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We constructed a mathematical model to describe the spread of smallpox
after a deliberate release of the virus. Assuming 100 persons initially
infected and 3 persons infected per infectious person, quarantine alone
could stop disease transmission but would require a minimum daily removal
rate of 50% of those with overt symptoms. Vaccination would stop the out-
break within 365 days after release only if disease transmission were
reduced to >0.85 persons infected per infectious person. A combined vacci-
nation and quarantine campaign could stop an outbreak if a daily quarantine
rate of 25% were achieved and vaccination reduced smallpox transmission
by >33%. In such a scenario, approximately 4,200 cases would occur and
365 days would be needed to stop the outbreak. Historical data indicate that
a median of 2,155 smallpox vaccine doses per case were given to stop out-
breaks, implying that a stockpile of 40 million doses should be adequate. 

Recent papers have speculated about the use of small-
pox as a biological weapon (1-5). If we assume such a risk,
there is concern about the need for preparations to limit and
prevent the spread of smallpox after a deliberate release of
the virus. Studies of smallpox control and eradication efforts
(6-8) identified two available types of interventions: vaccina-
tion of those at risk from infection, quarantine, or both.
Some studies have provided estimates of the potential num-
bers that could be infected (1,3,5) and the number of vaccine
doses that should be stockpiled (5); however, they did not
provide details of how these estimates were calculated. Fur-
ther, none of these articles examined how quarantine of
infected persons may help halt transmission of smallpox.

Crucial questions that remained unanswered include—
How can we calculate the number of doses of smallpox vac-
cine to be stockpiled? Can quarantine contribute to control
efforts? How effective does quarantine have to be to reduce
transmission? We present a mathematical model that helps
answer these and other questions.

Methods
We constructed a mathematical model to meet the fol-

lowing objectives: 1) describe the spread of smallpox through
a susceptible population, calculating daily (new-onset) and
cumulative cases; 2) readily accommodate changes in input
values, such as the number of persons infected per infectious
person (i.e., rate of transmission) and the number of persons
initially infected; 3) examine the impact of quarantine and

vaccination, alone and in combination, on the spread of
smallpox; and 4) estimate the number of doses of smallpox
vaccine that should be stockpiled as part of readiness plans.

Despite numerous reports of mathematical models of
infectious diseases (9-14), few such models describe the
spread of smallpox. Frauenthal (15) addressed the question
of optimal level of smallpox vaccination. We constructed a
Markov chain model (16) to describe the spread of smallpox
through a susceptible population (objective 1), using a com-
puter-based spreadsheet program (Excel97, Microsoft, Red-
mond, WA). The model describes four disease stages:
incubating, prodromal, overtly symptomatic, and no longer
infectious (Figure 1). The term “prodromal” indicates the
preeruptive stage.1 “Overtly symptomatic” refers to the
period of disease when a rash or similar symptoms can be
readily noted by even an untrained observer.2 For each day
after the release, the model calculates both the number of
new cases and the cumulative total.

In the model, an infected person can only progress, from
incubating to prodromal to overtly symptomatic, and cannot
revert. The duration in days of a given disease stage is con-
trolled by a probability function (Figure 2). 

Probable Durations of Each Disease Stage
When smallpox was endemic in human populations, the

incubation period was often difficult to measure because
many patients were exposed over several days (7,8). Fenner
et al. (7) reviewed and summarized three reports in which
the incubation period was calculated for 255 cases of variola
major smallpox (the “classic” form). Just over 70% of these
cases incubated 9 to 13 days, with an average of 11.5 days
(range 7 to 19 days; median approximately 11 days; 5th
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1Others have suggested that the terms “preeruptive” or “initial” are more descriptively accurate of this stage (6). However, because “prodromal” is used in many
standard textbooks (7,8,17), we will use this term.
2Prodromal rashes have been recorded, but they were considered to be uncommon occurrences, “. . . not more than 1 in 10.” (17).
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percentile 8 days; and 95th percentile 14 days). Others have
observed similar lengths of incubation. For example, by
examining the time between onset and “brief and only
possible contact with a known case,” Singh (18) determined
the possible length of incubation of six cases of smallpox
(mean 11 days; median 12 days). Rao (6) used data from 50
first-generation cases to determine that the mean “fever-to-
fever” (i.e., onset of fever to onset of fever) interval was 16
days (range 12 to 21 days for 80% of cases).

Using data from 115 cases in Europe (19), we con-
structed a reverse cumulative probability function to
describe the probability of a person on a given day remaining
in the state of incubation for the next day (Figure 2). The cal-
culated mean was 11.7 incubating days (median approxi-
mately 11 days; 5th percentile 8 days; and 95th percentile 17
days). The function used can be altered to reflect other data
sets or hypothesized functions. Further, the model can
accept different transition probability functions for each day
in the model.

The duration of the prodromal stage is variable and
depends in part on the ability of the physician or patient to
detect the first lesion (6). The onset of rash (the overtly
symptomatic stage) typically occurs 48 to 72 hours after
onset of fever, although some types of smallpox may have a
prolonged prodromal stage of 4 to 6 days (6). Fenner et al.
reviewed several data sources and used temperature data to
report that the prodromal stage lasts an average of 3 days
(7). Beyond these descriptions of the average or typical
course of disease, no data are readily available documenting
the probabilities associated with a longer prodromal stage
(e.g., frequency data linking number of patients to number of
days in the prodromal stage). Thus, we assumed a linear
decline in the daily probability of remaining in the prodro-
mal stage (Figure 2). The probabilities decline from 0.95 at
the end of day 1 (i.e., a 95% chance that the patient will be in
prodromal stage for another day) to 0.00 at the end of day 3
(i.e., absolute certainty that the prodromal stage will not last
beyond day 3).

The average total time of illness (i.e., having some symp-
toms) is given in Fenner et al. (7) as 21 days, with scabbing
on day 19. Allowing up to 3 days for the prodromal period
(Figure 2) leaves an average of 16 days in the overtly symp-
tomatic period in which a patient can infect others. Although
scabs may contain infectious amounts of smallpox virus after
the patient has fully recovered, we assumed that after scab-
bing, neither the patient nor the scabs will pose a substan-
tial source of infection. The exact duration of illness is
somewhat moot, as the likelihood of transmission declines
after the first few days of overt symptoms. Thus, after some
period, a person who is overtly symptomatic has a low proba-
bility of infecting a susceptible person. We assumed a proba-
bility of 1.00 (i.e., absolute certainty) of remaining the next
day in the overtly symptomatic stage for the first 10 days in
the stage. Including the prodromal stage, this corresponds to
12-15 days of illness (Figure 2). After 10 days, a patient’s
daily probability of remaining in the stage decreases lin-
early, so that 15 days after onset of symptoms the probabil-
ity of remaining the next day in this stage is 0.00 (Figure 2).
That is, after a maximum of 16 days in the overtly symptom-
atic stage, all patients will have progressed to the “no longer
infectious” stage. Patients who have reached the fourth and
final stage (no longer infectious) effectively drop out of the
model. These probability functions can readily be changed
(objective 2). 

Likelihood of Smallpox Transmission
Also described by a probability function is the likelihood

of smallpox transmission during the infectious period. For a
variety of reasons, the probability of transmission is likely to
change during the period when an infected person is infec-
tious. For example, persons with a high fever during the first

Figure 1. Schematic of the Markov-chain model used to model the
movement of a person infected with smallpox through the four stages
of disease. PI = probability of remaining in the incubating stage; PP =
probability of remaining in the prodromal stage; and P O = probabil-
ity of remaining in the overtly symptomatic stage. For each stage,
the probabilities of remaining in that stage (P I,PP,PO) are deter-
mined by a daily probability (Figure 2). Patients who have reached
the fourth and final stage (no longer infectious) effectively drop out
of the model. The “overtly symptomatic” stage refers to the period of
disease when a person has a rash or similar symptoms that even an
untrained observer can readily note. During the period of infectivity,
the average number of persons infected per infectious patient is pre-
set by the researchers. The days when transmissions occur are deter-
mined by a probability function.

Figure 2. Probability functions associated with remaining in three
smallpox disease stages. These reverse cumulative probability func-
tions describe the probability on any defined day of a patient remain-
ing in a disease stage during the next day. On any given day, the
probability of moving from one stage to the next is 1 minus the prob-
ability of remaining in the stage. 
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2 days of the prodromal stage (Figure 2) may voluntarily
confine themselves to quarters, possibly limiting their oppor-
tunities to infect others. Limited data are available regard-
ing changes in the probability of when an infection is
transmitted, but Mack (19) and Rao (6) provide a time series
of data involving 23 and 60 patients, respectively. Both data
sets suggest that transmission is less likely during the pro-
dromal stage (the first 3 days when a person is symptomatic)
and that the probability of transmission is greatest between
days 3 and 6 after a patient becomes infectious (Figure 3).
This period is equivalent to the first to third days of onset of
rash (overt symptoms). Both data sets (6,19) indicate that
70% to 80% of transmission is likely to occur in the first 9
days of the symptomatic period, and 90% of all transmission
will have occurred in 10 to 13 days (Figure 3). In other
words, by day 6 of overt symptoms (rash), approximately
75% of transmissions will have occurred, with 90% occurring
within 7 to 10 days. For the model, we used the data from
Mack (19) to describe the probabilities of when transmission
will occur, from infectious to newly infected (Figure 3). Other
data sets and probability functions can readily be substi-
tuted.

Existing Immunity and Community Size
For simplicity, we assumed an unlimited supply of sus-

ceptible persons,3 so that disease transmission will not be
halted because of lack of susceptible persons. Although this
scenario is unrealistic for modeling the natural spread of an
infectious disease, it may be realistic for considering the
initial spread of an infectious disease after deliberate infec-
tion of a small number of persons in a population with a rela-
tively large proportion who are susceptible.

Another variable that can alter the transmission rate
and persistence of disease is size of community. Smith (22)
summarized data evaluating the link between community
size and spread of some infectious diseases and found that
the larger the community, the higher the rate of transmis-
sion. This observation was found to be true for measles, scar-
let fever, diphtheria, and whooping cough (pertussis), but
smallpox was not analyzed (22-24). Arita et al. (25) found a
correlation between increasing density of smallpox-suscepti-
ble persons and the persistence of smallpox within a popula-
tion but did not estimate the relationship between
susceptible population density and transmission rate. Our
model allows for the impact of different densities of suscepti-
ble persons by adjusting the average transmission rate. 

Numbers Initially Infected and Rate of Transmission
Based on Henderson’s comment that an outbreak of

smallpox “. . . in which as few as 100 people were infected
would quickly tax the resources of any community” (1), we
initially assumed that 100 persons would be effectively
exposed, infected, and become infectious. We set the average
transmission rate at 3, which is notably higher than most
historical averages. (A mathematical review of the transmis-
sion of smallpox appears in Appendix I, available at URL:
http://www.cdc.gov/ncidod/eid/vol7no6/
meltzer_appendix1.htm). We define the term “transmission
rate” as the number of persons infected per infectious per-
son, rather than the number of persons infected during a
standardized unit of time. During sensitivity analyses, we
altered both the number of persons initially infected and the
rate of transmission.

Modeling the Effects of Potential Interventions
We examined the effect of quarantine and vaccination,

alone and in combination (objective 3). Quarantine was mod-
eled by removing daily a fixed proportion of a cohort of infec-
tious persons, starting on the day that they become overtly
symptomatic. For example, we assumed that 50% of all per-
sons with rashes on day 1 of the overtly symptomatic period
would be successfully quarantined and not infect anyone
else. Fifty percent of those who missed quarantine on day 1
of rash would be quarantined on day 2.4 This proportionate
reduction would continue for the duration of time that per-
sons are likely to infect others. The model also calculated the
number of infectious persons needed to be quarantined
under a given scenario.

For a vaccination-only strategy to stop transmission,
sufficient susceptible persons must be effectively vaccinated
so that the number of persons infected per infectious person
is less than 1. We thus evaluated how long it would take to
stop an outbreak if the level of transmission were reduced to
0.99 persons infected per infectious person. We also calcu-

3The United States stopped routine vaccination of the civilian population in 1972 (5). In July 1998 in the United States, there were approxi-
mately 109.9 million persons <30 years of age, representing 41% of the total resident population (20). Most of these people have not been vacci-
nated against smallpox. In addition, the immunologic status of those who were vaccinated >30 years ago must be considered. Historical data
indicate that vaccination 20 to 30 years ago may not protect against infection but will often protect against death (8,21). No reports, however,
define the probability of such persons’ transmitting the disease to susceptible persons. Faced with such uncertainty, we chose the simplest
approach of assuming an unlimited supply of susceptible persons.
4At a 50% daily removal rate, a cohort of all those beginning the first day of overt symptoms is entirely removed in 7 days (8 to 10 days postin-
cubation), with 90% removed in 4 days after they enter the overtly symptomatic period. At a 25% daily removal rate, a cohort is entirely
removed 17 days after entering the overtly symptomatic period (18 to 20 days postincubation), with 90% removed in 9 days after entering the
overtly symptomatic period. The calculated numbers of those quarantined relate only to those who are infectious (i.e., overtly symptomatic).
The model does not take into account those who might also be quarantined along with the infectious persons, such as unvaccinated household
contacts and other exposed persons. 

Figure 3. Daily and cumulative probabilities determining when an
infectious person infects another person with smallpox (6,19). Day 1
of the infectious period is the first day of the prodromal stage. That
is, we have interpreted the source data to reflect the assumption
that no spread of infection can occur while an infected person is in
the incubating stage. 
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lated the smallest vaccine-induced reduction in transmission
required to stop the outbreak within 365 days postrelease.
This calculation was done by an iterative process in which
the rate of transmission was reduced until the number of
new cases per day reached approximately zero 365 days after
release. To estimate the impact of vaccination, we assumed
that a vaccination campaign would immediately reduce the
risk of transmission, and we did not model the time required
from vaccination to effective vaccine-derived immunity. This
assumption may overstate the impact of vaccination, partic-
ularly in terms of how quickly a vaccination campaign could
stop an outbreak.

Lane and Millar estimated that continuing routine
childhood immunization against smallpox in the United
States from 1969 to 2000 would cause 210 vaccine-related
deaths (26). That calculation was made before the population
included substantial numbers of immunocompromised per-
sons (e.g., HIV- or cancer therapy-induced immune suppres-
sion). Because of the potential for adverse vaccine-related
side effects,5 it may be prudent to attempt to limit the num-
ber of persons vaccinated. We therefore calculated the
impact of limiting the numbers vaccinated so that transmis-
sion would be reduced by just 25%, from 3 to 2.25 persons
infected per infectious person, combined with a daily quaran-
tine rate of 25%. We also calculated, by an iterative process,
the smallest vaccine-induced reduction in transmission
required to stop the outbreak within 365 days postrelease
when combined with a daily quarantine rate of 25%.

Start of Interventions
We considered the effect of starting large-scale, coordi-

nated interventions on days 25, 30, and 45 postrelease,
assuming release on day 1. Twenty-five days assumes 15
days for the first signs of overt symptoms (Figure 2), 2 days
for initial clinical diagnosis, 1 day for specimen transport, 3
days for laboratory confirmation, and 4 days to mobilize and
begin appropriate large-scale interventions.6 Although inter-
ventions may begin on a small scale earlier than day 25, in
the model the term “start date of interventions” refers to the
date when a full-scale and comprehensive intervention
begins (i.e., the model does not allow for a gradual increase
of intensity in interventions). If we assume that an average
of 15 days will be needed for those infected to become infec-
tious (Figure 2), 30 days represents the time when the first
generation of cases (those infected by the index cases) will
begin to show overt symptoms. Forty-five days represents
the time needed for the second generation of cases (those
infected by the first generation) to show overt symptoms.

Numbers Vaccinated per Case: Stockpile Issues
To determine the number of persons that must be vacci-

nated, we searched for reports of successfully contained
smallpox outbreaks in which both the number of cases and
the number of doses of vaccine administered were recorded.
These data allowed us to assemble a data set of doses used
per case, which was then fitted to probability distributions
by using specialized software (Bestfit, Palisade Corp, New-
field, NY). The probability distribution that gave the “best

fit,” judged by standard tests (chi square, Kolmogorov-
Smirnov, Anderson-Darling), provided the mean and median
number of doses historically used per case of smallpox, as
well as confidence intervals (e.g., 95th, 90th, and 10th per-
centiles). We then estimated the total number of vaccine
doses that should be stockpiled by multiplying the estimated
doses per case by the number of cases estimated by the
Markov chain model (objective 4).

Other Potential Interventions
We did not consider other potential preparations, such

as routine mass immunizations against smallpox. Reasons
for this exclusion include uncertainties about cost, vaccine
safety, duration of vaccine efficacy, and the probability of
such an event.

Sensitivity Analyses
We examined the effect on the number of daily and total

cases when the number initially infected was changed from
100 to 1,000 and the transmission rate was decreased to 2 or
increased to 5 persons infected per infectious person. We also
used the model to determine the minimum level of interven-
tions needed to ensure that transmission stopped by given
target dates. We chose 75, 150, and 225 days postrelease as
the examples of target dates, representing 5, 10, and 15 gen-
erations of smallpox, respectively. The minimum levels of
intervention needed to achieve these targets were deter-
mined by an iterative process, altering the level of the inter-
vention(s) until the number of new cases per day reached
zero on each target date.

Results

Effect of Transmission Rate and Numbers Initially Infected
We calculated the hypothetical effect of allowing small-

pox to spread without intervention, assuming an unlimited
supply of smallpox-susceptible persons. The data demon-
strate that the most important mathematical variable is the
assumed rate of transmission. For a given number of persons
initially infected, doubling the number infected per infec-
tious person causes a massive increase (greater than 2
orders of magnitude) in the cumulative total cases at 365
days (Table 1).

Effect of Intervention: Quarantine Only
A quarantine-only program can stop an outbreak of

smallpox, but it takes a daily removal rate of at least 50% to
ensure that disease transmission will cease. At a quarantine
rate of 50% starting on day 30 postrelease, the daily number
of new cases would peak at approximately 50 cases per day,
with no new cases on day 240 and a cumulative total of
approximately 2,300 cases (Figure 4). If 50% quarantine
began 5 days earlier, on day 25 postrelease, the total cases
would be approximately 1,750 and the maximum number of
daily new cases would be 20 per day (Figure 4). A 15-day
delay in starting quarantine programs, to day 45 postre-
lease, results in approximately 6,800 total cases and a maxi-
mum of almost 120 new cases daily (Figure 4).

5The number, severity, and cost of vaccine-induced side effects is the subject for a separate paper.
6Allowing 3 days for laboratory confirmation assumes that virus loads in clinical specimens may be insufficient to allow use of rapid assays
and confirmation must await the results of a culture-based assay, which takes approximately 72 hours. Rapid laboratory confirmat ion, within
24 hours, is possible.
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Effect of Intervention: Vaccination Only
A vaccination-only program that reduces the rate of

transmission to 0.99 persons infected per infectious person
will eventually stop an outbreak, but not within 365 days
postrelease, even if it is begun on day 25 postrelease (Figure
5). To stop the outbreak by day 365 postrelease, a vaccina-
tion campaign starting on day 30 must reduce transmission

to approximately 0.85 persons infected per infectious person
(Figure 5), resulting in a cumulative total of 2,857 cases. If
the same intervention were started on day 25 postrelease,
the cumulative total would decline to 2,125 cases. Delaying
the start of the intervention to day 45 postrelease would
result in 3 new cases per day and a cumulative total of 8,347
casesonday365.

Effect of Intervention: 
Quarantine and 
Vaccination

When combined with a
quarantine rate of 25%, to
stop transmission by day
365 postrelease, vaccina-
tion has to effectively
reduce the rate of trans-
mission by at least 33%,
from 3 persons infected to 2
persons infected per infec-
tious person (Figure 6).
Although transmission will
be halted,7 the total num-
ber of cases would be
approximately 4,200, which
is 82% greater than the
total if a 50% daily reduc-
tion quarantine-only pro-
gram is assumed (Figure
4). Starting on day 25 pos-
trelease reduces the total
number of cases to approxi-
mately 3,200 (Figure 6).
Delaying the start of a
combined intervention to
day 45 postrelease
increases the total number
of cases to approximately
12,400.

Table 1. Estimates of cumulative total smallpox cases after 365 days with no intervention

No. initially 
infecteda

No. infected per 
infectious personb

Cumulative total no. of smallpox cases, days postrelease c

30 days 90 days 180 days 365 days

10 1.5 31 214 2,190 224 thousand

10 3.0 64 4,478 2.2 million 774 billion

1,000 1.5 3,094 21,372 219,006 22 million

1,000 3.0 6,387 447,794 222 million 77 trillion

aNumber initially infected refers to those who are exposed during a release so that they subsequently become infectious to others. This scenario excludes those
who are exposed but either do not become ill (i.e., are immune or are not exposed to an infectious dose) or do not become infectious (residual immunity from
prior vaccination may be sufficient to prevent onward transmission).
bThe number of persons infected per infectious person is the transmission rate.
cAssumes an unlimited supply of smallpox-susceptible persons.

Figure 4. Daily and total cases of smallpox after quarantining infectious persons at two daily rates and three
postrelease start dates. The graphs demonstrate that if quarantine is the only intervention used, a daily
removal rate of > 50% is needed to stop transmission within 365 days postrelease. At a 25% daily removal
rate of infectious persons by quarantine, a cohort of all those entering the first day of overt symptoms (i.e.,
rash) is entirely removed within 17 days (18 to 20 days postincubation) after the first day of overt symptoms,
with 90% removed within 9 days. At a 50% daily removal of infectious persons by quarantine, a cohort of all
those entering their first day of overt symptoms (i.e., rash) is entirely removed within 7 days (8 to 10 days
postincubation) after the first day of overt symptoms, with 90% removed within 4 days. The daily rate of
removal (quarantine) relates only to the removal of those who are infectious (i.e., overtly symptomatic). The
rate does not include any persons who may be quarantined along with overtly symptomatic patients, such as
unvaccinated household contacts. Data generated by assuming 100 persons initially infected and a transmis-
sion rate of 3 persons infected per infectious person. For clarity, the graphs of daily cases do not include the
assumed 100 initially infected persons. The graphs of total cases include the 100 initially infected

7Even by reducing transmission from 3 to 2 persons per infectious person and quarantining infectious persons at a rate of 25% per day, the
number of new cases at day 365 is 3, not zero (i.e., transmission is not quite completely stopped) (Figure 6). For transmission to cease com-
pletely, vaccination must either achieve a 38% reduction in transmission to 1.85 cases per infectious person (assuming a daily quarantine
rate of 25%), or quarantine must achieve a 29% daily reduction in the number of infectious persons (assuming vaccination reduces transmis-
sion by 33%).
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Figure 5. Daily and total cases of smallpox for two vaccine-induced rates of transmission and three postrelease start dates. The graphs show
that, while reducing the transmission rate to 0.99 persons infected per infectious person reduces the daily number of cases over the period
studied, vaccination must reduce the rate of transmission to 0.85 persons infected per infectious person to stop the outbreak wi thin 365 days
postrelease. Data were generated by assuming 100 initially infected persons and an initial transmission rate of 3 persons infected per infec-
tious person. For clarity, the graphs of daily cases do not include the assumed 100 initially infected. The graphs of total cases include those
initially infected.

Effect of Intervention: Number of Infectious Persons 
Quarantined 

With a quarantine-only intervention of 50% daily rate of
removal, starting on day 30 postrelease, the peak number of
daily removals is 69 infectious persons, occurring on day 30
(start day) with a cumulative total of 2,166 infectious
persons quarantined. With a combination of a 33% vaccine-
induced reduction in transmission and a 25% daily removal
quarantine program, the peak number of daily removals is
34 (start day 30), but the cumulative total that must be
quarantined is approximately 3,970 infectious persons.

Sensitivity Analyses: Effect of Changing Input Values
Reducing the transmission rate to two results in a quar-

antine-only program with a 25% daily removal rate almost
stopping transmission (Table 2). Delaying the start of such
an intervention to day 45 but combining it with a vaccination
campaign, which reduced transmission by 33%, would halt
the outbreak by Day 365 (Table 2). For the same interven-
tion start date, increasing the assumed transmission rate
from 2 to 5 persons infected per infectious person does not
proportionately increase the cumulative total number of
cases at day 365. Even with a quarantine rate of 25%
removal per day, assuming that vaccination concurrently
reduces transmission by 66%, the cumulative total number
of cases on day 365 is 19,821 (Table 2). For any given sce-

nario, increasing the number initially infected from 100 to
1,000 increases both the cumulative totals and the daily
number of new cases at day 365 by a factor of 10 (Table 2).
Similarly, reducing the number of those initially infected
from 100 to 10 would cause a proportionate reduction in both
cumulative totals and daily numbers (data not shown; addi-
tional results in Appendix II, available at URL: http://
www.cdc.gov/ncidod/eid/vol7no6/meltzer_appendix2.htm).

Sensitivity Analyses: Minimum Levels of Intervention to 
Achieve Target Days

The earlier the target date for stopping an outbreak,
the larger the minimum vaccine-induced reduction in
transmission needed to achieve zero transmission (i.e., out-
break stopped). For example, assuming a transmission rate
of 3 and a 25% daily removal rate, a target date of day 225
requires a 45.2% vaccine-induced reduction in transmission
to 1.65 persons infected per infectious person (Table 3).
Reducing the target date to day 75 requires a 76.7% vac-
cine-induced reduction in transmission to 0.70 persons
infected per infectious person (Table 3). Again, delay in
starting interventions makes it notably more difficult to
stop an outbreak by a given target date. For example, to
achieve a target date of day 75 with a 50% daily removal
rate, starting interventions on day 45 requires a vaccine-
induced reduction in transmission of 81.2%, to 0.57 persons
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Table 2. Sensitivity analyses: Effect on number of cases of smallpox due to variations in numbers initially infected, numbers infected per infectious
person, intervention start days, and quarantine and vaccination effectiveness a

No. initially 
infectedb

No. infected 
per 

infectiousc
Start 
dayd

Quarantine: 
% removal 

per daye

Vaccination: % 
reduction 

transmission f

Impact: 
Cumulative total 

at 365 days

Impact:
Daily cases at 

365 days 

Increase or 
decrease

(+/-g)

Base:100h 3.0 30 25 33 4,421 3 -

100 2.0 30 25 Nil 2,455 2 -

100 2.0 30 10 25 10,512 2 -

100 2.0 45 25 33 1,548 0 -

100 5.0 30 25 66 4,116 0 -

100 5.0 45 25 66 19,821 1 -

1,000 2.0 30 10 25 105,117 511 +

1,000 2.0 30 10 33 32,125 42 -
aTable 1, Appendix II (see online) is an expanded version of this table.
bNumber initially infected refers to those who are exposed during a release such that they become infectious. This excludes those who are exposed but either do
not become ill or do not become infectious.
cThe number of persons infected per infectious person is the transmission rate.
dStart day, for both quarantine and vaccination interventions, refers to the day postrelease, with the day of release being day 1 .
eQuarantine refers to removal of infectious persons only, starting on the first day of overt symptoms (i.e., rash). At a 25% daily removal rate, a cohort of all
those entering the first day of overt symptoms is entirely removed in 17 days (18 to 20 days postincubation) after day 1 of overt symptoms, with 90% removed
in 9 days. At a 10% daily removal, a cohort of all those entering the first day of overt symptoms is entirely removed in 44 days (45 to 47 days post incubation)
after day 1 of overt symptoms, with 90% removed in 22 days. 
fVaccination is assumed to reduce the transmission rate by a given percentage (e.g., 25% reduction results in transmission declining from 2.0 to 1.5 persons
infected per infectious person, and 33% reduces transmission from 2.0 to 1.32).
g(+) = an increasing rate of daily cases on day 365, and thus the modeled interventions will not stop the transmission of smallpox. (-) = a decreasing rate of daily
cases, such that the interventions modeled will eventually stop the transmission of smallpox.
h See Figure 6 for complete results related to the base case in the initial modeling scenario.

Figure 6. Daily and total cases of smallpox after a combined quarantine (25% daily removal rate) and vaccination campaign for two vaccine-
induced reductions in transmission and three postrelease start dates. The graphs show that, when combined with a daily quarantine rate of
25%, vaccination must achieve a >33% reduction in transmission to stop the outbreak. At a 25% daily removal rate of infectious persons by
quarantine, a cohort of all those entering their first day of overt symptoms (i.e., rash) is entirely removed within 17 days (18 to 20 days after
incubation) after the first day of overt symptoms, with 90% removed within 9 days. Removal is assumed to start same day as vaccinations. The
daily rate of removal by quarantine relates only to the removal of those who are infectious (i.e., are overtly symptomatic). The  rate does not
include any persons who may be quarantined along with overtly symptomatic patients, such as unvaccinated household contacts. Vaccinating
contacts or potential contacts is assumed to result in 25% and 33% reductions in transmission, so that the transmission rate is reduced from 3
to 2.25 and 2 persons infected per infectious person, respectively. Data were generated by assuming 100 initially infected persons and an ini-
tial transmission rate of 3 persons infected per infectious person. For clarity, the graphs of daily cases do not include the assumed 100 initially
infected persons. The graphs of total cases include those initially infected.
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infected per infectious person (Table 3). If a 25% quaran-
tine-induced daily removal rate is assumed, then vaccina-
tion must reduce transmission by 91.5% to 0.26 persons
infected per infectious person (Additional results in Ap-
pendix II, available at URL: http://www.cdc.gov/ncidod/eid/
vol7no6/meltzer_appendix2. htm).

Vaccinations per Case: Stockpile Issues
We identified 14 outbreaks in which a range of 9 to

102,857 persons were vaccinated per case of smallpox (Table
4). The mean was 14,411 persons vaccinated per case
(median 2,155). When fitted to a Gamma probability distri-
bution (35), the 95th, 90th, and 10th percentiles were 7,001,
4,329, and 3.5 doses per case, respectively (Table 4).

In Yugoslavia the number vaccinated per case was
approximately 5 times greater than in any other outbreak
considered (31). If the Yugoslavia data are removed from the
data set (Table 4), the simple average doses per case would
be 6,370 (56% decrease), with a median value of 1,801 (16%
decrease) doses per case.

If one assumes 4,200 cases result from 100 index cases
and a combined quarantine and vaccination program (start
day 30: Figure 6), and one uses a median of 2,155 persons
vaccinated per case (Table 4), 9,051,000 doses must be made
available for use (4,200 x 2,155). The 95th, 90th, and 5th
percentiles of this estimate are 29,404,200, 18,181,800, and
14,700, respectively. When the assumed number of persons
infected per infectious person is set at 2, the number of cases
declines to 1,548 (start on day 45: Table 2), and 3,335,940
vaccine doses must be made available for use (2,155 x 1,548),
with 95th, 90th, and 5th percentiles of 10,837,548,
6,701,292, and 5,418, respectively.

Discussion
The greatest simplification in building our model was

the assumption that the supply of susceptible persons was
unlimited, so that any specified rate of transmission would
be sustained for at least 365 days. In reality, many factors,
such as existing immunity and behavior modifications by
society (e.g., voluntary or forced quarantine) could limit the
supply of susceptible persons, reducing the total number of
cases in a 1-year period.

Supply of susceptible persons and assumed rate of
transmission are the most important variables influencing
the total number of smallpox cases (Tables 1,2). Historically,
average transmission rates were well below three persons
infected per infectious person (Appendix I, available at URL:
http://www.cdc.gov/ncidod/eid/vol7no6/meltzer_appendix1
.htm). Variables that can affect the average rate of transmis-
sion of smallpox include seasonality, group size, and type of
contact (“face-to-face” or “incidental;” Appendix I, Table 5).
Our model does not explicitly allow for consideration of such
variables, and adjustments to transmission rate resulting
from changes in factors such as group size must be done
externally to the model.

Another result of assuming an unlimited supply of sus-
ceptible persons is that the impact of multiple releases does
not “need” to be explicitly modeled. That is, in our model it
does not matter if the release initially infects 100 persons
who are standing shoulder to shoulder or are each separated
by 500 miles. The two variables that can be manipulated to
act as proxies for modeling the impact of multiple releases

and geographically diverse sites are the transmission rate
and the day of the start of interventions. For example, multi-
ple releases may be assumed to result in a lower average
transmission rate. Simultaneously, such releases may cause
confusion among authorities, the public, and the media,
resulting in delay in starting effective interventions. Simi-
larly, releases of smallpox among those perhaps disinclined
to interact with authorities (e.g., homeless persons) may go
undetected for longer periods of time, also resulting in
delayed interventions. We present results from our model of
the effect of assuming different transmission rates and start
days for an intervention (Tables 1-3). The net result of using
these proxy variables to model potential scenarios is that we
probably overestimate the spread of disease and the num-
bers infected. Nonetheless, we feel that the degree of overes-
timation will probably not substantially affect estimates for
thetotalnumberofdosesofvaccinethatshouldbestockpiled.

Another limitation of the model is that it does not explic-
itly answer the question of how many persons (or what pro-
portion of the population) need to be vaccinated for the
transmission rate to decline by, say, 33%. To answer this
question, we would need to know two pieces of information:

Table 3. Sensitivity analyses: Minimum levels of intervention
needed to stop transmission of smallpox by days 75, 150, and 225
postrelease

Target 
stop 
daya

Start day 
of 

interven-
tionsa

Numbers 
infected 

per 
infectious 
personb

Quaran-
tine: 

Minimum 
% 

removal 
per dayc

Vaccination: 
Minimum % 
reduction in 

transmissiond

75 30 2 25.0 58.0 (0.84)

75 30 3 25.0 76.7 (0.70)

75 30 5 50.0 78.9 (1.06)

75 45 3 50.0 81.2 (0.57)

150 30 2 25.0 25.8 (1.49)

150 30 3 25.0 53.7 (1.39)

150 30 5 50.0 55.7 (2.22)

150 45 3 50.0 33.3 (2.00)

225 30 2 25.0 14.3 (1.72)

225 30 3 25.0 45.2 (1.65)

225 30 5 50.0 46.5 (2.68)

225 45 3 50.0 14.8 (2.56)

See Appendix II, Table 2 (online) for an expanded version of this table.
aTarget stop day and start day of interventions refer to days postrelease,
with day of release being day 1.
bThe number of persons infected per infectious person is the transmission
rate.
cQuarantine refers to removal of infectious persons only, starting on the
first day of overt symptoms (i.e., rash). Rates are the minimum rates
needed, when combined with vaccination, to ensure that there is zero
transmission by the target date. At a 25% daily removal rate of infectious
persons, a cohort of all those entering their first day of overt symptoms is
entirely removed in 17 days (18-20 days postincubation) after day 1 of
overt symptoms, with 90% removed in 9 days. With 50% daily removal of
infectious persons, a cohort of all those entering the first day of overt
symptoms is entirely removed in 7 days (8 to 10 days postincubation) after
day 1 of overt symptoms, with 90% removed in 4 days.
dVaccination assumed to reduce the transmission rate by a given
percentage (e.g., 25% reduction results in transmission declining from 3.0
to 2.25 persons infected per infectious person). Percentages are the
minimum percentage reduction in the assumed rate of transmission
needed, when combined with quarantine, to ensure zero transmission by
the target date. The resultant transmission rate, after reduction, is in
parentheses.
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first, what percentage of the population is truly susceptible to
smallpox and could become infectious to others; and second,
how would these susceptible persons interact with those
infected?8

Vaccination Alone or Combined with Quarantine?
The results from the model demonstrate that it is theoreti-

cally possible to completely halt the spread of smallpox by
quarantine only (Figure 4; Tables 2,3). The level of quarantine
needed, however, may prove impossible to enforce. On the
other hand, historically, mass vaccinations alone did not
always stop the transmission of smallpox (7,8). Thus, relying
solely on either intervention would appear to be unwise, so that
a combination of vaccination and quarantine should beused.

Using quarantine has the benefit of lowering the level of
effective vaccination needed to stop transmission (Tables 2,3).
Furthermore, compared with a vaccination-only intervention,
a combined quarantine and vaccination campaign will pro-
duce fewer total cases and stop transmission sooner (Table 3).
Depending on how vaccination is done, requiring a lower level

of effective vaccination could result in fewer vaccinations
being administered. Given that the smallpox vaccine occa-
sionally has adverse effects, including death (7,8), any
method that reduces the number of vaccinations needed to
halt transmission should be examined for possible inclusion
into a response plan.

Doses To Be Stockpiled
The number of estimated doses that must be stockpiled

ranges from the 5th percentile estimate of approximately
5,000 doses (assuming approximately 1,500 cases) to a 95th
percentile of almost 30 million (assuming approximately
4,200 cases). The latter estimate was generated by assuming
an average rate of transmission of three persons infected per
infectious person. This assumed level of transmission is well
above historical average rates of transmission (Appendix I,
available at URL: http://www.cdc.gov/ncidod/eid/vol7no6/
meltzer_appendix1.htm). Thus, allowing for factors such as
vaccine wastage, stockpiling 40 million doses as recom-
mended by Henderson et al. (5) should be adequate.

Table 4. Doses of vaccine used to control outbreaks of smallpox: Numbers vaccinated per confirmed case from a variety of outbreaks, 1961-1973

Site Year
Population

% susceptible No. of cases
Total 

vaccinated
Doses used 

per case Source

Saiwara village, India 1968 8 40 1,358a 34 27

Nathawala village, India 1969 12 12 450b 38 27

Bawku, Ghana 1967 n/a 66 165,449 2,507 28

Rural Afghanistan 1969 n/ac 6 508d 85 29

Nuatja subdivision, Togo 1969 n/a 6 10,818 1,803 30

Anéono subdivision, Togo 1969 40 47 294,274 6,261 30

Yugoslavia 1972 n/a 175 18 million 102,857 31

Utinga City, Brazil 1969 57 246 2,188 9 32

Botswana 1973 17-27e 30 50,000 1,667 33

London, UK 1961 n/a 3 62,000 20,667 34

West Bromwich, UK 1961 n/a 2 “limited”f n/a 34

Bradford, UK 1961 n/a 14 250,000 17,857 34

Birmingham, UK 1962 n/a 1 “limited”f n/a 34

Cardiff, UK 1962 n/a 47 900,000 19,148 34

Mean 14,411

Median 2,155

95th perct.g 7,001

90th perct.g 4,329

10th perct.g 3.5

aThis population includes 1,069 revaccinations, accounting for 79% of total vaccinations.
bThis population includes 323 revaccinations, accounting for 72% of total vaccinations.
cThe source did not provide population-based estimates of preoutbreak vaccination coverage (as determined by a vaccine scar survey). However, in the four
households that contained the six cases, of the 18 family members present at the time of the investigation, 6 (33%) had evidence of preoutbreak vaccination or
variolation.
dThis number excludes some children who had been vaccinated 15 days before the outbreak investigation.
eIn the sample (n=68,065), susceptibility varied by age. Smallpox vaccination scars were noted among 76% of those <5 years of age, 83% of those 6 to 14 years
of age, and 79% of those >15 years of age.
fThe health authorities for West Midlands, which dealt with two of the importations (West Bromwich, Birmingham, UK), limited vacc inations to “...established
contacts and medical and ancillary staffs placed at definite risk...” (34). Thus, although the source provides no estimates of the number vaccinated, the
description of those targeted for vaccination can lead to the hypothesis that <1,000 persons were vaccinated per case.
gThe percentiles were calculated by fitting the data to a Gamma distribution (values of parameters: α = 0.25; ß = 58,400). The chi-square value of the fit of the
data to the distribution was 20.57 (p>0.01), the Kolmogorov-Smirnov test value was 0.1262 (p>0.15), and the Anderson-Darling tes t statistic was 0.3147
(p>0.15).

8Although there are some historical data regarding how infected persons interacted and infected others, all such data were collected when cir-
cumstances differed from those of today’s societies, particularly with regard to travel and spread of information. Although air and other modes
of mass travel were common before smallpox was eradicated, the numbers of travelers and the total miles traveled have vastly increased in
the past 30 years. Similarly, although mass media were well known and used in the 1960s and 1970s, more outlets are available to spread
information than ever before. It is unknown how these and other changes could affect the spread of smallpox.
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Because the pool of smallpox-susceptible persons is now
very large, the rate of transmission may be much higher
than historical averages, resulting in more cases of smallpox
and the need for more vaccine doses stockpiled. For example,
if a transmission rate of 5 is assumed and large-scale inter-
ventions are started on day 45 postrelease, the 95th percen-
tile of doses that should be stockpiled is 140 million doses
(mean 43 million doses; Tables 2,4). Similar estimates are
obtained if it is assumed that 1,000 persons are initially
infected (Tables 2, 4). Further supporting the argument for
stockpiling >40 million doses is the idea that there would be
enormous public demand for vaccination in the event of an
outbreak.

Stockpiling a large number of doses of smallpox vaccine
has three major problems. Building a stockpile of 140 million
doses might leave public health officials without needed
resources to prepare for and implement other interventions,
such as quarantine and public education. Second, a large
stockpile poses the problem of deciding how to use it. Invest-
ing in such a resource may invite the conclusion that the
only suitable response to a deliberate release of smallpox
would be a mass vaccination campaign, using as much of the
stockpile as possible. An enormous logistical problem would
be associated with rapidly vaccinating 140 million persons.
Assuming 10 minutes per person vaccinated (excluding
patient waiting time), 23 million person-hours would be
required to vaccinate 140 million people. In 1947 in New
York City it took approximately 1 week to vaccinate 6 mil-
lion people in response to an outbreak with eight cases (1).
An additional problem with trying to mass-immunize >100
million people is that, if a transmission rate of 5 is assumed,
disease spread might be so rapid as to “outrun” any mass
vaccination attempt (Tables 1,2). The third problem associ-
ated with a large stockpile of smallpox vaccine is that a large
number of side effects would be generated, including need for
treatment with vaccinia immunoglobulin and deaths as a
result of adverse reactions (26). Between the demands of vac-
cination and treatment of side effects, the health-care sys-
tem would be overburdened, to the detriment of treatment
for any other disease or medical emergency. 

Policy Implications
The four most important policy implications from the

model results are 1) Delay in intervention will be costly, dra-
matically increasing the total number of cases; 2) Postre-
lease intervention should be a combination of quarantine
and vaccination; 3) Planning requires not only an apprecia-
tion of how many persons may be infected initially, but also
an understanding of the likely rate of transmission; and 4) a
stockpile of approximately 40 million doses of vaccine should
be adequate.

Beyond stockpiling, adequate planning, preparation,
and practice must be carried out (36). Such preparation must
include training health-care workers to recognize a case of
smallpox and what to do if a case is diagnosed. Public health
authorities and policymakers need to make detailed plans
that fully describe how persons will be quarantined and how
quarantine will be enforced. The successful enforcement of
quarantine requires political will, public acceptance, and
group discipline. Thus, a large part of the preparation for a
public health response to smallpox as a bioterrorist weapon
must involve educating policymakers and the public as to

why quarantine is needed and why relying solely on mass
immunizations may not be the magic bullet that some might
hope.

Dr. Meltzer is senior health economist, National Center for
Infectious Diseases, Centers for Disease Control and Prevention.
His research interests focus on assessing the economics of public
health interventions such as oral raccoon rabies vaccine, Lyme dis-
ease vaccine, influenza vaccination among healthy working adults,
and the economics of planning, preparing and practicing for the next
influenza pandemic. He uses a variety of research methodologies,
including Monte Carlo models, Markov models, contingent valuation
(willingness-to-pay) surveys, and nonmonetary units such as Dis-
ability Adjusted Life Years.
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	Yeara
	Location (ref)
	N
	Population
	Trichomonas
	prevalence (%)
	Diagnostic method(s)
	New York (18)
	213
	Incarcerated
	47
	culture
	St. Louis (19)
	143
	HIV clinic
	11
	wet mount
	4 cities (20)
	1,285
	HIV infected and high risk
	11
	wet mount
	New York (23)
	1,404
	Inner city
	20
	not provided
	Baltimore (24)
	279
	STD clinic
	26
	culture
	New York (37)
	677
	HIV and community clinics
	22
	culture
	Southeastern city (21)
	650
	Adolescent health clinics
	3
	culture
	5 cities (27)
	13,816
	Antepartum women
	13
	culture
	New York (22)
	372
	Inner city
	27
	culture
	New York (25)
	1,401
	OB/GYN clinics
	20
	culture
	Baltimore (26)
	3,005
	Cancer screening
	25
	wet mount
	Denver (36)
	5,681b
	STD clinic
	11
	wet mount
	Birmingham (28)
	818
	STD clinic
	21
	wet mount
	San Francisco (29)
	171
	Adolescent clinic
	11
	wet mount/PAPc
	Baltimore (30)
	115
	Pregnant adolescents
	34
	culture
	Seattle (31)
	80
	Juvenile detention
	48
	wet mount
	Providence (32)
	500
	Student health center
	3
	culture
	Storrs (33)
	383
	GYN clinic
	19
	wet mount/PAP
	Oregon (34)
	338
	State school/adolescents
	35
	Gram stain
	Philadelphia (35)
	27,392
	Cancer screening
	16
	PAP
	City (ref)
	Overall Tricho- monas preva- lence (%)
	Tricho- monas prevalence in blacks
	Tricho- monas prevalence in non- blacks
	ORa
	47
	51
	35
	1.6
	11
	28
	9
	3.7
	13
	23
	6
	4.4
	16
	30
	11
	3.6
	27
	population 92% black
	20
	population 83% black
	26
	population 96% black
	20
	population 90% black
	25
	population 100% black
	21
	population 89% black
	3
	population 87% black
	City (ref)
	Trichomonas
	(%)
	Chlamydia
	(%)
	Gonorrhea (%)
	New York (18)
	51
	9
	5
	New York (22)
	27
	7
	2
	New York (23)
	20
	15
	no data
	Baltimore (24)
	26
	21
	14
	New York (37)
	22
	6
	1
	San Francisco (29)
	28
	25
	no data
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	Healthy Nova
	Scotians (%)
	N = 511
	Ambulatory
	pneumonia (%)
	N = 121
	CAP requiring
	hospitalization (%)
	N = 255
	0.19
	1.6
	0.7
	0
	0
	0.39
	0.39
	1.6
	0.7
	0.39
	0
	4.3
	0.1
	0
	0.39
	1.36
	0
	1.56
	0.39
	1.6
	0.7
	0
	0
	0.7
	0.97
	1.6
	0.39
	0
	1.6
	2.35
	0
	0
	2.35
	0
	0.82
	0
	Age
	Sex
	Temp
	Symptoms
	LOS
	WBC
	Antibiotics
	Comments
	Antibody
	titer
	Co-
	pathogens
	93
	M
	38.3
	nausea,
	myalgia,
	shortness
	of breath,
	nonproductive
	cough,
	chest pain
	8
	18.2
	erythromycin;
	cefuroxime
	admitted
	from a
	nursing
	home,
	sustained a
	non q wave
	myocardial
	infarction
	IgG
	1:400
	and
	1:400
	None
	87
	F
	39.0
	nonproductive
	cough,
	chills
	11
	8.7
	erythromycin;
	cefuroxime
	IgG 0
	and
	1:100
	None
	54
	M
	38.4
	abdominal
	pain, nonproductive
	cough,
	myalgia,
	chest pain
	17
	2.2
	erythromycin;
	ceftazidime,
	ribavirin
	bone marrow
	transplant;
	required
	intensive
	care unit
	treatment
	IgM 25
	and 0;
	IgG 200
	and
	1:400
	RSV
	63
	M
	36.8
	shortness
	of breath,
	chills
	10
	20.8
	erythromycin,
	cefuroxime
	IgM
	1:200
	and
	1:200
	Strepto-coccus
	pneumoniae
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