Chapter E ## Gas:Oil Ratios for Source Rocks Containing Type-I, -II, -IIS, and -III Kerogens as Determined by Hydrous Pyrolysis By Michael D. Lewan and Allison A. Henry Prepared in cooperation with the U.S. Department of Energy—National Energy Technology Laboratory, the Gas Technology Institute, and Advanced Resources International ## **Contents** | | duction | 1 | |------|--|---| | | nowledgments | 1 | | Met | hods | 1 | | | Source Rock Samples | 1 | | | Hydrous-Pyrolysis Experiments | 1 | | | Gas Volume Calculations | 2 | | | Oil Volume Calculations | 2 | | | Gas-to-Oil Ratio (GOR) Calculations | 3 | | | Results | 3 | | Disc | ussion | 5 | | | Amounts of Gas Generated | 5 | | | Gas:Oil Ratios (GOR) | 6 | | Cond | clusions | 8 | | Refe | rences Cited | 9 | | | | | | Fig | jures | | | 1–4. | Graphs showing: | | | | 1. Amount of gas generated from source rocks with different kerogen types | | | | subjected to hydrous-pyrolysis temperatures between 270° and 365°C | | | | for 72 hours | 5 | | | 2. Gas:oil ratios (GOR) for source rocks with different kerogen types | | | | subjected to hydrous-pyrolysis temperatures between 270° and 365°C | | | | for 72 hours | 6 | | | 3. Comparison of gas:oil ratios (GOR) for source rocks with different kerogen types subjected to hydrous- and anhydrous-pyrolysis temperatures | | | | between 270° and 365°C for 72 hours | 7 | | | 4. Comparison of gas:oil ratios (GOR) for aliquots of a sample of Woodford | | | | Shale (Type-II) subjected to hydrous and anhydrous pyrolysis at 300°, | | | | 330°, and 350°C for 72 hours | 8 | | | | | | | | | | Tal | bles | | | Ia | nic3 | | | | | | | | escription of immature source rocks subjected to hydrous pyrolysis | 2 | | | ydrous-pyrolysis experimental numbers and conditions considered in | | | | nis study | 3 | | | olume of hydrocarbon gas (C_1 – C_5) generated and calculated GOR for | | | S | ource rocks subjected to hydrous-pyrolysis experiments for 72 hours | 4 | # Gas:Oil Ratios for Source Rocks Containing Type-I, -II, -IIS, and -III Kerogens as Determined by Hydrous Pyrolysis By Michael D. Lewan¹ and Allison A. Henry² #### Introduction Predicting the gas:oil ratio (GOR) of a petroleum play or prospect is important in evaluating the economics of an exploration venture and in assessing petroleum resources. Estimates of the GOR of prospects in well-drilled areas can typically be determined with analogs from neighboring production in the same play. In poorly drilled areas, GOR of prospects may be estimated by using analogs from more distant well-drilled plays that have similar geologic settings or by use of models based on oil and gas generation from potential source rocks (Mackenzie and Quigley, 1988; Kuo and Michael, 1994, among others). GOR have also been determined by hydrous pyrolysis of potential source rocks in an exploration play or petroleum system (Noble and others, 1991; Lillis and others, 1999, among others). Unlike open- or closed-system anhydrous pyrolysis, hydrous pyrolysis generates an expelled oil that is physically and chemically similar to natural crude oil (Lewan, 1993a; 1997). As a result, the quantity of this expelled oil and the gas generated allows one to calculate GOR of a particular source rock at hydrous-pyrolysis temperatures representing different stages of oil generation. The objectives of this report are to present gas:oil ratios (GOR) from hydrous-pyrolysis experiments conducted on immature source rocks and report how they are affected by kerogen type and thermal maturity during petroleum generation. The source rocks used in this study contain the major kerogen types, including Type-I, -II, -IIS, and -III. Thermally immature samples were used to provide a complete understanding of changes in GOR from incipient petroleum generation through peak petroleum generation. #### **Acknowledgments** This study was funded in part by the U.S. Department of Energy (National Energy Technology Laboratory), Morgantown, W.Va., contract No. DE-AT26-98FT40032), Gas Research Institute. Chicago, Ill., as a Cooperative Research and Development Agreement with Advanced Resources International, Arlington, Va., and the U.S. Geological Survey, Denver, Colo. The authors appreciate the helpful reviews of this report made by Paul Lillis, Thaddeus Dyman, and Katharine Varnes. The authors also acknowledge the collaborative experimental work of Tim Ruble (CSIRO, Australia), J. Guthrie (Mobil, Dallas), Eli Tannenbaum (Kimron, Israel), Hasim Ramini (NRA, Jordan), and Robert Dias (The Pennsylvania State University), which provided the basic gas data used in this report. #### Methods #### **Source Rock Samples** Experimental data were available on five immature source rocks, described in table 1. The major kerogen types in these source rocks include Type-I, -II, -IIS, and -III. Collaborators who collected and pyrolyzed aliquots of these samples are also referenced in table 1. With respect to vitrinite reflectance (%Ro), all these samples have initial random mean %Ro values equal to or less than 0.5 or atomic H/C and O/C ratios indicative of precatagenesis (that is, diagenesis) according to Tissot and Welte (1984, fig. II.5.1, p. 161). #### **Hydrous-Pyrolysis Experiments** Complete details of hydrous-pyrolysis experiments are given by Lewan (1993a). Briefly, the experiments consist of isothermally heating several hundred grams of gravel-sized immature source rock in the presence of liquid water in 1-L stainless-steel reactors at subcritical-water temperatures (<374°C) for several days (2–10 days). After the experiment is completed and allowed to cool to room temperatures (20°–25°C), the gas pressure and temperature are recorded and a gas sample is collected in 30-cm³ stainless-steel cylinders. Gas compositions are determined by mass spectometry according to an enhanced version of the ASTM D2650-88 method. The remaining gas is vented and the reactor is opened to quantitatively collect the expelled oil, which floats on the water surface above the submerged source ^{1&}lt;mlewan@usgs.gov> ² Current address: The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 scripps.edu> **Table 1.** Description of immature source rocks subjected to hydrous pyrolysis. [Fm., Formation; Sh., Shale; Ls., Limestone; Gp., Group] | Kerogen type | Type-I | Type-II | Type-IIS | Type-IIS | Type-III | |----------------|--------------------|----------------------|-------------------------|---------------------|--------------------------------------| | Rock unit | Green River Fm. | New Albany Sh. | Ghareb Ls. | Ghareb Ls. | Wilcox Gp. | | Sub-rock unit | mahogany shale | Clegg Creek Mbr. | "oil shale" | "oil shale" | Calvert Bluff Fm. | | Geologic age | Eocene | Mississippian | Cretaceous | Cretaceous | Paleocene | | Sample No | 930923-8 | 931026-3 | 930616-9 | 930608-6 | WX-3 | | Location | Utah | Indiana | Israel | Jordan | Texas | | Basin | Uinta | Illinois | Dead Sea | Dead Sea | Gulf Coast | | TOC (wt. %) | 15.23 | 14.34 | 14.14 | 16.63 | 61.53 | | Lithology | marlstone | claystone | limestone | limestone | lignite | | Collaborators* | Ruble ¹ | Guthrie ² | Tannenbaum ³ | Ramini ³ | Dias ⁴ ; IFP ⁵ | ^{*}Collaborator references are: 1, Ruble and others (1994); 2, Lewan and others (1995); 3, Lewan and others (1997); and 4, Dias and others (1997); 5, Behar and Lorant (work in progress). rock. All the experiments considered in this study were conducted for 72 hours at temperatures ranging from 160° to 365°C (table 2). These experimental conditions simulate thermal maturities associated with oil generation. Atomic H/C and O/C ratios of kerogens at temperatures equal to or less than 355°C for 72 hours indicate that the samples have only been subjected to catagenesis according to Tissot and Welte (1984, fig. II.5.1, p. 161). Low-rank coals (<0.5 %Ro) subjected to hydrous pyrolysis at 355°C for 72 hours obtain random mean vitrinite reflectance values of 1.55 %Ro (Lewan, 1993b). #### **Gas Volume Calculations** The first step in calculating a gas volume is to determine the number of moles of hydrocarbon gas generated, which consists of methane, ethane, propane, n-butane, i-butane, n-pentane, and i-pentane. The number of moles of total gas at the end of each experiment, n_{tot} , was calculated by the ideal gas law: $$n_{\text{tot}} = (PV)/(RT) \tag{1}$$ where P is the measured cool-down pressure, T is the measured cool-down temperature, V is the head-space gas volume, and R is the ideal gas constant. The number of moles of each of the component hydrocarbon gases is calculated using gas analyses, which are reported in mole percent of the total gas. The number of moles of each hydrocarbon gas is summed to give the number of moles of hydrocarbon gas generated in the experiment, n_{HC} . Assuming that these gases behaved ideally at room temperatures, the volume of hydrocarbon gas at 14.7 psi and 288.71 K, V_{HCgas} , was determined by rearranging the ideal gas equation: $$V_{\rm HC} = (n_{\rm HC}RT)/P \tag{2}$$ where *P* is 14.7 psia, *T* is 288.71 K, $n_{\text{HC}} = n_{\text{methane}} + n_{\text{ethane}} + n_{\text{propane}} + n_{n\text{-butane}} + n_{i\text{-butane}} + n_{n\text{-pentane}} + n_{i\text{-pentane}}$, and *R* is 1,206.00 (cm³•psi)/(mol•K). Equation 2 gives the volume in cubic centimeters. This quantity is multiplied by 3.5315×10^{-5} to give the volume of hydrocarbon gas in standard cubic feet (scf): $$V_{\text{HC}}(\text{ft}^3) = V_{\text{HC}}(\text{cm}^3) \times 3.5315 \times 10^{-5}$$ (3) In this report, gas volumes are given in units of mcf/kg TOC (for example, table 3 and fig. 1). For clarification, mcf is millistandard cubic feet (scf \times 10⁻³) and kg TOC is the mass of total organic carbon (TOC) in the original unheated sample. #### **Oil Volume Calculations** The volume of oil generated in each experiment was calculated by dividing the total mass of oil in grams, m_{oil} , by its density in grams per cubic centimeter, d_{oil} : $$V_{\text{oil}} \text{ (cm}^3\text{)} = (m_{\text{oil}}) / (d_{\text{oil}})$$ (4) The resulting number of cubic centimeters of oil is divided by 158.983 to convert the volume of oil to barrels: $$V_{\text{oil}} \text{ (bbl)} = V_{\text{oil}} \text{ (cm}^3) / 158,983$$ (5) Densities of all the expelled oils $(d_{\rm oil})$ generated by hydrous pyrolysis were not determined, but typically their API gravities range between 25° and 42°, which equates to densities of 0.904 and 0.816 g/cm³, respectively. For this study, a density of 0.876 g/cm³ (30.0° API gravity) was used to calculate volumes for all the oils generated by hydrous pyrolysis. #### Gas-to-Oil Ratio (GOR) Calculations GOR in scf/bbl was calculated by dividing the volume of hydrocarbon gas by the volume of oil generated in the experiment. $$GOR (ft^3/bbl) = V_{HC} (ft^3) / V_{oil} (bbl)$$ (6) A sensitivity test was conducted to evaluate the effect a range of API gravities between 25° and 42° had on calculated GOR. The average difference in GOR calculated with densities of 0.816 and 0.904 g/cm³ for all the experiments considered in this study is 84±57 scf/bbl. This difference in GOR indicates that the use of a constant oil density of 0.876 g/cm³ (30.0°API gravity) has no significant effect on the calculated GOR presented in this study. As indicated in table 3, GOR is only calculated for experiments in which an expelled oil is generated. Therefore, no GOR are calculated at temperatures below 270°C. #### Results The amount of hydrocarbon gas generated from the source rocks containing the different kerogen types is given in table 3. Figure 1 shows an exponential increase in hydrocarbon gas generated with increasing experimental temperature for all the source rocks. The two source rocks containing Type-IIS kerogen generate the most hydrocarbon gas, which at 350°C is more than twice that generated by the Type-III kerogen in the lignite (table 3). Source rocks containing Type-I and -II kerogens generate similar amounts of hydrocarbon gases, which at 350°C are slightly less than that generated by the Type-IIS kerogens but nearly twice that generated by the Type-III kerogen in the lignite (table 3). The GOR for the source rocks containing the different kerogen types are given in table 3. Figure 2 shows a curvilinear decrease in GOR with increasing experimental temperature for all the source rocks, with the exception of the slight increase at **Table 2.** Hydrous-pyrolysis experimental numbers and conditions considered in this study. [All experiments were conducted for 72 hours. NE, no experiment was conducted at this temperature for 72 hours] | | Experiment (HP-) Number Designation | | | | | | | |------------------|-------------------------------------|---------------------|----------------------|----------------------|------------------|--|--| | Temperature (°C) | Type-I
930923-8 | Type-II
931026-3 | Type-IIS
930616-9 | Type-IIS
930608-6 | Type-III
WX-3 | | | | 160.0 | 2186 | NE | NE | NE | NE | | | | 180.0 | 2187 | NE | NE | NE | NE | | | | 200.0 | 2188 | NE | 2318 | 2351 | 2399 | | | | 220.0 | 2189 | NE | NE | NE | NE | | | | 240.0 | 2190 | NE | 2319 | 2352 | 2400 | | | | 270.0 | 2109 | 2066 | NE | NE | NE | | | | 280.0 | NE | NE | 2320 | 2353 | 2667 | | | | 285.0 | 2110 | 2073 | NE | NE | NE | | | | 300.0 | 2111 | 2067 | 2326 | 2344 | 2635 | | | | 307.5 | 2114 | NE | NE | NE | NE | | | | 310.1 | NE | 2074 | 2337 | 2354 | 2396 | | | | 315.0 | 2115 | NE | NE | NE | NE | | | | 320.3 | NE | 2068 | 2336 | 2361 | NE | | | | 322.5 | 2116 | NE | NE | NE | NE | | | | 330.0 | 2117 | 2075 | 2335 | 2362 | 2637 | | | | 337.5 | 2118 | NE | NE | NE | NE | | | | 340.2 | NE | 2076 | 2334 | 2363 | NE | | | | 345.0 | 2119 | NE | 2321 | 2368 | NE | | | | 350.0 | 2107 | 2070 | 2317 | 2348 | 2398 | | | | 355.1 | 2108 | 2078 | 2316 | 2347 | NE | | | | 360.3 | 2113 | 2071 | 2327 | 2345 | NE | | | | 365.0 | 2112 | 2085 | 2314 | 2346 | NE | | | **Table 3.** Volume of hydrocarbon gas (C₁–C₅) generated and calculated GOR for source rocks subjected to hydrous-pyrolysis experiments for 72 hours. [NO, no expelled oil generated in experiment; dash (—), no experiment conducted as indicated in table 2. Type-IISi, Israeli Ghareb Limestone; Type-IISj, Jordanian Ghareb Limestone] | Experimental | Type-I | | Type-II | | Type-IISi | | Type-IISj | | Type-III | | |---------------------|------------------------|-------------------------------|------------------------|-------------------------------|------------------------|-------------------------------|------------------------|-------------------------------|------------------------|-------------------------------| | temperature
(°C) | Volume
(mcf/kg TOC) | GOR
(ft ³ /bbl) | | 160.0 | 2.4 | NO | _ | | - | | _ | | _ | _ | | 180.0 | 3.5 | NO | _ | _ | | _ | _ | _ | _ | _ | | 200.0 | 5.1 | NO | _ | _ | 13.3 | NO | 5.0 | NO | 3.3 | NO | | 220.0 | 6.4 | NO | _ | _ | _ | _ | _ | _ | _ | _ | | 240.0 | 13.8 | NO | _ | _ | 55.8 | NO | 21.1 | NO | 22.0 | NO | | 270.0 | 45.0 | NO | 112.9 | 2,381 | | _ | _ | | _ | _ | | 280.0 | _ | _ | _ | _ | 205.1 | 1,262 | 112.5 | 1,513 | 86.4 | 2,831 | | 285.0 | 81.5 | 1,240 | 129.9 | 1,037 | _ | _ | _ | _ | _ | _ | | 300.0 | 161.7 | 801 | 232.6 | 1,522 | 410.8 | 923 | 297.5 | 832 | 162.9 | 2,621 | | 307.5 | 234.6 | 924 | _ | | | | _ | | _ | _ | | 310.1 | | _ | 339.6 | 1,243 | 517.1 | 754 | 422.3 | 639 | 230.2 | 2,393 | | 315.0 | 307.7 | 922 | _ | _ | _ | _ | _ | _ | 252.6 | 1,799 | | 320.3 | _ | _ | 495.5 | 1,122 | 795.4 | 606 | 667.0 | 503 | _ | _ | | 322.5 | 454.4 | 714 | _ | _ | | | _ | _ | _ | _ | | 330.0 | 584.8 | 648 | 726.3 | 978 | 1,033.50 | 559 | 1,004.0 | 481 | 373.4 | 1,325 | | 337.5 | 704.6 | 687 | _ | _ | _ | _ | _ | _ | _ | _ | | 340.2 | _ | _ | 967.0 | 992 | 1,438.60 | 509 | 1,473.5 | 382 | _ | _ | | 345.0 | 1,047.3 | 458 | _ | _ | 1,581.90 | 505 | 1,549.8 | 389 | _ | _ | | 350.0 | 1,340.8 | 401 | 1,374.8 | 935 | 1,861.90 | 527 | 1,865.1 | 408 | 755.8 | 883 | | 355.1 | 1,533.20 | 463 | 1,582.90 | 768 | 2,117.70 | 606 | 2,123.8 | 439 | _ | _ | | 360.3 | 1,710.90 | 434 | 1,850.80 | 944 | 2,409.10 | 716 | 2,349.6 | 522 | _ | _ | | 365.0 | 1,898.30 | 492 | 2,030.90 | 1,006 | 2,688.80 | 757 | 2,942.8 | 630 | _ | _ | Figure 1. Amount of gas generated from source rocks with different kerogen types subjected to hydrous-pyrolysis temperatures between 270° and 365°C for 72 hours; mcf, milli-standard cubic feet. temperatures greater than 340°C for the Type-IIS kerogens. At 350°C for 72 hours, the GOR for the Type-IIS and -I kerogens are similar and range between 401 and 527 scf/bbl (table 3). Type-II and -III kerogens at these same experimental conditions have significantly higher GOR of 935 and 883 scf/bbl, respectively. These two kerogen types also have consistently higher GOR at the lower experimental temperatures with the exception of the Type-II kerogen at 285°C for 72 hours. Overall, GOR during oil generation are between 500 and 1,500 scf/bbl irrespective of kerogen type. #### **Discussion** #### **Amounts of Gas Generated** Type-III kerogen is typically described as a gas-prone source (Hunt, 1996, and references therein). Although Type-III kerogen has the highest GOR during catagenesis (fig. 2), it generates the lowest amounts of hydrocarbon gas compared with the oil-prone kerogens (Type-I, -II, and -IIS). Previously reported hydrous-pyrolysis results have also shown that Type-I and -II kerogens generate significantly more gas than Type-III kerogen (Lewan, 1993c; Hunt, 1996, p. 601, table 16-3). These results are also in general agreement with open-system pyrolysis results as modeled by Behar and others (1997) and the composite-pyrolysis model by Pepper and Corvi (1995). An implication of these results is that oil-prone kerogens can be the source of more hydrocarbon gas during catagenesis than so-called gasprone Type-III kerogen. The only notable contradiction between hydrous pyrolysis and the open-system pyrolysis modeled by Behar and others (1997) is that the Type-IIS kerogen does not generate the highest amount of hydrocarbon gas in the open-system pyrolysis as observed in hydrous pyrolysis (fig. 1). However, the composite-pyrolysis model by Pepper and Corvi (1995) predicts that Type-IIS kerogen generates the most hydrocarbon gas, which is in agreement with the hydrous-pyrolysis results. Hydrous-pyrolysis experiments conducted by Seewald and others (1998) also showed that Type-IIS kerogen in a sample of Monterey Shale generated four times as much hydrocarbon gas as Type-III kerogen in shales of the Smackover and Eutaw Formations. Figure 2. Gas:oil ratios (GOR) for source rocks with different kerogen types subjected to hydrous-pyrolysis temperatures between 270° and 365°C for 72 hours. These experimental observations suggest that petroleum systems that produce high-sulfur oils from Type-IIS kerogen should also have appreciable quantities of hydrocarbon gas associated with them. The exponential increase in hydrocarbon generation with increasing temperature (fig. 1) raises the questions whether this increase in gas generation continues through metagenesis and what is the maximum amount of gas that can be generated from a source rock. Note that the results from the hydrous-pyrolysis experiments represent a closed system in which gas may be generated from the decomposition of kerogen or bitumen retained in a rock, as well as from the expelled oil on the water surface within the closed reactor. Note too that with all these possible sources for gas, there are no obvious breaks in the slope of gas generation that would suggest changes in the source of gas with increasing temperature. Additional experiments are needed to determine the extent of this exponential increase in hydrocarbon gas and the maximum amount of hydrocarbon gas that can be generated from different source materials (kerogen, bitumen, and oil). Clay-mineral catalysis has been suggested to play an important role in petroleum generation (Johns and Shimoyama, 1972; Goldstein, 1983). However, experimental pyrolysis results indicate that the presence of clay minerals has no significant effect on generation of methane and ethane from kerogen (Tannenbaum and Kaplan, 1985). Although results from our study are not unequivocal in indicating that clay-mineral catalysis is not important in gas generation, they do suggest that clay minerals in a source rock are not essential to hydrocarbon gas generation. Specifically, the two source rocks containing Type-IIS kerogen in this study are limestones and generate the most hydrocarbon gas despite their low clay-mineral content. In addition, the claystone with Type-II kerogen does not generate significantly greater amounts of hydrocarbon gas than the marlstone with Type-I kerogen despite the higher clay-mineral content of the former (table 3). #### Gas:Oil Ratios (GOR) Figure 3 shows that hydrous-pyrolysis GOR during oil generation range from 400 to 3,000 scf/bbl. These GOR are within the range of values (<5,000 scf/bbl) prescribed by Larter and Mills (1991) for petroleum expelled from source rocks based on pyrolysis-gas chromatography. England and Mackenzie (1989) referred to these expelled GOR as **Figure 3.** Comparison of gas:oil ratios (GOR) for source rocks with different kerogen types subjected to hydrous- and anhydrous-pyrolysis temperatures between 270° and 365°C for 72 hours. "feedstock" GOR, which they suggested range between 1,000 and 2,500 scf/bbl. Although these GOR ranges are in agreement with those derived from hydrous pyrolysis (table 3, fig. 2), there is a major difference in the way these GOR change with maturation during oil generation. Figure 2 shows that GOR derived from hydrous pyrolysis decrease during oil generation. The more gas-prone Type-III kerogen in the Wilcox Formation lignite decreases from 2,831 scf/bbl at 280°C for 72 hours to 883 scf/bbl at 350°C for 72 hours. The oil-prone Type-I, -II, and -IIS kerogens decrease from 2,381 scf/bbl at 270°C for 72 hours to 401–935 scf/bbl at 350°C for 72 hours. As shown in figure 3, these decreasing hydrous-pyrolysis GOR are contrary to the increasing GOR derived from closed-system anhydrous pyrolysis as reported by Quigley and Mackenzie (1988). These authors stated that their trend is representative of most source rocks irrespective of differences in lithology. These conflicting results can be explained by differences in the products generated by closed-system anhydrous and hydrous pyrolysis. In hydrous pyrolysis, only the expelled oil and generated gas are used in the calculation of the GOR. In anhydrous pyrolysis, no expelled oil is generated, so GOR are calculated with the generated gas and solvent-soluble or thermally labile bitumen in the rock. In addition, Lewan (1997) showed that cross-linking reactions resulting in the formation of pyrobitumen (insoluble char or inert carbon) are more prevalent in closed-system anhydrous pyrolysis than in hydrous pyrolysis. Therefore, the anhydrous-pyrolysis GOR increase with temperature as soluble or labile bitumen decreases and generated gas increases to a greater extent than in hydrous pyrolysis. The contrary GOR trends determined by these two different pyrolysis methods are shown in figure 4, which is based on closed-system anhydrous and hydrous pyrolysis experiments conducted on aliquots of the same sample of Woodford Shale (Lewan, 1997). An important implication of this difference is that GOR derived from hydrous pyrolysis indicate that source rocks in the early stages of oil generation can generate accumulations with GOR between 1,500 and 3,000 scf/bbl. Conversely, GOR derived from closed-system anhydrous pyrolysis indicate that source rocks in the early stages of oil generation can only generate accumulations with GOR less than 1,000 scf/bbl. Although the hydrous-pyrolysis GOR decrease during most of oil generation, this GOR trend is expected to reverse and increase after oil generation. This increase would not be the result of additional oil generation but of additional gas generation from the thermal decomposition of the remaining Figure 4. Comparison of gas:oil ratios (GOR) for aliquots of a sample of Woodford Shale (Type-II) subjected to hydrous and anhydrous pyrolysis at 300°, 330°, and 350°C for 72 hours. Original data reported by Lewan (1997, tables 2 and 6). kerogen and bitumen within the source rock and the expelled oil on the water surface. Source rocks with Type-IIS kerogen show a distinct GOR increase at the higher temperatures (>340°C) that suggests the start of this anticipated increase (fig. 2). An important remaining question is whether the gas generated after oil generation is from the kerogen and bitumen remaining in the source rock or from the expelled oil. Additional hydrous-pyrolysis experiments on oil and mature source rock are needed to resolve this question. #### **Conclusions** GOR for a given source rock can be derived from hydrous-pyrolysis experiments. During oil generation, source rocks with oil-prone kerogen (Type-I, -II, and -IIS) generate hydrous-pyrolysis GOR between 382 and 2,381 scf/bbl. Source rocks with Type-III kerogen generate higher GOR (883–2,831 scf/bbl) than source rocks with more oil-prone kerogen (Type-I, -II, and -IIS) during catagenesis (oil generation). However, the more oil-prone kerogens can generate twice as much hydrocarbon gas per gram of organic carbon as the more gasprone Type-III kerogen. During oil generation, GOR determined by closed-system anhydrous pyrolysis increase with increasing temperature, and GOR determined by hydrous pyrolysis initially decrease with increasing temperature. As a result, hydrous-pyrolysis GOR indicate that petroleum accumulations with GOR between 1,500 and 3,000 scf/bbl can be generated during the early stages of oil generation. Conversely, anhydrous-pyrolysis GOR indicate that petroleum accumulations with GOR greater than 2,000 scf/bbl can only be generated near the end of oil generation. In conjunction with the recommendations made by Henry and Lewan (this volume), more hydrous-pyrolysis experimental work is needed to quantitatively understand the controls on gas generation from source rocks and expelled oil. These experiments should be designed to determine if the exponential increase in hydrocarbon-gas generation and an increase in GOR occur past oil generation and into metagenesis. Experiments should also be designed to evaluate whether this late-stage hydrocarbon gas is generated from organic components retained in the source rock or from expelled oil. #### **References Cited** - Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., and Espitalie, J., 1997, Thermal cracking of kerogen in open and closed systems—Determination of kinetic parameters and stoichiometric coefficients for oil and gas generation: Organic Geochemistry, v. 26, p. 321–339. - Dias, R.F., Freeman, K.H., Lewan, M.D., and Franks, S.G., 1997, Kerogen maturation and the δ^{13} C of organic acids in oil-associated waters: American Association of Petroleum Geologists Annual Meeting, Dallas, Tex., April 6–9, 1997, Program and Abstracts, v. 6, p. A27–A28. - England, W.A., and Mackenzie, A.S., 1989, Some aspects of the organic geochemistry of petroleum fluids: Geologische Rundschau, v. 78, p. 291–303. - Goldstein, T.P., 1983, Geocatalytic reactions in formation and maturation of petroleum: American Association of Petroleum Geologists Bulletin, v. 67, p. 152–159. - Hunt, J.M., 1996, Petroleum geochemistry and geology: New York, Freeman, 743 p. - Johns, W.D., and Shimoyama, A., 1972, Clay minerals and petroleumforming reactions during burial and diagenesis: American Association of Petroleum Geologists Bulletin, v. 56, p. 2160–2167. - Kuo, L.-C., and Michael, G.E., 1994, A multicomponent oil-cracking kinetics model for modeling preservation and composition of reservoired oils: Organic Geochemistry, v. 21, p. 911–925. - Larter, S., and Mills, N., 1991, Phase-controlled molecular fractionations in migrating petroleum charges, in England, W.A., and Fleet, A.J., eds., Petroleum migration: Geological Society Special Publication 59, p. 137–147. - Lewan, M.D., 1993a, Laboratory simulation of petroleum formation— Hydrous pyrolysis, *in* Engel, M., and Macko, S., eds., Organic geochemistry: New York, Plenum, p. 419–442. - ——1993b, Identifying and understanding suppressed vitrinite reflectance through hydrous pyrolysis experiments: Society for Organic Petrology, Abstracts and Program, v. 10, p. 1–3. - ——1993c, Hydrocarbon gas generation from different kerogen types subjected to hydrous pyrolysis: American Chemical Society Book of Abstracts, Geochemistry Division Abstract No. 32. - ———1997, Experiments on the role of water in petroleum formation: Geochimica et Cosmochimica Acta, v. 61, p. 3692–3723. - Lewan, M.D., Comer, J.B., Hamilton-Smith, T., Hausenmuller, N.R., Guthrie, J.M., Hatch, J.R., Gautier, D.L., and Frankie, W.T., 1995, Feasibility study on material-balance assessment of petroleum from the New Albany Shale in the Illinois Basin: U.S. Geological Survey Bulletin 2137, 31 p. - Lewan, M.D., Tannenbaum, E., and Ramini, H., 1997, Petroleum formation in Senonian carbonate source rocks of the Dead Sea basin: American Association of Petroleum Geologists Annual Meeting, Dallas, Tex., April 6–9, 1997, Program and Abstracts, v. 6, p. A69. - Lillis, P.G., Lewan, M.D., Warden, A., Monk, S.M., and King, J.D., 1999, Identification and characterization of oil types and their source rocks, in The oil and gas resource potential of the 1002 Area, Arctic National Wildlife Refuge, Alaska: U.S. Geological Survey Open-File Report 98-34, Chapter OA, p. 0A-1–0A-60. - Mackenzie, A.S., and Quigley, T.M., 1988, Principles of geochemical prospect appraisal: American Association of Petroleum Geologists Bulletin, v. 72, p. 399–415. - Noble, R.A., Wu, C.H., and Atkinson, C.D., 1991, Petroleum generation and migration from Talang Akar coals and shales offshore N.W. Java, Indonesia: Organic Geochemistry, v. 17, p. 363–374. - Pepper, A.S., and Corvi, P.J., 1995, Simple kinetic models of petroleum formation—Part I, Oil and gas generation from kerogen: Marine and Petroleum Geology, v. 12, p. 291–319. - Quigley, T.M., and Mackenzie, A.S., 1988, The temperatures of oil and gas formation in the subsurface: Nature, v. 33, p. 549–552. - Ruble, T.E., Lewan, M.D., and Philp, R.P., 1994, Recognition of distinctive Green River source facies by hydrous pyrolysis—Important implications for basin models, *in* Grimalt, J.O., and Dorronsoro, C., eds., Organic geochemistry, developments and applications to energy, climate, environment, and human history: A.I.G.O.A. Publishers, p. 188–191. - Seewald, J.S., Benitez-Nelson, B.C., and Whelan, J. K., 1998, Laboratory and theoretical constraints on the generation and composition of natural gas: Geochimica et Cosmochimica Acta, v. 62, p. 1599–1617. - Tannenbaum, E., and Kaplan, I.R., 1985, Role of minerals in the thermal alteration of organic matter—I, Generation of gases and condensate under dry conditions: Geochimica et Cosmochimica Acta, v. 49, p. 2589–2604. - Tissot, B.P., and Welte, D.H., 1984, Petroleum formation and occurrence: Berlin, Springer-Verlag, 699 p.