Page 1 of 4

Mr. Kenneth A. Kolb

Phone: 713-975-0547 Fax: 713-975-6338 E-mail: kenneth.kolb@ge.com URL: http://www.gesening.com

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

GE Infrastructure Sensing 10311 Westpark Drive Houston, TX 77042-5312

National Voluntary Laboratory Accreditation Program

CALIBRATION LABORATORIES

NVLAP Code: 20/A01

MECHANICAL

NVLAP Code: 20/M08 Mass

Calibration of Primary Piston Gauge Masses

Range	Best Uncertainty (±)	Remarks		
	Relative to Indicated Value ^{note 1}			
1 mg to 17 kg	$5.0 \ge 10^{-6}$ but not less than 0.5 mg	Substitution – Mechanical		
1 mg to 1.2 kg	$5.0 \ge 10^{-6}$ but not less than 0.5 mg	Substitution – Electronic		
Calibration of Secondary Piston Gauge Masses				
1 mg to 8.0 kg	2.0×10^{-5} but not less than 0.5 mg	Substitution – Electronic		
1 mg to 1.2 kg	$2.0 \ge 10^{-5}$ but not less than 0.5 mg	Direct Reading - Electronic		
1.2 kg to 8 kg	2.0×10^{-5} but not less than 43 mg	Direct Reading – Electronic		

2009-01-01 through 2009-12-31

Effective dates

Sally S. Buce

For the National Institute of Standards and Technology

Compliant

NVLAP LAB CODE 200491-0

ANSI/NCSL Z540-1-1994; Part 1

National Voluntary Laboratory Accreditation Program

NVLAP LAB CODE 200491-0

Remarks

CALIBRATION LABORATORIES

THERMODYNAMICS

NVLAP Code: 20/T05 Pressure

Pneumatic Pressure using Primary Piston Gauge^{note 2}

<i>Range</i> -100 kPa to -1.38 kPa	Best Uncertainty (±) of Reading ^{note 1} $1.0 \ge 10^{-5}$ but not less than 0.07 Pa	<i>Remarks</i> Negative Gauge Mode		
-16 kPa to 16 kPa	$1.1 \ge 10^{-5}$ but not less than 0.034 Pa	Differential Mode		
1.38 kPa to 1.4 MPa 1.4 MPa to 7 MPa	$1.0 \ge 10^{-5}$ but not less than 0.07 Pa 2.6 $\ge 10^{-5}$ but not less than 2.8 Pa	Gauge Mode ^{note 3} Gauge Mode ^{note 3}		
7 MPa to 21 MPa 21 MPa to 104 MPa	3.0 x 10 ⁻⁵ 3.5 x 10 ⁻⁵	Gauge Mode Gauge Mode		
Proumatic Effective Area Determination using Primary Piston Gauge note 2				

Pneumatic Effective Area Determination using Primary Piston Gauge^{note 2}

Range	Best Uncertainty (±) of Reading notes 1, 6
1.38 kPa to 345 kPa	8.8 x 10 ⁻⁶
11.72 kPa to 1.4 MPa	8.3 x 10 ⁻⁶
14 kPa to 7 MPa	2.6 x 10 ⁻⁵
700 kPa to 21 MPa	2.9 x 10 ⁻⁵
1.17 MPa to 104 MPa	3.37 x 10 ⁻⁵

Pneumatic Pressure using Precision Transducer^{note 2}

RangeBest Uncertainty (\pm) of Reading note 1Remarks0 Pa to 133 Pa0.133 PaAbsolute Mode-16 kPa to 16 kPa 5.0×10^{-5} but not less than 0.035 PaDifferential Mode-100 kPa to 17 MPa 6.5×10^{-5} but not less than 0.22 PaGauge Mode note 4

Pneumatic Effective Area Determination using Precision Transducer20 Pa to 17 MPa7.2 x 10-5 but not less than 0.05 Pa

2009-01-01 through 2009-12-31

Effective dates

Sally S. Bu

For the National Institute of Standards and Technology

National Voluntary Laboratory Accreditation Program

CALIBRATION LABORATORIES

NVLAP LAB CODE 200491-0

Pneumatic Deadweight Tester Output Pressure Conformance using Precision Transducer note 2

Range	Best Uncertainty (±) of Reading notes 1, 7	Remarks
20 Pa to 17 MPa	$7.5 \ge 10^{-5}$ but not less than 0.053 Pa	

Hydraulic Pressure using Primary Piston Gauge^{note 2}

Range	Best Uncertainty (±) of Reading notes 1, 5	Remarks
50 kPa to 7 MPa	$2.5 \ge 10^{-5}$ but not less than 10 Pa	Gauge Mode
7 MPa to 140 MPa	$3.5 \ge 10^{-5}$	Gauge Mode
14 MPa to 280 MPa	$7.5 \ge 10^{-5}$	Gauge Mode
280 MPa to 500 MPa	$1.0 \ge 10^{-4}$	Gauge Mode

Hydraulic Effective Area Determination using Primary Piston Gauge note 2

Range	Best Uncertainty (±) of Reading note 1	Remarks
50 kPa to 7 MPa	2.31 x 10 ⁻⁵	
7 MPa to 140 MPa	$3.34 \ge 10^{-5}$	
140 MPa to 280 MPa	7.29 x 10 ⁻⁵	
280 MPa to 500 MPa	9.80 x 10 ⁻⁵	

Hydraulic Effective Area Determination using Secondary Piston Gauge note 2

70 kPa to 140 MPa

Hydraulic Deadweight Tester Output Pressure Conformance using Secondary Piston Gauge note 2

7.2 x 10⁻⁵

70 kPa to 140 MPa

 $7.5 \ge 10^{-5}$ but not less than 50 Pa

NVLAP Code: 20/T07 Resistance Thermometry

Range in °C 0-100

Best Uncertainty (±)in °C ^{note 1} 0.03

Remarks Comparison to SPRT

2009-01-01 through 2009-12-31

Effective dates

Sally S. Buce

For the National Institute of Standards and Technology

National Voluntary Laboratory Accreditation Program

CALIBRATION LABORATORIES

NVLAP LAB CODE 200491-0

- 1. Represents an expanded uncertainty using a coverage factor, k = 2, at an approximate level of confidence of 95 %.
- 2. This capability includes on-site calibration service, as limited by influences of operating environment.
- 3. For absolute mode, uncertainties increase by 1.33E + 00 Pa, combined in quadrature with stated level.
- 4. For absolute mode, uncertainties increase by 1.88E + 00 Pa, combined in quadrature with stated level.
- 5. For absolute mode, uncertainties increase by 1.31E + 01 Pa, combined in quadrature with stated level.
- 6. Calibration process may include the use of transducers to measure small differential pressures.
- 7. Conformance evaluation of Deadweight Tester output pressure compared to indicated pressure.

2009-01-01 through 2009-12-31

Effective dates

Sally S. Bu

For the National Institute of Standards and Technology