0	1958.8** 2985.5	310.0	D	1054.0 1065.5	14,800.0 1000.0	FC, WS	1054.0 1065.5	1072.0	2869.0	or To	2820 5683.0	5637.0	20,937.0
Eaton Wash	Eaton Creek	12.42	ы	62.0	902.0	841.0	1525.0	Ω	887.5	33,500.0	FC, WS	887.5	897.5	721.0	457.0	N/A	5040.0	38,540.0
Live Oak	Live Oak Creek	2.28	C,A,G	70.0	1500.1	1429.8**	303.0	ħ	1496.4 1497.0	2400.0 (COMB.)	FC, WS	1496.4 1497.0	1500.0	239.0	6.5 N/A	282.3	368.0	2768.0
Morris	San Gabriel River	217.0	ອ ວ	245.0	1175.0	0.096	800.0	ပ	1152.0 1170.0	34,200.0 100,000	FC, WS	1175.0 (GR)	1175.0	22,758.0 N/A	N/A N/A	N/A	5280.0	100,000
Pacoima	Pacoima Creek	28.20	C,A,G	365.0	2015.0	1700.0**	0.049	n	1950.0 1989.95	10,780.0	FC, WS	1950.0 1989.0	2025.0	3115.0	5204.0 N/A	8981.0	1048.0	11,828.0
Puddingstone	Puddingstone Creek	33.10	ວ ໌ ສ	147.0	982.0	882.1	2698.0 (Combined)	Ð	870.0	0.0069	FC, WS	0.076	975.0	16,468.0	2504.0	N/A	850.0	7,750.0
Puddingstone Div.	San Dimas Creek	20.0	ъ С	33.5	1163.8	1145.5	825.0	Ω	1152.5	10,600.0	FC, DIVERSION WS	1152.5	1158.5	191.0	116.0	N/A	2180.0	14,100.0
San Dimas	San Dimas Creek	16.20	0,A,0	117.0	1470.26	$\frac{1}{2}$	340.0 (LS)	n	1462.0	27,455.0	FC, WS	1462.0	1470.0	1306.0	315.0	1630.0	2060.0	28,600.0
San Gabriel	San Gabriel River	202.70	Е, В, С	310.0	1481.0	1205.8**	1500.0	Þ	1453.0	92,000.0	FC, WS	1453.0	1466.0	44,226.0	7412.0	N/A	13,470.0	110,870.0
Santa Anita	Big Santa Anita Creek	10.82	C,A,G	, 224.8	1324.8	1161.2**	612.0	n	1316.0 1324.8	2900.0	FC, WS	1316.0 1324.8	1324.8	776.5	129.2 N/A	905.7	647.0	3533.0
Sawpit	Sawpit Creek	3.24	C,A	147.0	1375.18	1235.7**	527.0	D	1360.0 1375.18	1450.0	FC, WS	1360.0 1375.18	1375.18	354.0	152.6 N/A	90999	457.0	2584.0
Thompson Cr.	Thompson Creek	3.51	19°2	0.99	1648.0	1579.4	1500.0	Ω	1634.1	4520.0	FC, WS	1634.1	1645.0	543.0	369.7	N/A	320.0	4985.0
	Dam Ty Material E - Earthfill R - Rockfill C - Concrete M - Masonry	ypes Struc A - G -	ture Arch Gravity Gravel		Outlet Types 1. Slide Gates 2. Valves	istes		Spillws U - Ung G - Gat	Spillway Types U - Ungated G - Gated			Project Purposes FC - Flood Control P - Power WS - Water Supply	poses Control Supply			OT - Overt GR - Gated LS - Less	op the Dam In Raised Spillway	Position

* Assumed at H.W.L. . ** Center Line of Outlet Sill

EXHIBIT E

Streamflow Data For Big Tujunga
Creek Stations

LITTLE TUJUNGA CREEK NEAR SAN FERNANDO, CALIFORNIA
Station Number F19-R (11096500)
Drainage Area 21.1 square miles
Elevation 1068 feet
Period of Record 1928 to 1974
No regulation or diversions above station
See Plate 2-1B for location

WATER YEAR ENDING SEP 30	MEAN DAILY FLOW CFS	PEAK FLOW CFS	DATE	MAX DAILY CFS	DATE	MIN DAILY CFS	DATE	RUNOFF AC-FT
1929 1930	0	0		0	0	0	. '	0
				_		_		
1931	0.078	30	FEB04	7	FEB14	0		56
1932	2.57	660	FEB09	274	FEB09	0		1870
1933	0.71	450	JAN19	118	JAN19	0		514
1934	1.13	1360	JAN01	258	JAN01	0		819
1935	0.63	89	DEC13	63	DEC13	0		455
1936	1.28	653	FEB02	83	FEB12	0		929
1937	6.58	964	FEB14	175	FEB14	0		4760
1938	12.4	8500	MAR02	1300	MARO2	0		8960
1939	0.71	175	MARO9	40	DEC18	0		510
1940	1.24	2090	SONAL	148	80MAL	0		899
1941	14.6	1310	MARO4	534	MARO4	0		10600
1942	0.27	198	DEC28	30	DEC28	0		199
1943	10.2	3700	JAN23	592	JAN22	0		7380
1944	8.04	4220	FEB22	826	FEB22	0		5840
1945	0.76	244	NOV11	48	FEB02	0		551
1946	0.8	156	MAR30	96	MAR30	0		577
1947	0.98	200	NOV20	54	DEC26	0		706
1948	0.01	16	MAR24	2.6	MAR24	0		9.1
1949	0.0003	0.9	MAY19	0.1	MAY19	0		0.2
1950	0.04	9.8	DEC18	3.1	FEB06	0		29
1951	0.01	13	JAN11	1.4	JAN29	0		9
1952	7.67	2110	JAN16	422	JAN16	0		5570
1953	0.25	138	DEC01	18	DEC20	0		184
1954	0.56	198	FEB13	43	JAN25	0		407
1955	0.06	35	JAN18	7.3	JAN18	. 0		47
1956	0.52	445	JAN26	123	JAN26	0		381
1957	0.05	112	FEB28	5	JAN13	0		35
1958	4.75	559	APRO3	223	APRO1	0		3440
1959	0.1	84	JAN06	10	FEB11	0		71
1960	0.002	6.7	FEB01	0.6	FEB01	0		1.4

LITTLE TUJUNGA CREEK NEAR SAN FERNANDO, CALIFORNIA
Station Number F19-R (11096500)
Drainage Area 21.1 square miles
Elevation 1068 feet
Period of Record 1928 to 1974
No regulation or diversions above station
See Plate 2-1B for location

							MEAN	
		MIN		MAX		PEAK	DAILY	WATER YEAR
RUNOFF		DAILY		DAILY		FLOW	FLOW	ENDING
AC-FT	DATE	CFS	DATE	CFS	DATE	CFS	CFS	SEP 30
52		0	NOV06	11	NOV05	266	0.07	1961
2390		0	FEB11	365	FEB11	1630	3.31	1962
45		0	FEB10	9.8	FEB10	52	0.06	1963
81		0	JAN21	20	JAN22	251	0.11	1964
201		0	APR19	50	APR09	223	0.28	1965
3760		0	NOV24	355	NOV22	1300	5.19	1966
4130		0	DECO6	358	DEC06	901	5.71	1967
420		0	NOV21	43	NOV19	112	0.58	1968
12250		0	FEB25	1180	FEB25	1420	16.9	1969
286		0	MAR01	37	FEB28	353	0.39	1970
711		0	NOV30	93	NOV29	est 569	0.98	1971
240		0	DEC25	58	DEC25	762	0.33	1972
1550		0	FEB11	477	FEB11	1570	2.14	1973

Average Discharge, 45 years: 2.51 cfs (1820 acre-feet per year)
Maximum Discharge on record: estimated 8500 cfs on 02 MAR 1938
Peak flows are instantaneous maximum discharge values corresponding to the highest stage that occurred.

BIG TUJUNGA CREEK BELOW HANSEN DAM, CALIFORNIA Station Number F20-R (11097000) Drainage Area 153 square miles Elevation 943 feet Period of Record 1932 to present--fragmentary records before 1940 available in LACFCD Annual Reports

Flow regulated since 1931 by Big Tujunga Dam, and since 1940 by Hansen Dam--LACDPW began diverting water 0.3 miles upstream of gage beginning in 1952 See Plate 2-1B for location

WATER YEAR ENDING SEP 30	MEAN DAILY FLOW CFS	PEAK FLOW CFS	DATE	MAX DAILY CFS	DATE	MIN DAILY CFS	DATE	RUNOFF AC-FT	RUNOFF PLUS DIVER- SION	PER- CENT DIVRTD
1941	115	1200	MARO6	1050	MARO7	0		83220		
1942	5.8	59	DEC30	59	JAN01	0		4190		
1943	9.25	1780	JAN23	1610	JAN24	0		66970		
1944	60.3	1100	FEB22	985	FEB24	0		43750		
1945	13.8	70	FEB05	441	FEB05	0		9960		
1946	7.01	610	DEC23	543	DEC24	0		5070		
1947	21.6	900	DEC27	480	DEC27	0		15650		
1948	0.013	34	FEB05	2.3	FEB05	Ö		9.1		
1949	0.004	0.5	APRO1	0.08	MAR10	0		2.6		
1950	0.002	1.6	MAR01	0.01	MAR01	0		1.8		
1951	0	0		0		0		0		
1952	12.1	est3000	JAN24	2550	JAN25	0		8810	29040	70
1953	0.09	178	FEB04	3.8	DEC28	0		68	1330	95
1954	0.34	50	MAR02	9.4	JAN19	0		245	1290	81
1955	0.03	8.9	MAY07	1.9	APR30	0		20	20	0
1956	0.03	20	MAR01	4.1	APR12	0		25	25	0
1957	0.03	18	FEB28	1.7	FEB12	0		22	22	0
1958	18	1700	APR03	1510	APRO4	0		13040	33560	61
1959	0.006	16	JAN06	1	JAN06	0		4.6	1020	99
1960	0.001	1.8	APR26	0.2	APR26	0		0.6	0.6	0
1961	0.003	4.2	FEB05	0.3	MAR15	0		2	2	
1962	6.54	3130	FEB12	1600	FEB12	0		4740	17310	73
1963	0	0		0		0		0	0	0
1964	0	0		0		0		0	0	
1965	0	0		0	,	0		0	0	_
1966	26.1	3240	NOV23	2320	NOV23	0		18900		
1967	8.54	5130	DEC22	404	DEC22	0		6180		
1968	0.055	372	NOV21	16	APR25	0		40		
1969	158	11700	FEB25	9450	FEB25	0		114200		
1970	3.3	200	MAR17	58	MAR18+	0		2400	14340	83

BIG TUJUNGA CREEK BELOW HANSEN DAM, CALIFORNIA

Station Number F20-R (11097000)
Drainage Area 153 square miles
Elevation 943 feet
Period of Record 1932 to present--fragmentary records
before 1940 available in LACFCD Annual Reports
Flow regulated since 1931 by Big Tujunga Dam, and since 1940
by Hansen Dam--LACDPW began diverting water 0.3 miles
upstream of gage beginning in 1952
See Plate 2-1B for location

		MEAN							RUNOFF	PER-
WATER		DAILY	PEAK		MAX		MIN		PLUS	CENT
END	ING	FLOW	FLOW		DAILY		DAILY	RUNOFF	DIVER-	DIVRTD
SEP	30	CFS	CFS	DATE	CFS	DATE	CFS DATE	AC-FT	SION	*
	1971	0.05	228	DEC01	9.5	DEC01	0	43	11700	99
	1972	0	0		0		0	0	1932	100
	1973	4.54	329	FEB15	272	FEB12	0	3290	15050	78
	1974	0.03	71	FEB08	2.1	NOV18	0	28	6310	99
	1975	20.77	38	OCT31	2.5	MARO6	0	41	5470	99
	1976	0.032	31	MAR11	1.9	FEB09	0	23	5530	99
	1977	0.098	108	MAY11	5.9	MAY08	0	71	3170	98
	1978	154	12500	FEB10	7760	FEB10	0	111200	139344	20
	1979	24.8	1040	MAY24	597	MAR29	0	17980	42670	58
	1980	119	5020	FEB17	3680	FEB17	0.14 SEP10+	8 6100	117176	27
	1981	8.25	1070	JAN29	372	JAN29	0	5980	20440	71
	1982	13.5	2100	MAR19	655	MAR19	0	9750	24000	59
	1983	188	15200	MARO2	11400	MAR02	0	136300	213223	36
	1984	22.4	761	DEC29	384	DEC06	. 0	16270	H	M
	1985	2.38	1350	DEC20	337	DEC20	0	1720	13274	87
	1986	2.95	887	FEB25	126	MAR16	0	2130	M	M
	1987	0.36	38	OCT02	8.3	OCT03	0	258	7570	97

Maximum Discharge on Record: 15200 cfs on 02 MAR 1983
Maximum Outside of Record: 54000 cfs on 02 MAR 1938

Peak flows are instantaneous maximum discharge values corresponding to the highest stage that occurred.

^{*} percentage of flow through Hansen Dam that is diverted by LACDPW for spreading

BASED ON	11097000 BIG TI	BIG TUJUNGA CREEK	H	6	ABLEDATE-F	DATE-PRINTED-07/11/88 TYPE	11788 TYPE LOG(SCALE	OFFSET	= .9) RP	RATING NO 5	
		DISCHARGE MEASUREMENTS, ND.	ASUREMENTS		AND	QN O	IS WELL	WELL DEFINED E	BETWEEN	AND	
3005	FROM	FROMTOFROM	FROM				*CKD:-BY:::::DATE::::	DATE:			DIFF IN Q
HEIGHT			DISCHARGE	_	FEET PER SECOND		(EXPANDED PRECISION)		t d		PER
	8.	15.	-02	.03	•04	50.	90:	70.	80.	60.	I ENTH GH
1.00		0.500	3.400	4.620	6.140	8.000	9.710	11.700	13.800	15.300	
07:7	19:000	21:300	23.700	26:300	29:100	32.000	34-800	37.600	40.600	43.800	28.000
1.20	47.000	50.400	53.800	57.400	61.100	92.000	006-89	73.000	77.200	81.500	34.000
1.30	86.000	90.600	95.400	100.200	105.200	110.400	115.600	121.000	126.600	193.300	52.000
) 	000.851	00/:5#1	144.500	133.400	004-101	000.781	200:571	207			
1.50	200,000	206.800	213.700	220,800	227.900	235.200	242.500	250.000	257.700	265.400	73.200
1.60	2737200	281.200	289-300	297-400	305.700	314.200	-322.700-	331.400	340:100	349.000	84.800
1.70	358,000	366.500	375.000	383.700	392,500	401.300	410.200	419.300	428.400	437.600	88.900
1.80	446.900	456.300	465.B00	475.400	485.100	494 B00	504.700	514.600	524.700	534.800	98.100
1.90	343.000	554.800	564.700	574-600-	584-700-	594:800	604.900	002:519	000.028	004.050	101.400
2.00	646,400	927.000	009.299	678,300	689.100	200,000	710.500	721.100	731.700	742.400	106.800
2.10	- 1	764.000	774.900	785.900	-006:964	-000:B0B	-819:200-	-830:400	841-700	853.100	111.300
2.20	864.500	875.900	887,500	899.100	910.800	922.500	934.300	946.100	958.100	970.000	117.600
2.30	982.100	994.200	1006.000	1019.000	1031.000	1043.000	1056.000	1068.000	1081.000	1093.000	123.900
2:40	1106.000	1119.000	-1131-000	-1144.000	1157.000	1170.000	1183.000	1196:000	1209.000	1223.000	130.000
, ,	1234 000	1249 000	1243 000	1276,000	1290.000	1303.000	1317,000	1330,000	1344,000	1358,000	136.000
40	1372.000	1386-000	1400-000	1414:000	1428.000	1442.000	1456:000-	1470:000	1485:000	-1499-000-	142:000
2.70	1514,000	1528.000	1543.000	1557,000	1572.000	1587.000	1601.000	1616.000	1631.000	1646.000	147.000
2.80	1661.000	1676.000	1691.000	1707.000	1722.000	1737.000	1753.000	1768.000	1783.000	1799.000	154.000
2-90	1815.000	1830-000	1846:000	1862:000	1877.000	1893:000	1909-000	1925.000	1941.000	1957.000	159.000
3.00	1974,000	1990,000	2006,000	2022,000	2039.000	2055.000	2072.000	2088.000	2105.000	2121.000	164,000
3-10	2138.000	2155.000	-2172.000-	-2188:000-	2202000	_2222:000-	_2239:000_	2256:000	2274.000	2291-000	170:000
3.20	2308.000	2325,000	2343.000	2360.000	2378,000	2395.000	2413,000	2430.000	2448.000	2466.000	175.000
3.30	2483.000	2501,000	2519,000	2537.000	2555.000	2573.000	2591.000	2604.000	2628.000	2646.000	181.000
3.40	2564.000	2683.000	2701.000	2720:000	273B::000_	2757:000	2775.000	7/44-000	ZBI3.000	2831-000	180.000
3.50	2850,000	2869.000	2888.000	2907.000	2926.000	2945.000	2964.000	2984.000	3003.000	3022.000	192,000
3:60	3042:000	3061-000	-3081::000-	-3100-000	3120-000	3139:000	3159:000	-31.79.000	3198:000	3Z18:000	000:841
3.70	3238,000	3258,000	3278,000	3298.000	3318.000	333B .000	3338,000	33/4,000	3474,000	3414.000	204.000
3.80	3440.000	3667.000	3481 000 -3688 000	3709:000	3731.000	3752-000	-3773-000-	3794.000	3815.000	3837.000	212,000
						7700	000	200			1
			<<<	מכים מינים					4021		

00	10.	DISCHARGE-IN-CUBIC .03	4	EET-PER-SECOND .04	,	(EXPANDED-PRECISION) 05	510N)	80.	60.	TENTH GH
4523.000 4754.000	4319.000 4546.000 4778.000	4341.000 4569.000 4801.000	4364.000 4592.000 4825.000	4615.000 4848.000	4409.000 4638.000 4872.000	4432.000 4661.000 4896.000	4455.000 4685.000 4919.000	4477.000 4708.000 4943.000	4500.000 4731.000 4967.000	226.000 231.000 237.000
4991.000	5015.000	5038.000	5062.000	5086.000	5111,000	5135,000	5159.000	5183.000	5207.000	241.000
5728.000	5753.000	5527:000	5552.000 5804.000	5827.000	5855.000 5855.000 6112.000	5627.000 5880.000 6138.000	5652.000 5906.000 6164.000	5932.000 5190.000	5703.000 5957.000 6217.000	251.000 255.000 260.000
6243.000	6269.000	6295.000	6322.000	6348,000	6374.000	6401.000	6427.000	6454.000	6481.000 6749.000	264.000
7050.000 7328.000	6803.000 7077.000 7356.000	6830.000 7105.000 7384.000	-6858.000 7133.000 7412.000	6885:000 7160.000 7440.000	_6912:000 7188.000 7468.000	6940.000 7216.000 7497.000	6967.000 7244.000 7525.000	7272.000 7553.000	7022.000 7300.000 7582.000	274.000 278.000 282.000
7610.000	7639,000	7667,000	7696.000	7724.000	7753.000	7782.000 8072.000	7811.000	7839.000	7868.000 8159.000	287.000
8189-000 8484.000 8785.000	8218-000 8514.000 8815.000	8247.000 8544.000 8845.000	8277:000 8574.000 8876.000	8306:000 8604.000 8906.000	8336-000 8634.000 8936.000	8366.000 8664.000 8967.000	8395.000 8694.000 8997.000	8425.000 8724.000 9028.000	8455.000 8754.000 9059.000	304.000
9089.000	9120.000	9151.000	91B1.000 9492.000	9212.000 9523.000	9243.000 9554.000	9274.000	9305.000	9336.000 9648.000	9367.000	309.000
9711.000 10030.000 10350.000	10060.000 10380.000	10090.000 10420.000	10130.000 10450.000	9838,000 10160,000 10480,000	9870_000_ 10190.000 10510.000	9901.000 10220.000 10550.000	9933.000 10250.000 10580.000	9965.000 10290.000 10610.000	9997.000 10320.000 10640.000	320,000 320,000 330,000
10680.000 11010.000	10710.000	10740.000	10780.000	10810.000 11140.000	10840.000	11210.000	10910.000 11240.000	11270.000	11310.000	330.000
11340.000 11680.000 12020.000	11710.000	11750.000	11780.000	11820.000	11850.000	11890.000	11920.000	11950.000	11990.000	340.000
12370.000	12410.000	12440.000	12470.000 12830.000	12510.000 12860.000	12550.000	12580.000	12620.000	12650.000	12690.000	350.000
13080.000 13440.000 13800.000	13470.000 13840.000	13510,000 13510,000 13870,000	13540,000 13540,000 13910,000	_13220.000 13580.000 13950.000	13260.000 13620.000 13980.000	13290,000 13650,000 14020,000	13330.000 13690.000 14060.000	13350.000 13730.000 14090.000	13400,000 13760,000 14130,000	360.000
14170.000	14200.000 14580.000	14240.000	142B0.000 14650.000	14310,000	14350.000	14390.000	14430.000 14800.000	14460.000	14500.000 14880.000	370.000
15290.000 15290.000	15330.000 15330.000 15720.000	14990.000 15370.000 15750.000	15030,000 15410,000 15790,000	15060,000 15450,000 15830,000	15100.000 15480.000 15870.000	15140.000 15520.000 15910.000	15560.000 15950.000	15600.000 15990.000	1540.000 15640.000 16030.000	380.000
16060.000 16460.000	16100.000	16140.000	16180.000 16570.000	16220.000 16610.000	16260.000 16650.000	16300.000 16690.000	16340.000	16380.000	16420.000 16810.000	390.000
16850.000 17250.000	16890.000	16930.000	15970.000	_17010_000	17050-000	17090:000	17130.000	17170.000	17210.000	400-000
	4754.000 4754.000 5232.000 5728.000 5728.000 5728.000 6507.000 7328.000 7328.000 7328.000 7328.000 7328.000 81897.000 81897.000 81897.000 10030.000 110680.000 11240.000 12720.000 13440.000 14170.000 15680.000 16060.000		5015.000 5256.000 5252.000 5252.000 5252.000 5753.000 6534.000 7354.000 7356.000 7356.000 7356.000 7356.000 10060.000 11710.000	5015.000 5038.000 5255.000 5280.000 5252.000 5280.000 5252.000 5280.000 5253.000 5280.000 5253.000 5280.000 5779.000 5779.000 7077.000 7105.000 7356.000 7384.000 7356.000 7384.000 7356.000 7467.000 8218.000 8247.000 9120.000 9460.000 10060.000 10740.000 11710.000 10740.000 11710.000 11750.000 12760.000 12790.000 12760.000 12790.000 13110.000 13150.000 13470.000 13150.000 14200.000 13150.000 15720.000 15750.000 15720.000 15750.000 15720.000 15750.000 15720.000 15750.000	### 1778.000 \$038.000 \$0425.000 \$2256.000 \$5257.000 \$5357.000 \$7355.000 \$7412.000 \$7356.000 \$7412.000 \$7356.000 \$7412.000 \$7356.000 \$7412.000 \$7412.000 \$7427.000 \$7412.000 \$741	\$5015.000 \$5038.000 \$5042.000 \$4848.000 \$5254.000 \$5327.000 \$7326.000 \$7326.000 \$7327.000 \$7326.000 \$73270	\$205.000 5038.000 5305.000 5811.000 5111.000 5325.000 5325.000 5327.000 5411.000 541	\$255,000 5288,000 5622,000 5827,000 532	#778.000 \$538.000 \$652.000 \$537.000 \$537.000 \$135.000 \$157.000 \$535.000 \$537.000 \$53	\$578.000 \$508.000 \$508.000 \$5111.000 \$5135.000 \$5187.000 \$5187.000 \$5187.000 \$5287.000

BIG TUJUNGA CREEK BELOW MILL CREEK, NEAR COLBY RANCH, CALIFORNIA

Station Number F111-R (1930-1932)

Station Number F111B-R (1932-1950) Drng Area 66.9 sq mi, Elev 2410 feet Station Number F111C-R (1948-1972) Drng Area 64.9 sq mi, Elev 2650 feet 1100/000

No regulation or diversions above station See Plate 2-1B for location

MEAN WATER YEAR DAILY PEAK MAX MIN ENDING FLOW FLOW DAILY DAILY	RUNOFF
SEP 30 CFS CFS DATE CFS DATE CFS DA	TE AC-FT
Stations F111-R and F111B-R	
1931 2 216 FEB05 65 FEB04 0 JU	N30 1450
1932 14.8 3910 FEB08 964 FEB09 0 OCT	
1933 3.6 324 JAN19 108 JAN19 0 OCT	
1934 4.27 1520 JANO1 707 JANO1 0 OCT	01+ 3090
1935 13.3 640 APRO8 296 APRO8 0 OCT	01+ 9600
1936 3.21 159 FEB12 60 FEB12 0 JUL	02+ 2330
1937 26.9 1030 FEB06 707 FEB14 0 OCT	01+ 19440
1938 63 M MARO2 8200 MARO2 0.8 OCT	01+ 45600
1939 10.9 543 DEC19 345 DEC19 0.9 AUG	13+ 7920
1940 7.62 M M 276 JANOS 0.2 AUG	20+ 5530
1941 67.3 1380 FEB20 1120 FEB20 0.8 OCT	01+ 48710
1942 8.2 112 DEC10 57 DEC29 0.6 AUG	05+ 5930
1943 61.7 14800 JAN23 4510 FEB23 0.8 OCT	02+ 44670
1944 50.2 3300 FEB22 2240 FEB22 2.5 OCT	02+ 36470
1945 14.2 1870 NOV11 500 FEB02 1.1 AUG	09+ 10300
1946 13.9 2700 MAR30 1330 MAR30 0.7 JUL	29+ 10080
1947 15.2 1500 DEC26 634 DEC26 0.1 AUG	05+ 11020
1948 2.64 140 APR29 49 APR29 0.1 JUL	13+ 1910
1949 2.09 16 JAN20 11 MAR11 0 JUL	.17+ 1510

23 FEB06

0.1 OCT01+

40 FEB06

1950

1330 THRU MAY17

BIG TUJUNGA CREEK BELOW MILL CREEK, NEAR COLBY RANCH, CALIFORNIA

Station Number F111-R (1930-1932)

Station Number F111B-R (1932-1950) Drng Area 66.9 sq mi, Elev 2410 feet Station Number F111C-R (1948-1972) Drng Area 64.9 sq mi, Elev 2650 feet

No regulation or diversions above station See Plate 2-1B for location

	MEAN							
WATER YEAR	DAILY	PEAK		MAX		MIN		RUNOFF AC-FT
ENDING	FLOW	FLOW		DAILY		DAILY		
SEP 30	CFS	CFS	DATE	CFS	DATE	CFS	DATE	
Station F111	C-R					•		
1949	1.78	13	MARO4	11	MAR11	0	JUL09	1290
1950	1.48	36	FEB06	21	FEB06	0	OCT01+	1070
1951	0.55	6.7	JAN29	4.3	APR29	0	OCT03+	398
1952	26.7	1380	JAN18	674	JAN18	0.06	OCT01+	19390
1953	3.28	65	DEC02	22	DEC02	0	JUL22+	2370
1954	5.28	260	JAN25	138	JAN25	0	JUL19+	3820
1 <i>9</i> 55	2.63	41	MAY01	26	FEB17	0	JUL13+	1910
1956	2.49	324	JAN26	146	JAN26	0	OCT01+	1810
1957	2.03	313	JAN13	112	JAN13	0	OCT01+	1470
1958	27.6	1770	APR03	844	APR03	0	OCT01+	19970
1959	3.29	421	FEB16	154	FEB16	0	JUL23+	2380
1960	0.94	13	JAN10	7.4	APR27	0	JUN11+	683
1961	0.64	82	NOV06	23	NOV06	0	OCT01+	461
1962	15.6	2860	FEB11	1720	FEB11	0	OCT01+	11260
1963	1.61	292	FEB09	95	FEB10	0	JUL13+	1170
1964	1.17	93	APR01	55	APR01	0	OCT01+	852
1965	2.32	99	APR19	64	APR19	0	OCT01+	1680
1966	26.8	6550	DEC29	1640	DEC29	0	OCT01+	19370
1967	26	1630	DECO6	814	DECO6	0.8	OCT01+	18810
1968	21	410	NOV21	275	NOV22	1.3	SEP11+	15260
1969	98.9	20700	FEB25	5320	FEB25	0.9	OCT01+	71600
1970	10.8	7 07	FEB28	320	MAR01	1	SEP26	7800
1971	12.2	3300	NOV29	1050	NOV29	0.5	SEP19+	8850

Average Discharge, 19 years, 1930-1949: 20.3 cfs
Maximum Discharge 1930-1950, not determined, probably on
March 2, 1938

Average Discharge, 23 years, 1949-1971: 12.3 cfs (8910 acre-feet per year)
Maximum Discharge, 1949-1971: 20700 cfs on 25 FEB 1969

Peak flows are instantaneous maximum discharge values corresponding to the highest stage that occurred.

BIG TUJUNGA CREEK ABOVE GOLD CANYON (near SUNLAND) Station Number F213-R (11095500) Drainage Area 106 square miles Elevation 1572 feet Period of Record 1916 to 1979 Flow regulated since 1931 by Big Tujunga Dam See Plate 2-1B for location

	442.41							
HATED YEAR	MEAN DATLY BEAY		MAX			MIN		
WATER YEAR	DAILY	PEAK		DAILY		DAILY		DINOSE
ENDING SEP 30	FLOW CFS	FLOW CFS	DATE	CFS	DATE	CFS	DATE	RUNOFF AC-FT
· · · · · · · · · · · · · · · · · ·		- Cr3	·		DAIL	Cro	DATE	AC-F1
1917		800	DEC24	288	DEC24	0.3	AUG29	15000
1918	30.6	1760	MAR11	1150	MAR12	0.3	OCT05+	22200
1919	7.92	136	FEB11	73	FEB11	0.1	SEP20	573 0
1920	22.9	1400	MAR22	750	MAR22	0.5	OCT09	16600
1921	14.4	411	MAR13	232	MAY22	0.5	SEP26	10500
1922	143	8600	DEC19	2500	DEC29	1.5	OCT20	103000
1923	20.4	900	DEC13	628	DEC13	0.4	AUG03+	14700
1924	5.06	87	MAR26	55	MAR27	0.1	AUG06+	3670
1925	5.1	325	APR05	122	APR05	0.1	OCT01+	3700
1926	26.9	4000	APR07	1040	APRO8	0.2	OCT01+	19500
1927	29.6	3830	FEB16	1820	FEB16	0.5	OCT17+	21400
1928	6.67	850	FEB04	350	APR04	0.1	AUG04+	4840
1929	5.72	216	APR04	99	APR05	0.1	OCT08+	4130
1930	6.01	260	MAY03	128	MAR15	0.1	OCT01+	4350
1931	4.24	228	FEB04	152	FEB05	0.1	NOV11+	3070
1932	24.6	1330	FEB08	854	FEB09	0.1	OCT01+	17900
1933	10.5	1390	JAN19	488	JAN19	1.1	NOV24+	7590
1934	10.6	1450	JAN01	634	JAN01	0.9	NOV25	7700
1935	20.5	671	APRO8	354	APR08	2.6	JUN27	14840
1936	10.5	494	FEB02	150	FEB12	2.4	DECO4+	7640
1937	50.1	495	DEC12	423	FEB17+	1	NOV08+	36260
1938	116	50000	MAR02	13000	MAR02	2.5	DEC17	83960
1939	18.8	380	DEC20	316	DEC21	3.5	JUL23+	13640
1940	15.1			350	FEB06	1.6	OCT29+	10990
1941	109	1650	FEB21	1260	FEB21	1.2	- -	78840
1942	14.8	165	DEC28	62	DEC31	4.4		10690
1943	105	23000	JAN23	8000	JAN23	1.2		76020
1944	79.9	4760	FEB22	3320	FEB22	2.3	NOV15+	57990
1945	24	897	FEB02	320	FEB02	4.8		17370
1946	23.7	1300	MAR30	698	MAR31	4.9		17160
1947	26.2	745	DEC25	644	DEC26	4		18960
1948	6.4	53	FEB05	25	JUL16+	0.7		4640
1949	3.4	20	JAN20	13	JAN20	0.6		2460
1950	4.1	73	NOV10	30	NOV10	1.7	HAY11+	2960

BIG TUJUNGA CREEK ABOVE GOLD CANYON (near SUNLAND)
Station Number F213-R (11095500)
Drainage Area 106 square miles
Elevation 1572 feet
Period of Record 1916 to 1979
Flow regulated since 1931 by Big Tujunga Dam
See Plate 2-18 for location

							MEAN			
RUNOFF AC-FT		MIN		MAX			R DAILY PEAK			
		DAILY		DAILY		FLOW	FLOW FLOW			
	DATE	CFS	DATE CFS	CFS	DATE	CFS DA	CFS	SEP 30		
1510	AUG15+	0.2	NOV13	7.1	NOV13	10	2.1	1951		
41320	OCT01+	1.3	JAN18	1740	JAN18	2960	56.9	1952		
6510	MAY02	1.8	FEB07	59	NOV15	108	9	1953		
8240	OCT18+	0.6	JAN25	227	JAN25	387	11.4	1954		
3580	OCT26+	1.1	JAN18	33	JAN18	73	5	1955		
4700	SEP23+	0.3	JAN27	214	JAN27	301	6.5	1956		
2290	OCT03+	0.2	JAN13	25	JAN13	60	3.2	1957		
38910	NOV20+	0.8	APRO4	1190	APR03	1670	53.7	1958		
4570	OCT17	1.8	FEB18	133	FEB11	245	6.3	1959		
1950	SEP11	0.1	JAN12	12	JAN12	22	2.7	1960		
926	OCT06+	0.2	NOV06	16	NOVO5	8 6	1.3	1961		
21540	OCT14+	0.6	FEB12	1850	FEB11	4770	29.8	1962		
2370	OCT27	0.6	FEB10	94	FEB09	412	3.3	1963		
2690	SEP09+	0.2	JAN22	44	JAN22	166	3.7	1964		
2790	OCT04+	0.1	APR09	77	APR09	220	3.9	1965		
46250	NOV07+	1	NOV23	2850	DEC30	5220	63.9	1966		
45540	OCT30	10	DECO6	906	DEC06	1900	62.9	1967		
15260	SEP11+	1.9	NOV22	275	NOV21	410	21	1968		
148100	OCT23+	8.0	FEB25	9250	FEB25	21300	213	1969		
15830	AUG27	2.6	MARO1	208	FEB28	560	21.9	1970		
16520	OCT01	2.9	NOV29	290	NOV29	1320	22.8	1971		
4670	OCT23+	0.9	JAN04	121	JAN04	121	6.4	1972		
20480	AUG03	0.3	FEB11	970	FEB11	1840	28.3	1973		
9820	SEP17+	1	JAN07	235	JAN07	336	13.6	1974		
10900	NOV07+	1	APR05	94	MARO6	232	15.1	1975		
6080	DEC30+	0.9	SEP11	151	FEB09	378	8.5	1976		
6264	AUG03	0.05	MAY10	202	JAN03	444	8.7	1977		
150645		0	FEB10	13600	FEB10	26000	208	1978		
39785				579			55.1	1979		

Average Discharge, 60 years, 1918-77: 28.0 cfs (20290 acre-feet/year)
Maximum Discharge on Record: estimated 50000 cfs on 02 MAR 1938
Peak flows are instantaneous maximum discharge values corresponding to the highest stage that occurred.

EXHIBIT F

Environmental Evaluation

DEPARTMENT OF THE ARMY

LOS ANGELES DISTRICT CORPS OF ENGINEERS
FINDING OF NO SIGNIFICANT IMPACT
HANSEN DAM WATER CONTROL MANUAL
LOS ANGELES COUNTY, CALIFORNIA

I have reviewed the attached Environmental Assessment (EA) prepared for the Hansen Dam Water Control Manual Project, Los Angeles County, California. The reservoir operation schedule was revised in 1988 to limit the maximum release to 20,800 cfs in order to maximize the discharge of water flow from the basin while not exceeding the capacity of the downstream channel. Under the recommended plan, the gates on the eight gated outlets will be kept open at 1.0 ft. until the water surface elevation reaches 1,010.5 feet. After the water surface elevation reaches 1,010.5 feet, all gates will be opened fully to 8.0 feet, until the downstream capacity of 20,800 cfs is reached at a pool elevation of 1053.0 feet. The gates will be progressively closed as the water surface elevation rises until, at elevation of 1066.0 feet, the gates are fully closed. At this point, spillway flow, plus flow through the two ungated outlets, will approximately equal downstream channel capacity.

I have considered possible impacts of implementation of the revised schedule on the environment, including those associated with significant resources as discussed in the Environmental Assessment. No significant adverse impact to vegetation or wildlife at Hansen Dam will occur. Communities such as willow riparian and riparian scrub were already subjected to inundation under the previous operations schedule. These communities will also be subject to inundation under revised operations. Under the proposed revisions, surface water elevation levels will generally be less than one foot greater than under existing conditions. Inundation will last less than two hours longer than under current operations. For any given flood event this increased inundation will affect less than five additional acres of habitat; therefore, no significant adverse impacts will be associated with the revised schedule.

Implementation of the revised operations schedule will not affect the continued existence of the least Bell's vireo, which has historically nested at Hansen Dam, or any other endangered or threatened wildlife or plant species.

Three prehistoric sites fall within the Hansen Dam flood control basin, LAn-167, LAn-300 and "Hansen 3". These sites within the basin are presently subject to inundation and flooding of the Tujunga Wash in extreme conditions. Sites will not be affected by temporary inundation. No impacts are expected to occur as a result of the change in operational schedule in the basin.

I have considered the available information contained in the EA, and it is my determination that the proposed project will not result in a significant effect on the existing environment. Therefore, preparation of an Environmental Impact Statement (EIS) is not required.

15 Jun 90

DATE

CHARLES S. THOMAS

Colonel, Corps of Engineers

District Engineer

EXHIBIT G

Chain of Correspondence For Approval of Water Control Manual

CESPD-ED-W (CESPL-ED-HR/14 Nov 89) (1110-2-240) 3rd End Hsu/bg/5-1521 SUBJECT: Hansen Dam Water Control Manual

DA, South Pacific Division, Corps of Engineers, 630 Sansome Street, Room 720, San Francisco, CA 94111-2206 2 8 SEP 1980

For Commander, Los Angeles District, ATTN: CESPL-ED-HR

- 1. Subject manual is approved subject to the correction of the anomaly on the outflow hydrograph curve at 15 hours on 3-2-83 in Plate 8-7.
- 2. District is requested to submit four copies of report quality reproduction of this final version of the manual to this office after completion.

FOR THE COMMANDER:

Encl wd JAY K. SOPER Director, Engineering

CF:
CESPD-ED-W
CESPD-ED-W/HSU
CESPD RF

JR/bg CESPD-E 5-1521 28 SEP

LUCO

UCD JKS 285 FCESPD-1 CESPL-ED-HR (CESPL-ED-HR/14 Nov 89) (1110-2-240b) 2nd End. Stuart FTS 798-3001 SUBJECT: Hansen Dam Water Control Manual

DA, Los Angeles District, Corps of Engineers, 300 N. Los Angeles Street, Los Angeles, CA 90053-2325

FOR Commander, South Pacific Division, ATTN: CESPD-ED

- 1. Enclosed are four copies of the final Hansen Dam Water Control Manual prepared in accordance with ETL 110-2-251. Responses to CESPD comments (enclosure 1) provided by 1st endorsement have been incorporated into the enclosed manuals. Report quality reproduction of this final version of the manual will begin upon receipt of your final approval.
- 2. If you have any questions, please contact Robert Stuart of our Reservoir Regulation Section.

FOR THE COMMANDER:

Encls

ROBERT E. KOPLIN, PE Chief, Engineering Division

CF: (wo/encls)

KOPLIN CESPL-ED

CESPL-ED-H CESPL-ED-HR (2) CESPL-ED-S

LEIFIELD CESPL-ED

EVELYN CESPL-ED-H

BIGORNIA CESPL-ED-HR

STUART CESPL-ED-HR ep/X3001 ; 3-23-90 ; 13:21 :COE SOUTH PACIFIC DI-

CESPD-ED-W (CESPL-ED-HR/14 Nov 89) (1110-2-240b) 1st End Krhoun/8-465-1433 SUBJECT: Hensen Dam Water Control Menual

DA, South Pacific Division, Corps of Engineers, 630 Sansone Street, Room 720, San Francisco, CA 94111-2206 28 MAR 1920

FOR Commander, Los Angeles District, ATTH: CESPL-ED-HR

- 1. Subject final draft manual has been reviewed and comments are enclosed. These comments are submitted to assist the District in finalizing the manual. Approval will be given after review by this office of the final manual.
- 2. The EA associated with the manual was received and reviewed in January 1990. There are no comments on this document.
- 3. District is requested to submit its responses to the comments along with the submission of the final manual.

FOR THE COMMANDER:

Z Encis
Wd all cys of encl 1
Added 1 Enci
2. Comments

CF: VCRSPD-ED-W/Krhoun (w/encl)
CRSPD-ED-W (w/encl)
CRSPD RF

JAY E. SOPER Director Directorate of Anganesians

> JM Cespd-ed

5-1433

25 11. 90

PK/db CBSPN-50

WCD

JKS CESPD-KD

FACSIMILE HEADER SHEET

FROM (News)	0.7510-	(BR 103-1-3)		
_	OFFICE SYMBOL	TELEPHONE NO.	RELEASER'S SIGNATURE	
F. Krhoun	CESPD-ED-W	705-1433	The state of the s	
	CESPL-ED-HR	TEL CPHONE HO.	PREGRAENCE	J pte
SUBJECT		798- 6915	A ASAP	

2

8 March 1990

CESPD-ED-W

SOUTH PACIFIC DIVISION COMMENTS ON WATER CONTROL MANUAL HANSEN DAM

- 1. Page III-2, 2nd line- Hansen Dam was authorized as a single purpose flood control reservoir. As such, its operation of the dam was for flood control and it should not have to be operated "more strictly" due to sediment increase. Suggest this sentence be revised.
- 2. Page III-3, Paragraph 3-05- Delete "and conservation storage" in the third line of this paragraph. Since the project was authorised for only flood control storing water for conservation purposes is not appropriate. It is noted that releasing water from the debris pool to enhance groundwater activities of LACDPW is desirable as this storage would not effect the protection afforded downstream.
- 3. Page V-3, Paragraph 5-06a- Indicate that Lopez Dam is ungated and that is the reason that there are no electrical or telephone at the dam. This would eliminate any possibility someone questioning the lack of facilities at dam.
- 4. Page VI-1, Paragraph 6-01a- Delete the last sentence in this sub-paragraph as it relates to future operations.
- 5. Page VII-2, Paragraph 7-05a. In the first paragraph change coordinated to attempt to inform. It appears the manual as written infers approval of IACDPW prior to the Corps making flood control releases. In the event of a communication outage the Corps should make flood control releases even if it can't contact IACDPW.
- b. Revise the third sentence of the second paragraph. It is unlikely that outflow could equal inflow unless the reservoir is in a static condition, that is there is no change in storage. In most cases there will be a change of storage which is caused by a difference between inflow and outflow unless the gates settings are constantly changed. The plan in the manual calls for all gates to be fully opened once the reservoir reaches elevation 1010.5 feet.
- 6. Page VII-3, Paragraph 7-05- In the first full sub-paragraph on this page the manual states Hansen Dam is a component of a reservoir system and will be operated accordingly. Briefly describe in this section how that is to be accomplished.
- 7. Page VII-5, Paragraph 7-13- Eliminate the second sub-paragraph. The water control plan is based on the rated capacity of the downstream channel which should be able to pass the maximum release with minor damages. It is noted that the

- District Commander has the approval authority for emergencies.

 Any planned deviations from approved operating criteria must be submitted to the Division office for approval.
 - 8. Page VIII-7, Paragraph 8-06- This paragraph indicates that flood control releases will not be made until until LACDPW has adjusted its diversion gate in the channel downstream of the dam. The District should not be restricted to making releases by the downstream interests. Revise this paragraph to indicate the District will attempt to provide adequate warning time to downstream interests if flood control releases are to be made. District should make releases as shown in the operating plan even if LACDPW has not been able to adjust its diversion gate.
 - 9. Plate 3-4- See comment 8 for notification of IACDPW.
 - 10. Plate 4-2- The row marked annual is misleading. The data in this row is either average like mean monthly temperature and precipitation or maximums and minimums. Please revise the table accordingly. Although this table is based on 34 years of record the period of record ends in 1964. It would be more appropriate if this data could be shown for a gage with approximately the same length of record in the vicinity of the one shown in the chart which is still active and would be representative of Burbank.
 - 11. Plate 4-8- Extend this chart through water year 1989.
 - 12. Plates 5-4 and 5-6- Extend these tables through the Channel capacity of 20,800 cfs.
 - 13. Plate 8-7- There appears to be an error in the inflow and outflow curves at 1500 hours on 3-2-83.

DEPARTMENT OF THE ARMY LOS ANGELES DISTRICT, COMPS OF SHORINGERS P.O. SOX 2711

LOS ANDELES, CALIFORNIA SOLS-2204

REPLY TO ATTENTION OF.

CESPL-ED-HR (1110-2-240)

14 November 1989

MENORANDUM FOR Commander, South Pacific Division, ATTN: CESPD-ED-W

SUBJECT: Hansen Dam Water Control Manual

- 1. Enclosed are three draft copies of the Hansen Dam Water Control Manual for your review and approval. The draft Environmental Assessment (EA) has been completed and requires additional coordination to address biological issues with the U.S. Fish and Wildlife Service. Submittal of the draft EA is expected to be made before the end of the calendar year. We are sending the draft Water Control Manual ahead of the EA in order to expedite the review process and minimize delays in the 3-year program for water control manual updates.
- 2. A copy of the draft Water Control Manual has also been sent to the Los Angeles County Department of Public Works for concurrent review.

FOR THE COMMANDER:

ROBERT E. KOPLIN

Chief, Engineering Division

Encl (3 copies)