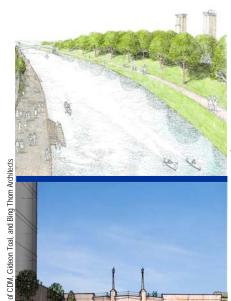


Fort Worth Central City Preliminary Design


Civil/Structural Preliminary Design

Draft Environmental Impact Statement

Appendix C

May 2005

Volume IV – Stability Analysis Samuels Avenue Dam

Contents: Stability Analysis Samuels Avenue Dam

Volume IV

Section 1 Common Geometry

Section 2 Downstream Retaining Walls

at Right: (Grade = 507.0') at Right: (Grade = 517.0') at Right: (Grade = 527.0')

Section 3 Upstream Retaining Walls

at Right: (Grade = 507.0') at Right: (Grade = 517.0') at Right: (Grade = 527.0')

Section 4 Headwall

at Ramp Level (right side) at Basin (right side)

Section 5 Dam Stability Analysis

right end at deep rock left end shallow rock

Section 1 Common Geometry

Common Geometry:

Geometry:

$$E_{head} := 525 \cdot ft$$

$$E_{tail} := 495 \cdot ft$$

$$t_c := 6 \cdot ft$$

$$E_{ramp} := 503.5 \cdot ft$$

$$E_{ukey} = E_{ramp} - t_c - 9.5ft$$

$$E_{ukey} = 488.00 \, ft$$

$$E_{dkey} := E_{ramp} - t_c - \frac{25 \cdot ft}{2} - 14.0 \cdot ft$$
 $E_{dkey} = 471.00 \text{ ft}$

$$E_{dkev} = 471.00 \, ft$$

$$E_{sill} = 495 \cdot ft$$

$$s_{tw_redux} := 0.6$$

(lower bound of specific gravity of tailwater for lateral and gravity loads)

$$E_{tail_redux} := E_{tail} - (1 - s_{tw_redux}) (E_{tail} - E_{sill})$$
 $E_{tail_redux} = 495.0 \, ft$

$$E_{tail\ redux} = 495.0 \, ft$$

$$E_{crest} := 507 \cdot ft$$

$$E_{gate} = 526 - ft$$

$$E_{basin} := 491$$
 ft

$$E_{pier} = 530 \cdot ft$$

$$E_{approach} = 500$$
 ft

$$s_{pier} := 56 \cdot ft$$

(c/c spacing of piers)

$$w_{pier} = 8 \cdot ft$$

(width of pier)

$$slope_{basin} := 2$$

(run per unit rise)

$$L_{basin} := 55 \cdot ft$$

$$t_{basin} := 6 \cdot ft$$

$$FS_{sliding_reqd} := 2.0$$

$$L_{ukey} := 6 \cdot ft$$

$$L_{dkey} := 6$$
 ft

Samuels Ave. Dam

CDM04188

Drain Information:

$$eff_{drain} := 50\%$$

(efficiency of drain)

$$x_{drain} = 55$$
 ft

(position of drain with respect to toe)

Constants:

$$\gamma_c := 150 \cdot pcf$$

$$\gamma_{RCC} = 130 \text{ pcf}$$

$$\gamma_{\rm W} = 62.5 \, \text{pef}$$

$$\gamma_{Su} := 60 \cdot pcf$$

(submerged unti weight of alluvium)

$$k_{Su} := 0.5$$

(coefficient of lateral earth pressure at rest for alluvium)

$$\gamma_{Sd} := 60 \cdot pcf$$

(submerged until weight of alluvium)

$$k_{Sd} = 0.5$$

(coefficient of lateral earth pressure at rest for alluvium)

$$\gamma_{rock} := 130 \cdot pcf$$

(unit weight of rock below dam)

$$\phi_{limestone} := 40 \cdot deg$$

$$\phi_{1s\ inc} := 50 \cdot deg$$

(for a inclined failure planes only)

$$\phi_{shale} := 20 \cdot deg$$

(for horizontal failure planes only)

$$\phi_{RCC \ R\acute{o}ck} := 25 \cdot deg$$

$$\phi_{conc\ rock} := 20$$
 deg

 $\phi_{conc_rock} \coloneqq 20 \quad \text{deg} \quad \text{(consider possibility of shale layers)}$

$$\sigma_{rock pass lat} = 3000 psf$$

$$k\gamma_{rock\ pass\ lat} := 642 \cdot pcf$$

$$FS_{lateral\ brg\ reqd} = 3.0$$

$$FS_{sliding reqd} = 2.0$$

Samuels Ave. Dam

CDM04188

Wall load soil values:

$$\gamma_{\text{fill_eff}} := 65 \cdot \text{pcf}$$

$$\gamma_{\text{fill}} := 130 \cdot \text{pcf}$$

$$\gamma_{\text{sat}} := \gamma_{\text{fill_eff}} + \gamma_{\text{w}}$$

$$\gamma_{\text{sat}} = 127.5 \,\text{pcf}$$

$$k_{0_{fill}} = 0.5$$

$$\phi_{fill} := 32 \cdot \deg$$

$$c_{\text{fill}} = 0 \cdot psf$$

Pre-Definitions:

$$kip = 1000 \cdot 1bf$$

$$ksi = 1000 \cdot psi$$

$$ok \equiv "O\dot{k}"$$

$$psf = \frac{lbf}{ft^2}$$

$$plf \equiv \frac{lbt}{ft}$$

$$pcf = \frac{1bt}{ft^3}$$

$$klf \equiv 1000 \cdot plf$$

$$ksf := \frac{1000 \cdot lbf}{ft^2}$$

Section 2 Downstream Retaining Walls

Samuels Ave. Dam Training wall at right Date: ____

Downstream Training Wall at Right: (Grade = 507.0')

Reference:T:\ST\CALCS\Common geometry.mcd(R)

Geometry:

$$E_{\text{wall}} := 510 \cdot \text{ft}$$

$$E_{fig} = E_{sill}$$

$$E_{ftg} = 495.0 \, ft$$

$$t_{base} := 6 \cdot ft$$

$$E_{bftg} := E_{ftg} - t_{base}$$

$$E_{
m bftg} = 489.0\,{
m ft}$$

$$E_{grade} = 507 \cdot ft$$

$$n := 5$$

$$i := 1 . n$$

 $\Delta_w := 10 \cdot ft$ (maximum height of retained water above water in basin)

$$E_{\text{wheel}_{i}} := E_{\text{grade}} - \frac{\left[E_{\text{grade}} - \left(E_{\text{fig}} + \frac{\Delta_{w}}{2}\right)\right]}{n-1} \cdot (i-1)$$

$$E_{\text{wheel}} = \begin{vmatrix} 505.3 \\ 503.5 \\ 501.8 \\ 500.0 \end{vmatrix} \text{ft}$$

$$E_{\text{wheel}} = \begin{vmatrix} 505.3 \\ 503.5 \\ 501.8 \\ 500.0 \end{vmatrix}$$

507.0

$$E_{\text{wtoe}} := \max \left(\begin{pmatrix} E_{\text{wheel}_i} - \Delta_{\text{w}} \\ E_{\text{fig}} \end{pmatrix} \right)$$

$$E_{\text{wtoe}} = \begin{bmatrix} E_{\text{wtoe}} - E_{\text{wtoe}} -$$

$$h := \min \left[\left[\frac{1.0}{1.5} \cdot 2 \cdot \left(E_{\text{grade}} - E_{\text{ftg}} \right) \right] + E_{\text{grade}} \right]$$

$$\beta := \operatorname{atan} \left(\frac{1.0}{1.5} \right) \quad \beta = 33.7 \text{ deg}$$

$$\beta := \operatorname{atan} \left(\frac{1.0}{1.5} \right) \quad \beta = 33.7 \text{ deg}$$

$$\beta := \operatorname{atan}\left(\frac{1.0}{1.5}\right) \qquad \beta = 33 \ 7 \operatorname{deg}$$

$$h_{\beta} := 527 \cdot ft - E_{grade}$$

$$h_{\beta} = 20.0 \, ft$$

$$t_{\text{w_top}} \coloneqq 1.5 \cdot \text{ft}$$

$$t_{w_bot} := t_{w_top} + \frac{\left(E_{wall} - E_{ftg}\right)}{8}$$

$$t_{w_bot} = 3.38 \, ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:

$$L_{toe} = 10.0 \, \mathrm{ft}$$

$$L_{\text{heel}} = 19.0 \, \text{ft}$$

$$L_{ftg} := L_{toe} + L_{heel}$$

$$L_{\rm ftg} = 29.0 \, \rm ft$$

$$h_{\text{wall}} := E_{\text{wall}} - E_{\text{ftg}}$$

$$h_{\text{wall}} = 15.0 \text{ ft}$$

$$h_{key} = 5.0 \, ft$$

$$L_{\text{key}} := 3 \cdot \text{ft}$$

$$L_{\text{key}} = 3.0 \, \text{ft}$$

$$x_{key} \coloneqq L_{toe} + t_{w_bot} - \frac{L_{key}}{2}$$

$$x_{\text{key}} = 11.9 \, \text{ft}$$

Constants:

$$\gamma_{\rm w} = 62.5 \, \rm pcf$$

Soil parameters:

$$\gamma_{\text{fill eff}} = 65.0 \, \text{pcf}$$

$$\gamma_{\text{sat}} = 127.5 \,\text{pcf}$$

$$\gamma_{\text{fill}} = 130.0 \, \text{pcf}$$

$$k_{0_fill}=0.5$$

$$\phi_{fill} = 32.0 \deg$$

$$k_{OB} := k_{O-fill} \cdot (1 + \sin(\beta))$$

$$k_{OB} = 0.777$$

 $k_{0\beta} := k_{0 \text{ fill}} \cdot (1 + \sin(\beta))$ $k_{0\beta} = 0.777$ (USACE EM 1110-2-2502, Eq. 3-5)

Pre-Definitions:

$$kip = 1000 \cdot lbf$$

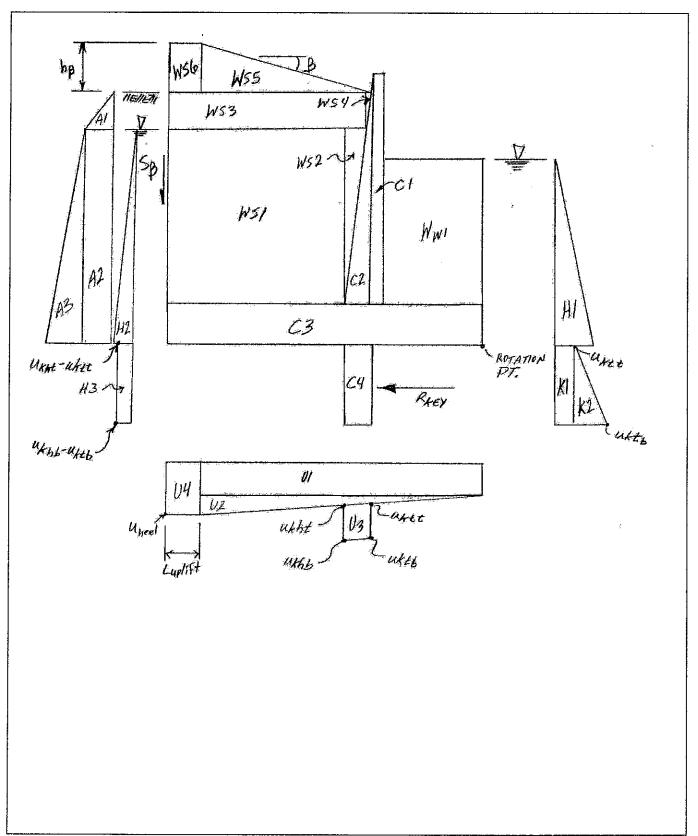
$$ksi \equiv 1000 \cdot psi$$

$$ok \equiv "Ok"$$
 $klf \equiv 1000 \cdot \frac{lbf}{ft}$

$$psf = \frac{lbf}{ft^2}$$

$$plf \equiv \frac{lbf}{ft}$$

$$pcf = \frac{lbf}{ft^3}$$


$$ORIGIN = 1.0$$

(must equal to 1)

Title Samuels Ave. Dam Training wall at right CDM04188

Date: Ву:

Title Samuels Ave. Dam Training wall at right CDM04188

Date: ____ By: _____

Analysis:

Gravity Loads:

$$h_{C_1} := h_{wall}$$

$$h_{C_1} = 15.0 \, ft$$

$$L_{C_1} := t_{w_top}$$

$$L_{C_1} = 1.5 \, \mathrm{ft}$$

$$x_{C_1} := L_{toe} + \frac{L_{C_1}}{2}$$

$$x_{C_1} = 10.8 \, ft$$

$$W_{C_1} := \gamma_c \ h_{C_1} \cdot L_{C_1}$$

$$W_{C_1} = 3.4 \, \text{klf}$$

$$h_{C_2} := h_{C_1}$$

$$h_{C_2} = 15.0 \, ft$$

$$L_{C_2} := t_{w_bot} - t_{w_top}$$

$$L_{C_2} = 1.9 \, ft$$

$$x_{C_2} := L_{toe} + L_{C_1} + \frac{L_{C_2}}{3}$$

$$x_{C_2} = 12.1 \, \text{ft}$$

$$W_{C_2} := \gamma_c \cdot \frac{h_{C_2} \cdot L_{C_2}}{2}$$

$$W_{C_2} = 2.1 \, \text{klf}$$

$$h_{C_3} = t_{base}$$

$$h_{C_3} = 6.0 \, \text{ft}$$

$$L_{C_3} := L_{ftg}$$

$$L_{C_3} = 29.0 \, \text{ft}$$

$$\mathbf{x}_{\mathbf{C}_3} \coloneqq \frac{\mathbf{L}_{\mathbf{C}_3}}{2}$$

$$x_{C_3} = 14.5 \, ft$$

$$W_{C_3} := \gamma_c \cdot h_{C_3} \cdot L_{C_3}$$

$$W_{C_3} = 26.1 \, \text{klf}$$

$$h_{C_4} := h_{key}$$

$$h_{C_4} = 5.0 \, ft$$

$$L_{C_4} = L_{key}$$

$$L_{C_4} = 3.0 \,\mathrm{ft}$$

$$x_{C_4} := x_{key}$$

$$x_{C_4} = 119 \, \text{ft}$$

Samuels Ave. Dam Training wall at right

Date:	
By:	

$$W_{C_{\underline{4}}} \coloneqq \gamma_c \cdot h_{C_{\underline{4}}} \cdot L_{C_{\underline{4}}}$$

$$W_{C_4} = 2.3 \, klf$$

Weight of water at toe:

$$h_{Wl_i} := E_{wtoe_i} - E_{ftg}$$

$$\mathbf{h_{W1}} = \begin{pmatrix} 2.00 \\ 0.25 \\ 0.00 \\ 0.00 \\ 0.00 \end{pmatrix} \mathbf{ft}$$

$$L_{W1} := L_{toe}$$

$$L_{W1} = 10.0 \, ft$$

$$x_{W1} \coloneqq \frac{L_{toe}}{2}$$

$$x_{W1} = 5.0 \, ft$$

$$W_{W1_i} := \gamma_W \cdot h_{W1_i} \cdot L_{W1}$$

$$W_{W1} = \begin{pmatrix} 1.3 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} klf$$

Weight of water/soil at heel:

$$h_{WS1_i} := E_{wheel_i} - E_{ftg}$$

$$h_{WS1} = \begin{pmatrix} 12.00 \\ 10.25 \\ 8.50 \\ 6.75 \\ 5.00 \end{pmatrix} ft$$

$$L_{WS1} := L_{heel} - t_{w_bot} \qquad \qquad L_{WS1} = 15.6 \text{ ft}$$

$$L_{WS1} = 15.6 \, ft$$

$$x_{WS1} := L_{toe} + t_{w_bot} + \frac{L_{WS1}}{2}$$
 $x_{WS1} = 21.2 \, ft$

$$W_{WSl_i} := (\gamma_{sat}) \cdot h_{WSl_i} \cdot L_{WSl}$$

$$W_{WS1} = \begin{pmatrix} 23.9 \\ 20.4 \\ 16.9 \\ 13.4 \\ 10.0 \end{pmatrix} \text{klf}$$

$$h_{WS2_i} := h_{WS1_i}$$

$$L_{WS2_{i}} \coloneqq \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS2_{i}}$$

$$x_{\text{WS2}_i} := L_{\text{toe}} + t_{\text{w_bot}} - \frac{L_{\text{WS2}_i}}{3}$$

$$L_{WS2} = \begin{pmatrix} 1.50 \\ 1.28 \\ 1.06 \\ 0.84 \\ 0.63 \end{pmatrix} \text{ft}$$

$$x_{WS2} = \begin{pmatrix} 12.9 \\ 12.9 \\ 13.0 \\ 13.1 \\ 13.2 \end{pmatrix} ft$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	

$W_{WS2_i} := (\gamma_{sat}) \cdot \frac{h_{WS2_i} \cdot L_{WS2_i}}{2}$					
$W_{WS2} := (\gamma_{sat}) - \frac{\gamma_{sat}}{2}$	$W_{WS2_i} =$				
	1.1 klf				
hws2 := Emade - Embed	0.8				
$h_{WS3_i} := E_{grade} - E_{wheel_i}$	0.6	$h_{WS3_i} =$			
	0.4	0.0 ft	T		
$L_{WS3_i} := L_{WS1} + L_{WS2_i}$	0.2	1.8	$L_{WS3_i} =$		
$L_{ m WS3.}$	لـــــــا	3.5	17.1 ft		
$x_{WS3_i} := L_{ftg} - \frac{L_{WS3_i}}{2}$		5.3	16.9	$x_{WS3_i} =$	
2		7.0	16.7	20.4 ft	
$W_{WS3_i} := \gamma_{fill} \cdot h_{WS3_i} \cdot L_{WS3_i}$			16.5	20.4	$W_{WS3_i} =$
1 1			16.3	20.7	0.0 klf
hwed := hwee				20.8	3.8
$h_{WS4_i} = h_{WS3_i}$				20.9	7.6
$t_{\text{w_bot}} - t_{\text{w_top}}$	т			<u></u>	11.2
$L_{WS4_{i}} = \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS4_{i}}$	$L_{WS4_i} =$			Ī	14.8
	0.0 ft			_	
$x_{WS4_i} := L_{ftg} - L_{WS3_i} - \frac{L_{WS4_i}}{3}$	0.2	$x_{WS4_i} =$			
harry Tarrey	0.4	11.9 ft			
$W_{WS4_i} := \gamma_{fill} \cdot \frac{h_{WS4_i} \cdot L_{WS4_i}}{2}$	0.9	12.0	W _{WS4} =		
i e e e e e e e e e e e e e e e e e e e		12.2	,		
$\left(\left(\frac{\mathbf{t_{w_bot}} - \mathbf{t_{w_top}}}{1} \right) \left(\mathbf{E_{grade}} - \mathbf{E_{ftg}} \right) + \mathbf{L_{WS}} \right)$		12.3	0.0 kl	ı	
L _{WS5} := min	7	12.5	0.1	$L_{WS5} = 17.1$	13 ft
$L_{WS5} := \min \begin{bmatrix} \begin{bmatrix} \frac{t_{w_bot} - t_{w_top}}{h_{wall}} & (E_{grade} - E_{ftg}) + L_{WS} \\ & \frac{h_{\beta}}{\tan(\beta)} \end{bmatrix}$	11		0.2		
\bigsqcup tan(β)			0.4		
$h_{WS5} := L_{WS5} \cdot tan(\beta)$ $h_{WS5} = 11.42 \text{ ft}$					
$x_{WS5} := \frac{2}{3} \cdot L_{WS5} + L_{toe} + t_{w_top} + \frac{\left(E_{wall} - E_{grade}\right)}{E_{wall} - E_{ftg}} \cdot t_{wall}$	(tw hot - tw	ton)	2	x _{WS5} = 23.29	ft
	(11_001 11_	·····/		.100	
$W_{WS5} := \gamma_{fill} - \frac{h_{WS5} \cdot L_{WS5}}{2} \qquad W_{WS5} = 12.7 \text{ klf}$					
$w_{WS5} = \gamma_{fill} - \frac{12.7 \text{ kH}}{2}$					
$L_{WS6} := \frac{E_{grade} - E_{ftg}}{h_{wall}} \cdot (t_{w_bot} - t_{w_top}) + L_{WS1} - L_{WS1}$	es Larez	= 0.0 ft			
hwall (w_oot w_top) was Dw.	22 ~ W 20	J.J.A.			

 $W_{WS6} := \gamma_{fill} \cdot (h_{WS6} \cdot L_{WS6})$

 h_{wall}

 $h_{\rm WS6} = h_{\rm WS5}$

 $x_{\text{WS6}} := L_{\text{fig}} - \frac{L_{\text{WS6}}}{2}$

 $h_{WS6} = 11.4 \, ft$

 $x_{WS6} = 29.0 \, ft$

 $W_{WS6} = 0.0 \, \text{klf}$

Samuels Ave. Dam Training wall at right

Date:	
By:	
Ū	

Uplift:

$$u_{toe_i} := \gamma_w \cdot \left(E_{wtoe_i} - E_{bftg}\right)$$

$$u_{\text{heel}_{i}} := \gamma_{w} \cdot \left(E_{\text{wheel}_{i}} - E_{\text{bftg}}\right)$$

$$\delta_{seep_i} \coloneqq \frac{u_{heel_i} - u_{toe_i}}{L_{ftg} - L_{uplift}}$$

$$u_{ktt_i} := u_{heel_i} + \left(x_{key} - \frac{L_{key}}{2}\right) \cdot \delta_{seep_i}$$

$$\mathbf{u}_{kht_i} \coloneqq \mathbf{u}_{ktt_i} + \mathbf{L}_{key} \cdot \delta_{seep_i}$$

$$u_{ktb_i} := u_{ktt_i} + \gamma_w \cdot h_{key}$$

$$u_{khb_i} := u_{ktb_i} + L_{key} \cdot \delta_{seep_i}$$

$$x_{U1} := \frac{L_{fig} - L_{uplift}}{2}$$

$$U1_i := u_{toe_i} \cdot L_{ftg}$$

$$x_{U2_i} := \frac{2}{3} \cdot \left(L_{ftg} - L_{uplift_i} \right)$$

$$U2_{i} := \left(u_{heel_{i}} - u_{toe_{i}}\right) \cdot \frac{L_{ftg}}{2}$$

$$x_{U3} := x_{key}$$

$$U3_i := \left(u_{ktb_i} - u_{ktt_i}\right) L_{key}$$

$$x_{\text{U4}_{\underline{i}}} \coloneqq L_{\text{ftg}} - \frac{L_{\text{uplift}_{\underline{i}}}}{2}$$

$$L_{U4_i} := L_{uplift_i}$$

$$U4_i = u_{heel_i} L_{U4_i}$$

0.500	
0.391	
0.375	l

uktb_i =

1.661

1.552

1.409

1.260

1.112

 $U2_i =$

9.1

9.1

7.7

6.1

4.5

klf

ksf

u_{khb_i} =

1.726

 $x_{U3} = 11.9 \, ft$

$$u_{\text{heel}_{i}} = 1.125$$
 ksf

 $\delta_{seep_{_{i}}} =$

ft
$$u_{ktt_i} = 1.349$$
 ksf 1.239

09

0.9

U3 = |0.9| klf

ksf

14.5

-	
14.5	klf
11.3	
10.9	

8:04 AM 1/3/2005

T:\ST\CALCS\Twall right Dn 507.mcd

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
.	

xU4, =

29.0

29.0

29.0

29.0

29.0 ft

U4; =

0.0

0.0 0.0

0.0

0.0

klf

ı		lood	duc	٠.	water	م ŧ	too:
ı	Lateral	load	due	to	water	aı	toe:

$$\begin{aligned} \mathbf{h_{H1}}_i &\coloneqq \mathbf{E_{wtoe}}_i - \mathbf{E_{bfig}} \\ \mathbf{y_{H1}}_i &\coloneqq \frac{\mathbf{h_{H1}}_i}{3} \end{aligned}$$

$$H1_{i} := \gamma_{w} \cdot \frac{\left(h_{H1_{i}}\right)^{2}}{2}$$

$$HI_i := \gamma_W \cdot \frac{1}{2}$$

$$h_{H2_i} = E_{wheel_i} - E_{bftg}$$

$$y_{\text{H2}_{i}} \coloneqq \frac{h_{\text{H2}_{i}}}{3}$$

$$H2_{\underline{i}} \coloneqq \gamma_{\underline{\mathbf{w}}} \cdot \frac{\left(h_{H2_{\underline{i}}}\right)^2}{2}$$

$$h_{H3} := h_{key}$$

$$h_{\rm H3}=5.0\,\rm ft$$

 $y_{H3} = -2.5 \, ft$

$$y_{H3} := \frac{-h_{key}}{2}$$

$$H3_{i} := \left(u_{khb_{i}} - u_{ktb_{i}}\right) \cdot h_{H3}$$

$$h_{K1} := h_{key}$$

$$h_{K1} := h_{key}$$
 $h_{K1} = 5.0 \, \text{ft}$

$$K1_i := u_{ktt_i} \cdot h_{K1}$$

$$h_{K2} := h_{key}$$

$$h_{K2} = 5.0 \, ft$$

$$\mathrm{K2}_{i} := \left(\mathrm{u}_{\mathrm{ktb}_{i}} - \mathrm{u}_{\mathrm{ktt}_{i}} \right) \cdot \frac{\mathrm{h}_{\mathrm{K2}}}{2}$$

$$y_{K1} := \frac{-h_{key}}{2}$$

$$y_{K1} = -2.5 \, ft$$

$$y_{K2} := \frac{-2}{3} \cdot h_{\text{key}}$$

$$y_{K2} = -3.3 \, ft$$

$$h_{H1_i} =$$

 $y_{H2_i} =$

6.0 ft 5.4

4.8 4.3

$$y_{H1_{i}} = \frac{1}{2.67} ft$$

$$H1_i =$$

18.00 ft

16.25

14.50

12.75

11.00

-	
10.1	klf
8.3	
6.6	
5.1	
3.8	

$$H3_i =$$

$$K1_i =$$

1	
8.0	klf
8.0	
8.0	
8.0	

8.0

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
✓	

Lateral load due to retained soil/water:

$$h_{Al_i} := E_{grade} - E_{wheel_i}$$

$$y_{A1_i} := E_{grade} - E_{bfig} - \frac{2}{3} \cdot h_{A1_i}$$

$$A1_i := k_{0\beta} \cdot \gamma_{fill} \cdot \frac{(h_{A1_i})^2}{2}$$

$$h_{Al_i} =$$

$$y_{A1_{i}} = 18.00$$
 ft

2.5

$$h_{A2} := E_{wheel} - E_{bftg}$$

$$y_{A2_i} := \frac{h_{A2_i}}{2}$$

$$A2_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot h_{A2_{i}}$$

$$h_{A3_i} := h_{A2_i}$$

$$y_{A3_i} := \frac{h_{A3_i}}{3}$$

$$A3_{i} := k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$$

 $h_{A2_i} =$

5.50

$$h_{A3_i} =$$

18.00	ft
16.25	
14.50	
12.75	
11.00	

$$y_{A3} =$$

 $A3_i =$

8.2

6.7

klf

$$h_2 := E_{grade} - E_{ftg}$$

$$h_2 = 12.0 \, ft$$

$$h_1 := h_2 + tan(\beta) \cdot L_{WS5}$$
 $h_1 = 23.4 \text{ ft}$

$$h_1 = 23.4 \, \text{ft}$$

$$P_{i} = k_{0\beta} \quad \gamma_{fill} \cdot h_{A1_{i}} \cdot \left(h_{A2_{i}} - t_{base}\right) + k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}} - t_{base}\right)^{2}}{2}$$

$$S_{\beta_i} := if \left[h_1 > h_2, \left[\frac{P_i \cdot \left(h_1 - h_2 \right)}{3 \cdot L_{WS5}} \right], 0 \quad klf \right]$$

$$x_{S\beta} := L_{ftg}$$

$$x_{S\beta} = 29.0 \, \text{ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	<u> </u>
Ву:	
V	

 $R_{\text{key}} =$

10.1

10.5

10.9

11.4

klf

0.8 klf

1.0

1.1

1,1

0.9

3.6

4.5

4.8

Sum forces:

$$\Sigma V_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S_{\beta_{i}} - \left(U1_{i} + U2_{i} + U3_{i} + U4_{i}\right)$$

$$\begin{split} \Sigma M_{grav_{i}} \coloneqq & \left(\sum_{i=1}^{4} \left. W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} + W_{WS4_{i}} \cdot x_{WS4_{i}} \right) \\ & + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U1_{i} \cdot x_{U1_{i}} + U2_{i} \cdot x_{U2_{i}} + U3_{i} \cdot x_{U3} + U4_{i} \cdot x_{U4_{i}} \right) \end{split}$$

$$R_{\text{key}_i} := -H1_i - K1_i - K2_i + H2_i + H3_i + A1_i + A2_i + A3_i$$

$$y_{\text{Rkey}} := \frac{-h_{\text{key}}}{2} \qquad y_{\text{Rkey}} = -2.5 \,\text{ft}$$

$$\Sigma H_{i} := -H1_{i} - K1_{i} - K2_{i} + H2_{i} + H3_{i} + A1_{i} + A2_{i} + A3_{i} - R_{key}$$

$$\begin{split} \Sigma M_{lat_{i}} &= -H1_{i} \cdot y_{H1_{i}} - K1_{i} \cdot y_{K1} - K2_{i} \cdot y_{K2} + H2_{i} \cdot y_{H2_{i}} + H3_{i} \cdot y_{H3} \dots \\ &+ A1_{i} \cdot y_{A1_{i}} + A2_{i} \cdot y_{A2_{i}} + A3_{i} \cdot y_{A3_{i}} - R_{key_{i}} \cdot y_{Rkey} \end{split}$$

$$\Sigma M_i := \Sigma M_{grav_i} - \Sigma M_{lat_i}$$

$$\mathbf{x}_{\mathbf{R}_{\mathbf{i}}} \coloneqq \frac{\Sigma \mathbf{M}_{\mathbf{i}}}{\Sigma \mathbf{V}_{\mathbf{i}}}$$

$$L_{\text{brg}_{i}} := \max \left[\min \begin{pmatrix} 3 & x_{R_{i}} \\ L_{\text{ftg}} \end{pmatrix} \right], 0 \quad \text{ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date: _____

Bearing Capacity: (per EM 1110-1-1905)

$$c := c_{fill}$$

$$c = 0.0 \, psf$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$\gamma_{eff} := \gamma_{fill_eff}$$

$$\gamma_{\rm eff} = 65.0 \, \rm pcf$$

$$\gamma_{\text{H_eff}} := \gamma_{\text{eff}}$$

$$\gamma_{H \text{ eff}} = 65.0 \text{ pcf}$$

$$B_{eff_i} := L_{ftg} - 2 \cdot \left| \frac{L_{brg_i}}{2} - x_{R_i} \right|$$

$$B_{\text{eff}} = \begin{pmatrix} 26.6 \\ 26.2 \\ 25.9 \\ 25.6 \\ 25.4 \end{pmatrix} \text{ft}$$

Table 4-3

$$N_{\phi} := \tan \left(45 \cdot \deg + \frac{\phi}{2}\right)^2$$

$$N_{\dot{\Phi}} = 3.255$$

$$N_q := if(\phi = 0, 10, N_\phi e^{\pi \tan(\phi)})$$

$$N_q = 23.2$$

$$N_c := if | \phi = 0, 5.14, (N_q - 1) \cdot \cot(\phi) |$$

$$N_c = 35.5$$

$$N_{\gamma} := if[\phi = 0,0.00,(N_q - 1) \cdot tan(1.4 \cdot \phi)]$$

$$N_{\gamma} = 22.0$$

Inclined loading correction:

$$\theta_{i} := atan \left(\frac{R_{key_{i}} + K1_{i} + K2_{i}}{\Sigma V_{i}} \right)$$

$$\theta = \begin{pmatrix} 18.70 \\ 18.33 \\ 17.47 \\ 16.66 \end{pmatrix} \text{deg}$$

15.94

$$\xi_{\text{ci}_i} := \text{if} \left[\phi = 0, \left(1 - \frac{\theta_i}{90 \cdot \text{deg}} \right), \left(1 - \frac{\theta_i}{90 \cdot \text{deg}} \right)^{-1} \right]$$

$$\xi_{ci} = \begin{pmatrix} 0.628 \\ 0.634 \\ 0.649 \\ 0.664 \\ 0.677 \end{pmatrix}$$

$$\begin{cases} \xi_{\gamma i} = \begin{pmatrix} 0.173 \\ 0.183 \\ 0.206 \\ 0.230 \\ 0.252 \end{pmatrix} \quad \xi_{qi} = \begin{pmatrix} 0.628 \\ 0.634 \\ 0.649 \\ 0.664 \end{cases}$$

0.677

$$\xi_{\gamma i_{i}} := if \left[\phi = 0, 1.0, if \left[\theta_{i} \le \phi, \left(1 - \frac{\theta_{i}}{\phi} \right)^{2}, 0.0 \right] \right]$$

$$\xi_{q i_{i}} := if \left[\phi = 0, \left(1 - \frac{\theta_{i}}{90 \cdot \deg} \right), \left(1 - \frac{\theta_{i}}{90 \cdot \deg} \right)^{2} \right]$$

$$B = \begin{pmatrix} 29 & 0 \\ 29 & 0 \\ 29.0 \\ 29.0 \end{pmatrix} ft$$

29.0

$$\boldsymbol{B}_i \coloneqq \boldsymbol{L}_{brg_i}$$

$$W := 100 \cdot ft$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

Foundation depth correction: (at toe)		
$D := t_{base}$	$D = 6.0 \mathrm{ft}$	
$\dot{\sigma}_{D_{eff}} := \gamma_{eff} \cdot D$	$\sigma_{\text{D_eff}} = 390.0 \text{psf}$ (1.075)	
$\xi_{cd_{i}} := 1 + 0.2 \cdot \left(N_{\dot{\phi}}\right)^{\frac{1}{2}} \frac{D}{B_{i}}$	$\xi_{\text{cd}} = \begin{vmatrix} 1.075 \\ 1.075 \\ 1.075 \end{vmatrix}$	
$\begin{aligned} \xi_{cd_i} &\coloneqq 1 + 0.2 \cdot \left(N_{\varphi}\right)^{\frac{1}{2}} \frac{D}{B_i} \\ \xi_{\gamma d_10_i} &\coloneqq 1 + 0.1 \left(\tan\left(45 \cdot \deg + \frac{10 \cdot \deg}{2}\right)\right) \\ \xi_{\gamma d_i} &\coloneqq \inf \left[\phi \leq 10 \cdot \deg, \xi_{\gamma d_0} + \frac{\phi}{10 \cdot \deg} \cdot \left(8\right)\right] \\ \xi_{qd_i} &\coloneqq \xi_{\gamma d_i} \\ \text{USACE EM 1110-1-1905, Eq. 4-16:} \\ q_{u_toe_i} &\coloneqq c \cdot N_c \cdot \xi_{cd} \cdot \xi_{ci} + \frac{1}{2} \cdot B_{eff_i} \cdot \gamma_{H_e} \end{aligned}$	$\frac{1}{2} \left(\frac{1.075}{2} \right)^{2} \cdot \frac{D}{B_{i}}$ $\xi_{\gamma d_{1} 0_{i}} - \xi_{\gamma d_{2} 0} + 0.1 \cdot \left(\frac{1}{N_{\phi}} \right)^{2} \cdot \frac{D}{B_{i}}$ $\xi_{\beta d_{1} 1 0_{i}} - \xi_{\gamma d_{2} 0} + 0.1 \cdot \left(\frac{1}{N_{\phi}} \right)^{2} \cdot \frac{D}{B_{i}}$	$\xi_{\gamma d} = \begin{cases} 1.025 \\ 1.025 \\ 1.025 \\ 1.025 \\ 1.025 \\ 1.037 \\ 1.037 \\ 1.037 \\ 1.037 \\ 1 \\ 037 \\ $
Foundation depth correction: (at heel) $D \coloneqq E_{grade} - E_{ftg} + t_{base} + h_{\beta}$	D = 38.0 ft	
$\sigma_{D_eff_heel} := \gamma_{eff} \cdot D$	$\sigma_{\text{D_eff}} = 0.390 \text{ksf} \qquad (1.473)$	<u> </u>
$\xi_{\gamma d_{10}} := 1 + 0.1 \cdot \left(\tan \left(45 \right) \cdot \frac{10 \cdot deg}{2} \right)$	·	$\xi_{\gamma d_10} = \begin{pmatrix} 1.156 \\ 1.156 \\ 1.156 \\ 1.156 \\ 1.156 \end{pmatrix}$ $\begin{pmatrix} 1.236 \\ 1.236 \\ 1.236 \\ 1.236 \end{pmatrix}$
$\xi_{\gamma d_i} := \text{if} \phi \leq 10 \text{deg}, \xi_{\gamma d_0} + \frac{\phi}{10 \cdot \text{deg}} ($	$\xi_{\gamma d_{10}} - \xi_{\gamma d_{0}}, 1 + 0.1 \left(N_{\phi}\right)^{2} \cdot \frac{D}{B_{i}}$	$\xi_{qd} = \begin{pmatrix} 1.156 \\ 1.156 \\ 1.236 \\ 1$
$\xi_{qd_i} := \xi_{\gamma d_i}$		$\xi_{\rm qd} = 1.236$
USACE EM 1110-1-1905, Eq. 4-16:		1. (60.559)
$q_{u_heel_i} = c \cdot N_c \cdot \xi_{cd} \cdot \xi_{ci} + \frac{1}{2} \cdot B_{eff_i} \cdot \gamma_{H_i}$	$_{\mathrm{eff}} \cdot \mathrm{N}_{\gamma} \cdot \xi_{\gamma \mathrm{d}} \cdot \xi_{\gamma \mathrm{i}} + \sigma_{\mathrm{D}_{\mathrm{eff}}} \cdot \mathrm{N}_{\mathrm{q}} \cdot \xi_{\mathrm{qd}} \cdot \xi_{\mathrm{qd}}$	$q_{u_heel} = \begin{pmatrix} 60.215 \\ 59.950 \\ 59.762 \end{pmatrix} ksf$

Samuels Ave. Dam Training wall at right

Date:	
By:	
ال	

 $check_uplift_i := L_{ftg} - L_{brg_i} - L_{uplift_i}$

ok := if (max(|check uplift|) < 0.001 · ft, ok, "Uplift assumptions do not match bearing area.")

ok = "Ok"

$$e_{brg_i} := \frac{L_{brg_i}}{2} - x_{R_i}$$

$$e_{\text{brg}_i} = \frac{\sigma_{\text{lg}_i}}{2} - x_{\text{R}}$$

$$\sigma_{\text{brg_toe}_{i}} := \frac{2V_{i}}{L_{\text{brg}_{i}}} + \frac{2V_{i} \cdot \sigma_{\text{brg}_{i}}}{\frac{\left(L_{\text{brg}_{i}}\right)^{2}}{6}}$$

$$\sigma_{\text{brg_heel}_{i}} \coloneqq \frac{\Sigma V_{i}}{L_{\text{brg}_{i}}} - \frac{\Sigma V_{i} \cdot e_{\text{brg}_{i}}}{\frac{\left(L_{\text{brg}_{i}}\right)^{2}}{6}}$$

$$\%_{\text{brg.}} := \frac{L_{\text{brg}_i}}{L_{\text{brg}_i}}$$

ok := if
$$(\%_{\text{brg}_1} \ge 75 \cdot \%, \text{ok}, "OT instability: LC#1"})$$

ok := if
$$\binom{\%_{\text{brg}_1}}{2}$$
 $\geq 75 \cdot \%$, ok, "OT instability: LC#1"

ok :=
$$if(\%_{brg_n} \ge 100\%, ok, "OT instability: LC#n")$$

e_{brg} =

 $\sigma_{\text{brg_toe}_i} =$

 $\sigma_{brg_heel} =$

$$FS_{brg_{i}} = \begin{bmatrix} 2650 \\ 2471 \\ 23.35 \\ 2230 \end{bmatrix}$$

$$S_{\text{brg}_{i}} = \begin{pmatrix} 28.82 \\ 26.50 \\ 24.71 \\ 23.35 \\ 22.30 \end{pmatrix} = \begin{pmatrix} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{pmatrix}$$

100.0 100.0 %

100.0

 $L_{ftg} - L_{brg_i} =$

 $FS_{brg_{i}} := min \left(\frac{q_{u_toe_{i}}}{\sigma_{brg_toe_{i}}}, \frac{q_{u_heel_{i}}}{\sigma_{brg_heel_{i}}} \right)$

$$L_{\text{uplift}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

 $L_{ftg} = 29.0 \, ft$

 $t_{w_bot} = 3.4 \, ft$

ok = if $\max \left| L_{brg} - \left(L_{ftg} - L_{uplift} \right) \right| < 0.001$ ft, ok, "Uplift area does not match

ok :=
$$if(FS_{brg_1} < 2,"Bearing problem LC#1", ok)$$

$$ok := if(FS_{brg_n} < 3, "Bearing problem LC#n", ok)$$

$$ok = "Ok"$$

 $\frac{L_{\text{ftg}}}{} = 7.250 \,\text{ft}$

 $L_{\mathrm{ftg}} = 29.0\,\mathrm{ft}$

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
J	

Base Pressures:

$$e_{ftg_i} := \frac{L_{ftg}}{2} - x_{R_i}$$

(eccentricity with respect to the footing centroid)

$$\begin{array}{c|c} \Sigma H_i + R_{key_i} = \Sigma V_i = \\ \hline 9.1 & klf & 49.2 \\ \hline 10.1 & 51.5 \\ \hline 10.5 & 53.3 \\ \hline 10.9 & 54.9 \\ \end{array}$$

56.5

$$\begin{array}{lll} e_{ftg_i} = & x_{R_i} = \\ \hline -1.19 & ft & 15.69 & ft \\ -1.39 & 15.89 & 16.07 \\ -1.57 & 16.22 & 16.32 & 16.32 \\ \hline \end{array}$$

$$\sigma_{\text{brg_heel}_{1}} = \sigma_{\text{brg_toe}_{1}} = \frac{2.114}{2.285} \text{ ksf}$$
 $\sigma_{\text{brg_toe}_{1}} = \frac{2.114}{1.266} \text{ ksf}$
 $\sigma_{\text{brg_heel}_{1}} = \sigma_{\text{brg_toe}_{1}} = \frac{2.114}{1.266} \text{ ksf}$
 $\sigma_{\text{brg_heel}_{1}} = \sigma_{\text{brg_toe}_{1}} = \frac{2.114}{1.266} \text{ ksf}$
 $\sigma_{\text{brg_heel}_{1}} = \sigma_{\text{brg_toe}_{1}} = \frac{2.114}{1.214} \text{ ksf}$

$$L_{\rm brg}_{1} = 29.00\,{\rm ft}$$

11.4

$$\frac{L_{\text{brg}}}{L_{\text{fig}}} = \begin{pmatrix} 100.0\\100.0\\100.0\\100.0\\100.0 \end{pmatrix} \%$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
V	

Sliding Analysis:

Function Definitions:

$$c_1(\phi_d) := 2 \cdot \tan(\phi_d)$$

$$c_2(\phi_d, \beta) := 1 - \tan(\phi_d) \cdot \tan(\beta) - \left(\frac{\tan(\beta)}{\tan(\phi_d)}\right)$$

$$\begin{split} \alpha_{driving}(\phi_d,\beta) &:= -atan \left(\frac{c_1(\phi_d) + \sqrt{c_1(\phi_d)^2 + 4 \cdot c_2(\phi_d,\beta)}}{2} \right) \\ L_{\beta} &:= max \left(\left(\frac{\frac{h_{\beta}}{tan(\beta)} - L_{WS5} - L_{WS6}}{0 \cdot ft} \right) \right) \end{split}$$

Sliding Analysis #1:

$$\beta_w := \beta$$

$$\phi_{d_i} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi_i)}{\operatorname{FS}_{l_i}}\right)$$

$$\beta_{\rm W} = 33.7 \deg$$

 $L_{\rm B} = 12.9 \, {\rm ft}$

$$\phi = \begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} \text{deg}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 23.2 \\ 22.3 \\ 21.5 \\ 20.5 \\ 19.8 \end{pmatrix} \operatorname{deg}$$

$$atan(tan(\beta) FS_{1i}) = \begin{vmatrix} 45.4 \\ 46.7 \\ 48.1 \end{vmatrix} deg \qquad (back solve for minimum \phi value for stable slope \beta, EM 1110-2-2502, pg. 3-31)$$

$$\phi_{i} := if \left[\left(c_{1} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left(\phi_{d_{i}}, \beta_{w} \right) < 0 \right), atan \left(tan \left(\beta_{w} \right) \cdot FS_{1_{i}} \right), \phi_{i} \right]$$

$$\phi = \begin{vmatrix} 45.4 \\ 46.7 \\ 48.1 \end{vmatrix}$$
 deg (substitue minimum ϕ if slope is unstable) (33.7)

-33 7

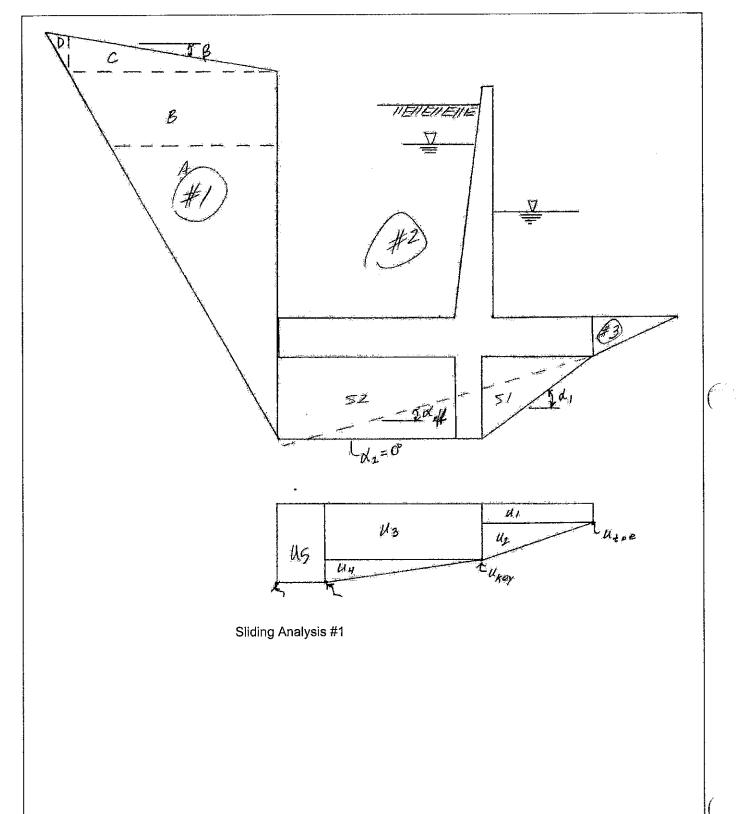
-33.7

$$\phi_{\mathbf{d}_{1}\mathbf{b}_{i}} := \operatorname{atan}\left(\frac{\tan(\phi_{i})}{\mathrm{FS}_{\mathbf{l}_{i}}}\right)$$

$$\alpha_{1b_i} := \alpha_{driving}(\phi_{d_1b_i}, \beta_w)$$

$$\begin{aligned} h_{1b} &:= \left(E_{grade} + L_{WS5} - \tan(\beta_w) \right) - \left(E_{bftg} - h_{key} \right) & h_{1b} = 34.4 \, ft \\ h_{1b} &:= \left(E_{grade} + L_{WS5} - \tan(\beta_w) \right) - \left(E_{bftg} - h_{key} \right) & h_{1b} = 34.4 \, ft \\ h_{1b} &:= \left(E_{grade} + L_{WS5} - \tan(\beta_w) \right) - \left(E_{bftg} - h_{key} \right) & h_{1b} = 34.4 \, ft \\ h_{1b} &:= \left(E_{grade} + L_{WS5} - \tan(\beta_w) \right) - \left(E_{bftg} - h_{key} \right) & h_{1b} = 34.4 \, ft \\ -33.7 & -33.7 \\ -33.7 & -33.7 \\ -33.7 & -33.7 \\ \end{bmatrix} deg$$

$$L_{max_i} := if \left[L_{\beta} < L_{max_i}, h_{1b} + L_{\beta} - \left(\tan(\beta) - \tan(-\alpha_{1b_i}) \right), 0 \cdot ft \right]$$


$$\phi_{\mathbf{d}_{1}\mathbf{b}_{i}} = \begin{vmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{vmatrix} \operatorname{deg}$$

$$L_{\text{max}} = \begin{pmatrix} 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \end{pmatrix} \text{ft}$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date: By:

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
4	

Driving Wedge (#1a):

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\beta_{\rm W} = 0.0 \deg$$

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$h_{1a} = \begin{pmatrix} 34.4 \\ 34.4 \\ 34.4 \\ 34.4 \end{pmatrix} ft$$

$$c := 0 \cdot ksf$$

$$\begin{split} \phi_{d_i} &:= \text{atan}\bigg(\frac{\text{tan}(\phi)}{\text{FS}_{1_i}}\bigg) \\ \alpha_i &:= \alpha_{driving}\Big(\phi_{d_i}, \beta_w\Big) \\ h_i &:= h_{1a_i} \end{split}$$

$$\alpha = \begin{pmatrix} -56.6 \\ -56.2 \\ -55.7 \\ -55.3 \\ -54.9 \end{pmatrix} \text{deg} \begin{pmatrix} 21.5 \\ 20.5 \\ 19.8 \end{pmatrix} \text{deg}$$

$$\phi_{d} = \begin{pmatrix} 22.3 \\ 21.5 \\ 20.5 \\ 19.8 \end{pmatrix} deg$$

$$h_i := h_{1a}$$

$$L_{i} := \frac{h_{i}}{\cos(-\alpha_{i}) \left(\tan(-\alpha_{i}) - \tan(\beta_{w})\right)}$$

 $\mathbf{h}_{sat_{i}} \coloneqq \max \begin{bmatrix} \mathbf{E}_{wheel_{i}} - (\mathbf{E}_{ftg} - \mathbf{t}_{base} - \mathbf{h}_{key}) - \mathbf{L}_{\beta} \cdot \tan(-\alpha_{1b_{i}}) \\ \mathbf{0} \cdot \mathbf{ft} \end{bmatrix}$

$$h = \begin{vmatrix} 34.4 \\ 34.4 \\ 34.4 \end{vmatrix}$$
 ft
$$\begin{vmatrix} 34.4 \\ 34.4 \end{vmatrix}$$

$$a = \begin{pmatrix} 41.2 \\ 41.4 \\ 41.6 \\ 41.0 \end{pmatrix}$$
 ft

$$a = \begin{vmatrix} 41.4 \\ 41.6 \\ 41.9 \end{vmatrix}$$
 ft

$$h_{\text{sat}} = \begin{vmatrix} 12.7 \\ 10.9 \\ 9.2 \end{vmatrix}$$
 ft

$$L_{h_i} := \frac{h_i}{\tan(-\alpha_i)}$$

$$L_{sat_{\underline{i}}} := \frac{h_{sat_{\underline{i}}}}{tan(-\alpha_{\underline{i}})}$$

$$L_{h} = \begin{bmatrix} 23.1 \\ 23.5 \\ 23.9 \\ 24.2 \end{bmatrix} \text{ ft}$$

$$a_{\text{sat}} = \begin{pmatrix} 9.5 \\ 8.5 \\ 7.4 \\ 6.4 \\ 5.2 \end{pmatrix}$$

$$h_{left} := 0 \cdot ft$$

$$h_{right_i} := h_{1a_i}$$

$$W_i := \gamma_{fill} \cdot \left(L_{h_i} \cdot \frac{h}{h_i} \right)$$

$$W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{right_{i}}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot \frac{L_{sat_{i}} \cdot h_{sat_{i}}}{2}$$

$$V := 0 \cdot klf$$

$$H_L := 0 \cdot klf$$

$$H_R := 0 \cdot klf$$

$$U_{i} := \gamma_{w} \cdot \left(\frac{h_{sat_{i}}}{2}\right) \cdot \sqrt{\left(h_{sat_{i}}\right)^{2} + \left(L_{sat_{i}}\right)^{2}}$$

$$W_i =$$

$$U = \begin{vmatrix} 6.0 \\ 4.5 \\ 3.2 \end{vmatrix} \text{ klf}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$$\Delta P_{1a_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) \cdot cos\left(\alpha_{i}\right) + sin\left(\alpha_{i}\right)\right) - U_{i} \cdot tan\left(\varphi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) \cdot sin\left(\alpha_{i}\right) - cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{1_{i}}} \cdot L_{i}\right]}{\left(cos\left(\alpha_{i}\right) - tan\left(\varphi_{d_{i}}\right) \cdot sin\left(\alpha_{i}\right)\right)}$$

Driving Wedge (#1b):

$$\mathbf{h_{satr}}_{i} \coloneqq \max \begin{bmatrix} \begin{bmatrix} \mathbf{E_{wheel}}_{i} - \left(\mathbf{E_{ftg}} - \mathbf{t_{base}} - \mathbf{h_{key}} \right) \\ \mathbf{0} \cdot \mathbf{ft} \end{bmatrix} \end{bmatrix}$$

$$h_{satl_{i}} := max \begin{bmatrix} E_{wheel_{i}} - (E_{ftg} - t_{base} - h_{key}) - \frac{L_{\beta}}{\cos(\alpha_{i})} \end{bmatrix} \quad h_{satl} = \begin{pmatrix} 7.5 \\ 5.8 \\ 4.0 \\ 2.3 \\ 0.5 \end{pmatrix}$$

$$L_{sat_{i}} := min \begin{bmatrix} L_{\beta} \\ h_{satr_{i}} \\ total(-\alpha) \end{bmatrix} \quad L_{sat} = \begin{pmatrix} 12.9 \\ 12.9 \\ 12.9 \\ 12.9 \\ 12.9 \end{pmatrix}$$
ft

$$L_{\text{sat}} := \min \begin{bmatrix} L_{\beta} \\ h_{\text{satr}} \\ \hline tanl(-\alpha)_{i} \end{bmatrix}$$

$$L_{\text{sat}} = \begin{bmatrix} 12.9 \\ 12.9 \\ 12.9 \\ 12.9 \end{bmatrix}$$
ft

$$h_{left_i} := h_{1a_i}$$
 $h_{right} := h_{1b}$

$$\mathbf{h_{left}} = \begin{pmatrix} 34.4 \\ 34.4 \\ 34.4 \\ 34.4 \\ 34.4 \end{pmatrix}$$
 ft

33.7

(23.0)

21.3

19.5 ft

33.7 deg

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
J.	

klf

klf

21.5 deg 20.5

19.203

17.001

14.799 12.598

10.396

57.3

$$\begin{aligned} W_i &:= \gamma_{fill} \, \left(L_h \cdot \frac{h_{left_i} + h_{right}}{2} \right) + \left(\gamma_{sat} - \gamma_{fill} \right) \, L_{sat_i} \, \left(\frac{h_{satr_i} + h_{satl_i}}{2} \right) & W_i = \\ V &:= 0 \cdot klf & 57.1 \\ H_L &:= 0 \quad klf & 57.2 \\ & 57.3 \end{aligned}$$

$$\begin{split} U_i &:= \gamma_W \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right) \cdot \sqrt{\left(h_{satr_i} - h_{satl_i}\right)^2 + \left(L_h\right)^2} \\ \Delta P_{1b_i} &:= \frac{\left[\left(W_i + V\right) \cdot \left(tan\left(\varphi_{d_i}\right) \cdot cos\left(\alpha_i\right) + sin\left(\alpha_i\right)\right) - U_i \cdot tan\left(\varphi_{d_i}\right) + \left(H_L - H_R\right) \cdot \left(tan\left(\varphi_{d_i}\right) \cdot sin\left(\alpha_i\right) - cos\left(\alpha_i\right)\right) + \frac{c}{FS_{1_i}} \cdot L_i\right]}{\left(cos\left(\alpha_i\right) - tan\left(\varphi_{d_i}\right) \cdot sin\left(\alpha_i\right)\right)} \end{split}$$

Structure Wedge (#2):

$$\beta_W := 0 \ deg$$

 $H_R := 0 \cdot klf$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0 \text{ ksf}$$

$$\phi_{d_i} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi)}{\operatorname{FS}_{1_i}}\right)$$

$$\alpha_1 := \operatorname{atan} \left(\frac{h_{\text{key}}}{x_{\text{key}} - \frac{L_{\text{key}}}{2}} \right)$$

$$\alpha_1 := \text{atan} \left(\frac{h_{key}}{x_{key} - \frac{L_{key}}{2}} \right) \qquad \alpha_1 = 25.7 \text{ deg} \quad \text{(angle of shear plane between toe and key)}$$

$$\alpha_2 := 0$$
 deg

(angle of shear plane between key and heel)

$$\alpha := \alpha_1 \cdot \left(\frac{x_{key}}{L_{ftg}}\right) + \alpha_2 \cdot \left(\frac{L_{ftg} - x_{key}}{L_{ftg}}\right) \quad \alpha = 10.5 \deg \text{ (average angle of shear plane for structural wedge)}$$

$$L := \frac{L_{fig}}{\cos(\alpha)}$$

$$L=29.5\,\mathrm{ft}$$

$$h_{S1} := h_{key}$$

$$h_{S1} = 5.0 \, ft$$

$$L_{S1} := x_{key} - \frac{L_{key}}{2}$$

$$L_{S1} = 10.4 \, \text{ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
ات	

$$x_{S1} := \frac{2}{3} \cdot L_{S1}$$

$$x_{S1} = 6.9 \, \text{ft}$$

$$S1 := \gamma_{sat} \cdot \frac{h_{S1} \cdot L_{S1}}{2}$$

$$S1 = 3.3 \, \text{klf}$$

$$h_{S2} := h_{key}$$

$$h_{S2} = 5.0 \, ft$$

$$L_{S2} := L_{ftg} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 15.6 \, \text{ft}$$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 21.2 \, ft$$

$$S2 := \gamma_{sat} \cdot h_{S2} \cdot L_{S2}$$

$$S2 = 10.0 \, \text{klf}$$

$$W_{i} = \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S\beta_{i}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_w \cdot \left(E_{wtoe_i} - E_{bftg}\right)$$

$$u_{heel_i} := \gamma_w \cdot |E_{wheel_i} - (E_{bftg} - h_{key})|$$

$$\delta_{u_i} \coloneqq \frac{\gamma_w \cdot \left(E_{wheel_i} - E_{wtoe_i}\right)}{L_{ftg} - L_{tl_i}}$$

$$u_{\text{key}_i} := u_{\text{toe}_i} + \delta_{u_i} \cdot \left(x_{\text{key}} - \frac{L_{\text{key}}}{2} \right) + \gamma_w \cdot h_{\text{key}}$$

$$ok := if \left[u_{\text{key}_1} + \delta_{u_1} \cdot \left(L_{\text{ftg}} - x_{\text{key}} + \frac{L_{\text{key}}}{2} - L_{\text{tl}_1} \right) = u_{\text{heel}_1} \right], \text{ ok, "Uplift pressures do not close."}$$

$$ok = "Ok"$$

$$u_{l_i} := u_{toe_i} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u1} := \frac{x_{key} - \frac{L_{key}}{2}}{2}$$

$$x_{u1} = 5.2 \, ft$$

$$u_{2_i} := \left(u_{\text{key}_i} - u_{\text{toe}_i}\right) \cdot \frac{\left(x_{\text{key}} - \frac{L_{\text{key}}}{2}\right)}{2}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
Ū	

$$x_{u2} := \frac{2}{3} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u2} = 6.9 \, ft$$

$$u_{3_i} := u_{\text{key}_i} \cdot \left(L_{\text{ftg}} - L_{t1_i} - x_{\text{key}} + \frac{L_{\text{key}}}{2} \right)$$

$$\mathbf{x_{u3}}_i \coloneqq \mathbf{x_{key}} - \frac{L_{key}}{2} + \frac{1}{2} \cdot \left[L_{fig} - L_{t1}_i - \left(\mathbf{x_{key}} - \frac{L_{key}}{2} \right) \right]$$

$$\mathbf{u_{4_i}} \coloneqq \left(\mathbf{u_{heel_i}} - \mathbf{u_{key_i}}\right) \quad \frac{\left(L_{ftg} - L_{t1_i} - \mathbf{x_{key}} + \frac{L_{key}}{2}\right)}{2}$$

$$x_{u4_i} := x_{key} - \frac{L_{key}}{2} + \frac{2}{3} \cdot \left[L_{ftg} - L_{t1_i} - \left(x_{key} - \frac{L_{key}}{2} \right) \right]$$

$$u_{5} := u_{heel} \cdot L_{t1}$$

$$x_{u5_i} := L_{ftg} - \frac{L_{t1_i}}{2}$$

$$U_i := u_{1_i} + u_{2_i} + u_{3_i} + u_{4_i} + u_{5_i}$$

$$\mathbf{x}_{U_{i}} \coloneqq \frac{\mathbf{u}_{1_{i}} \cdot \mathbf{x}_{\mathbf{u}1} + \mathbf{u}_{2_{i}} \cdot \mathbf{x}_{\mathbf{u}2} + \mathbf{u}_{3_{i}} \cdot \mathbf{x}_{\mathbf{u}3_{i}} + \mathbf{u}_{4_{i}} \cdot \mathbf{x}_{\mathbf{u}4_{i}} + \mathbf{u}_{5_{i}} \cdot \mathbf{x}_{\mathbf{u}5_{i}}}{U_{i}}$$

$$\begin{split} \Sigma M_{grav_{i}} &:= \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} \right) \\ &+ W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U_{i} \cdot x_{U_{i}} \right) \end{split}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

				<u></u>		
$h_{A2_i} := E_{wheel_i} - E_{bftg} + h_{key}$	$h_{A2_i} =$					
$y_{A2_i} := \frac{h_{A2_i}}{2} - h_{key}$	23.00 ft	Van ==				
$y_{A2} = 1$ Key	21.25	УA2 _i =				
$A2_{i} := k_{0\beta} \cdot \gamma_{fill} h_{A1_{i}} h_{A2_{i}}$	19.50 17.75	6.50 ft 5.63	$A2_{i} =$			
$h_{A3_i} := h_{A2_i}$	16.00	4.75	3.8	$klf_{h_{A3_i}} =$		
$y_{A3_i} := \frac{h_{A3_i}}{3} - h_{key}$		3.88	6.9	23.00 ft		
. 5		3.00	9.4	21.25 19.50	$y_{A3} =$	
$A3_{i} := k_{0\beta} \cdot \gamma_{\text{fill_eff}} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$			11.3	17.75	2.67 ft 2.08	. 2
2 2				16.00	1.50	$A3_i =$
$H3_{i} := 0 \cdot klf$					0.92	13.4 klf
$h_{\text{H2}_i} := E_{\text{wheel}_i} - E_{\text{bftg}} + h_{\text{key}}$					0.33	9.6
h_{H2}						8.0
$y_{\text{H2}_{i}} \coloneqq \frac{h_{\text{H2}_{i}}}{3} - h_{\text{key}}$						6.5

$$\begin{split} \text{H2}_{i} &\coloneqq \gamma_{w} \cdot \frac{\left(h_{\text{H2}_{i}}\right)^{2}}{2} \\ \Sigma M_{\text{lat}_{i}} &\coloneqq -\text{H1}_{i} \cdot \left(y_{\text{H1}_{i}}\right) - \text{K1}_{i} \cdot \left(y_{\text{K1}}\right) - \text{K2}_{i} \cdot \left(y_{\text{K2}}\right) + \text{H2}_{i} \cdot \left(y_{\text{H2}_{i}}\right) + \text{H3}_{i} \cdot \left(y_{\text{H3}}\right) \dots \\ &\quad + \text{A1}_{i} \cdot \left(y_{\text{A1}_{i}}\right) + \text{A2}_{i} \cdot \left(y_{\text{A2}_{i}}\right) + \text{A3}_{i} \cdot \left(y_{\text{A3}_{i}}\right) - R_{\text{key}_{i}} \cdot \left(y_{\text{Rkey}}\right) \\ \chi_{R_{i}} &\coloneqq \frac{\Sigma M_{\text{grav}_{i}} - \Sigma M_{\text{lat}_{i}}}{W_{i} - U_{i}} \\ \end{split}$$

$$L_{\text{brg}_{i}} \coloneqq \min \left(3 - \chi_{R_{i}}, L_{\text{ftg}}\right)$$

 $ok_{u_i} := if \left| \left| L_{brg_i} - \left(L_{ftg} - L_{tl_i} \right) \right| > 0.001 \cdot ft$, "Uplift assumptions wrong in sliding analysis", "Matched."

W _i =	u	toe _i =		u _{heel} =		$\delta_{\mathbf{u}_{i}} =$	_	$u_{\text{key}_{i}} =$		u ₁ =		u ₂ =		u3 _i =	
86.9	klf [0.500	ksf	1.438	ksf	21.6	psf	1.036	ksf	5.188	klf	2.781	klf	19.297	klf
86.1		0.391		1.328		21.6	ft	0.927		4.053		2.781		17.260	
86.1		0.375		1.219		18.3		0.878		3.891		2.607		16.345	
86.1		0.375		1.109		14.5		0.838		3.891		2.404		15.616	
86.1		0.375		1.000		10.8		0.799		3.891		2.201		14.887	

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
.	

· · · · · · · · · · · · · · · · · · ·						.	
$u_{4_i} =$		u ₅ =		$x_{u3_i} =$	$x_{u4_i} =$	$x_{u5_{i}} =$	
3.738	klf	0.0	klf	19.7 ft	22.8 ft	29.0 ft	
3.738		0.0		19.7	22.8	29.0	
3.177		0.0		19.7	22.8	29.0	
2.523		0.0		19.7	22.8	29.0	
1.869		0.0		19.7	22.8	29.0	

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_i} := \gamma_w \cdot \frac{\left(E_{\text{wtoe}_i} - E_{\text{ftg}}\right)^2}{2}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$$\Delta P_{2_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \cos(\alpha) + \sin(\alpha)\right) - U_{\hat{i}} \cdot \tan\left(\varphi_{d_{\hat{i}}}\right) + \left(H_{L_{\hat{i}}} - H_{R_{\hat{i}}}\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin(\alpha) - \cos(\alpha)\right) + \frac{c}{FS_{1_{\hat{i}}}} \cdot L\right]}{\left(\cos(\alpha) - \tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin(\alpha)\right)}$$

$$L_{t1} \equiv \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot \text{ft}$$

 $ok := if \left\lfloor max \left\lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{t1}\right) \right\rfloor \right\rfloor < 0.001 \quad \text{ft, ok, "Uplift area does not match."} \right\rfloor$

$$ok = if \left(min(L_{brg}) < x_{key} + \frac{L_{key}}{2}, "Uplift assumptions incorrect.", ok \right)$$
 $ok = "Ok"$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

Resisting Wedge (#3):

$$\beta_{\mathbf{w}} := 0 \operatorname{deg}$$

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$c := 0 \text{ ksf}$$

$$\phi_{d_{i}} := atan\left(\frac{tan(\phi)}{FS_{1_{i}}}\right)$$

$$\alpha_{i} := 45 \cdot deg - \frac{\phi_{d_{i}}}{2}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 25.2 \\ 22.3 \\ 21.5 \\ 20.5 \\ 19.8 \end{pmatrix} \text{deg}$$

$$\alpha_{i} = \begin{pmatrix} 33.4 \\ 33.8 \\ 34.3 \\ 34.7 \\ 35.1 \end{pmatrix} deg$$

$$L = \begin{pmatrix} 10.895 \\ 10.778 \\ 10.655 \\ 10.528 \\ 10.429 \end{pmatrix} \text{ fi}$$

$$L_{i} = \frac{v_{base}}{\sin(\alpha_{i})}$$

$$W_{i} := \gamma_{sat} \cdot \frac{L_{i} \cos(\alpha_{i}) \cdot t_{base}}{2} + \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{fig}\right) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_{i} := \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg} + \frac{t_{base}}{2}\right) \cdot L_{i}$$

$$H_L := 0 \cdot klf$$

$$H_R := 0 \cdot klf$$

$$V := 0 \cdot klf$$

$$\Delta P_{3_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \cos\left(\alpha_{\hat{i}}\right) + \sin\left(\alpha_{\hat{i}}\right)\right) - U_{\hat{i}} \cdot \tan\left(\varphi_{d_{\hat{i}}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha_{\hat{i}}\right) - \cos\left(\alpha_{\hat{i}}\right)\right) + \frac{c}{FS_{1_{\hat{i}}}} \cdot L_{\hat{i}}\right]}{\left(\cos\left(\alpha_{\hat{i}}\right) - \tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha_{\hat{i}}\right)\right)}$$

$$\Sigma P_i := \Delta P_{1a_i} + \Delta P_{1b_i} + \Delta P_{2_i} + \Delta P_{3_i}$$

$$W_i = U_i = \Delta P_{1a_i} = \frac{4.6}{3.6} \text{ klf} \begin{bmatrix} 3.4 \\ 2.2 \\ 3.4 \end{bmatrix} \text{ klf} \begin{bmatrix} -37.1 \\ -37.2 \\ -37.7 \end{bmatrix}$$

2.0

2.0

$$\Delta P_{1a_{i}} =$$

-37.2

-37.7

-38.3

-38.9

$$\Delta P_{1b_i} =$$

-10.7

-8.2

-7.0

-5.8

$$\Delta P_{2_i} = \boxed{43.4}$$
 klf

43.1

42.6

41.9

41.3

$$\Delta P_{3_i} = \frac{1}{4.6} \text{ klf}$$

3.8

3.6

3.6

3.5

$$\Sigma P_1 = \begin{bmatrix} 0.3 \\ 0.2 \\ 0.3 \end{bmatrix}$$
 klf $FS_1 = \begin{bmatrix} 1.52 \\ 1.59 \\ 1.67 \\ 1.74 \end{bmatrix}$

ok := if
$$(FS_{1_1} \ge 1.33, ok, "Sliding instability: LC#1")$$

ok := if(
$$FS_{1_n} \ge 1.50$$
, ok, "Sliding instability' LC#n")

$$ok = "Ok"$$

3.3

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

Sliding Analysis	#2:	$L_{\beta} \approx 12.88 \mathrm{ft}$		(32.0)				
1 . 1	$\beta_{\mathbf{w}} := \beta$	$\beta_{\rm W} = 33.7 \deg$		32.0				
$\phi_i := \phi_{fill}$, ,,	φ =	32.0	deg		(26.9)	
c = 0 ksf				32.0			26.4	
$\phi_{d_i} := \operatorname{atan} \left(\frac{\tan(\phi_i)}{FS_{2_i}} \right)$	$\overline{0}$			32.0)	φ _{d,} =		deg
r _i	·					1	24.7	
	(39.4)						23.9	ļ

$$atan(tan(\beta) \cdot FS_{2i}) = \begin{pmatrix} 39.4 \\ 40.0 \\ 41.1 \\ 42.2 \\ 43.2 \end{pmatrix} deg \qquad (back solve for minimum \phi value for stable slope β , EM 1110-2-2502, pg. 3-31)$$

$$\phi_{\mathbf{i}} := \mathrm{if} \left[\left(c_1 \left(\phi_{\mathbf{d}_{\mathbf{i}}} \right)^2 + 4 \cdot c_2 \left(\phi_{\mathbf{d}_{\mathbf{i}}}, \beta_{\mathbf{w}} \right) < 0 \right), \mathrm{atan} \left(\mathrm{tan} \left(\beta_{\mathbf{w}} \right) \right) \right] \qquad \phi = \begin{bmatrix} 40.0 \\ 41.1 \\ 42.2 \\ 43.2 \end{bmatrix} \text{ deg} \qquad \text{(substitute minimum } \phi \text{ if slope is unstable)}$$

$$\phi_{\mathbf{i}} \coloneqq \mathrm{if} \left[\left(c_1 \left(\phi_{\mathbf{d}_i} \right)^2 + 4 \cdot c_2 \left(\phi_{\mathbf{d}_i}, \beta_{\mathbf{w}} \right) < 0 \right), \mathrm{atan} \left(\mathrm{tan} \left(\beta_{\mathbf{w}} \right) \right) \right] \qquad \phi = \begin{bmatrix} 40.0 \\ 41.1 \\ 42.2 \\ 43.2 \end{bmatrix}$$

$$\phi_{\mathbf{d}_1 \mathbf{b}_i} \coloneqq \mathrm{atan} \left[\frac{\mathrm{tan} \left(\phi_{\mathbf{i}} \right)}{\mathrm{FS}_{\mathbf{2}_i}} \right] \qquad \phi_{\mathbf{d}_1 \mathbf{b}_i} = \begin{bmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{bmatrix} \right]$$

$$\phi_{\mathbf{d}_1 \mathbf{b}_i} \coloneqq \mathrm{atan} \left[\frac{\left(2 \cdot \mathrm{tan} \left(\phi_{\mathbf{d}_i} \right) \right)^2 - 1}{4 - \mathrm{tan} \left(\phi_{\mathbf{d}_i} \right) - \frac{1}{\mathrm{tan} \left(\phi_{\mathbf{d}_i} \right)} \right)} - 0.0000000001 \cdot \mathrm{deg} \beta_{\mathbf{max}_i} = \begin{bmatrix} 26.9 \\ 26.4 \\ 25.5 \\ 24.7 \\ 23.9 \end{bmatrix} \right]$$

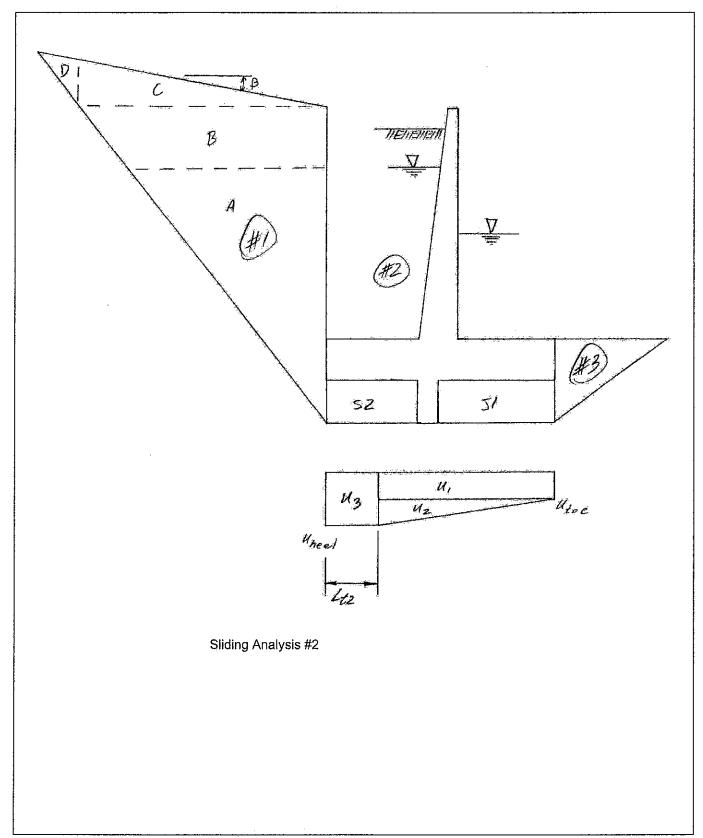
$$\phi_{\mathbf{d}_2 \mathbf{deg}} \quad \text{(substitute minimum } \phi$$

$$\phi_{\mathbf{d}_2 \mathbf{deg}} \quad \text{(subs$$

$$\beta_{\text{eff}_{i}} := \text{if} \left(\beta_{\text{w}} > \beta_{\text{max}_{i}}, \beta_{\text{max}_{i}}, \beta_{\text{w}}\right) \qquad \beta_{\text{eff}} = \begin{bmatrix} 26.4 \\ 25.5 \\ 24.7 \\ 23.9 \end{bmatrix} \text{ deg}$$

$$\alpha_{1b_{i}} := \alpha_{\text{driving}} \left(\phi_{d_{i}}, 0 \cdot \text{deg}\right) \qquad \alpha_{1b} = \begin{bmatrix} -58.5 \\ -58.2 \\ -57.8 \\ -57.3 \end{bmatrix} \text{ deg}$$

$$h_{1b} := (E_{grade} + L_{WS5} - tan(\beta_w)) - (E_{bftg} - h_{key})$$
 $h_{1b} = 34.4 \text{ ft}$


$$L_{\max_{i}} := if \left[-\alpha_{1b_{i}} = \phi_{d_{1}b_{i}}, 1000 \cdot ft, \frac{\frac{h_{1b}}{\cos(-\alpha_{1b_{i}})(\tan(-\alpha_{1b_{i}}) - \tan(\beta_{w}))}}{\cos(-\alpha_{1b_{i}})} \right] \qquad L_{\max} = \begin{pmatrix} 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \end{pmatrix} ft$$

$$h_{1a_{i}} := if \left[L_{\beta} < L_{max_{i}}, h_{1b} + L_{\beta} \left(tan(\beta) - tan(-\alpha_{1b_{i}}) \right), 0 \cdot ft \right] \qquad h_{1a} = \begin{bmatrix} 22.2 \\ 22.6 \\ 22.9 \\ 23.2 \end{bmatrix} ft$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _____

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _____

Driving	Wedge	(#1a):
---------	-------	--------

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\beta_{\rm W} = 0.0 \deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0$$
 ksf

$$\begin{split} \phi_{d_i} &:= atan \left(\frac{tan(\phi)}{FS_{2_i}} \right) \\ \alpha_i &:= \alpha_{driving} \left(\phi_{d_i}, \beta_w \right) \end{split}$$

$$\alpha = \begin{pmatrix} -58.47 \\ -58.19 \\ -57.75 \\ -57.34 \end{pmatrix} de_{i}$$

$$\phi_{d} = \begin{pmatrix} 26.9 \\ 26.4 \\ 25.5 \\ 24.7 \\ 23.9 \end{pmatrix} deg$$

$$h_i := h_{1a_i}$$

$$h_i = h_{1a_i}$$

$$L_{\hat{i}} = \frac{h_{\hat{i}}}{\cos(-\alpha_{\hat{i}}) \ \left(\tan(-\alpha_{\hat{i}}) - \tan(\beta_{\hat{w}})\right)}$$

$$h = \begin{pmatrix} 22.2 \\ 22.6 \\ 22.9 \\ 23.2 \end{pmatrix} \text{ ft } \begin{pmatrix} 25.83 \\ 26.18 \\ 26.72 \\ 27.22 \\ 27.69 \end{pmatrix} \text{ ft}$$

$$(-\alpha_{1b}) \rceil \rceil$$

22.0

$$h_{sat_{i}} := \max \left[\left[E_{wheel_{i}} - \left(E_{ftg} - t_{base} - h_{key} \right) - L_{\beta} \cdot tan \left(-\alpha_{1b_{i}} \right) \right] \right] \left(13.511 \right]$$

$$\mathbf{h_{sat}} = \begin{pmatrix} 2.0 \\ 0.5 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \mathbf{ft}$$

$$L_{h_{\hat{i}}} \coloneqq \frac{h_{\hat{i}}}{tan(-\alpha_{\hat{i}})}$$

$$L_{sat_{\underline{i}}} \coloneqq \frac{h_{sat_{\underline{i}}}}{\tan(-\alpha_{\underline{i}})}$$

$$L_{h} = \begin{vmatrix} 13.798 \\ 14.255 \\ 14.690 \\ 15.102 \end{vmatrix}$$
 ft

$$\mathbf{L_{sat}} = \begin{pmatrix} 1.24 \\ 0.31 \\ 0.00 \\ 0.00 \\ 0.00 \end{pmatrix} \text{ft}$$

klf

$$h_{left} = 0 - ft$$

$$\mathbf{h}_{right_i} \coloneqq \mathbf{h}_{1a_i}$$

$$W_{i} \coloneqq \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{right_{i}}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot \frac{L_{sat_{i}} \cdot h_{sat_{i}}}{2}$$

19.333
19.949
20.026

$$H_L := 0 \cdot klf$$

V := 0 klf

$$H_R := 0 \cdot klf$$

Samuels Ave. Dam Training wall at right

Date:	
By:	

$$\boldsymbol{U}_{i} \coloneqq \boldsymbol{\gamma}_{w} \cdot \left(\frac{\boldsymbol{h}_{sat_{i}}}{2}\right) \cdot \sqrt{\left(\boldsymbol{h}_{sat_{i}}\right)^{2} + \left(\boldsymbol{L}_{sat_{i}}\right)^{2}}$$

$$U = \begin{pmatrix} 0.149 \\ 0.009 \\ 0.000 \\ 0.000 \\ 0.000 \end{pmatrix} klf$$

$$\Delta P_{1a_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\varphi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

22.0

22.2 22.6 ft 22.9

Driving Wedge (#1b):

$$L_{B} = 12.9 \, ft$$

$$\beta_{\mathbf{w}} := \beta$$

$$\beta_{\rm w} = 33.7 \deg$$

$$\alpha := \alpha_{1b}$$

$$L_h := L_\beta$$

$$L_h = 12.9 \, ft$$

$$L_i := \frac{L_{\beta}}{\cos(\alpha_i)}$$

$$h_{\text{satr}_i} := \max \begin{bmatrix} E_{\text{wheel}_i} - (E_{\text{ftg}} - t_{\text{base}} - h_{\text{key}}) \\ 0 \cdot \text{ft} \end{bmatrix}$$

$$h_{\text{satr}_i} := \max \begin{bmatrix} 1 & 0 \\ 0 & \text{ft} \end{bmatrix}$$

$$\begin{split} h_{sati_{i}} &:= max \begin{bmatrix} E_{wheel_{i}} - \left(E_{fig} - t_{base} - h_{key}\right) - \frac{L_{\beta}}{\cos(\alpha_{i})} \\ 0 \cdot ft \end{bmatrix} \\ L_{sat_{i}} &:= min \begin{bmatrix} L_{\beta} \\ h_{satr_{i}} \\ \hline tan \left(-\alpha\right)_{i} \end{bmatrix} \end{bmatrix} \\ L_{sat} &= \begin{bmatrix} 12.9 \\ 12.9 \\ 11.4 \end{bmatrix} \end{split}$$

$$L_{sat_{i}} \coloneqq \min \left[\begin{array}{c} L_{\beta} \\ h_{sat_{i}} \\ \hline tan[(-\alpha)_{i}] \end{array} \right]$$

$$h_{left_i} := h_{1a_i}$$

$$h_{right} := h_{1b}$$

$$W_{i} := \gamma_{fill} \cdot \left(L_{h} \cdot \frac{h_{left_{i}} + h_{right}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot L_{sat_{i}}$$

$$h_{right} = 34.4 \text{ ft}$$

$$+\left(\gamma_{\text{sat}}-\gamma_{\text{fill}}\right)\cdot L_{\text{sat}_{i}}\left(\frac{h_{\text{satr}_{i}}+h_{\text{satl}_{i}}}{2}\right)$$

$$\alpha = \begin{pmatrix} -58.5 \\ -58.2 \\ -57.8 \\ -57.3 \\ -57.0 \end{pmatrix} \quad \phi_{d} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix} deg$$

$$\begin{pmatrix} 24.6 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix}$$

$$L = \begin{pmatrix} 24.4 \\ 24.1 \\ 23.9 \\ 23.6 \end{pmatrix} \text{ ft}$$

$$n_{\text{satr}} = \begin{pmatrix} 23.0 \\ 21.3 \\ 19.5 \\ 17.8 \end{pmatrix} \text{ ft}$$

16.0

$$\mathbf{h_{satl}} = \begin{pmatrix} 0.0\\0.0\\0.0\\0.0\\0.0 \end{pmatrix} \mathbf{ft}$$

$$\mathbf{h}_{left} = \begin{pmatrix} 22.0 \\ 22.2 \\ 22.6 \\ 22.9 \\ 23.2 \end{pmatrix} \mathbf{ft}$$

Date:

 $V := 0 \cdot klf$

$$H_L := 0 \cdot klf$$

$$H_R := 0 \cdot klf$$

$$\int h_{S}$$

$$U_{i} := \gamma_{w} \cdot \left(\frac{h_{satr_{i}} + h_{satl_{i}}}{2}\right) \cdot \sqrt{h_{satr_{i}}}$$

$$\boldsymbol{U_{i}} \coloneqq \boldsymbol{\gamma_{w}} \cdot \left(\frac{\boldsymbol{h_{satr_{i}}} + \boldsymbol{h_{satl}}_{i}}{2}\right) \cdot \sqrt{\left(\boldsymbol{h_{satr_{i}}} - \boldsymbol{h_{satl}}_{i}\right)^{2} + \left(\boldsymbol{L_{h}}\right)^{2}}$$

$$f_{W} \cdot \left(\frac{1}{2}\right) \cdot \sqrt{\left(h_{satr_{i}} - h_{satl_{i}}\right)^{2} + \left(L_{h}\right)^{2}}$$

$$\text{1b}_{i} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\phi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

Structure Wedge (#2):

$$\beta_w := 0 \cdot deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0 \cdot ksf$$

$$\phi_{\mathbf{d}_{i}} := atan\left(\frac{tan(\phi)}{FS_{2}}\right)$$

$$\phi_{d_{\underline{i}}} := \text{atan}\!\!\left(\frac{\tan(\varphi)}{\text{FS}_{2_{\underline{i}}}}\right)$$

 $U_i =$

 $W_i =$

46.9 47.1

47.4 47.7

48.0

klf

$$\phi_{d_i} = \begin{vmatrix} 26.4 \\ 25.5 \\ 24.7 \end{vmatrix}$$

26 9

$$\alpha := 0 \cdot deg$$

$$\alpha = 0.0 \deg$$

$$L := \frac{L_{ftg}}{\cos(\alpha)}$$

$$L = 29.0 \, ft$$

$$h_{S1} := h_{key}$$

$$h_{S1} = 5.0 \, ft$$

$$L_{S1} := x_{key} - \frac{L_{key}}{2}$$

$$L_{S1} = 10.4 \, ft$$

$$x_{S1} := \frac{1}{2} \cdot L_{S}$$

$$x_{S1} = 5.2 \, \mathrm{ft}$$

$$S1 := \gamma_{sat} \cdot h_{S1} \cdot L_{S1}$$

$$S1 = 6.6 \text{ klf}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
•	

 $h_{S2} := h_{key}$ $h_{S2} = 5.0 \, ft$

$$L_{S2} := L_{ftg} - x_{key} - \frac{L_{key}}{2}$$
 $L_{S2} = 15.6 \, ft$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$
 $x_{S2} = 21.2 \, ft$

$$S2 := \gamma_{sat} \cdot h_{S2} \cdot L_{S2}$$
 $S2 = 10.0 \text{ klf}$

$$W_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S\beta_{i}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_w \cdot |E_{wtoe_i} - (E_{bftg} - h_{key})|$$

$$u_{heel_i} := \gamma_w \left[E_{wheel_i} - \left(E_{bftg} - h_{key} \right) \right]$$

$$\delta_{u_{i}} \coloneqq \frac{\gamma_{w} \cdot \left(E_{wheel_{i}} - E_{wtoe_{i}}\right)}{L_{ftg} - L_{t2_{i}}}$$

$$u_{l_i} := u_{toe_i} \cdot \left(L_{ftg} - L_{t2_i}\right)$$

$$x_{u1_i} := \frac{L_{ftg} - L_{t2_i}}{2}$$

$$\mathbf{u_{2_i}} \coloneqq \left(\mathbf{u_{heel}}_i - \mathbf{u_{toe}}_i\right) \cdot \frac{\left(\mathbf{L_{ftg}} - \mathbf{L_{t2_i}}\right)}{2}$$

$$x_{u2_i} \coloneqq \frac{2}{3} \cdot \left(L_{ftg} - L_{t2_i} \right)$$

$$u_{3_{i}} := u_{heel_{i}} \left(L_{t2_{i}}\right)$$

$$x_{u3_i} := L_{ftg} - \frac{L_{t2_i}}{2}$$

$$\mathbf{U}_{i} \coloneqq \mathbf{u}_{1_{i}} + \mathbf{u}_{2_{i}} + \mathbf{u}_{3_{i}}$$

$$x_{U_{i}} := \frac{u_{1_{i}} \cdot x_{u1_{i}} + u_{2_{i}} \cdot x_{u2_{i}} + u_{3_{i}} \cdot x_{u3_{i}}}{U_{i}}$$

$$x_{u1} = \begin{pmatrix} 14.5 \\ 14.5 \\ 14.5 \\ 14.5 \\ 14.5 \\ \end{pmatrix}$$
ft
$$x_{u2} = \begin{pmatrix} 19.3 \\ 19.3 \\ 19.3 \\ 19.3 \\ 19.3 \\ \end{pmatrix}$$
ft
$$19.3 \\ 19.3 \\ \end{pmatrix}$$

$$\mathbf{x}_{\mathbf{U}} = \begin{pmatrix} 15.8 \\ 16.0 \\ 15.8 \\ 15.6 \\ 15.4 \end{pmatrix}$$
ft

Samuels Ave. Dam_ Training wall at right CDM04188

Date:	
By:	
V	

$$\begin{split} \Sigma M_{grav_{i}} := & \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} \right) ... \\ & + W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U_{i} \cdot x_{U_{i}} \right) \end{split}$$

$$h_{H1_{i}} := E_{wtoe_{i}} - (E_{bftg} - h_{key})$$

$$y_{H1_{i}} := \frac{h_{H1_{i}}}{3} - h_{key}$$

$$H1_{i} := \gamma_{w} \cdot \frac{(h_{H1_{i}})^{2}}{2}$$

$$\begin{array}{ccc} h_{1_{i}} \coloneqq E_{\text{wtoe}_{i}} - \left(E_{\text{bftg}} - h_{\text{key}}\right) & h_{\text{H}1_{i}} = \\ h_{\text{H}1_{i}} \coloneqq \frac{h_{\text{H}1_{i}}}{3} - h_{\text{key}} & \boxed{11.25} \\ h_{1_{i}} \coloneqq \gamma_{\text{w}} & \frac{\left(h_{\text{H}1_{i}}\right)^{2}}{2} & \boxed{11.00} \\ \hline & 11.00 & \boxed{11.00} \end{array}$$

$$K2 := 0 \cdot klf$$

 $K1_i := 0 \cdot klf$

$$\begin{split} \Sigma M_{lat_{i}} &= -H1_{i} \cdot \left(y_{H1_{i}}\right) - K1_{i} \cdot \left(y_{K1}\right) - K2_{i} \cdot \left(y_{K2}\right) + H2_{i} \cdot \left(y_{H2_{i}}\right) + H3_{i} \cdot \left(y_{H3}\right) - \\ &+ A1_{i} \cdot \left(y_{A1_{i}}\right) + A2_{i} \cdot \left(y_{A2_{i}}\right) + A3_{i} \cdot \left(y_{A3_{i}}\right) - R_{key_{i}} \cdot \left(y_{Rkey}\right) \end{split}$$

$$x_{R_i} := \frac{\sum M_{grav_i} - \sum M_{lat_i}}{W_i - U_i}$$

$$L_{brg_{i}} := \min(3 \cdot x_{R_{i}}, L_{ftg})$$

 $ok_{u_i} := if \left| \left| L_{brg_i} - \left(L_{ftg} - L_{t2_i} \right) \right| > 0.001 \cdot ft, "Uplift assumptions wrong in sliding analysis.", "Matched." \right|$

$$\begin{array}{ccc} W_i = & u_{toe_i} = \\ \hline 90.2 & klf & 0.813 \\ \hline 89.4 & 0.703 \\ \hline 89.4 & 0.688 \\ \hline 89.4 & 0.688 \\ \hline 89.4 & 0.688 \\ \hline \end{array}$$

$$\delta_{u_i} =$$
 $\delta_{u_i} =$
 $\delta_{$

u ₁ =
23.562
20.391
19.938
19.938
19.938

$$u_{2_{i}} = \\ klf & 9.063 \\ \hline 9.063 \\ \hline 7.703 \\ \hline 6.117 \\ \hline 4.531 \\ \hline$$

klf

Samuels Ave. Dam Training wall at right CDM04188

Date: _____ By: ____

klf

x _{u3} ; =	h _{H2} =	у _{Н2} =	H2 _i
29.0 ft	23.0 ft	2.7 ft	16.
29.0	21.3	2.1	14.
29.0	19.5	1.5	11.
29.0	17.8	0.9	9.
29.0	16.0	0.3	8.

 $H_{L_i} := 0$ klf

$$H_{R_{i}} := \gamma_{W} \cdot \frac{\left(E_{Wtoe_{i}} - E_{ftg}\right)^{2}}{2}$$

$$\Delta P_{2_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(tan\left(\phi_{d_{\hat{i}}}\right) \cdot cos(\alpha) + sin(\alpha)\right) - U_{\hat{i}} \cdot tan\left(\phi_{d_{\hat{i}}}\right) + \left(H_{L_{\hat{i}}} - H_{R_{\hat{i}}}\right) \cdot \left(tan\left(\phi_{d_{\hat{i}}}\right) \cdot sin(\alpha) - cos(\alpha)\right) + \frac{c}{FS_{2_{\hat{i}}}} \cdot L\right]}{\left(cos(\alpha) - tan\left(\phi_{d_{\hat{i}}}\right) \cdot sin(\alpha)\right)}$$

$$\begin{aligned} \text{ok} &:= \text{ if} \left\lfloor \text{max} \left\lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{t2} \right) \right\rfloor \right\rfloor < 0.001 \cdot \text{ ft, ok, "Uplift area does not match."} \right\rfloor \\ \text{ok} &:= \text{ if} \left(\min \left(L_{brg} \right) < x_{key} + \frac{L_{key}}{2}, \text{"Uplift assumptions incorrect.", ok} \right) & \text{ok} = \text{"Ok"} \end{aligned}$$

Samuels Ave. Dam Training wall at right CDM04188

Date: _	
By: _	· · · · · · · · · · · · · · · · · · ·

Resisting Wedge (#3):

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$c := 0 \text{ ksf}$$

$$\phi_{d_i} := atan \left(\frac{tan(\phi)}{FS_{2_i}} \right)$$

$$\alpha_i = 45 \cdot \deg - \frac{\phi_{d_i}}{2}$$

$$L_{i} := \frac{t_{base} + h_{key}}{\sin(\alpha_{i})}$$

$$\phi_{\mathbf{d}_{\mathbf{i}}} = \begin{pmatrix} 26.9 \\ 26.4 \\ 25.5 \\ 24.7 \\ 23.9 \end{pmatrix} \operatorname{deg}$$

$$\alpha_{i} = \begin{pmatrix} 31.5 \\ 31.8 \\ 32.2 \\ 32.7 \\ 33.0 \end{pmatrix} deg$$

$$L = \begin{pmatrix} 21.032 \\ 20.868 \\ 20.614 \\ 20.383 \\ 20.170 \end{pmatrix}$$
 ft

$$W_{i} := \gamma_{sat} \cdot \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot (t_{base} + h_{key})}{2} + \gamma_{w} \cdot (E_{wtoe_{i}} - E_{ftg}) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_{i} := \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg} + \frac{t_{base} + h_{key}}{2} \right) \cdot L_{i}$$

$$H_L := 0 \cdot klf$$

$$H_R := 0$$
 klf

$$V := 0$$
 klf

$$\Delta P_{3_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\varphi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

$$\Sigma P_i := \Delta P_{1a_i} + \Delta P_{1b_i} + \Delta P_{2_i} + \Delta P_{3_i}$$

$$W_{i} = U_{i} =$$
 $14.8 \text{ klf } 9.9 \text{ klf}$
 $12.7 \text{ } 7.5$

12.2

12.0

11.9

$$\Delta P_{1a_i} =$$

$$\Delta P_{1b_i} =$$

-26.8

28.8

$$\Delta r_{2_{i}} =$$
f 29.4 klf
29.7
29.5

 $\Delta P_{3_i} =$

$$\Sigma P_{j} = \begin{cases} -0.2 \\ 0.0 \end{cases}$$

$$\Sigma P_{i} = \begin{bmatrix} -0.2 & & & & \\ -0.2 & & & & \\ 0.0 & & & & \\ 0.1 & & & & \\ 0.2 & & & & \\ L_{heel} = 19 & ft \\ 0.2 & & & \\ h_{kev} = 5 \cdot ft \end{bmatrix}$$

ok := if
$$(FS_{2_1} \ge 1.33, ok, "Sliding instability: LC#1")$$

ok := if
$$(FS_{2_n} \ge 1.50, ok, "Sliding instability: LC#n"$$

$$L_{\text{ftg}} - x_{\text{key}} - \frac{L_{\text{key}}}{2} = 15.6 \,\text{ft}$$
 $L_{\text{toe}} = 10 \cdot \text{ft}$

1.23

1.26

1.31

 $L_{ftg} = 29.0 \, ft$

Samuels Ave. Dam Training wall at right

Date:	
By:	
V	

517.0

508.5 ft

Downstream Training Wall at Right: (Grade = 517.0')

Reference:T:\ST\CALCS\Common geometry.mcd(R)

Geometry:

$$E_{\text{wall}} := 520 \text{ ft}$$

$$E_{ftg} := E_{sill}$$

$$E_{ftg} = 495.0 \, ft$$

$$t_{\text{base}} := 6 \cdot \text{ft}$$

$$E_{bftg} := E_{ftg} - t_{base}$$

$$E_{bftg} = 489.0 \, ft$$

$$E_{grade} = 517$$
 ft

$$i := 1...n$$

 $\Delta_w := 10 \cdot ft$ (maximum height of retained water above water in basin)

$$E_{\text{wheel}_{i}} := E_{\text{grade}} - \frac{\left[E_{\text{grade}} - \left(E_{\text{ftg}} + \frac{\Delta_{w}}{2}\right)\right]}{n-1} \cdot (i-1)$$

$$E_{\text{wheel}_{i}} := E_{\text{grade}} - \frac{\left[E_{\text{grade}} - \left(E_{\text{fig}} + \frac{1}{2}\right)\right]}{n-1} \cdot (i-1)$$

$$E_{\text{wheel}_{i}} := \max \begin{pmatrix} \left(E_{\text{wheel}_{i}} - \Delta_{\text{w}}\right) \\ E_{\text{fig}} \end{pmatrix}$$

$$E_{\text{wtoe}} := \max \begin{pmatrix} \left(E_{\text{wheel}_{i}} - \Delta_{\text{w}}\right) \\ E_{\text{fig}} \end{pmatrix}$$

$$E_{\text{wtoe}} = \begin{pmatrix} 507.0 \\ 502.8 \\ 498.5 \\ 495.0 \\ 495.0 \end{pmatrix}$$

$$E_{\text{wtoe}_{i}} := \max \begin{pmatrix} \left(E_{\text{wheel}_{i}} - \Delta_{w} \right) \\ E_{\text{fig}} \end{pmatrix}$$

$$h := \min \begin{bmatrix} \begin{bmatrix} \frac{1.0}{1.5} \cdot 2 \cdot \left(E_{grade} - E_{ftg} \right) \end{bmatrix} + E_{grade} \\ 527 \cdot \text{ft} - E_{ftg} \end{bmatrix} + E_{grade}$$

$$\beta := \text{atan} \left(\frac{1.0}{1.5} \right) \qquad \beta = 33.7 \text{ deg}$$

$$\beta := \operatorname{atan}\left(\frac{1.0}{1.5}\right) \qquad \beta = 33.7 \operatorname{deg}$$

$$h_{\beta} := 527 \cdot ft - E_{grade}$$

$$h_{\beta} = 10.0 \, ft$$

$$t_{\text{w_top}} := 1.5 \cdot \text{ft}$$

$$t_{w_bot} = t_{w_top} + \frac{(E_{wall} - E_{ftg})}{8}$$

$$t_{w_bot} = 4.63 \text{ ft}$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _____

$$L_{toe} = 10.0 \, ft$$

$$L_{heel} = 22.5 \text{ ft}$$

$$L_{ftg} := L_{toe} + L_{heel}$$

$$L_{ft\dot{g}} = 32.5 \, ft$$

$$h_{wall} := E_{wall} - E_{ftg}$$

$$h_{\text{wall}} = 25.0 \text{ ft}$$

$$h_{key} = 7.0 \, ft$$

$$L_{\text{key}} := 4 \cdot \text{ft}$$

$$L_{\text{key}} = 4.0 \, \text{ft}$$

$$x_{key} \coloneqq L_{toe} + t_{w_bot} - \frac{L_{key}}{2}$$

$$x_{\text{key}} = 12.6 \,\text{ft}$$

Constants:

$$\gamma_{\mathbf{w}} = 62.5 \, \mathrm{pcf}^{\circ}$$

Soil parameters:

$$\gamma_{\text{fill eff}} = 65.0 \, \text{pcf}$$

$$\gamma_{\text{sat}} = 127.5 \, \text{pcf}$$

$$\gamma_{fill} = 130.0\,pcf$$

$$k_{0_{fill}} = 0.5$$

$$\phi_{fill} = 32.0 \ deg$$

$$k_{0\beta} := k_{0 \text{ fill}} \left(1 + \sin(\beta)\right)$$

$$k_{0\beta}=0.777$$

(USACE EM 1110-2-2502, Eq. 3-5)

Pre-Definitions:

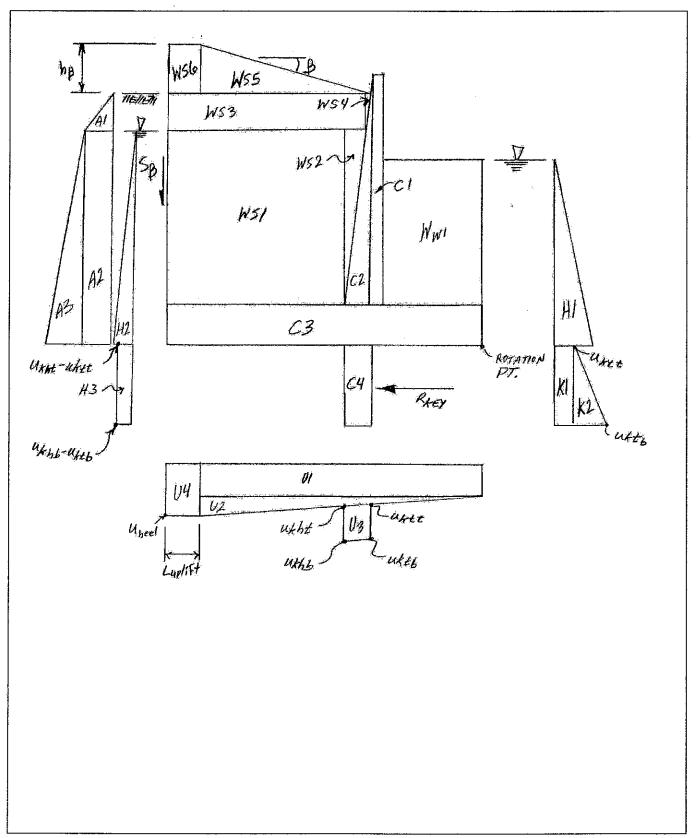
$$kip = 1000 \cdot lbf$$

$$ksi \equiv 1000 \cdot psi$$

$$ok \equiv "Ok"$$

$$klf = 1000 \cdot \frac{lbf}{ft}$$

$$psf \equiv \frac{lbf}{ft^2}$$


$$plf = \frac{lbf}{ft}$$

$$pcf = \frac{lbf}{ft^3}$$

(must equal to 1)

Date: ____ By: _____

Date: ____ By: _____

Analysis:

Gravity Loads:

$$h_{C_1} := h_{wall}$$

$$h_{C_1} = 25.0 \, ft$$

$$L_{C_1} := t_{w_top}$$

$$L_{C_1} = 1.5 \, ft$$

$$x_{C_1} := L_{toe} + \frac{L_{C_1}}{2}$$

$$x_{C_1} = 10.8 \, ft$$

$$W_{C_1} := \gamma_c \cdot h_{C_1} \cdot L_{C_1}$$

$$W_{C_1} = 5.6 \text{klf}$$

$$h_{C_2} := h_{C_1}$$

$$h_{C_2} = 25.0 \, \text{ft}$$

$$L_{C_2} := t_{w_bot} - t_{w_top}$$

$$L_{C_2} = 3.1 \, \text{ft}$$

$$x_{C_2} := L_{toe} + L_{C_1} + \frac{L_{C_2}}{3}$$

$$x_{C_2} = 12.5 \, ft$$

$$W_{C_2} := \gamma_c \cdot \frac{h_{C_2} \cdot L_{C_2}}{2}$$

$$W_{C_2} = 5.9 \, \text{klf}$$

$$h_{C_3} := t_{base}$$

$$h_{C_3} = 6.0 \, \text{ft}$$

$$L_{C_3} := L_{fig}$$

$$L_{C_3} = 32.5 \, ft$$

$$x_{C_3} = \frac{L_{C_3}}{2}$$

$$x_{C_3} = 16.3 \text{ ft}$$

$$W_{C_{3}} \coloneqq \gamma_{c} \cdot h_{C_{3}} \cdot L_{C_{3}}$$

$$W_{C_3} = 29.2 \, \text{klf}$$

$$h_{C_4} := h_{key}$$

$$h_{C_4} = 7.0 \, ft$$

$$L_{C_4} := L_{key}$$

$$L_{C_4} = 4.0 \, \text{ft}$$

$$x_{C_4} := x_{key}$$

$$x_{C_4} = 12.6 \,\text{ft}$$

Samuels Ave. Dam Training wall at right

Date:	
By:	,

$$W_{C_{\underline{a}}} \coloneqq \gamma_c \cdot h_{C_{\underline{a}}} \cdot L_{C_{\underline{a}}}$$

$$W_{C_4} = 4.2 \, \text{klf}$$

Weight of water at toe:

$$h_{Wl_i} := E_{wtoe_i} - E_{ftg}$$

$$\mathbf{h_{W1}} = \begin{pmatrix} 12.00 \\ 7.75 \\ 3.50 \\ 0.00 \\ 0.00 \end{pmatrix} \mathbf{ft}$$

$$L_{W1} := L_{toe}$$

$$L_{W1} = 10.0 \, \mathrm{ft}$$

$$x_{W1} := \frac{L_{toe}}{2}$$

$$x_{W1} = 5.0 \, ft$$

$$W_{W1_i} := \gamma_w \cdot h_{W1_i} \cdot L_{W1}$$

$$W_{W1} = \begin{pmatrix} 7.5 \\ 4.8 \\ 2.2 \\ 0.0 \\ 0.0 \end{pmatrix} \text{klf}$$

Weight of water/soil at heel:

$$\mathbf{h_{WSI}_{i}} \coloneqq \mathbf{E_{wheel}_{i}} - \mathbf{E_{ftg}}$$

$$h_{WS1} = \begin{pmatrix} 22.00 \\ 17.75 \\ 13.50 \\ 9.25 \\ 5.00 \end{pmatrix} ft$$

$$L_{WS1} \coloneqq L_{heel} - t_{w_bot} \qquad \qquad L_{WS1} = 17.9 \, \text{ft}$$

$$L_{WS1} = 17.9 \, ft$$

$$x_{WS1} := L_{toe} + t_{w_bot} + \frac{L_{WS1}}{2}$$
 $x_{WS1} = 23.6 \text{ ft}$

$$W_{WS1_i} := (\gamma_{sat}) \cdot h_{WS1_i} \cdot L_{WS1}$$

$$W_{WS1} = \begin{pmatrix} 50.1 \\ 40.5 \\ 30.8 \\ 21.1 \\ 11.4 \end{pmatrix} \text{klf}$$

$$h_{WS2_i} = h_{WS1_i}$$

$$L_{WS2_i} \coloneqq \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS2_i}$$

$$x_{\text{WS2}_{\underline{i}}} := L_{\text{toe}} + t_{\text{w_bot}} - \frac{L_{\text{WS2}_{\underline{i}}}}{3}$$

$$L_{WS2} = \begin{pmatrix} 2.75 \\ 2.22 \\ 1.69 \\ 1.16 \\ 0.63 \end{pmatrix} \text{ft}$$

$$x_{WS2} = \begin{pmatrix} 13.7 \\ 13.9 \\ 14.1 \\ 14.2 \\ 14.4 \end{pmatrix} ft$$

Date:	· ·
By:	
✓	

$W_{WS2_{i}} := (\gamma_{sat}) \cdot \frac{h_{WS2_{i}} \cdot L_{WS2_{i}}}{2}$	
2	$W_{WS2_i} =$
$h_{WS3_i} := E_{grade} - E_{wheel_i}$	3.9 klf 2.5 hws3 =
$L_{WS3_i} := L_{WS1} + L_{WS2_i}$	$ \begin{array}{c c} \hline 0.7 \\ \hline 0.2 \end{array} $ $ \begin{array}{c c} \hline 0.0 \\ \hline 4.3 \end{array} $ $ \begin{array}{c} \text{ft} \\ L_{WS3}_{i} = \end{array} $
$x_{WS3_i} := L_{ftg} - \frac{L_{WS3_i}}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$W_{WS3_i} := \gamma_{fill} \cdot h_{WS3_i} \cdot L_{WS3_i}$	19.0 22.2 ft W _{WS3} =
$h_{WS4_i} := h_{WS3_i}$	22.7 0.0 kif 23.0 11.1 23.3 21.6
wan .	$L_{WS4} = \begin{bmatrix} 31.5 \\ 40.9 \end{bmatrix}$
$x_{WS4_{i}} := L_{ftg} - L_{WS3_{i}} - \frac{L_{WS4_{i}}}{3}$	$\begin{array}{c} 0.5 \\ 1.1 \end{array}$
$W_{WS4_{i}} := \gamma_{fill} \cdot \frac{h_{WS4_{i}}}{2}$	1.6 11.9 ft 12.2 $W_{WS4} =$
$L_{WS5} := min \begin{bmatrix} \begin{bmatrix} t_{w_bot} - t_{w_top} \\ h_{wall} \end{bmatrix} & (E_{grade} - E_{ftg}) + L_{WS1} \end{bmatrix} \\ & \frac{h_{\beta}}{tan(\beta)} \end{bmatrix}$	$ \begin{array}{c cccc} 12.6 \\ \hline 12.9 \\ \hline 13.3 \end{array} $ $ \begin{array}{c cccccccc} 0.0 & \text{klf} \\ \hline 0.1 & \\ 0.6 & \\ 1.3 & \\ 2.3 & \\ \end{array} $ $ \begin{array}{c ccccc} L_{WS5} = 15.00 \text{ft} \\ \hline 1.3 & \\ \end{array} $
$h_{WS5} = L_{WS5} \cdot tan(\beta)$ $h_{WS5} = 10.00 ft$	
$x_{WS5} = \frac{2}{3} L_{WS5} + L_{toe} + t_{w_top} + \frac{\left(E_{wall} - E_{grade}\right)}{E_{wall} - E_{ftg}} (t_{w})$	$x_{WS5} = 21.88 \text{ft}$
$W_{WS5} := \gamma_{fill} \cdot \frac{h_{WS5} \cdot L_{WS5}}{2} \qquad W_{WS5} = 9.8 \text{klf}$	
$L_{WS6} := \frac{E_{grade} - E_{ftg}}{h_{wall}} \cdot (t_{w_bot} - t_{w_top}) + L_{WS1} - L_{WS5}$	$L_{WS6} = 56 \mathrm{ft}$
h _{WS6} := h _{WS5}	$h_{WS6} = 10.0 \text{ ft}$
$x_{WS6} \coloneqq L_{ftg} - \frac{L_{WS6}}{2}$	$x_{WS6} = 29.7 \text{ft}$

 $W_{WS6} = \gamma_{fill} (h_{WS6} L_{WS6})$

 $W_{WS6} = 7.3 \, \text{klf}$

Samuels Ave. Dam Training wall at right

Date:	
By:	
٠. ر	-

Uplift:

$$u_{toe_i} := \gamma_w \left(E_{wtoe_i} - E_{bftg} \right)$$

$$u_{\text{heel}_i} := \gamma_w \cdot \left(E_{\text{wheel}_i} - E_{\text{bftg}} \right)$$

$$\delta_{seep_i} \coloneqq \frac{u_{heel_i} - u_{toe_i}}{L_{ftg} - L_{uplift_i}}$$

$$u_{ktt_i} := u_{heel_i} + \left(x_{key} - \frac{L_{key}}{2}\right) \cdot \delta_{seep_i}$$

$$u_{kht_i} := u_{ktt_i} + L_{key} \cdot \delta_{seep_i}$$

$$u_{ktb_i} := u_{ktt_i} + \gamma_w \cdot h_{key}$$

$$u_{khb_i} := u_{ktb_i} + L_{key} \cdot \delta_{seep_i}$$

$$x_{U1} := \frac{L_{ftg} - L_{uplift}}{2}$$

$$U1_i := u_{toe_i} \cdot L_{ftg}$$

$$x_{U2_i} := \frac{2}{3} \cdot \left(L_{fig} - L_{uplift_i} \right)$$

$$U2_{i} := \left(u_{heel_{i}} - u_{toe_{i}}\right) \cdot \frac{L_{fig}}{2}$$

$$x_{U3} := x_{key}$$

$$\text{U3}_{\hat{i}} \coloneqq \left(u_{ktb}_{\hat{i}} - u_{ktt}_{\hat{i}} \right) \cdot L_{key}$$

$$x_{\text{U4}_{i}} \coloneqq L_{\text{ftg}} - \frac{L_{\text{uplift}_{i}}}{2}$$

$$L_{U4_i} := L_{uplift_i}$$

$$U4_i := u_{heel_i} \cdot L_{U4_i}$$

$$u_{toe_i} =$$

ksf

 $u_{ktb_i} =$

2.392

2.126

1.861

1.580

1.227

 $U2_i =$

10.2

10.2

10.2

9.4

5.1

klf

ksf

 $u_{khb_i} =$

2.469

2.203

1.938

1.651

1.266

 $x_{U3} = 12.6 \, ft$

ksf

 $x_{U_{i}} =$

16.3

16.3

16.3

16.3

16.3 ft

 $u_{heel_i} =$

$$\delta_{\text{seep}_i} =$$

19.231

L	1.904
	1.689
	1.423
I	1.142
I	0.790

 $u_{kht_i} =$

2.031

ksf

	36.6
	27.9
	19.3
ı	12.2

$$x_{U2_{i}} =$$
21.67

$$U3 = \begin{pmatrix} 1.8 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.8 \end{pmatrix} \text{klf}$$

Date:	
Ву:	,
. ∡	

Lateral	load	due	to	water	at	toe:

$$h_{\text{H1}_{i}} := E_{\text{wtoe}_{i}} - E_{\text{bftg}}$$

$$y_{\text{H1}_{i}} := \frac{h_{\text{H1}_{i}}}{3}$$

$$H1_{i} := \gamma_{W} \cdot \frac{\left(h_{H1_{i}}\right)^{2}}{2}$$

$$h_{H2_i} := E_{wheel_i} - E_{bftg}$$

$$y_{H2_i} := \frac{h_{H2_i}}{3}$$

$$H2_i := \gamma_w \frac{\left(h_{H2_i}\right)^2}{2}$$

$$h_{\text{H3}} := h_{\text{kev}}$$

$$h_{H3} = 7.0 \, ft$$

 $y_{H3} = -3.5 \, ft$

$$y_{H3} \coloneqq \frac{-h_{key}}{2}$$

$$H3_{\underline{i}} := \left(u_{khb_{\underline{i}}} - u_{ktb_{\underline{i}}}\right) \cdot h_{H3}$$

$$h_{K1} := h_{kev}$$

$$h_{K1} = h_{key}$$
 $h_{K1} = 7.0 \, ft$

$$K1_i = u_{ktt_i} \cdot h_{K1}$$

$$h_{K2} := h_{kev}$$

$$h_{K2} = 7.0 \, ft$$

$$K2_{i} := \left(u_{ktb_{i}} - u_{ktt_{i}}\right) \cdot \frac{h_{K2}}{2}$$

$$y_{K1} := \frac{-h_{\text{key}}}{2}$$

$$y_{K1} = -3.5 \, ft$$

$$y_{K2} = \frac{-2}{3} h_{key}$$

$$y_{K2} = -4.7 \, ft$$

$$h_{H1} =$$

18.00	ft
13.75	
9.50	
6.00	

6.00

 $y_{H2} =$

9.3 ft

7.9

6.5

5.1

3.7

$$y_{H1} = 6.00 \text{ ft}$$

1.1

 $h_{H2} =$

28.00 ft

 $x_{U4_i} =$

32.5 ft 32.5

0.0

0.0

klf

3.8

$$H3_{i} = \boxed{0.54}$$
 klf

$$K1_i =$$

$$13.7 \text{ klf}$$

$$K2_i =$$

1.5	klf
1.5	
1.5	
1.5	
1.5	

Samuels Ave. Dam Training wall at right CDM04188

Date: _____ By: _____

Lateral load due to retained soil/water:

$$h_{A1_i} := E_{grade} - E_{wheel_i}$$

$$y_{A1_i} := E_{grade} - E_{bftg} - \frac{2}{3} \cdot h_{A1_i}$$

$$Al_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot \frac{\left(h_{Al_{i}}\right)^{2}}{2}$$

$$h_{A1_i} =$$

17.00

$$y_{A1_{i}} = \frac{28.00}{1}$$
 ft

14.6

$$h_{A2} := E_{wheel} - E_{bftg}$$

$$y_{A2_i} \coloneqq \frac{h_{A2_i}}{2}$$

 $h_{A3_i} := h_{A2_i}$

$$A2_{i} = k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot h_{A2_{i}}$$

 $A3_{i} := k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$

$$h_{A2_i} =$$

5.50

$$h_{A3} = 16.7$$
 19.6
 18.9
 $h_{A3} = 28.00$
 23.75
 19.50
 15.25

11.00

$$y_{A3} =$$

3.1

 $A3_i =$

$$h_2 := E_{grade} - E_{ftg}$$

$$h_2 = 22.0 \, ft$$

Shear force due to sloped backfill (EM 1110-2-2502, Fig. 4-7)

$$h_1 := h_2 + \tan(\beta) L_{WS5}$$
 $h_1 = 32.0 \text{ ft}$

$$h_1 = 320 \, ft$$

$$P_{i} := k_{0\beta} \cdot \gamma_{\text{fill}} \cdot h_{A1_{i}} \cdot \left(h_{A2_{i}} - t_{\text{base}}\right) + k_{0\beta} \cdot \gamma_{\text{fill}} \cdot \frac{\left(h_{A3_{i}} - t_{\text{base}}\right)^{2}}{2}$$

$$S_{\beta_i} = if \left[h_1 > h_2, \left[\frac{P_i \cdot (h_1 - h_2)}{3 \cdot L_{WS5}} \right], 0 \cdot klf \right]$$

$$x_{S\beta} := L_{ftg}$$

$$x_{S\beta} = 32.5 \, ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
~	

2.7 klf

3.5

3.6

3.1

2.0

19.5

24.3

28.1

30.9

32.4

12.2 klf

15.6

16.2

14.1

9.2

Sum forces:

$$\Sigma V_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S_{\beta_{i}} - \left(U1_{i} + U2_{i} + U3_{i} + U4_{i}\right)$$

$$\begin{split} \Sigma M_{grav_i} &:= \left(\sum_{i=1}^{4} \ W_{C_i} \ x_{C_i} + W_{W1_i} \cdot x_{W1} + W_{WS1_i} \cdot x_{WS1} + W_{WS2_i} \cdot x_{WS2_i} + W_{WS3_i} \ x_{WS3_i} + W_{WS4_i} \cdot x_{WS4_i} \right) \\ &+ W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S_{\beta_i} \cdot x_{S\beta} - \left(U1_i \cdot x_{U1_i} + U2_i \cdot x_{U2_i} + U3_i \cdot x_{U3} + U4_i \ x_{U4_i} \right) \end{split}$$

$$R_{key_{i}} \coloneqq -H1_{i} - K1_{i} - K2_{i} + H2_{i} + H3_{i} + A1_{i} + A2_{i} + A3_{i}$$

$$y_{Rkey} := \frac{-h_{key}}{2}$$
 $y_{Rkey} = -3.5 \, ft$

$$\Sigma H_i := -H1_i - K1_i - K2_i + H2_i + H3_i + A1_i + A2_i + A3_i - R_{key_i}$$

$$\begin{split} \Sigma M_{lat_{i}} &:= -H1_{i} \cdot y_{H1_{i}} - K1_{i} \cdot y_{K1} - K2_{i} \cdot y_{K2} + H2_{i} \cdot y_{H2_{i}} + H3_{i} \cdot y_{H3} \dots \\ &+ A1_{i} \cdot y_{A1_{i}} + A2_{i} \cdot y_{A2_{i}} + A3_{i} \cdot y_{A3_{i}} - R_{key_{i}} \cdot y_{Rkey} \end{split}$$

$$\Sigma M_i := \Sigma M_{grav_i} - \Sigma M_{lat_i}$$

$$x_{R_i} := \frac{\sum M_i}{\sum V_i}$$

$$L_{brg_i} := \max \left[\min \begin{pmatrix} 3 \cdot x_{R_i} \\ L_{ftg} \end{pmatrix} \right], 0 \cdot ft$$

Samuels Ave. Dam Training wall at right

Date:	
By:	
Ū	

Bearing Capacity: (per EM 1110-1-1905)

$$c := c_{fill}$$

$$c = 0.0 \, psf$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$\gamma_{\rm eff} := \gamma_{\rm fill}$$
 eff

$$\gamma_{eff} = 65.0 \, pcf$$

$$\gamma_{H}$$
 eff := γ_{eff}

$$\gamma_{H eff} = 65.0 \, pcf$$

$$B_{eff_{i}} \coloneqq L_{ftg} - 2 \cdot \left| \frac{L_{brg_{i}}}{2} - x_{R_{i}} \right|$$

$$B_{\text{eff}} = \begin{pmatrix} 29.4 \\ 30.0 \\ 30.6 \\ 31.2 \\ 31.5 \end{pmatrix} \text{ft}$$

Table 4-3

$$N_{\phi} := \tan\left(45 \cdot \deg + \frac{\phi}{2}\right)^2$$

$$N_{\phi} = 3.255$$

$$N_q := if(\phi = 0, 10, N_\phi \cdot e^{\pi \cdot tan(\phi)})$$

$$N_q = 23.2$$

$$N_c := if \lfloor \phi = 0, 5.14, (N_q - 1) \cdot \cot(\phi) \rfloor$$

$$N_c = 35.5$$

$$N_{\gamma} := if | \phi = 0, 0.00, (N_{q} - 1) \cdot tan(1.4 \cdot \phi) |$$

$$N_{\gamma} = 22.0$$

Inclined loading correction:

$$\theta_i \coloneqq \text{atan} \left(\frac{R_{\text{key}_i} + K1_i + K2_i}{\Sigma V_i} \right)$$

$$\theta = \begin{pmatrix} 24.07 \\ 23.95 \\ 23.52 \\ 22.72 \end{pmatrix} \text{deg}$$

21.57

$$\xi_{\text{ci}_{\hat{i}}} = \text{if} \left[\phi = 0, \left(1 - \frac{\theta_{\hat{i}}}{90 \cdot \text{deg}} \right), \left(1 - \frac{\theta_{\hat{i}}}{90 \cdot \text{deg}} \right)^{-1} \right]$$

$$\xi_{ci} = \begin{bmatrix} 0.539 \\ 0.546 \\ 0.559 \\ 0.578 \end{bmatrix}$$

(0.537)

$$\xi_{\gamma i} = \begin{pmatrix} 0.061 \\ 0.063 \\ 0.070 \\ 0.084 \\ 0.106 \end{pmatrix} \quad \xi_{qi} = \begin{pmatrix} 0.537 \\ 0.539 \\ 0.546 \end{pmatrix}$$

$$\xi_{\gamma i_{i}} := if \left[\phi = 0, 1.0, if \left[\theta_{i} \le \phi, \left(1 - \frac{\theta_{i}}{\phi} \right)^{2}, 0.0 \right] \right]$$

$$\xi_{q i_{i}} := if \left[\phi = 0, \left(1 - \frac{\theta_{i}}{90 \text{ deg}} \right), \left(1 - \frac{\theta_{i}}{90 \text{ deg}} \right)^{2} \right]$$

$$B = \begin{pmatrix} 32.5 \\ 32.5 \\ 32.5 \\ 32.5 \end{pmatrix}$$

32.5

$$= \begin{vmatrix} 32.5 \\ 32.5 \\ 32.5 \\ 32.5 \end{vmatrix}$$
 ft
$$\begin{vmatrix} 0.559 \\ 0.578 \\ 0.578 \end{vmatrix}$$

$$W := 100 \cdot ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

Foundation depth correction: (at toe)

$$D := \mathfrak{t}_{base}$$

$$D \approx 6.0 \, \text{ft}$$

$$\sigma_{D_eff} := \gamma_{eff} \cdot D$$

$$\sigma_{D~eff} = 390.0\,psf$$

$$\xi_{\text{cd}_{\underline{i}}} := 1 + 0.2 \cdot \left(N_{\underline{\phi}}\right)^{\frac{1}{2}} \cdot \frac{D}{B_{\underline{i}}}$$

$$\xi_{\text{cd}} = \begin{pmatrix} 1.067 \\ 1.067 \\ 1.067 \\ 1.067 \end{pmatrix}$$

$$\xi_{\gamma d_{10}} := 1 + 0.1 \cdot \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^{2} \right)^{\frac{1}{2}} \cdot \frac{D}{B_{i}}$$

$$\xi_{\gamma d_{\underline{i}}} \coloneqq \mathrm{if} \left[\phi \leq 10 \ \deg, \xi_{\gamma d_0} + \frac{\phi}{10 \cdot \deg} \cdot \left(\xi_{\gamma d_10_{\underline{i}}} - \xi_{\gamma d_0} \right), 1 + 0.1 \cdot \left(N_{\varphi} \right)^{\frac{1}{2}} \cdot \frac{D}{B_{\underline{i}}} \right]$$

$$\xi_{qd_i} := \xi_{\gamma d_i}$$

$$q_{u_toe_{\hat{i}}} \coloneqq c \cdot N_c \cdot \xi_{cd} \cdot \xi_{ci} + \frac{1}{2} \cdot B_{eff_{\hat{i}}} \cdot \gamma_{H_eff} \cdot N_{\gamma} \cdot \xi_{\gamma d} \cdot \xi_{\gamma i} + \sigma_{D_eff} \cdot N_q \cdot \xi_{qd} \cdot \xi_{qi}$$

$$q_{u_toe} = \begin{pmatrix} 34.127 \\ 34.311 \\ 34.487 \\ 34.639 \\ 34.731 \end{pmatrix} \text{ksf}$$

1.033

1.033

1 022

1.022 1.022

1.033

1.033 1.033

Foundation depth correction: (at heel)

$$D := E_{grade} - E_{ftg} + t_{base} + h_{\beta}$$

$$D = 38.0 \, ft$$

$$σ_{D_eff_heel} = γ_{eff} \cdot D$$

$$\frac{1}{2} \frac{1}{(N_e)^2} \frac{D}{D}$$

$$\sigma_{\text{D_eff}} = 0.390 \,\text{ksf}$$

$$\frac{1}{2}$$

$$\xi_{\gamma d_10_i} := 1 + 0.1 \cdot \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^2 \right)^{\frac{1}{2}} \cdot \frac{D}{B_i}$$

$$\xi_{\gamma d_{\underline{i}}} := if \left[\phi \leq 10 \cdot \deg, \xi_{\gamma d\underline{0}} + \frac{\phi}{10 \cdot \deg} \left(\xi_{\gamma d\underline{10}_{\underline{i}}} - \xi_{\gamma d\underline{0}} \right), 1 + 0.1 \cdot \left(N_{\varphi} \right)^{\frac{1}{2}} \frac{D}{B_{\underline{i}}} \right]$$

$$\xi_{qd_i} \coloneqq \xi_{\gamma d_i}$$

$$\xi_{qd} = \begin{pmatrix} 1.211 \\ 1.211 \\ 1.211 \\ 1.211 \\ 1.211 \end{pmatrix} = \begin{pmatrix} 1.211 \\ 1.211 \\ 1.211 \\ 1.211 \end{pmatrix}$$

USACE EM 1110-1-1905, Eq 4-16:

$$q_{u_heel_i} \coloneqq c - N_c - \xi_{cd} - \xi_{ci} + \frac{1}{2} \cdot B_{eff_i} \cdot \gamma_{H_eff} \cdot N_{\gamma} \cdot \xi_{\gamma d} - \xi_{\gamma i} + \sigma_{D_eff} - N_q - \xi_{qd} \cdot \xi_{qi}$$

$$q_{u_heel} = \begin{vmatrix} 40.210 \\ 40.416 \\ 40.593 \\ 40.702 \end{vmatrix}$$
 ksf

Samuels Ave. Dam Training wall at right

Date:	
By:	:

 $check_uplift_i := L_{ftg} - L_{brg_i} - L_{uplift_i}$

ok := if(max(|check_uplift|) < 0.001 · ft, ok, "Uplift assumptions do not match bearing area.")

ok = "Ok"

$$e_{brg_i} := \frac{L_{brg_i}}{2} - x_{R_i}$$

$$\sigma_{\text{brg_toe}_{i}} := \frac{\Sigma V_{i}}{L_{\text{brg}_{i}}} + \frac{\Sigma V_{i} \cdot e_{\text{brg}_{i}}}{\frac{\left(L_{\text{brg}_{i}}\right)^{2}}{6}}$$

$$\sigma_{brg_heel_i} \coloneqq \frac{\Sigma V_i}{L_{brg_i}} - \frac{\Sigma V_i \cdot e_{brg_i}}{\frac{\left(L_{brg_i}\right)^2}{6}}$$

$$\%_{\mathrm{brg}_{i}} \coloneqq \frac{\mathrm{L_{brg}_{i}}}{\mathrm{L_{ftg}}}$$
 %

ok := if($\%_{brg_1} \ge 75 \cdot \%$, ok, "OT instability: LC#1")

ok := if $(\%_{\text{brg}_n} \ge 100\%, \text{ok}, "OT instability: LC#n"})$

$$e_{\text{brg}_i} = \sigma_{\text{brg_toe}_i} = \sigma_{\text{brg_heel}_i} = \frac{\sigma_{\text{brg_heel}_i}}{1.56 \text{ ft}} = \frac{3.080 \text{ ksf}}{1.705 \text{ ksf}}$$

$$FS_{brg_i} = \begin{bmatrix} 11 \\ 10. \\ 10. \\ 10. \end{bmatrix}$$

$$FS_{brg_{i}} = \begin{pmatrix} 11.08 \\ 10.73 \\ 10.52 \\ 10.41 \\ 10.35 \end{pmatrix}$$

$$f_{i} = \begin{pmatrix} 11 & 08 \\ 10.73 \\ 10.52 \\ 10.41 \\ 10.35 \end{pmatrix} = \begin{pmatrix} 0.000 & \text{ft} \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{pmatrix}$$

 $L_{ftg} - L_{brg} =$

 $FS_{brg_{i}} := min \left(\frac{q_{u_toe_{i}}}{\sigma_{brg_toe_{i}}}, \frac{q_{u_heel_{i}}}{\sigma_{brg_heel_{i}}} \right)$

100.0 100.0 100.0 %

100.0

$$L_{uplift} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot ft$$

 $L_{\text{ftg}} = 32.5 \, \text{ft}$

 $t_{w_bot} = 4.6 \, ft$

ok := if $[\max] \left| L_{brg} - \left(L_{ftg} - L_{uplift} \right) \right| < 0.001$ ft, ok, "Uplift area does not match

ok := if $(FS_{brg_1} < 2, "Bearing problem LC#1", ok)$

ok := $if(FS_{brg_n} < 3, "Bearing problem LC#n", ok)$

$$ok = "Ok"$$

 $\frac{L_{\text{ftg}}}{}=8.125\,\text{ft}$

 $L_{\rm ftg} = 32.5\,{\rm ft}$

Date: _____

Base Pressures:

$$e_{ftg_i} \coloneqq \frac{L_{ftg}}{2} - x_{R_i}$$

(eccentricity with respect to the footing centroid)

$$L_{brg_{1}} = 32.50 \, ft$$

$$\frac{L_{\text{brg}}}{L_{\text{ftg}}} = \begin{pmatrix} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0 \end{pmatrix} \%$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
✓	

Sliding Analysis:

Function Definitions

$$c_1(\phi_d) := 2 \cdot \tan(\phi_d)$$

$$c_2(\phi_d, \beta) := 1 - \tan(\phi_d) \cdot \tan(\beta) - \left(\frac{\tan(\beta)}{\tan(\phi_d)}\right)$$

$$\begin{split} \alpha_{driving}(\phi_d,\beta) &:= -atan \left(\frac{c_1(\phi_d) + \sqrt{c_1(\phi_d)^2 + 4 \cdot c_2(\phi_d,\beta)}}{2} \right) \\ L_{\beta} &:= max \left[\left(\frac{h_{\beta}}{tan(\beta)} - L_{WS5} - L_{WS6} \right) \right] \\ 0 \cdot ft \end{split}$$

$$L_{\beta} = 0.0 \, \mathrm{ft}$$

Sliding Analysis #1:

$$\beta_{\mathbf{w}} := \beta$$

$$c := 0 \cdot kef$$

$$\phi_{\mathbf{d}_{\mathbf{i}}} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi_{\mathbf{i}})}{\operatorname{FS}_{\mathbf{1}_{\mathbf{i}}}}\right)$$

$$\beta_{W} = 33.7 \deg$$

$$\phi = \begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} \deg$$

$$\phi_{d_{i}} = \begin{pmatrix} 19.9 \\ 19.3 \\ 18.8 \\ 18.2 \\ 18.5 \end{pmatrix} deg$$

(back solve for minimum φ value for stable slope β, EM 1110-2-2502, pg. 3-31)

$$\phi_{i} := if \left[\left(c_{1} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left(\phi_{d_{i}}, \beta_{w} \right) < 0 \right), atan \left(tan \left(\beta_{w} \right) \cdot FS_{1_{i}} \right), \phi_{i} \right]$$

$$\phi = \begin{vmatrix} 49.9 \\ 50.8 \\ 51.7 \end{vmatrix} \text{deg}$$

(substitue minimum o if slope is unstable) 33.7

$$\phi_{\underline{d}_{1}b_{i}} := \operatorname{atan}\left(\frac{\tan(\phi_{i})}{FS_{1_{i}}}\right)$$

$$\alpha_{1b_{i}} \coloneqq \alpha_{driving} (\phi_{d_1b_{i}}, \beta_{w})$$

$$h_{1b} = 45.0 \,\text{ft}$$

$$h_{1b} := \left(E_{grade} + L_{WS5} \tan(\beta_{w})\right) - \left(E_{bftg} - h_{key}\right) \quad h_{1b} = 45.0 \text{ ft}$$

$$h_{1b} := \left(E_{grade} + L_{WS5} \tan(\beta_{w})\right) - \left(E_{bftg} - h_{key}\right) \quad h_{1b} = 45.0 \text{ ft}$$

$$h_{1b} := \left(E_{grade} + L_{WS5} \tan(\beta_{w})\right) - \left(E_{bftg} - h_{key}\right) \quad h_{1b} = 45.0 \text{ ft}$$

$$\frac{h_{1b}}{\cos(-\alpha_{1b_{i}}) \left(\tan(-\alpha_{1b_{i}}) - \tan(\beta_{w})\right)} \quad \alpha_{1b} = \begin{pmatrix} -33.7 \\ -33.7 \\ -33.7 \end{pmatrix} deg$$

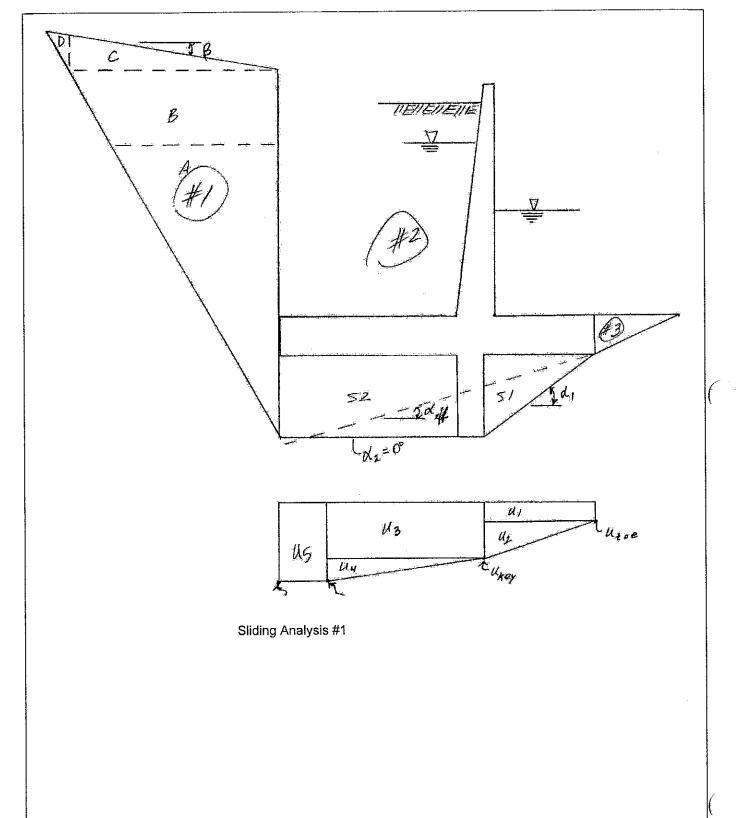
$$L_{max_{i}} := if \left(-\alpha_{1b_{i}} - \alpha_{1b_{i}} - \alpha_{1$$

$$b = \begin{vmatrix} -33.7 \\ -33.7 \\ -33.7 \end{vmatrix} deg$$

$$L_{ma}$$

$$L_{\text{max}} = \begin{pmatrix} 1000 & 0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000 & 0 \end{pmatrix} \text{ft}$$

33.7


33.7 deg

$$h_{1a_{i}} := if \left[L_{\beta} < L_{max_{i}}, h_{1b} + L_{\beta} \cdot \left(tan(\beta) - tan(-\alpha_{1b_{i}}) \right), 0 \right]$$

1/3/2005 7:56 AM

Date: _____

Date:	
By:	
₩	

Driving Wedge (#1a):		$\mathbf{h_{1a}} = \begin{pmatrix} 45.0 \\ 45.0 \\ 45.0 \\ 45.0 \\ 45.0 \\ 45.0 \end{pmatrix} \hat{\mathbf{f}} \hat{\mathbf{t}}$
$\beta_{\mathbf{w}} \coloneqq 0 \cdot \deg$	$\beta_{\mathbf{W}} = 0.0\text{deg}$	45.0
φ := φ _{fill}	$\phi = 32.0 \deg$	$h_{1a} = \begin{vmatrix} 45.0 \\ 45.0 \end{vmatrix}$ ft
c := 0 · ksf	(19.9)	(45.0)
$\phi_{d_i} := atan\left(\frac{tan(\phi)}{FS_{l_i}}\right)$	$\begin{pmatrix} -54.9 \\ -54.7 \end{pmatrix} \qquad \phi_{d} = \begin{vmatrix} 19.3 \\ 18.8 \\ 18.2 \end{vmatrix} deg$	
$\alpha_i := \alpha_{driving}(\phi_{d_i}, \beta_w)$	$\alpha = \begin{vmatrix} -54.4 \\ 64.1 \end{vmatrix} \text{ deg} \qquad (17.5)$	45.0
$h_i := h_{la_i}$	$\begin{pmatrix} -54.1 \\ -53.8 \end{pmatrix} \qquad \qquad h = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$	15.0 ft (55.0)
$L_{i} = \frac{h_{i}}{\cos(-\alpha_{i}) \cdot (\tan(-\alpha_{i}) - \alpha_{i})}$	$\phi = 32.0 \text{ deg}$ $\phi = 32.0 \text{ deg}$ $\phi = 32.0 \text{ deg}$ $\phi_{d} = \begin{pmatrix} 19.9 \\ 19.3 \\ 18.8 \\ 18.2 \\ 17.5 \end{pmatrix}$ $h = \begin{pmatrix} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	$ \begin{vmatrix} 45.0 & 1 & 55.0 \\ 45.0 & 55.2 \\ 55.4 & 55.6 \\ 55.8 & 65.8 \end{vmatrix} $ $ \begin{vmatrix} 31.6 & 31.9 & 32.2 \\ 32.6 & 33.0 \end{vmatrix} $ $ \begin{vmatrix} 31.6 & 26.5 \\ 22.3 & 18.0 \end{vmatrix} $ $ \begin{vmatrix} 24.6 & 21.8 \\ 19.0 & 16.1 \\ 13.2 \end{vmatrix} $ ft $ \begin{vmatrix} 16.1 & 1\\ 13.2 \end{vmatrix} $
$h_{\text{sat}_{i}} := \max \left[\left[E_{\text{wheel}_{i}} - \left(E_{\text{t}} \right) \right] \right]$	$(t_{ab} - t_{base} - t_{key}) - L_{\beta} \cdot tan(-\alpha_{1b_{i}})$	$\begin{vmatrix} 55.8 \\ & h_{sat} = \begin{vmatrix} 30.8 \\ 26.5 \\ 22.3 \end{vmatrix} $ ft
$L_{h_{i}} := \frac{h_{i}}{\tan(-\alpha_{i})}$	$L_h =$	$\begin{vmatrix} 31.9 \\ 32.2 \\ 32.6 \end{vmatrix}$ ft $\begin{vmatrix} 24.6 \\ 24.6 \end{vmatrix}$
$L_{sat_{\underline{i}}} \coloneqq \frac{h_{sat_{\underline{i}}}}{\tan(-\alpha_{\underline{i}})}$		$L_{\text{sat}} = \begin{bmatrix} 21.8 \\ 19.0 \\ 16.1 \end{bmatrix} \text{ft}$
$h_{left} := 0$ ft		(13.2)
$h_{right_{\hat{i}}} = h_{1a_{\hat{i}}}$		
$W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{r}}{2}\right)$	$\frac{\text{light}_{i}}{2} + \left(\gamma_{\text{sat}} - \gamma_{\text{fill}}\right) \cdot \frac{L_{\text{sat}_{i}} \cdot h_{\text{sat}_{i}}}{2}$	$W_i = \frac{1}{2}$
V := 0 klf		91.3 klf 92.5
$H_L := 0 \cdot klf$		93.7 94.8
$H_R := 0$ klf		96.2
$U_{i} := \gamma_{w} \left(\frac{h_{sat_{i}}}{2} \right) \sqrt{\left(h_{sat_{i}}\right)^{2}}$	$\frac{1}{2} + \left(L_{\text{sat}_{i}}\right)^{2}$	$\mathbf{U} = \begin{vmatrix} 36.2 \\ 27.0 \\ 10.1 \end{vmatrix} \mathbf{klf}$
		$\begin{pmatrix} 19.1 \\ 12.6 \end{pmatrix}$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
J	

$$\Delta P_{1a_{\underline{i}}} := \frac{\left[\left(W_{\underline{i}} + V\right) \cdot \left(\tan\left(\varphi_{d_{\underline{i}}}\right) \cdot \cos\left(\alpha_{\underline{i}}\right) + \sin\left(\alpha_{\underline{i}}\right)\right) - U_{\underline{i}} \cdot \tan\left(\varphi_{d_{\underline{i}}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{\underline{i}}}\right) \cdot \sin\left(\alpha_{\underline{i}}\right) - \cos\left(\alpha_{\underline{i}}\right)\right) + \frac{c}{FS_{1_{\underline{i}}}} \cdot L_{\underline{i}}\right]}{\left(\cos\left(\alpha_{\underline{i}}\right) - \tan\left(\varphi_{d_{\underline{i}}}\right) \cdot \sin\left(\alpha_{\underline{i}}\right)\right)}$$

Driving Wedge (#1b):

$$\begin{array}{lll} \text{Driving Wedge (\#1b):} \\ \beta_{w} \coloneqq \beta & \beta_{w} = 33.7 \deg \\ \alpha \coloneqq \alpha_{1b} & \alpha = \begin{pmatrix} -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \end{pmatrix} \deg \\ \phi_{d} \coloneqq \phi_{d_1b} & \beta_{w} = 33.7 \deg \\ \alpha = \begin{pmatrix} -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \end{pmatrix} \Leftrightarrow \phi_{d} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix} \Leftrightarrow \phi_{d} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix} \Leftrightarrow \phi_{d} = \begin{pmatrix} 15.0 \\ 15.0$$

$$h_{satl_{i}} := \max \begin{bmatrix} E_{wheel_{i}} - (E_{fig} - t_{base} - h_{key}) - \frac{L_{\beta}}{\cos(\alpha_{i})} \end{bmatrix} \quad h_{satl} = \begin{pmatrix} 35.0 \\ 30.8 \\ 26.5 \\ 22.3 \\ 18.0 \end{pmatrix}$$

$$L_{\text{sat}_{1}} := \min \begin{bmatrix} L_{\beta} \\ h_{\text{satr}_{1}} \\ \hline tan[(-\alpha)_{1}] \end{bmatrix} \qquad L_{\text{sat}} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix} \text{ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	<u> </u>
By:	

$$\begin{split} W_i &:= \gamma_{fill} \cdot \left(L_h \cdot \frac{h_{left_i} + h_{right}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot L_{sat_i} \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right) & W_i = \\ V &:= 0 \cdot klf & 0.0 \\ H_L &:= 0 \cdot klf & 0.0 \\ H_R &:= 0 \cdot klf & 0.0 \\ \end{bmatrix} \quad klf \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \end{bmatrix}$$

$$\begin{split} U_i &:= \gamma_W \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right) \cdot \sqrt{\left(h_{satr_i} - h_{satl_i}\right)^2 + \left(L_h\right)^2} \\ \Delta P_{1b_i} &:= \frac{\left[\left(W_i + V\right) \cdot \left(tan\left(\phi_{d_i}\right) \cdot cos\left(\alpha_i\right) + sin\left(\alpha_i\right)\right) - U_i \cdot tan\left(\phi_{d_i}\right) + \left(H_L - H_R\right) \cdot \left(tan\left(\phi_{d_i}\right) \cdot sin\left(\alpha_i\right) - cos\left(\alpha_i\right)\right) + \frac{c}{FS_{1_i}} \cdot L_i\right]}{\left(cos\left(\alpha_i\right) - tan\left(\phi_{d_i}\right) \cdot sin\left(\alpha_i\right)\right)} \end{split}$$

Structure Wedge (#2):

$$\beta_{\mathbf{W}} := 0 \cdot deg$$

$$\phi \coloneqq \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0$$
 ksf

$$\phi_{d_i} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi)}{\operatorname{FS}_{1_i}}\right)$$

$$\alpha_1 := \operatorname{atan} \left(\frac{h_{\text{key}}}{x_{\text{key}} - \frac{L_{\text{key}}}{2}} \right)$$

$$U_i =$$

$$\phi_{\mathbf{d}_{i}} = \begin{pmatrix} 19.9 \\ 19.3 \\ 18.8 \\ 18.2 \\ 15.5 \end{pmatrix} \operatorname{deg}$$

 $\alpha_1 := \text{atan} \left(\frac{h_{key}}{x_{key} - \frac{L_{key}}{2}} \right) \qquad \alpha_1 = 33.4 \, \text{deg} \quad \text{(angle of shear plane between toe and key)}$

$$\alpha_2 := 0 \cdot \deg$$

(angle of shear plane between key and heel)

$$\alpha := \alpha_1 \cdot \left(\frac{x_{key}}{L_{ftg}}\right) + \alpha_2 \left(\frac{L_{ftg} - x_{key}}{L_{ftg}}\right) \quad \alpha = 13.0 \deg \text{ (average angle of shear plane for structural wedge)}$$

$$L := \frac{L_{\text{ftg}}}{\cos(\alpha)}$$

$$L = 33.4 \, \mathrm{ft}$$

$$h_{S1} := h_{key}$$

$$h_{S1} = 7.0\,\mathrm{ft}$$

$$L_{S1} := x_{\text{key}} - \frac{L_{\text{key}}}{2}$$

$$L_{S1} = 10.6 \, ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

$$x_{S1} := \frac{2}{3} \cdot L_{S1}$$

$$x_{S1} = 7.1 \, \text{ft}$$

$$S1 := \gamma_{sat} \cdot \frac{h_{S1} \cdot L_{S1}}{2}$$

$$S1 = 4.7 \, \text{klf}$$

$$h_{S2} := h_{key}$$

$$h_{S2} = 7.0 \, ft$$

$$L_{S2} := L_{ftg} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 17.9 \, ft$$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 23.6 \, ft$$

$$S2 := \gamma_{sat} \cdot h_{S2} \cdot L_{S2}$$

$$S2 = 16.0 \, \text{klf}$$

$$W_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_w \cdot \left(E_{wtoe_i} - E_{bftg}\right)$$

$$u_{\text{heel}_{i}} := \gamma_{w} \cdot \left| E_{\text{wheel}_{i}} - \left(E_{\text{bftg}} - h_{\text{key}} \right) \right|$$

$$\delta_{u_{i}} \coloneqq \frac{\gamma_{w} \cdot \left(E_{wheel_{i}} - E_{wtoe_{i}}\right)}{L_{ftg} - L_{t1_{i}}}$$

$$u_{\text{key}_i} := u_{\text{toe}_i} + \delta_{u_i} \cdot \left(x_{\text{key}} - \frac{L_{\text{key}}}{2} \right) + \gamma_w \cdot h_{\text{key}}$$

$$ok := if \left[u_{key_1} + \delta_{u_1} \cdot \left(L_{fig} - x_{key} + \frac{L_{key}}{2} - L_{tl_1} \right) = u_{heel_1} \right], ok, "Uplift pressures do not close." \right]$$

$$ok = "Ok"$$

$$u_{l_i} := u_{toe_i} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u1} := \frac{x_{key} - \frac{L_{key}}{2}}{2}$$

$$x_{u1} = 5.3 \, ft$$

$$u_{2_i} := \left(u_{\text{key}_i} - u_{\text{toe}_i}\right) = \left(\frac{x_{\text{key}} - \frac{L_{\text{key}}}{2}}{2}\right)$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
4	

$$x_{u2} := \frac{2}{3} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u2} = 7.1 \, ft$$

$$u_{3_i} := u_{\text{key}_i} \cdot \left(L_{\text{fig}} - L_{t1_i} - x_{\text{key}} + \frac{L_{\text{key}}}{2} \right)$$

$$x_{u3_{i}} := x_{key} - \frac{L_{key}}{2} + \frac{1}{2} \cdot \left[L_{fig} - L_{t1_{i}} - \left(x_{key} - \frac{L_{key}}{2} \right) \right]$$

$$u_{4_i} := \left(u_{\text{heel}_i} - u_{\text{key}_i}\right) \cdot \frac{\left(L_{\text{ftg}} - L_{t1_i} - x_{\text{key}} + \frac{L_{\text{key}}}{2}\right)}{2}$$

$$x_{u4_i} := x_{key} - \frac{L_{key}}{2} + \frac{2}{3} \left[L_{ftg} - L_{t1_i} - \left(x_{key} - \frac{L_{key}}{2} \right) \right]$$

$$u_{5_i} := u_{heel_i} \cdot L_{tl_i}$$

$$\mathbf{x_{u5}}_{i} \coloneqq \mathbf{L_{ftg}} - \frac{\mathbf{L_{t1}}_{i}}{2}$$

$$U_i := u_{1_i} + u_{2_i} + u_{3_i} + u_{4_i} + u_{5_i}$$

$$x_{U_{i}} \coloneqq \frac{u_{1_{i}} \cdot x_{u1} + u_{2_{i}} \cdot x_{u2} + u_{3_{i}} \cdot x_{u3_{i}} + u_{4_{i}} \cdot x_{u4_{i}} + u_{5_{i}} \cdot x_{u5_{i}}}{U_{i}}$$

$$\begin{split} \Sigma M_{grav_{i}} &:= \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}}\right) ... \\ &+ W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U_{i} \cdot x_{U_{i}}\right) \end{split}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$h_{A2_i} := E_{wheel_i} - E_{bftg} + h_{key}$	$h_{A2_i} =$
$y_{A2_i} := \frac{h_{A2_i}}{2} - h_{key}$	$\frac{35.00}{30.75}$ ft $y_{A2_i} =$
$A2_{i} = k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot h_{A2_{i}}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$h_{A3_i} := h_{A2_i}$	18.00 6.25 0.0 $klf_{hA3} = 13.2$
$y_{A3_i} = \frac{h_{A3_i}}{3} - h_{key}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$A3_{i} := k_{0\beta} \cdot \gamma_{\text{fill_eff}} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$	30.9 26.50 4.67 ft 3.25
$H3_{i} := 0 \cdot klf$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$h_{H2_i} := E_{wheel_i} - E_{bftg} + h_{key}$	-1.00 23.9 17.7
$y_{H2_i} := \frac{h_{H2_i}}{3} - h_{key}$	12.5
3,	8.2

$$H2_i := \gamma_w \frac{\left(h_{H2_i}\right)^2}{2}$$

$$\begin{split} \Sigma M_{lat_{i}} &:= -H1_{i} \cdot \left(y_{H1_{i}}\right) - K1_{i} \cdot \left(y_{K1}\right) - K2_{i} \cdot \left(y_{K2}\right) + H2_{i} \cdot \left(y_{H2_{i}}\right) + H3_{i} \cdot \left(y_{H3}\right) - \\ &+ A1_{i} \cdot \left(y_{A1_{i}}\right) + A2_{i} \cdot \left(y_{A2_{i}}\right) + A3_{i} \cdot \left(y_{A3_{i}}\right) - R_{key_{i}} \cdot \left(y_{Rkey}\right) \end{split}$$

$$\mathbf{x}_{R_i} \coloneqq \frac{\Sigma \mathbf{M}_{grav_i} - \Sigma \mathbf{M}_{lat_i}}{\mathbf{W}_i - \mathbf{U}_i} \qquad \qquad \mathbf{L}_{brg_i} \coloneqq \min \! \! \left(3 \cdot \mathbf{x}_{R_i}, \mathbf{L}_{ftg} \right)$$

 $ok_{u_{i}} \coloneqq if \left[\left| L_{brg_{i}} - \left(L_{ftg} - L_{t1_{i}} \right) \right| > 0.001 \cdot ft, "Uplift assumptions wrong in sliding analysis.", "Matched." \right]$

W _i =	$u_{toe_{i}} =$	u_h	neel _i =		$\delta_{u_i} =$	•	ukey =		u ₁ =		u ₂ =		u ₃ =	
146.9	klf 1.125	ksf 2	2.188	ksf	19.2	$\frac{psf}{c}$	1.767	ksf	11.953	klf	3.410	klf	38.649	klf
145.2	0.859	1	.922		19.2	ft	1.501		9.131		3.410		32.839	
142.9	0.594	1	.656		19.2		1.236		6.309		3.410		27.028	
140.4	0.375	1	.391		17.8		1.002		3.984		3.328		21.908	
139.6	0.375	1	.125		9.6		0.915		3.984		2.867		20.008	

Date:	
By:	

114 =	115	=	Y2 =	Y4 =	Yr =
u ₄ =	u ₅		$x_{u3_i} =$	$x_{u4_i} =$	$x_{u5_i} =$
4.601	klf 0.0	klf	21.6 ft	25.2 ft	32.5 ft
4.601	0.0		21.6	25.2	32.5
4.601	0.0	1	21.6	25.2	32.5
4.256	0.0	1	21.6	25.2	32.5
2.301	0.0		21.6	25.2	32.5
		_			

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_{i}} := \gamma_{w} \cdot \frac{\left(E_{wtoe_{i}} - E_{ftg}\right)^{2}}{2}$$

Samuels Ave. Dam Training wall at right CDM04188

$$\Delta P_{2_{i}} \coloneqq \frac{\left[\left(W_{i} + V \right) \cdot \left(\tan \left(\phi_{d_{i}} \right) \cdot \cos \left(\alpha \right) + \sin \left(\alpha \right) \right) - U_{i} \cdot \tan \left(\phi_{d_{i}} \right) + \left(H_{L_{i}} - H_{R_{i}} \right) \cdot \left(\tan \left(\phi_{d_{i}} \right) \cdot \sin \left(\alpha \right) - \cos \left(\alpha \right) \right) + \frac{c}{FS_{1_{i}}} \cdot L \right]}{\left(\cos \left(\alpha \right) - \tan \left(\phi_{d_{i}} \right) \cdot \sin \left(\alpha \right) \right)}$$

$$\begin{array}{c} L_{ftg} - L_{brg}_{i} = \\ \hline 0.000 & ft \\ 0.000 \\ \hline 0.000 \\ \hline 0.000 \\ \hline 0.000 \\ \hline \end{array}$$

$$L_{t1} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot ft$$

 $ok := \left. if \left\lfloor max \right\lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{t1} \right) \right\rfloor \right\rfloor < 0.001 \cdot \, ft, ok, \\ "Uplift area does not match." \right\rfloor$

$$ok := if \left(min \left(L_{brg} \right) < x_{key} + \frac{L_{key}}{2}, "Uplift assumptions incorrect.", ok \right) \qquad ok = "Ok"$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
V	

Resisting Wedge (#3):

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0 \cdot ksf$$

$$\phi_{d_{i}} := \operatorname{atan}\left(\frac{\tan(\phi)}{\operatorname{FS}_{1_{i}}}\right)$$

$$\alpha_{i} := 45 \cdot \operatorname{deg} - \frac{\phi_{d_{i}}}{2}$$

$$\phi_{\mathbf{d}_{1}} = \begin{pmatrix} 19.9 \\ 19.3 \\ 18.8 \\ 18.2 \\ 17.5 \end{pmatrix} \text{deg}$$

$$\alpha_{i} = \begin{pmatrix} 35.1 \\ 35.3 \\ 35.6 \\ 35.9 \\ 36.2 \end{pmatrix} deg$$

$$L = \begin{pmatrix} 10.442 \\ 10.376 \\ 10.302 \\ 10.233 \\ 10.149 \end{pmatrix} \text{ft}$$

$$W_{i} := \gamma_{sat} \cdot \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot t_{base}}{2} + \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg}\right) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_{i} := \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg} + \frac{t_{base}}{2}\right) \cdot L_{i}$$

$$H_L := 0 \cdot klf$$

$$H_R := 0 \cdot klf$$

$$V := 0$$
 klf

$$\Delta P_{3_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\phi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{1_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

$$\Sigma P_{i} = \Delta P_{1a_{i}} + \Delta P_{1b_{i}} + \Delta P_{2_{i}} + \Delta P_{3_{i}}$$

$$W_i = U_i = 0$$
 $0.7 \text{ klf } 0.8$
 $0.7 \text{ } 0.0$
 $0.7 \text{ } 0.0$

$$\Delta P_{1a_i} =$$

-80.2

-77.8

-76.0

-75.2

-83.5 klf

$$\Delta P_{1b_i} =$$
 0.0 klf

0.0

0.0

0.0

$$\Delta P_{2_i} =$$

$$\boxed{75.6} \quad \text{klf}$$

74.1

73.1

72.7

72.0

$$\Delta P_{3_i} = \frac{8.0}{100}$$
 kl

4.7

3.4

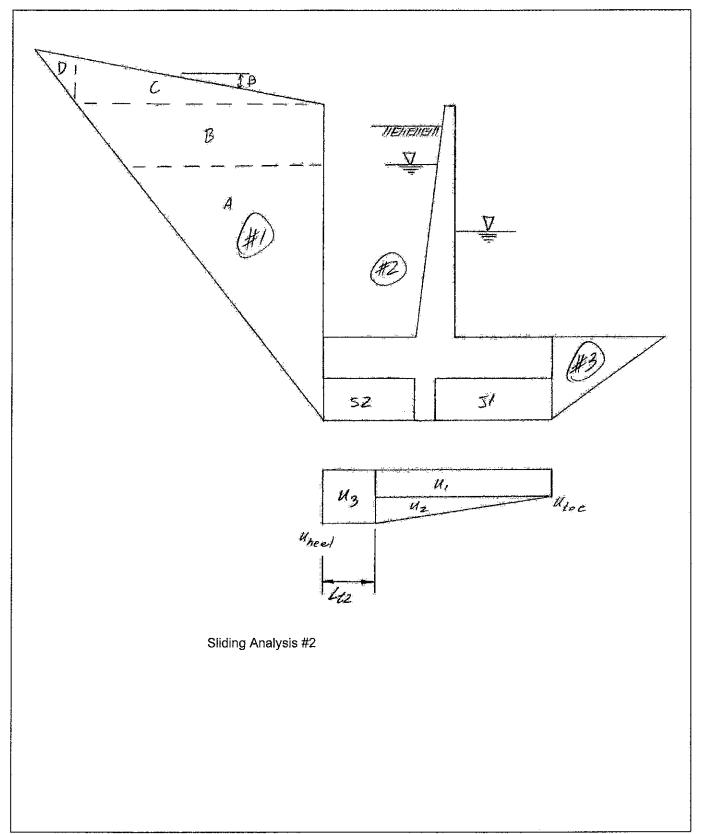
3.3

$$\Sigma P_{i} = \begin{bmatrix} 0.0 \\ 0.2 \\ 0.0 \\ 0.1 \end{bmatrix}$$
 klf $FS_{1} \equiv \begin{bmatrix} 1.78 \\ 1.84 \\ 1.90 \\ 1.98 \end{bmatrix}$

ok := if
$$(FS_{1_1} \ge 1.33, ok, "Sliding instability: LC#1")$$

ok :=
$$if(FS_{l_n} \ge 1.50, ok, "Sliding instability: LC#n"$$

$$ok = "Ok"$$



Date:	
By:	

Sliding Analysis #2:	$L_{\beta} = 0.00 \mathrm{ft}$	(32.0)
$\beta_{\mathbf{w}} \coloneqq \beta$	$\beta_{\rm w} = 33.7 \deg$	$\phi = \begin{vmatrix} 32.0 \\ 32.0 \\ 32.0 \end{vmatrix} \text{deg} $ $ \begin{vmatrix} 25.2 \\ 24.7 \end{vmatrix} $
$\phi_i := \phi_{fill}$. " -	$\phi = 32.0 \text{ deg} \tag{25.2}$
$c := 0 \cdot ksf$		32.0
$\phi_{\mathbf{d}_{i}} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi_{i})}{\operatorname{FS}_{2_{i}}}\right)$		$\phi_{\mathbf{d}} = \begin{vmatrix} 24.1 \end{vmatrix} \operatorname{deg}$
FS ₂		$\phi = \begin{bmatrix} 32.0 \\ 32.0 \\ 32.0 \end{bmatrix} \text{ deg}$ $\phi_{d_{1}} = \begin{bmatrix} 25.2 \\ 24.7 \\ 24.1 \\ 23.5 \\ 22.5 \end{bmatrix} \text{ deg}$
$atan(tan(\beta) \cdot FS_{2_i}) = \begin{pmatrix} 41.6 \\ 42.2 \\ 43.0 \\ 43.8 \\ 45.2 \end{pmatrix} deg$		(22.5)
42.2	(back solve for minin	mum φ value for stable slope β, EM 1110–2–2502, pg. 3-31)
$ \frac{\operatorname{atan}(\tan(\beta) \cdot \operatorname{FS}_{2})}{\operatorname{atan}(\tan(\beta) \cdot \operatorname{FS}_{2})} = \frac{43.0}{43.8} \operatorname{deg} $	(Dack Solve for Hilling	Hulli ψ Value for stable slope β, EM 1110-2-2302, βg. 5 5 γ
45.0		$\begin{pmatrix} 41.6 \\ 42.2 \end{pmatrix}$
$\int_{-1}^{1} \frac{(1-x)^2}{(1-x)^2} dx = (1-x)^2$	otan(tan(R) ES	$\begin{pmatrix} 1 & 42.2 \\ 2 & 43.0 \end{pmatrix}$ deg (substitue minimum ϕ if
$\phi_{i} := if \left[\left(c_{1} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left(\phi_{d_{i}}, \beta_{w} \right) \right] \right]$	(0) , atan $(an(p_w) \cdot rs_2)$	$\begin{pmatrix} 2_1 \end{pmatrix}, \psi_1 \end{pmatrix} \qquad \psi = \begin{pmatrix} 43.0 \text{ (acg } \end{pmatrix} \qquad \text{(substitude Hilliam)} \qquad \psi_1 \end{pmatrix}$ slope is unstable)
	(33.7)	45.2
$\phi_{\mathbf{d}_{1}\mathbf{b}_{i}} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi_{i})}{\operatorname{FS}_{2}}\right)$	33.7	
$\left(\begin{array}{c} \Psi_{\mathbf{d}} = \mathbf{b}_{i} - \mathbf{atan} \\ \overline{FS_{2}} \end{array}\right)$	$\phi_{d_{1}b_{i}} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix}$	deg (-33.7)
, , ,	33.7	-33.7
$\alpha_{1b_i} := \alpha_{driving}(\phi_{d_1b_i}, \beta_w)$	(33.7)	$\alpha_{1b} = \begin{pmatrix} -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \end{pmatrix} deg$
		-33.7
$h_{1b} := (E_{grade} + L_{WS5} \cdot tan(\beta_w))$	$-\left(E_{bftg} - h_{key}\right) h_{1b} = 4$	$ \frac{1000.0}{1000.0} $ $ L_{\text{max}} = \begin{pmatrix} 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \end{pmatrix} \text{ ft} $ $ \begin{pmatrix} 4.3.0 \\ 45.0 \\ \end{pmatrix} $
Γ	his	7 (1000.0)
	$\frac{\cos(-\alpha_{1h})\cdot(\tan(-\alpha_{1h}))}{\cos(-\alpha_{1h})\cdot(\tan(-\alpha_{1h}))}$	$-\tan(\beta_w)$
$L_{\text{max}_{i}} := if \left[-\alpha_{1b_{i}} = \phi_{d_{1}b_{i}}, 1000 \cdot f \right]$	$t, \frac{10i}{10} \left(\frac{10i}{10} \right)$	$\frac{1}{10000}$
	$\cos(-\alpha r_{b_i})$	1000,0
		(45.0
!		
$h_{1a_i} := if L_{\beta} < L_{max_i}, h_{1b} + L_{\beta} \cdot ($	$\tan(\beta) - \tan(-\alpha_{1b_i}), 0$	$\begin{array}{c c} \text{ft} & h_{1a} = \begin{vmatrix} 45.0 \\ 45.0 \end{vmatrix} \text{ft} \\ \end{array}$
		$\binom{45.0}{45.0}$
		(13.0)

Date: By: _____

Date:	
By:	
. 4	

Driving Wedge (#1a):		
$\beta_{\mathbf{w}} \coloneqq 0 \cdot deg$	$\beta_{\mathbf{W}} = 0.0 \deg$	
$\phi := \phi_{fill}$	$\phi = 32.0 \deg$	
	(25.2)	
$c = 0 \cdot ksf$	24.7	
$\phi_{\mathbf{d}_{\mathbf{i}}} := \operatorname{atan} \left(\frac{\tan(\phi)}{\mathrm{FS}_{2}} \right) \tag{-57}$	$\phi_{d} = \begin{vmatrix} 24.1 & \text{deg} \end{vmatrix}$	
-57	23.5	
$c := 0 \cdot ksf$ $\phi_{d_i} := atan\left(\frac{tan(\phi)}{FS_{2_i}}\right)$ $\alpha_i := \alpha_{driving}(\phi_{d_i}, \beta_w) \qquad \alpha = \begin{pmatrix} -57 \\ -57 \\ -57 \\ -56 \\ -56 \end{pmatrix}$ $h_i := h_{1a_i}$.03 deg (22.5)	
$h_{\cdot} := h_{1a}$.73	
-30	(45.0)	
	$h = \begin{pmatrix} 45.0 \\ 45.0 \\ 45.0 \\ 45.0 \\ 45.0 \\ 45.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 53.31 \\ 53.45 \\ 53.64 \end{pmatrix} \text{ ft }$	
$\mathbf{h}_{\mathbf{i}} := \mathbf{h}_{1_{\mathbf{a}_{\mathbf{i}}}}$	$\frac{1}{45.0} \left \begin{array}{c} 1 \\ 45.0 \end{array} \right \left(\begin{array}{c} 53.31 \\ 53.45 \end{array} \right)$	
$L_{i} := \frac{h_{i}}{\cos(-\alpha_{i}) \cdot (\tan(-\alpha_{i}) - \tan(\beta_{w}))}$	$\left(45.0\right) = \left \frac{33.43}{53.64}\right _{\text{ft}}$	
$=_{i} \cos(-\alpha_{i}) \cdot (\tan(-\alpha_{i}) - \tan(\beta_{w}))$	53.82	$\begin{pmatrix} 35.0 \\ 20.0 \end{pmatrix}$
$E_{\text{wheel}_{i}} - (E_{\text{ftg}} - t_{\text{base}})$	$(43.0) = \begin{bmatrix} 53.64 & \text{ft} \\ 53.82 & \\ 54.13 & \\ 54.13 & \\ 54.13 & \\ 54.13 & \\ 54.13 & \\ 54.13 & \\ 54.13 & \\ 54.13 & \\ 64$	30.8 h = 26.5 ft
nsat, - max) · ft (28.577)	11 sat = 20.3 11 22.3
h.	28.847	(18.0)
$L_{h_i} := \frac{h_i}{\tan(-\alpha_i)}$	$L_{h} = \begin{vmatrix} 29.194 \\ 29.527 \\ 30.079 \end{vmatrix} \text{ ft}$	22.23
	29.527	9.71
$L_{sat_{i}} := \frac{h_{sat_{i}}}{tan(-\alpha_{i})}$	$L_{\text{sat}} = 1$	7.19 ft
$\tan(-\alpha_i)$		4.60
$h_{left} := 0 \cdot ft$	(1	(2.03)
$h_{right_i} := h_{1a_i}$		
1		
$W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{right_{i}}}{2} \right) + \left(\frac{h_{left} + h_{righ$	$L_{\mathrm{sat}_{i}}$ $h_{\mathrm{sat}_{i}}$	
$W_i := \gamma_{\text{fill}} \left(L_{h_i} \cdot \frac{1}{2} \right) + \left(\frac{1}{2} \right)$	_	
$V := 0 \cdot klf$	82.615 klf 83.619	
$H_L := 0 \cdot klf$	84.822	
AAL U AAI	85.960	
TT . 0 1.10	87.710	

Samuels Ave. Dam Training wall at right

Date:	
By:	

$$\boldsymbol{U}_i \coloneqq \boldsymbol{\gamma}_{\mathbf{W}} \cdot \left(\frac{\boldsymbol{h}_{sat_i}}{2}\right) \cdot \sqrt{\left(\boldsymbol{h}_{sat_i}\right)^2 + \left(\boldsymbol{L}_{sat_i}\right)^2}$$

$$U = \begin{pmatrix} 45.348 \\ 35.099 \\ 26.159 \\ 18.504 \\ 12.179 \end{pmatrix} \text{kHf}$$

$$\Delta P_{1a_{i}} = \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\varphi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

Driving Wedge (#1b):

$$L_{\beta} = 0.0 \, \text{ft}$$

$$\beta_{\mathbf{w}} := \beta$$

$$\beta_{\rm W} = 33.7 \deg$$

$$\alpha := \alpha_{1b}$$

$$\beta_{\rm W} = 33.7 \deg$$

$$\phi_d := \phi_{d_1b}$$

$$\phi_{\mathbf{d}} = \begin{vmatrix} 33.7 \\ 33.7 \\ 33.7 \end{vmatrix} \operatorname{deg}$$

$$L_i := \frac{L_{\beta}}{\cos(\alpha x)}$$

$$h_{\text{satr}_i} = \max \begin{bmatrix} E_{\text{wheel}_i} - (E_{\text{fig}} - t_{\text{base}} - h_{\text{key}}) \\ 0 & \text{ft} \end{bmatrix}$$

$$\begin{bmatrix} 45.0 \\ 45.0 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix} \text{ft}$$

$$n_{\text{satr}} = \begin{pmatrix} 30.8 \\ 26.5 \\ 22.3 \\ 18.0 \end{pmatrix}$$
 ft

$$\begin{split} h_{satl_{\underline{i}}} &:= \text{max} \begin{bmatrix} E_{wheel_{\underline{i}}} - \left(E_{ftg} - t_{base} - h_{key}\right) - \frac{L_{\beta}}{\cos(\alpha_{\underline{i}})} \\ 0 \cdot \text{ft} \end{bmatrix} \\ L_{sat_{\underline{i}}} &:= \min \begin{bmatrix} L_{\beta} \\ h_{satr_{\underline{i}}} \\ \hline tan[\left(-\alpha\right)_{\underline{i}}] \end{bmatrix} \end{bmatrix} \quad L_{sat} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix} \text{ft} \end{split}$$

$$h_{satl} = \begin{pmatrix} 30.8 \\ 26.5 \\ 22.3 \\ 18.0 \end{pmatrix}$$

$$L_{sat_{\underline{i}}} \coloneqq \min \left[\begin{array}{c} L_{\beta} \\ h_{satr_{\underline{i}}} \\ \hline \tan \left(-\alpha \right)_{\underline{i}} \end{array} \right]$$

$$L_{\text{sat}} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \text{ft}$$

$$h_{left} = \begin{pmatrix} 45.0 \\ 45.0 \\ 45.0 \\ 45.0 \\ 45.0 \end{pmatrix} ft$$

$$h_{left_i} := h_{1a_i}$$
 $h_{right} := h_{1b}$

$$h_{right} = 45.0 \, ft$$

$$\left(h_{\text{satr}_{i}} + h_{\text{satl}_{i}}\right)$$

$$\left(L_{h} \frac{h_{left_{i}} + h_{right}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) L_{sat_{i}} \left(\frac{h_{satr_{i}} + h_{satl_{i}}}{2}\right)$$

Date:	
By:	

$V := 0 \cdot klf$	W _i =
$H_L := 0 \cdot klf$	0.0 klf
	0.0
$H_R := 0 \cdot klf$	0.0
$\boldsymbol{U}_{i} \coloneqq \gamma_{w} \cdot \left(\frac{\boldsymbol{h}_{satr_{i}} + \boldsymbol{h}_{satl_{i}}}{2}\right) \cdot \sqrt{\left(\boldsymbol{h}_{satr_{i}} - \boldsymbol{h}_{satl_{i}}\right)^{2} + \left(\boldsymbol{L}_{h}\right)^{2}}$	0.0 0.0 0.0
$\left[\left(W_i + V \right) \cdot \left(tan \left(\phi_{d_i} \right) \cdot \cos \left(\alpha_i \right) + \sin \left(\alpha_i \right) \right) - U_i \right]$	$tan\!\left(\phi_{d_i}\right) + \left(H_L - H_R\right) \cdot \left(tan\!\left(\phi_{d_i}\right) - sin\!\left(\alpha_i\right) - cos\!\left(\alpha_i\right)\right) + \frac{c}{FS_2} \cdot L_i$
$\Delta P_{1b_i} := \frac{\Box}{\left(\cos\left(\frac{1}{2}\right)\right)}$	$(\alpha_i) - \tan(\phi_{d_i}) \cdot \sin(\alpha_i)$

Structure Wedge (#2):

$$\beta_w := 0$$
 deg

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$\begin{aligned} c &:= 0 \quad ksf \\ \phi_{d_i} &:= atan \left(\frac{tan(\phi)}{FS_{2_i}} \right) \end{aligned}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 25.2 \\ 24.7 \\ 24.1 \\ 23.5 \end{pmatrix} \text{deg}$$

$$U_i =$$

$$\alpha := 0 \quad deg \qquad \qquad \alpha = 0.0 \, deg$$

$$L := \frac{L_{ftg}}{\cos(\alpha)}$$

$$L = 32.5 \, ft$$

$$h_{S1} := h_{key}$$

$$h_{S1} = 7.0\,\mathrm{ft}$$

$$L_{S1} = x_{\text{key}} - \frac{L_{\text{key}}}{2}$$

$$L_{S1} = 10.6\,\mathrm{ft}$$

$$\mathbf{x}_{\mathbf{S}\mathbf{1}} \coloneqq \frac{1}{2} \cdot \mathbf{L}_{\mathbf{S}\mathbf{1}}$$

$$x_{\rm S1} = 5.3\,\mathrm{ft}$$

$$S1 := \gamma_{sat} \cdot h_{S1} \cdot L_{S1}$$

$$S1 = 9.5 \, \text{klf}$$

Samuels Ave. Dam Training wall at right

Date:	
Ву:	·
Ű	

$$h_{S2} := h_{key}$$
 $h_{S2} = 7.0 \, ft$

$$L_{S2} := L_{ftg} - x_{key} - \frac{L_{key}}{2}$$
 $L_{S2} = 17.9 \text{ ft}$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$
 $x_{S2} = 23.6 \, ft$

$$S2 := \gamma_{sat} \cdot h_{S2} \cdot L_{S2} \qquad \qquad S2 = 16.0 \text{ klf}$$

$$W_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_w \cdot |E_{wtoe_i} - (E_{bftg} - h_{key})|$$

$$u_{heel_i} := \gamma_w \cdot \lfloor E_{wheel_i} - (E_{bfig} - h_{key}) \rfloor$$

$$\delta_{u_i} := \frac{\gamma_w \cdot \left(E_{wheel_i} - E_{wtoe_i}\right)}{L_{ftg} - L_{t2_i}}$$

$$u_{l_i} := u_{toe_i} \cdot \left(L_{ftg} - L_{t2_i}\right)$$

$$u_{1_i} := u_{toe_i} \left(L_{ftg} - L_{t2_i} \right)$$

$$\mathbf{x_{u1}}_i \coloneqq \frac{\mathbf{L_{ftg}} - \mathbf{L_{t2}}_i}{2}$$

$$\mathbf{u_{2_i}} := \left(\mathbf{u_{heel_i}} - \mathbf{u_{toe_i}}\right) \cdot \frac{\left(\mathbf{L_{ftg}} - \mathbf{L_{t2_i}}\right)}{2}$$

$$\mathbf{x_{u2}}_{i} \coloneqq \frac{2}{3} \cdot \left(\mathbf{L_{ftg}} - \mathbf{L_{t2}}_{i} \right)$$

$$u_{3_i} := u_{heel_i} \cdot (L_{t2_i})$$

$$x_{u3_i} := L_{ftg} - \frac{L_{t2_i}}{2}$$

$$U_i := u_{1_i} + u_{2_i} + u_{3_i}$$

$$x_{U_{i}} := \frac{u_{1_{i}} \cdot x_{u1_{i}} + u_{2_{i}} \cdot x_{u2_{i}} + u_{3_{i}} \cdot x_{u3_{i}}}{U_{i}}$$

$$x_{u1} = \begin{pmatrix} 16.3 \\ 16.3 \\ 16.3 \\ 16.3 \\ 16.3 \end{pmatrix}$$
 ft
$$x_{u2} = \begin{pmatrix} 21.7 \\ 21.7 \\ 21.7 \\ 21.7 \\ 21.7 \\ 21.7 \\ 21.7 \end{pmatrix}$$
 ft

$$\mathbf{x}_{\mathbf{U}} = \begin{pmatrix} 17.2 \\ 17.3 \\ 17.5 \\ 17.7 \\ 17.1 \end{pmatrix} \mathbf{ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:]	
✓	

$$\begin{split} \Sigma M_{grav_{i}} &:= \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}}\right) ... \\ &+ W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U_{i} \cdot x_{U_{i}}\right) \end{split}$$

$$\begin{aligned} h_{\text{H1}_{i}} &\coloneqq E_{\text{wtoe}_{i}} - \left(E_{\text{bftg}} - h_{\text{key}}\right) \\ y_{\text{H1}_{i}} &\coloneqq \frac{h_{\text{H1}_{i}}}{3} - h_{\text{key}} \\ H_{i} &\coloneqq \gamma_{w} \frac{\left(h_{\text{H1}_{i}}\right)^{2}}{2} \end{aligned}$$

$$h_{H1_{i}} =$$

$$\begin{array}{c}
25.00 \\
20.75 \\
16.50 \\
13.00 \\
13.00
\end{array}$$
ft
$$\begin{array}{c}
y_{H1_{i}} = \\
1.33 \\
-0.08 \\
-1.50 \\
-2.67
\end{array}$$

-0.08

-1.50

-2.67

-2.67

5.3

$$K1_i := 0 \cdot klf$$

$$K2_{i} := 0 \cdot klf$$

$$\begin{split} \Sigma M_{lat_{i}} &= -H1_{i} \cdot \left(y_{H1_{i}}\right) - K1_{i} \cdot \left(y_{K1}\right) - K2_{i} \cdot \left(y_{K2}\right) + H2_{i} \cdot \left(y_{H2_{i}}\right) + H3_{i} \cdot \left(y_{H3}\right) \dots \\ &+ A1_{i} \cdot \left(y_{A1_{i}}\right) + A2_{i} \cdot \left(y_{A2_{i}}\right) + A3_{i} \cdot \left(y_{A3_{i}}\right) - R_{key_{i}} \cdot \left(y_{Rkey}\right) \end{split}$$

$$x_{R_i} := \frac{\sum M_{grav_i} - \sum M_{lat_i}}{W_i - U_i}$$

$$L_{\text{brg}_{i}} := \min(3 \cdot x_{R_{i}}, L_{\text{ftg}})$$

 $ok_{u_i} := if[|L_{brg_i} - (L_{ftg} - L_{t2_i})| > 0.001 \cdot ft$, "Uplift assumptions wrong in sliding analysis.", "Matched."

$$\delta_{u_i} = \frac{\delta_{u_i}}{2.188} = \frac{\delta_{u_i}}{1.922} = \frac{psf}{ft}$$
1.656
1.391
1.125
9.6

$$u_{2_{i}} = \frac{10.156}{10.156}$$

$$10.156$$

$$9.395$$

$$5.078$$

$$u_{3_{i}} = klf \begin{vmatrix} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{vmatrix}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
الن	

$$x_{u3_{i}} =$$

$$\begin{array}{c}
32.5 \\
32.5 \\
32.5 \\
32.5 \\
32.5 \\
32.5
\end{array}$$

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_i} := \gamma_{\mathbf{w}} \cdot \frac{\left(E_{\text{wtoe}_i} - E_{\text{ftg}}\right)^2}{2}$$

$$\Delta P_{2_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \cos\left(\alpha\right) + \sin\left(\alpha\right)\right) - U_{i} \cdot \tan\left(\phi_{d_{i}}\right) + \left(H_{L_{i}} - H_{R_{i}}\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha\right) - \cos\left(\alpha\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L\right]}{\left(\cos\left(\alpha\right) - \tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha\right)\right)}$$

$$\begin{array}{c}
0.000 \\
0.000 \\
0.000 \\
0.000
\end{array}$$

$$L_{t2} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot f$$

$$\begin{aligned} \text{ok} &\coloneqq \text{if} \left\lfloor \text{max} \left\lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{t2} \right) \right\rfloor \right\rfloor < 0.001 \quad \text{ft, ok, "Uplift area does not match."} \right\rfloor \\ \text{ok} &\coloneqq \text{if} \left(\min \left(L_{brg} \right) < x_{key} + \frac{L_{key}}{2}, \text{"Uplift assumptions incorrect.", ok} \right) \qquad \text{ok} = \text{"Ok"} \end{aligned}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
. 4	

Resisting Wedge (#3);

$$\beta_w := 0 \cdot deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0 \cdot ksf$$

$$\phi_{d_i} := atan \left(\frac{tan(\phi)}{FS_{2_i}} \right)$$

$$\alpha_i := 45 \cdot \deg - \frac{\phi_{d_i}}{2}$$

$$L_{i} := \frac{t_{base} + h_{key}}{\sin(\alpha_{i})}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 25.2 \\ 24.7 \\ 24.1 \\ 23.5 \\ 22.5 \end{pmatrix} \operatorname{deg}$$

$$\alpha_{i} = \begin{bmatrix} 32.7 \\ 33.0 \\ 33.3 \\ 33.8 \end{bmatrix} deg$$

$$L = \begin{pmatrix} 24.250 \\ 24.089 \\ 23.886 \\ 23.697 \\ 23.394 \end{pmatrix}$$
 ft

$$W_{i} := \gamma_{sat} - \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot (t_{base} + h_{key})}{2} + \gamma_{w} \cdot (E_{wtoe_{i}} - E_{ftg}) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_{i} := \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{fig} + \frac{t_{base} + h_{key}}{2} \right) \cdot L_{i}$$

$$H_{L} := 0 \cdot klf$$

$$H_R = 0 \cdot klf$$

$$V := 0 \cdot klf$$

$$\Delta P_{3_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(tan\left(\varphi_{d_{\hat{i}}}\right) \cdot cos\left(\alpha_{\hat{i}}\right) + sin\left(\alpha_{\hat{i}}\right)\right) - U_{\hat{i}} \cdot tan\left(\varphi_{d_{\hat{i}}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(tan\left(\varphi_{d_{\hat{i}}}\right) \cdot sin\left(\alpha_{\hat{i}}\right) - cos\left(\alpha_{\hat{i}}\right)\right) + \frac{c}{FS_{2_{\hat{i}}}} \cdot L_{\hat{i}}\right]}{\left(cos\left(\alpha_{\hat{i}}\right) - tan\left(\varphi_{d_{\hat{i}}}\right) \cdot sin\left(\alpha_{\hat{i}}\right)\right)}$$

$$\Sigma P_i := \Delta P_{1a_i} + \Delta P_{1b_i} + \Delta P_{2_i} + \Delta P_{3_i}$$

$$W_i = U_i =$$

$$\Delta P_{1a_i} =$$

$$\Delta P_{1b_i} =$$

$$\Delta P_{2_i} =$$

$$\Delta P_{3_i} =$$

$$\Sigma P_i =$$

$$\begin{array}{c}
\Sigma P_i = \\
\hline
0.5 \\
0.7
\end{array}$$
klf

$$FS_2 = \begin{vmatrix} 1.36 \\ 1.40 \\ 1.44 \\ 1.51 \end{vmatrix}$$

$$L_{heel} \equiv 22.5 \cdot ft$$

$$h_{\text{key}} \equiv 7 \cdot \text{ft}$$

ok = if
$$(FS_{2_1} \ge 1.33, ok, "Sliding instability: LC#1")$$

ok := if
$$(FS_{2n} \ge 1.50, ok, "Sliding instability LC#n")$$

$$L_{\text{fig}} - x_{\text{key}} - \frac{L_{\text{key}}}{2} = 17.9 \text{ ft}$$
 $L_{\text{toe}} = 10 \cdot \text{ft}$

 $L_{\text{ftg}} = 32.5 \text{ ft}$

$$ok = "Ok"$$

Samuels Ave. Dam Training wall at right CDM04188

Date: ____

527.0 520.3 513.5 ft 506.8

500.0

Downstream Training Wall at Right: (Grade = 527.0')

Reference:T:\ST\CALCS\Common geometry.mcd(R)

Geometry:

$$E_{\text{wall}} \coloneqq 530 \cdot \text{ft}$$

$$E_{fig} := E_{sill}$$

$$E_{ftg} = 495.0 \, ft$$

$$t_{base} \coloneqq \, 6 \cdot \, ft$$

$$E_{bftg} = E_{ftg} - t_{base}$$

$$E_{\text{bftg}} = 489.0 \,\text{ft}$$

$$E_{grade} := 527$$
 ft

$$n := 5$$

$$i := 1..n$$

 $\Delta_{w} := 10$ ft (maximum height of retained water above water in basin)

$$\Delta_{\mathbf{w}} := 10^{\circ} \text{ ft}$$
 (maximum height of retained was $E_{\mathbf{wheel}_{i}} := E_{\mathbf{grade}} - \frac{\left[E_{\mathbf{grade}} - \left(E_{\mathbf{ftg}} + \frac{\Delta_{\mathbf{w}}}{2}\right)\right]}{n-1}$ (i - 1)

$$E_{\text{wtoe}} := \max \begin{pmatrix} \left(E_{\text{wheel}}_i - \Delta_{\text{w}} \right) \\ E_{\text{ftg}} \end{pmatrix}$$

$$E_{\text{wtoe}} = \begin{pmatrix} 517.0 \\ 510.3 \\ 503.5 \\ 496.8 \end{pmatrix} \text{ ft}$$

$$h := \min \left[\left[\frac{1.0}{1.5} \cdot 2 \cdot \left(E_{grade} - E_{ftg} \right) \right] + E_{grade} \right]$$

$$h = 32.0 \text{ ft}$$

$$527 \cdot \text{ft} - E_{ftg}$$

$$\beta := \operatorname{atan}\left(\frac{1.0}{1.5}\right) \qquad \beta = 33.7 \operatorname{deg}$$

$$h_{\beta} := 527 \cdot ft - E_{grade}$$

$$h_{\beta}=0.0\,\mathrm{ft}$$

$$t_{\text{w_top}} := 1.5 \cdot \text{ft}$$

$$t_{w_bot} = t_{w_top} + \frac{\left(E_{wall} - E_{ftg}\right)}{8}$$

$$t_{\text{w_bot}} = 5.88 \, \text{ft}$$

Date:

$$L_{toe} = 10.0 \, \mathrm{ft}$$

$$L_{heel} = 26.0 \, ft$$

$$L_{ftg} := L_{toe} + L_{heel}$$

$$L_{\rm ftg} = 36.0\,{\rm ft}$$

$$h_{wall} := E_{wall} - E_{fig}$$

$$h_{\text{wall}} = 35.0 \text{ ft}$$

$$h_{key} = 0.0 \, ft$$

$$L_{key} := 4 \cdot ft$$

$$L_{kev} = 4.0 \, \mathrm{ft}$$

$$x_{key} \coloneqq L_{toe} + t_{w_bot} - \frac{L_{key}}{2}$$

$$x_{\text{key}} = 13.9 \text{ ft}$$

Constants:

$$\gamma_w = 62.5 \, pcf$$

$$\gamma_c = 150.0 \, pcf$$

Soil parameters:

$$\gamma_{\text{fill eff}} = 650 \,\text{pcf}$$

$$\gamma_{sat} = 127.5 \, pcf$$

$$\gamma_{\text{fill}} = 130.0\,\text{pcf}$$

$$k_0$$
 fill = 0.5

$$\phi_{fill} = 32.0 \text{ deg}$$

$$k_{0\beta} := k_{0_fill} \cdot (1 + \sin(\beta))$$

$$k_{0\beta} = 0.777$$

(USACE EM 1110-2-2502, Eq. 3-5)

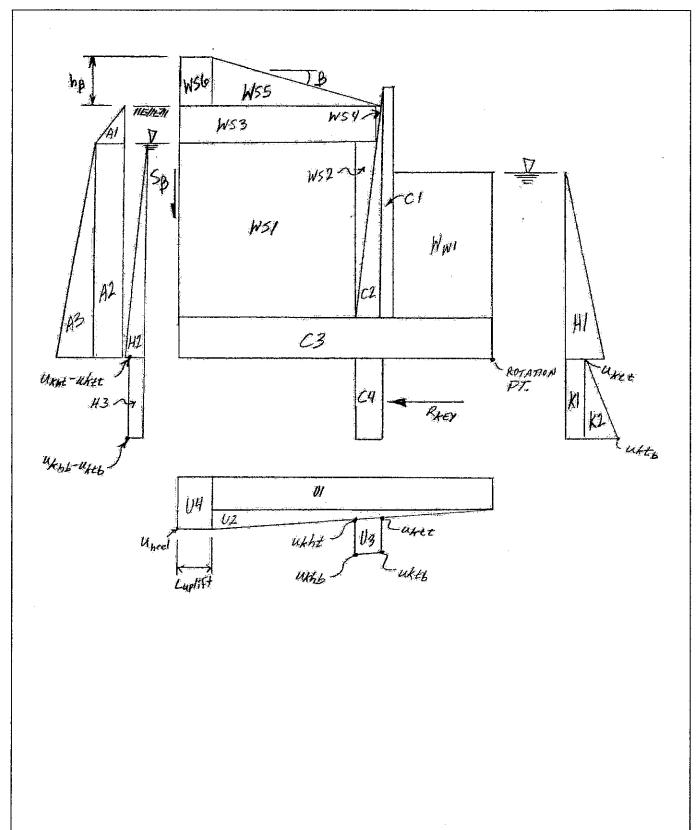
Pre-Definitions:

$$kip \equiv 1000 \cdot 1bf$$

$$ok = "Ok"$$

$$klf \equiv 1000 \cdot \frac{lbf}{ft}$$

$$psf \equiv \frac{lbf}{ft^2}$$


$$plf \equiv \frac{lbf}{ft}$$

$$pcf = \frac{lbf}{ft^3}$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _____

Date: By:

Analysis:

Gravity Loads:

$$h_{C_i} := h_{wall}$$

$$h_{C_1} = 35.0 \text{ ft}$$

$$L_{C_1} := t_{w_top}$$

$$L_{C_1} = 1.5 \, \text{ft}$$

$$\mathbf{x}_{\mathbf{C}_{1}} \coloneqq \mathbf{L}_{\mathsf{toe}} + \frac{\mathbf{L}_{\mathbf{C}_{1}}}{2}$$

$$x_{.C_1} = 10.8 \, ft$$

$$W_{C_1} := \gamma_c \cdot h_{C_1} \cdot L_{C_1}$$

$$W_{C_1} = 7.9 \, \text{klf}$$

$$h_{C_2} = h_{C_1}$$

$$h_{C_2} = 350 \, ft$$

$$L_{C_2} := t_{w_bot} - t_{w_top}$$

$$L_{C_2} = 4.4 \, \text{ft}$$

$$x_{C_2} := L_{toe} + L_{C_1} + \frac{L_{C_2}}{3}$$

$$x_{C_2} = 13.0 \, \text{ft}$$

$$W_{C_2} := \gamma_c \cdot \frac{h_{C_2} \cdot L_{C_2}}{2}$$

$$W_{C_2} = 11.5 \, \text{klf}$$

$$h_{C_3} := t_{base}$$

$$h_{C_3} = 6.0 \, \text{ft}$$

$$L_{C_3} := L_{fig}$$

$$L_{C_3} = 360 \, ft$$

$$x_{C_3} := \frac{L_{C_3}}{2}$$

$$x_{C_3} = 18.0 \, ft$$

$$W_{C_3} := \gamma_c \cdot h_{C_3} \cdot L_{C_3}$$

$$W_{C_3} = 324 \, klf$$

$$h_{C_4} := h_{key}$$

$$h_{C_4} = 0.0 \, ft$$

$$L_{C_{\Delta}} := L_{key}$$

$$L_{C_4} = 4.0 \, \mathrm{ft}$$

$$x_{C_4} = x_{key}$$

$$x_{C_A} = 13.9 \, ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	

$$W_{C_4} := \gamma_c \cdot h_{C_4} \cdot L_{C_4}$$

$$W_{C_4} = 0.0 \, \text{klf}$$

Weight of water at toe:

$$h_{W1} := E_{wtoe_i} - E_{ftg}$$

$$\mathbf{h_{W1}} = \begin{pmatrix} 22.00 \\ 15.25 \\ 8.50 \\ 1.75 \\ 0.00 \end{pmatrix} \mathbf{ft}$$

$$L_{W1} := L_{toe}$$

$$L_{W1} = 100 ft$$

$$x_{W1} := \frac{L_{toe}}{2}$$

$$x_{W1} = 5.0 \, ft$$

$$W_{W1_i} := \gamma_w \cdot h_{W1_i} \cdot L_{W1}$$

$$W_{W1} = \begin{pmatrix} 13.8 \\ 9.5 \\ 5.3 \\ 1.1 \\ 0.0 \end{pmatrix} \text{klf}$$

Weight of water/soil at heel:

$$h_{WS1_i} := E_{wheel_i} - E_{ftg}$$

$$h_{WS1} = \begin{pmatrix} 32.00 \\ 25.25 \\ 18.50 \\ 11.75 \\ 5.00 \end{pmatrix} f$$

$$L_{WS1} := L_{heel} - t_{w_bot} \qquad \qquad L_{WS1} = 20 \text{ 1 ft}$$

$$L_{WS1} = 20.1 \text{ ft}$$

$$x_{WS1} := L_{toe} + t_{w_bot} + \frac{L_{WS1}}{2}$$
 $x_{WS1} = 25.9 \text{ ft}$

$$W_{WS1_i} := (\gamma_{sat}) \cdot h_{WS1_i} \cdot L_{WS1}$$

$$W_{WS1} = \begin{pmatrix} 82.1 \\ 64.8 \\ 47.5 \\ 30.1 \\ 12.8 \end{pmatrix} klf$$

$$h_{WS2_i} = h_{WS1_i}$$

$$L_{WS2_{i}} = \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS2_{i}}$$

$$x_{\text{WS2}_{i}} \coloneqq L_{\text{toe}} + t_{\text{w_bot}} - \frac{L_{\text{WS2}_{i}}}{3}$$

$$L_{WS2} = \begin{pmatrix} 4.00 \\ 3.16 \\ 2.31 \\ 1.47 \\ 0.63 \end{pmatrix}$$
 ft

$$x_{WS2} = \begin{pmatrix} 14.5 \\ 14.8 \\ 15.1 \\ 15.4 \\ 15.7 \end{pmatrix} ft$$

Date: ____ By: ____

$W_{WS2_i} := (\gamma_{sat}) \cdot \frac{h_{WS2_i} \cdot L_{WS2_i}}{2}$	
	$f_{WS2_i} =$
$h_{WS3_i} = E_{grade} - E_{wheel_i}$ 5	$\frac{1.2}{1.7} \text{klf} \text{hWS3}_{i} = \frac{1.7}{1.7}$
xxxxx '= xxxx + xxxxx	$\begin{array}{c c} \hline .1 \\ \hline .2 \\ \hline \end{array} \begin{array}{c c} \hline 0.0 & \text{ft} \\ \hline 6.8 & L_{WS3}_{i} = \end{array}$
$x_{WS3_i} := L_{ftg} - \frac{L_{WS3_i}}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\mathbf{W_{WS3}_{i}} = \gamma_{\mathrm{fill}} \cdot \mathbf{h_{WS3}_{i}} \cdot \mathbf{L_{WS3}_{i}}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$h_{WS4_i} = h_{WS3_i}$	25.2 20.4 25.6 39.4
' "wali"	$WS4_{i} = \frac{56.8}{72.8}$
$x_{WS4_i} := L_{fig} - L_{WS3_i} - \frac{L_{WS4_i}}{3}$	$x_{WS4} = \frac{1}{1000}$
L	11.9 ft 12.4 W _{WS4} =
$L_{WS5} := \min \begin{bmatrix} \begin{bmatrix} t_{w_bot} - t_{w_top} \\ h_{wall} \end{bmatrix} \cdot (E_{grade} - E_{ftg}) + L_{WS1} \end{bmatrix} \\ \frac{h_{\beta}}{\tan(\beta)} \end{bmatrix}$	13.0 13.6 14.1 0.0 0.4 1.5 $L_{WS5} = 0.00 \text{ ft}$ 3.3 5.9
$h_{WS5} := L_{WS5} \cdot tan(\beta)$ $h_{WS5} = 0.00 \text{ ft}$	<u></u>
$x_{WS5} := \frac{2}{3} L_{WS5} + L_{toe} + t_{w_top} + \frac{\left(E_{wall} - E_{grade}\right)}{E_{wall} - E_{ftg}} \cdot \left(t_{w_t}\right)$	$x_{WS5} = 11.88 ft$
$W_{WS5} = \gamma_{fill} \frac{h_{WS5} \cdot L_{WS5}}{2} \qquad W_{WS5} = 0.0 \text{klf}$	
$L_{WS6} = \frac{E_{grade} - E_{ftg}}{h_{wall}} \cdot (t_{w_bot} - t_{w_top}) + L_{WSI} - L_{WS5}$	$L_{WS6} = 24.1 \text{ ft}$
$h_{WS6} := h_{WS5}$	$h_{WS6} = 0.0 ft$
$x_{WS6} := L_{ftg} - \frac{L_{WS6}}{2}$	$x_{WS6} = 23.9 ft$
$W_{WS6} = \gamma_{fill} \left(h_{WS6} \cdot L_{WS6} \right)$	$W_{WS6} = 0.0 \text{klf}$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

Uplift:

$$u_{toe_i} := \gamma_w \cdot \left(E_{wtoe_i} - E_{bftg}\right)$$

$$u_{heel_i} = \gamma_w \cdot (E_{wheel_i} - E_{bftg})$$

$$\delta_{seep}_i \coloneqq \frac{u_{heel_i} - u_{toe_i}}{L_{ftg} - L_{uplift_i}}$$

$$u_{ktt_{i}} = u_{heel_{i}} + \left(x_{key} - \frac{L_{key}}{2}\right) \delta_{seep_{i}}$$

$$u_{kht_i} := u_{ktt_i} + L_{key} \cdot \delta_{seep_i}$$

$$u_{ktb_i} := u_{ktt_i} + \gamma_w \cdot h_{key}$$

$$u_{khb_i} := u_{ktb_i} + L_{key} \cdot \delta_{seep_i}$$

$$x_{U1} := \frac{L_{ftg} - L_{uplift}}{2}$$

$$U1_i := u_{toe_i} \cdot L_{ftg}$$

$$x_{U2_i} := \frac{2}{3} \cdot \left(L_{ftg} - L_{uplift_i}\right)$$

$$U2_{i} := \left(u_{heel_{i}} - u_{toe_{i}}\right) \cdot \frac{L_{ftg}}{2}$$

$$x_{U3} = x_{key}$$

$$U3_i := \left(u_{ktb_i} - u_{ktt_i}\right) L_{key}$$

$$x_{\text{U4}_{\underline{i}}} \coloneqq L_{\text{ftg}} - \frac{L_{\text{uplift}_{\underline{i}}}}{2}$$

$$L_{U4_i} = L_{uplift_i}$$

$$U4_i = u_{heel_i} \cdot L_{U4_i}$$

1.7	750·
1.	328

 $u_{ktb_i} =$ 2.613

2.162

1.737

1.316

0.791

 $U2_i =$

11.2

11.3

11.3

11.3

5.6

klf

ksf

ksf

55	
1.328	
0.906	
0.484	

0.688

u_{khb} =

2.693

2.233

1.807

1.385

0.825

 $x_{U3} = 13.9 \, ft$

$$ksf \\ \delta_{seep_i} =$$

ft
$$u_{ktt_i} = \frac{2.613}{}$$
 ksf

1	
2.613	
2.162	
1.737	
1. 316	
0.791	

ksf

2.693
2.233
1.807

$$x_{UI_{i}} = 15.6$$
 ft 17.7 18.0 18.0

18.0

$$x_{U2_{i}} =$$

$$\begin{array}{c}
20.8 & \text{ft} \\
23.7 & \\
24.0 & \\
\end{array}$$

$$U3 = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \text{klf}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
4	

 $x_{U4} =$

35.7

36.0

36.0

36.0

33.6 ft

 $U4_i =$

11.5

1.0 0.0

0.0

0.0

klf

ı	ateral	load	due	to	water	at	toe:

$$\begin{aligned} \mathbf{h_{H1}}_i &\coloneqq \mathbf{E_{wtoe}}_i - \mathbf{E_{bftg}} \\ \mathbf{y_{H1}}_i &\coloneqq \frac{\mathbf{h_{H1}}_i}{3} \end{aligned}$$

$$H1_{i} := \gamma_{w} \cdot \frac{\left(h_{H1_{i}}\right)^{2}}{2}$$

$$h_{\text{H2}_i} := E_{\text{wheel}_i} - E_{\text{bftg}}$$

$$y_{\text{H2}_{i}} \coloneqq \frac{h_{\text{H2}_{i}}}{3}$$

$$H2_{i} := \gamma_{w} \frac{\left(h_{H2_{i}}\right)^{2}}{2}$$

$$\mathbf{h}_{H3} := \mathbf{h}_{key} \hspace{1cm} \mathbf{h}_{H3} = 0.0\,\mathrm{ft}$$

$$y_{H3} := \frac{-h_{key}}{2}$$
 $y_{H3} = 0.0 \, ft$

$$H3_{i} = \left(u_{khb_{i}} - u_{ktb_{i}}\right) \cdot h_{H3}$$

$$h_{K1} := h_{key}$$

$$\mathbf{K1}_i \coloneqq \mathbf{u}_{ktt_i} \cdot \mathbf{h}_{K1}$$

$$h_{K2} := h_{key}$$

$$h_{K2} = 0.0 \, ft$$

 $y_{K,1} = 0.0 \, ft$

 $h_{K1} = 0.0 \, ft$

$$K2_{i} := \left(u_{ktb_{i}} - u_{ktt_{i}}\right) \cdot \frac{h_{K2}}{2}$$

$$y_{K1} := \frac{-h_{key}}{2}$$

$$y_{K2} := \frac{-2}{3} h_{key}$$
 $y_{K2} = 0.0 \, ft$

$h_{H1} =$

1	
28.00	ft
21.25	
14.50	
7.75	
6.00	

 $y_{H2_i} =$

12.7 ft 10.4

> 8.2 5.9

3.7

	9.33	f
	7.08	
	4.83	
	2.58	
ļ	2.00	

1	
24.5	k
14.1	
6.6	
1.9	
1.1	

24.5 14.1	klf	h _{H2} =	
6.6		38.00	ft
1.9		31.25	
1.1		24.50	
		17.75	
		11.00	

$$H2_{i} =$$

1	
45.1	klf
30.5	
18.8	
9.8	
3.8	

$$H3_i =$$

0.00	
0.00	
0.00	

0.0

klf

1	
0.0	kli
0.0	
0.0	
0.0	

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
V	

Lateral load due to retained soil/water:

$$h_{A1} := E_{grade} - E_{wheel}$$

$$y_{Al_i} := E_{grade} - E_{bftg} - \frac{2}{3} \cdot h_{Al_i}$$

$$Al_i := k_{0\beta} \cdot \gamma_{fill} \cdot \frac{(h_{Al_i})^2}{2}$$

$$h_{A1_i} =$$

0.00	
6.75	
13.50	
20.25	
27.00	

$$y_{A1} = \frac{38.00}{33.50}$$
 ft

$$h_{A2_i} := E_{wheel_i} - E_{bftg}$$

$$y_{A2_i} = \frac{h_{A2_i}}{2}$$

$$A2_{i} = k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot h_{A2_{i}}$$

$$h_{A3_i} = h_{A2_i}$$

$$y_{A3_i} := \frac{h_{A3_i}}{3}$$

$$A3_{i} := k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$$

 $h_{A2} =$

$$y_{A2_i} = 19.00 \text{ ft}$$

$$h_{A3} =$$

$$38.00 \text{ ft}$$

11.00

 $y_{A3_i} =$

3.1

 $A3_i =$

klf

$$\mathbf{h}_2 \coloneqq \mathbf{E}_{grade} - \mathbf{E}_{ftg}$$

$$h_2 = 32.0 \, ft$$

Shear force due to sloped backfill: (EM 1110-2-2502, Fig. 4-7)

$$h_1 := h_2 + \tan(\beta) \cdot L_{WS5}$$
 $h_1 = 32.0 \, ft$

$$h_1 = 320 \, ft$$

$$P_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot \left(h_{A2_{i}} - t_{base}\right) + k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}} - t_{base}\right)^{2}}{2}$$

$$|P_{i}| \cdot \left(h_{1} - h_{2}\right)|$$

$$S_{\beta_{i}} = if \left[h_{1} > h_{2}, \left[\frac{P_{i} - (h_{1} - h_{2})}{3 \cdot L_{WS5}} \right], 0 \cdot klf \right]$$

$$x_{S\beta} := L_{ftg}$$

$$x_{S\beta} = 36.0 \, \text{ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
Ū	

0.0 klf

0.0

0.0

0.0

klf

25.9

33.3

33.9

27.5

14.3

klf

57.1

64.7

70.0

73.0

72.6

Sum forces:

$$\Sigma V_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S_{\beta_{i}} - \left(U1_{i} + U2_{i} + U3_{i} + U4_{i}\right)$$

$$\begin{split} \Sigma M_{grav_{i}} \coloneqq & \left(\sum_{i=1}^{4} \left. W_{C_{i}} \cdot x_{C_{i}} + W_{WI_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} + W_{WS4_{j}} \cdot x_{WS4_{i}} \right) \\ & + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U1_{i} \cdot x_{U1_{i}} + U2_{i} \cdot x_{U2_{i}} + U3_{i} \cdot x_{U3} + U4_{i} \cdot x_{U4_{i}} \right) \end{split}$$

$$R_{\text{key}_{i}} := -H1_{i} - K1_{i} - K2_{i} + H2_{i} + H3_{i} + A1_{i} + A2_{i} + A3_{i}$$

$$y_{Rkey} = \frac{-h_{key}}{2}$$
 $y_{Rkey} = 0.0 \, ft$

$$\Sigma H_i := -H1_i - K1_i - K2_i + H2_i + H3_i + A1_i + A2_i + A3_i - R_{key_i}$$

$$\begin{split} \Sigma M_{lat_{i}} &:= -H1_{i} \cdot y_{H1_{i}} - K1_{i} \cdot y_{K1} - K2_{i} \cdot y_{K2} + H2_{i} \cdot y_{H2_{i}} + H3_{i} \cdot y_{H3} \\ &+ A1_{i} \cdot y_{A1_{i}} + A2_{i} \cdot y_{A2_{i}} + A3_{i} \cdot y_{A3_{i}} - R_{key_{i}} \cdot y_{Rkey} \end{split} .$$

$$\Sigma M_i := \Sigma M_{grav_i} - \Sigma M_{lat_i}$$

$$x_{R_i} \coloneqq \frac{\Sigma M_i}{\Sigma V_i}$$

$$L_{brg_{i}} := \max \min \left(\begin{pmatrix} 3 \cdot x_{R_{i}} \\ L_{ftg} \end{pmatrix} \right), 0 \cdot ft$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _____

Bearing Capacity: (per EM 1110-1-1905)

$$c := c_{fill}$$

$$c = 0.0 \, psf$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$\gamma_{eff} := \gamma_{fill_eff}$$

$$\gamma_{\text{eff}} = 65.0 \, \text{pcf}$$

$$\gamma_{H}$$
 eff := γ_{eff}

$$\gamma_{H \text{ eff}} = 65.0 \text{ pcf}$$

$$B_{eff_i} = L_{fig} - 2 \cdot \left| \frac{L_{brg_i}}{2} - x_{R_i} \right|$$

$$B_{\text{eff}} = \begin{pmatrix} 25.6 \\ 24.2 \\ 25.5 \\ 27.4 \\ 28.9 \end{pmatrix}$$

Table 4-3:

$$N_{\phi} := \tan\left(45 \cdot \deg + \frac{\phi}{2}\right)^2$$

$$N_{\dot{\Phi}} = 3.255$$

$$N_q := if(\phi = 0, 1.0, N_{\phi} \cdot e^{\pi \tan(\phi)})$$

$$N_{q} = 23.2$$

$$N_c := if[\phi = 0, 5.14, (N_q - 1) \cdot cot(\phi)]$$

$$N_c = 35.5$$

$$N_y := if[\phi = 0, 0.00, (N_q - 1) \tan(1.4 \cdot \phi)]$$

$$N_{v} = 22.0$$

Inclined loading correction:

$$\theta_i := atan \left(\frac{R_{key_i} + K1_i + K2_i}{\Sigma V_i} \right)$$

$$\theta = \begin{pmatrix} 39.18 \\ 35.15 \\ 33.87 \\ 32.26 \end{pmatrix} \text{deg}$$

30.25

$$\xi_{\text{ci}_i} := \text{if} \left[\phi = 0, \left(1 - \frac{\theta_i}{90 \cdot \text{deg}} \right), \left(1 - \frac{\theta_i}{90 \cdot \text{deg}} \right)^{-1} \right]$$

$$\xi_{ci} = \begin{bmatrix} 0.371 \\ 0.389 \\ 0.412 \\ 0.441 \end{bmatrix}$$

$$= \begin{pmatrix} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 2.988 \times 10^{-3} \end{pmatrix} 0.319^{\circ}$$

$$\xi_{qi_{i}} := if \left[\phi = 0, 1.0, if \left[\theta_{i} \le \phi, \left(1 - \frac{\theta_{i}}{\phi} \right)^{2}, 0.0 \right] \right]$$

$$\xi_{qi_{i}} := if \left[\phi = 0, \left(1 - \frac{\theta_{i}}{90 \cdot \text{deg}} \right), \left(1 - \frac{\theta_{i}}{90 \cdot \text{deg}} \right)^{2} \right]$$

$$31.2
35.5
36.0 ft
36.0 ft$$

$$B_i := L_{brg_i}$$

$$W := 100$$
 ft

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

Foundation depth correction: (at toe) $D = 6.0 \, ft$ $D := t_{base}$ $\sigma_{D eff} = 390.0 \, psf$ $\sigma_{D \text{ eff}} := \gamma_{\text{eff}} \cdot D$ 1.069 $\xi_{\text{cd}_{\underline{i}}} := 1 + 0.2 \cdot \left(N_{\phi}\right)^{\frac{1}{2}} \cdot \frac{D}{B}.$ 1.061 1.060 1.060 1.060 1.023 $\xi_{\gamma \underline{d}_{\underline{10}_{i}}} := 1 + 0.1 \cdot \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^{2} \right)^{2} \cdot \frac{D}{B}.$ 1 020 1.020 $\xi_{\gamma d}$ 10 = 1.035 1.020 $\xi_{\gamma d_{i}} := if \left| \begin{array}{c} \phi \\ \phi \leq 10 \end{array} \right| \deg_{i} \xi_{\gamma d_{i} 0} + \frac{\phi}{10 \cdot \deg_{i}} \left(\xi_{\gamma d_{i} 10_{i}} - \xi_{\gamma d_{i} 0} \right), 1 + 0.1 \cdot \left(N_{\phi} \right)^{\frac{1}{2}} \cdot \frac{D}{B_{i}} \right|$ 1.031 1 030 1.035 1.030 1.031 1.030 1.030 $\xi_{qd} := \xi_{\gamma d}$ 18.054 USACE EM 1110-1-1905, Eq. 4-16: 18.051 $q_{u_toe_i} := c \cdot N_c \cdot \xi_{cd} \cdot \xi_{ci} + \frac{1}{2} \cdot B_{eff_i} \cdot \gamma_{H_eff} \cdot N_{\gamma} \cdot \xi_{\gamma d} \cdot \xi_{\gamma i} + \sigma_{D_eff} \cdot N_{q} \cdot \xi_{qd} \quad \xi_{qi}$ 18.054 ksf 18.058

Foundation depth correction: (at heel)

$$D := E_{grade} - E_{ftg} + t_{base} + h_{\beta}$$

$$D = 38.0 \, ft$$

$$\sigma_{D_eff_heel} = \gamma_{eff} \quad D \qquad \sigma_{D_eff} = 0.390 \, \text{ksf} \\
\xi_{1.440} = \frac{1}{1.386} \\
\xi_{2.10} = 1 + 0.1 \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^2 \right)^2 \cdot \frac{D}{B}$$

$$\xi_{20} = \left[\frac{1.440}{1.386} \right]$$

$$\xi_{20} = \left[\frac{1}{1.381} \right]$$

$$\xi_{\gamma d} = \begin{pmatrix} 1.145 \\ 1 & 128 \\ 1.126 \\ 1 & 126 \\ 1 & 126 \\ 1 & 126 \\ 1 & 193 \\ 1.190 \\ 1 & 190 \end{pmatrix}$$

$$\xi_{\gamma d} = \begin{pmatrix} 1.220 \\ 1 & 193 \\ 1.190 \\ 1.190 \\ 1.190 \\ 1 & (20.942) \end{pmatrix}$$

USACE EM 1110-1-1905, Eq. 4-16:

$$q_{u_heel_i} \coloneqq c \cdot N_c \cdot \xi_{cd} \cdot \xi_{ci} + \frac{1}{2} \cdot B_{eff_i} \cdot \gamma_{H_eff} \cdot N_{\gamma} \cdot \xi_{\gamma d} \cdot \xi_{\gamma i} + \sigma_{D_eff} \cdot N_q \cdot \xi_{qd} \cdot \xi_{qi}$$

$$\begin{array}{c|c}
1 \\
1. \\
q_{u_heel} = \begin{pmatrix}
20.942 \\
20.938 \\
20.942 \\
20.947 \\
20.950
\end{pmatrix} \text{ ksf}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
Ţ.	•

 $check_uplift_{\underline{i}} := L_{ftg} - L_{brg_{\underline{i}}} - L_{uplift_{\underline{i}}}$

ok := if(max(|check_uplift|) < 0.001 · ft, ok, "Uplift assumptions do not match bearing area.")

ok = "Ok"

$$e_{brg_i} := \frac{L_{brg_i}}{2} - x_{R_i}$$

check_uplift_i =

check_upint; =

-0.0003 ft 0.0001

0.0000

0.0000

$$\sigma_{brg_toe_{\hat{i}}} \coloneqq \frac{\Sigma V_{\hat{i}}}{L_{brg_{\hat{i}}}} + \frac{\Sigma V_{\hat{i}} \cdot e_{brg_{\hat{i}}}}{\frac{\left(L_{brg_{\hat{i}}}\right)^2}{6}}$$

$$\sigma_{brg_heel_i} \coloneqq \frac{\Sigma V_i}{L_{brg_i}} - \frac{\Sigma V_i \quad e_{brg_i}}{\frac{\left(L_{brg_i}\right)^2}{6}}$$

$$FS_{brg_{i}} = min \left(\frac{q_{u_toe_{i}}}{\sigma_{brg_toe_{i}}}, if \left(\sigma_{brg_heel_{i}} \neq 0 \text{ psf}, \frac{q_{u_heel_{i}}}{\sigma_{brg_heel_{i}}}, 100 \right) \right)$$

$$\%_{\text{brg}_{i}} \coloneqq \frac{L_{\text{brg}_{i}}}{L_{\text{ftg}}}$$

$$\%_{\text{brg}_{i}} = \begin{pmatrix} 86.6\\ 98.6\\ 100.0\\ 100.0\\ 100.0 \end{pmatrix} \%$$

ok = if $(\%_{\text{brg}_1} \ge 75 \cdot \%, \text{ok}, "OT instability: LC#1"})$

 $L_{ftg} = 36.0 \text{ ft}$

ok :=
$$if(\%_{brg_n} \ge 100\%, ok, "OT instability: LC#n")$$

$$t_{w_bot} = 5.9 \, ft$$

$$e_{brg_{i}} = \sigma_{brg_toe_{i}} =$$

$$\begin{array}{c|cccc} 5.20 & \text{ft} & 4.495 & \text{ksf} \\ \hline 5.91 & 5.179 & \\ \hline 5.23 & 5.418 & \\ \end{array}$$

4.29

3.53

$$\sigma_{\text{brg_heel}_i} = \begin{bmatrix} 0.000 & \text{ksf} \\ 0.000 & \text{sf} \\ 0.374 & \text{FS}_{\text{brg}_i} = \begin{bmatrix} 4.02 \\ 3.49 \\ 3.33 \\ 3.28 \\ 3.29 \end{bmatrix}$$

 $L_{ftg} - L_{brg} =$

$$L_{\text{uplift}} = \begin{pmatrix} 4.830 \\ 0.520 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \text{ft}$$

 $ok := if \lfloor max \rfloor \left| L_{brg} - \left(L_{ftg} - L_{uplift} \right) \right| \, \rfloor < 0.001 \cdot ft, ok, \text{"Uplift area does not match} \, \, \rfloor$

$$ok := if(FS_{brg_1} < 2, "Bearing problem LC#1", ok)$$

$$ok := if(FS_{brg_n} < 3,"Bearing problem LC#n", ok)$$

$$L_{ftg} = 36.0 \, ft$$

 $\frac{\text{ftg}}{\text{max}} = 9.000 \,\text{ft}$

Date:	
By:	
V	í

Base Pressures:

$$e_{ftg_i} := \frac{L_{ftg}}{2} - x_{R_i}$$

(eccentricity with respect to the footing centroid)

$$\Sigma H_i + R_{key_i} = \Sigma V_i =$$

$$\boxed{57.1 \quad klf} \qquad \boxed{70.1}$$

klf

$$x_{R_i} =$$

$$\sigma_{\text{brg_heel}_{\hat{i}}} =$$

$$c_{i} = c_{brg_toe_{i}} = c_{brg_toe_{i}}$$
 ksf 4.495 ks

$$L_{\text{brg}_{1}} \approx 31.17 \, \text{ft}$$

$$\frac{L_{\text{brg}}}{L_{\text{fig}}} = \begin{pmatrix} 86.6\\ 98.6\\ 100.0\\ 100.0\\ 100.0 \end{pmatrix} \%$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
*	

Sliding Analysis:

Function Definitions:

$$c_1(\phi_d) := 2 \cdot \tan(\phi_d)$$

$$c_2(\phi_d, \beta) := 1 - \tan(\phi_d) - \tan(\beta) - \left(\frac{\tan(\beta)}{\tan(\phi_d)}\right)$$

$$\begin{split} \alpha_{driving} & \left(\phi_d, \beta \right) := -atan \left(\frac{c_1 \left(\phi_d \right) + \sqrt{c_1 \left(\phi_d \right)^2 + 4 \cdot c_2 \left(\phi_d, \beta \right)}}{2} \right) \\ L_{\beta} & := max \left(\left(\frac{h_{\beta}}{tan(\beta)} - L_{WS5} - L_{WS6} \right) \right) \\ 0 \cdot ft \end{split}$$

Sliding Analysis #1:

$$\beta_{\mathbf{w}} := \beta$$

$$\phi_i := \phi_{fill}$$

$$r = 0 \cdot kc$$

$$\phi_{d_i} := \operatorname{atan} \left(\frac{\operatorname{tan}(\phi_i)}{\operatorname{FS}_{l_i}} \right)$$

$$\beta_{\mathbf{w}} = 33.7 \deg$$

 $L_{\rm B} = 0.0 \, \rm ft$

$$\phi = \begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} \text{deg}$$

$$\phi_{\mathbf{d}_{\mathbf{i}}} = \begin{pmatrix} 24.7 \\ 23.6 \\ 22.5 \\ 21.2 \end{pmatrix} \operatorname{deg}$$

$$atan(tan(\beta) \cdot FS_{1_i}) = \begin{vmatrix} 43.6 \\ 45.2 \\ 47.0 \end{vmatrix}$$
 deg (back solve for minimum ϕ value for stable slope β , EM 1110–2–2502, pg. 3-31)

$$\phi_{i} := if \left[\left(c_{1}(\phi_{d_{i}})^{2} + 4 \cdot c_{2}(\phi_{d_{i}}, \beta_{w}) < 0 \right), atan\left(tan(\beta_{w}) \cdot FS_{1_{i}}\right), \phi_{i} \right]$$

$$\phi = \begin{vmatrix} 43.6 \\ 45.2 \\ 47.0 \end{vmatrix} \text{deg}$$

(substitue minimum & if slope is unstable)

33.7

33.7 33.7

33.7

$$\phi_{d_{1}b_{i}} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi_{i})}{\operatorname{FS}_{1_{i}}}\right)$$

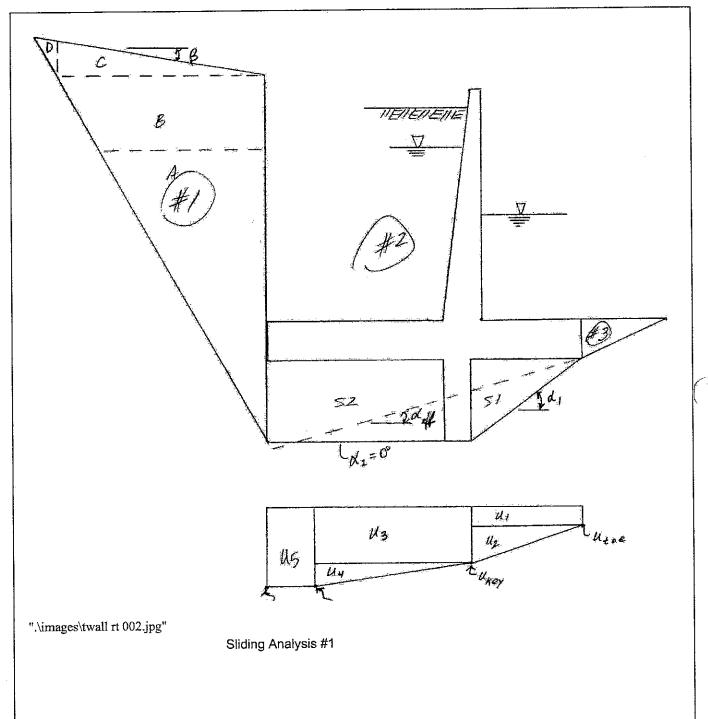
$$\alpha_{1b_i} := \alpha_{driving}(\phi_{d_1b_i}, \beta_w)$$

$$h_{1b} := \left(E_{grade} + L_{WS5} \cdot \tan(\beta_{w})\right) - \left(E_{bftg} - h_{key}\right) \quad h_{1b} = 38.0 \text{ ft}$$

$$L_{max_{i}} := if \left[-\alpha_{1b_{i}} = \phi_{d_{-}1b_{i}}, 1000 \cdot \text{ft}, \frac{\frac{h_{1b}}{\cos(-\alpha_{1b_{i}})\left(\tan(-\alpha_{1b_{i}}) - \tan(\beta_{w})\right)}}{\cos(-\alpha_{1b_{i}})} \right] \quad deg$$

$$h_{1a_{i}} := if \left[L_{\beta} < L_{max_{i}}, h_{1b} + L_{\beta} \left(\tan(\beta) - \tan(-\alpha_{1b_{i}})\right), 0 \cdot \text{ft} \right]$$

$$= \begin{pmatrix} -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \end{pmatrix} deg$$


$$L_{max} =$$

 $\phi_{d_1b_i} =$

$$t = \begin{pmatrix} 3007590483.2 \\ 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \end{pmatrix} \text{ft}$$

Date: _____ By:

Samuels Ave. Dam Training wall at right

Date:	
By:	
✓	

Driving Wedge (#1a):

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\beta_{\rm W} = 0.0 \deg$$

$$\phi := \phi_{fili}$$

$$\phi = 32.0 \deg$$

$$h_{1a} = \begin{pmatrix} 38.0 \\ 38.0 \\ 38.0 \\ 38.0 \\ 38.0 \end{pmatrix} ft$$

$$c := 0 \cdot ksf$$

$$\begin{aligned} \phi_{d_i} &:= atan \left(\frac{tan(\phi)}{FS_{l_i}} \right) \\ \alpha_i &:= \alpha_{driving} \left(\phi_{d_i}, \beta_w \right) \\ h_i &:= h_{la_i} \end{aligned}$$

$$\alpha = \begin{pmatrix} -57.3 \\ -56.8 \\ -56.2 \\ -55.6 \end{pmatrix} \text{ deg} \begin{pmatrix} 22.5 \\ 21.2 \\ 19.9 \end{pmatrix} \text{ deg}$$

$$\begin{array}{c|c}
23.6 \\
4 & 22.5 \\
21.2
\end{array}$$

24.7

$$h_i = h_{la_i}$$

$$h = \begin{pmatrix} 38.0 \\ 38.0 \\ 38.0 \\ 38.0 \\ 38.0 \end{pmatrix}$$
 ft

$$\begin{array}{ccc}
\text{ft} & \left(451\right) \\
454 & \\
= \left(457\right) & \text{ft}
\end{array}$$

$$L_{i} := \frac{1}{\cos(-\alpha_{i}) \cdot (\tan(-\alpha_{i}) - \tan(\beta_{w}))}$$

$$\mathbf{h}_{sat_{i}} = \text{max} \begin{bmatrix} \mathbf{E}_{wheel_{i}} - \left(\mathbf{E}_{ftg} - \mathbf{t}_{base} - \mathbf{h}_{key}\right) - \mathbf{L}_{\beta} \cdot \tan\left(-\alpha_{1b_{i}}\right) \end{bmatrix}$$

$$\begin{bmatrix} -\alpha_{1b_i} \\ \end{bmatrix}$$

$$L_h = \begin{bmatrix} 24.4 \\ 24.9 \\ 25.4 \end{bmatrix}$$
 ft

$$a_{\text{sat}} = \begin{vmatrix} 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{vmatrix}$$
 ft

38.0

$$\mathtt{L}_{h_i} := \frac{h_i}{\tan\!\left(-\alpha_i\right)}$$

$$L_{sat_{\underline{i}}} \coloneqq \frac{h_{sat_{\underline{i}}}}{\tan(-\alpha_{\underline{i}})}$$

$$L_{h} = \begin{bmatrix} 24.9 \\ 25.4 \\ 26.0 \\ 26.7 \end{bmatrix} \text{ ft}$$

$$P_{\text{sat}} = \begin{pmatrix} 24.4 \\ 20.4 \\ 16.4 \\ 12.2 \\ 7.7 \end{pmatrix}$$

$$h_{left} := 0$$
 ft

$$\mathbf{h_{right}}_{i} := \mathbf{h_{1a}}_{i}$$

$$W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{right_{i}}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \frac{L_{sat_{i}} \cdot h_{sat_{i}}}{2}$$

$$W_i =$$

klf

$$H_R := 0 \cdot klf$$

 $H_L := 0 \cdot klf$

 $V := 0 \cdot klf$

$$U_{i} := \gamma_{w} \cdot \left(\frac{h_{sat_{i}}}{2}\right) \cdot \sqrt{\left(h_{sat_{i}}\right)^{2} + \left(L_{sat_{i}}\right)^{2}}$$

$$U = \begin{pmatrix} 53.6 \\ 36.5 \\ 22.6 \\ 11.9 \\ 4.6 \end{pmatrix} \text{klf}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

$$\Delta P_{1a_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(tan\left(\phi_{d_{\hat{i}}}\right) \cdot cos\left(\alpha_{\hat{i}}\right) + sin\left(\alpha_{\hat{i}}\right)\right) - U_{\hat{i}} \cdot tan\left(\phi_{d_{\hat{i}}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(tan\left(\phi_{d_{\hat{i}}}\right) \cdot sin\left(\alpha_{\hat{i}}\right) - cos\left(\alpha_{\hat{i}}\right)\right) + \frac{c}{FS_{1_{\hat{i}}}} \cdot L_{\hat{i}}\right]}{\left(cos\left(\alpha_{\hat{i}}\right) - tan\left(\phi_{d_{\hat{i}}}\right) \cdot sin\left(\alpha_{\hat{i}}\right)\right)}$$

Driving Wedge (#1b):

Driving Wedge (#1b):
$$\beta_{w} = \beta \qquad \beta_{w} = 33.7 \, deg \\ \alpha := \alpha_{1b} \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \phi_{d} := \phi_{d_1b} \qquad \beta_{w} = 33.7 \, deg \\ \phi_{d} := \phi_{d_1b} \qquad \beta_{w} = 33.7 \, deg \\ \phi_{d} := \phi_{d_1b} \qquad \beta_{w} = 33.7 \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.7 \end{bmatrix} \, deg \\ \beta_{w} = \beta \qquad \alpha = \begin{bmatrix} -33.7 \\ -33.$$

$$\begin{aligned} h_{satl_{i}} &:= \max \begin{bmatrix} E_{wheel_{i}} - (E_{fig} - t_{base} - h_{key}) - \frac{L_{\beta}}{\cos(\alpha_{i})} \end{bmatrix} & h_{satl} = \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft} \\ L_{sat.} &:= \min \begin{bmatrix} L_{\beta} \\ h_{satr_{i}} \end{bmatrix} & L_{sat} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \text{ ft} \end{aligned}$$

$$L_{sat_{i}} := \min \left[\frac{h_{satr_{i}}}{tan[(-\alpha)_{i}]} \right]$$

$$L_{sat} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$h_{left_{i}} := h_{1a_{i}}$$

$$\mathbf{h_{left}} = \begin{pmatrix} 38.0 \\ 38.0 \\ 38.0 \\ 38.0 \\ 38.0 \\ 38.0 \end{pmatrix}$$

 $h_{right} = h_{1b}$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
V	

$$\begin{split} W_i &:= \gamma_{fill} \cdot \left(L_h \cdot \frac{h_{left_i} + h_{right}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot L_{sat_i} \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right) & W_i = \\ V &:= 0 \cdot klf & 0.0 \\ H_L &:= 0 \cdot klf & 0.0 \\ H_R &:= 0 \cdot klf & 0.0 \\ \end{bmatrix}$$

$$\begin{split} U_i &:= \gamma_{\mathbf{W}} \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right) \cdot \sqrt{\left(h_{satr_i} - h_{satl_i}\right)^2 + \left(L_h\right)^2} \\ & = \frac{\left[\left(W_i + V\right) \cdot \left(tan\left(\phi_{d_i}\right) \cdot cos\left(\alpha_i\right) + sin\left(\alpha_i\right)\right) - U_i \cdot tan\left(\phi_{d_i}\right) + \left(H_L - H_R\right) \cdot \left(tan\left(\phi_{d_i}\right) \cdot sin\left(\alpha_i\right) - cos\left(\alpha_i\right)\right) + \frac{c}{FS_{1_i}} \cdot L_i\right]}{\left(cos\left(\alpha_i\right) - tan\left(\phi_{d_i}\right) \cdot sin\left(\alpha_i\right)\right)} \end{split}$$

Structure Wedge (#2):

$$\beta_{\mathbf{W}} := 0$$
 deg

$$\phi \coloneqq \phi_{\mathrm{fill}}$$

$$\phi = 32.0 \deg$$

$$c := 0 \text{ ksf}$$

$$\phi_{d_{i}} := atan\left(\frac{tan(\phi)}{FS_{l_{i}}}\right)$$

$$\alpha_1 = \operatorname{atan}\left(\frac{h_{\text{key}}}{x_{\text{key}} - \frac{L_{\text{key}}}{2}}\right)$$

$$\phi_{d_{i}} = \begin{pmatrix} 24.7 \\ 23.6 \\ 22.5 \\ 21.2 \end{pmatrix} deg$$

$$\alpha_1 = \text{atan} \left(\frac{h_{key}}{x_{key} - \frac{L_{key}}{2}} \right) \qquad \alpha_1 = 0.0 \, \text{deg} \qquad \text{(angle of shear plane between toe and key)}$$

$$\alpha_2 := 0$$
 deg

(angle of shear plane between key and heel)

$$\alpha := \alpha_1 \cdot \left(\frac{x_{key}}{L_{ftg}}\right) + \alpha_2 \cdot \left(\frac{L_{ftg} - x_{key}}{L_{ftg}}\right) \quad \alpha = 0.0 \, deg \quad \text{(average angle of shear plane for structural wedge)}$$

$$L := \frac{L_{ftg}}{\cos(\alpha)}$$

$$L = 36.0 \, ft$$

$$h_{S1} := h_{key}$$

$$\mathbf{h}_{S1} = 0.0\,\mathbf{ft}$$

$$L_{S1} := x_{\text{key}} - \frac{L_{\text{key}}}{2}$$

$$L_{S1} = 11.9 \, ft$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _____

$$x_{S1} := \frac{2}{3} \cdot L_{S1}$$

$$x_{S1} = 7.9 \, ft$$

$$S1 \coloneqq \gamma_{sat} \cdot \frac{h_{S1} \cdot L_{S1}}{2}$$

$$S1 = 0.0 \, \text{klf}$$

$$h_{S2} := h_{kev}$$

$$h_{S2} = 0.0 \, ft$$

$$L_{S2} := L_{ftg} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 20.1 \, ft$$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 25.9 \, ft$$

$$S2 := \gamma_{sat} \cdot h_{S2} \cdot L_{S2}$$

$$S2 = 0.0 \, \text{klf}$$

$$W_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_w \cdot \left(E_{wtoe_i} - E_{bftg}\right)$$

$$u_{heel} = \gamma_w | E_{wheel} - (E_{bftg} - h_{key}) |$$

$$\delta_{u_i} \coloneqq \frac{\gamma_w \cdot \left(E_{wheel_i} - E_{wtoe_i}\right)}{L_{ftg} - L_{t1}}$$

$$\mathbf{u}_{\text{key}_i} \coloneqq \mathbf{u}_{\text{toe}_i} + \delta_{\mathbf{u}_i} \cdot \left(\mathbf{x}_{\text{key}} - \frac{\mathbf{L}_{\text{key}}}{2} \right) + \gamma_{\mathbf{w}} \cdot \mathbf{h}_{\text{key}}$$

$$ok := if \left[u_{key_1} + \delta_{u_1} \cdot \left(L_{ftg} - x_{key} + \frac{L_{key}}{2} - L_{tl_1} \right) = u_{heel_1} \right], ok, "Uplift pressures do not close"$$

$$ok = "Ok"$$

$$u_{l_i} := u_{toe_i} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u1} := \frac{x_{key} - \frac{L_{key}}{2}}{2}$$

$$x_{u1} = 5.9 \, ft$$

$$u_{2_i} = \left(u_{\text{key}_i} - u_{\text{toe}_i}\right) \frac{\left(x_{\text{key}} - \frac{L_{\text{key}}}{2}\right)}{2}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
v/	

$$x_{u2} := \frac{2}{3} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u2} = 7.9 \, ft$$

$$u_{3_i} := u_{\text{key}_i} \cdot \left(L_{\text{ftg}} - L_{t1_i} - x_{\text{key}} + \frac{L_{\text{key}}}{2} \right)$$

$$\mathbf{x_{u3}}_{i} \coloneqq \mathbf{x_{key}} - \frac{\mathbf{L_{key}}}{2} + \frac{1}{2} \cdot \left[\mathbf{L_{fig}} - \mathbf{L_{t1}}_{i} - \left(\mathbf{x_{key}} - \frac{\mathbf{L_{key}}}{2} \right) \right]$$

$$\mathbf{u_{4_i}} \coloneqq \left(\mathbf{u_{heel_i}} - \mathbf{u_{key_i}}\right) \cdot \frac{\left(L_{ftg} - L_{tl_i} - \mathbf{x_{key}} + \frac{L_{key}}{2}\right)}{2}$$

$$x_{u4_{i}} := x_{key} - \frac{L_{key}}{2} + \frac{2}{3} \cdot \left[L_{ftg} - L_{t1_{i}} - \left(x_{key} - \frac{L_{key}}{2} \right) \right]$$

$$u_{5_i} := u_{heel_i} L_{tl_i}$$

$$x_{u5_i} \coloneqq L_{ftg} - \frac{L_{t1_i}}{2}$$

$$U_i := u_{1_i} + u_{2_i} + u_{3_i} + u_{4_i} + u_{5_i}$$

$$x_{U_i} \coloneqq \frac{u_{1_i} \cdot x_{u1} + u_{2_i} \cdot x_{u2} + u_{3_i} \cdot x_{u3_i} + u_{4_i} \cdot x_{u4_i} + u_{5_i} \cdot x_{u5_i}}{U_i}$$

$$\begin{split} \Sigma M_{grav_{i}} &:= \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} \right) ... \\ &+ W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U_{i} \cdot x_{U_{i}} \right) \end{split}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
	,

$h_{A2_i} := E_{wheel_i} - E_{bftg} + h_{key}$	$h_{A2} =$
$y_{A2_i} := \frac{h_{A2_i}}{2} - h_{key}$ $A2_i := k_{0\beta} \gamma_{fill} \cdot h_{A1_i} \cdot h_{A2_i}$ $h_{A3_i} := h_{A2_i}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$y_{A3_{i}} = \frac{h_{A3_{i}}}{3} - h_{key}$ $A3_{i} = k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$H3_i = 0$ klf	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$h_{\text{H2}_{i}} := E_{\text{wheel}_{i}} - E_{\text{bftg}} + h_{\text{key}}$ $y_{\text{H2}_{i}} := \frac{h_{\text{H2}_{i}}}{3} - h_{\text{key}}$	15.2 8.0 3.1

$$\begin{split} \text{H2}_{i} &\coloneqq \gamma_{w} \cdot \frac{\left(h_{\text{H2}_{i}}\right)^{2}}{2} \\ \Sigma M_{\text{lat}_{i}} &\coloneqq -\text{H1}_{i} \cdot \left(y_{\text{H1}_{i}}\right) - \text{K1}_{i} \cdot \left(y_{\text{K1}}\right) - \text{K2}_{i} \cdot \left(y_{\text{K2}}\right) + \text{H2}_{i} \cdot \left(y_{\text{H2}_{i}}\right) + \text{H3}_{i} \cdot \left(y_{\text{H3}}\right) \\ &\quad + \text{A1}_{i} \cdot \left(y_{\text{A1}_{i}}\right) + \text{A2}_{i} \cdot \left(y_{\text{A2}_{i}}\right) + \text{A3}_{i} \cdot \left(y_{\text{A3}_{i}}\right) - R_{\text{key}_{i}} \cdot \left(y_{\text{Rkey}}\right) \end{split}$$

$$x_{R_{i}} \coloneqq \frac{\Sigma M_{\text{grav}_{i}} - \Sigma M_{\text{lat}_{i}}}{W_{i} - U_{i}} \qquad L_{\text{brg}_{i}} \coloneqq \min\left(3 \cdot x_{R_{i}}, L_{\text{ftg}}\right) \end{split}$$

 $ok_{u_{i}} \coloneqq if \left| \left| L_{brg_{i}} - \left(L_{ftg} - L_{t1_{i}} \right) \right| > 0.001 \cdot \text{ ft, "Uplift assumptions wrong in sliding analysis ", "Matched "} \right|$

$W_i =$		u _{toe} =		u _{heel} =		$\delta_{u_i} =$		$u_{\text{key}_{\hat{i}}} =$		$\mathbf{u}_{1_{i}} =$		u ₂ =		u ₃ =	
155.8	klf	1.750	ksf	2.375	ksf	18.5	psf	1.970	ksf	20.781	klf	1.307	klf	43.026	klf
152.0		1.328		1.953		17.5	ft	1.536		15.771		1.234		36.596	
148.1		0.906		1.531		17.4		1.112		10.762		1.224		26.837	
144.3		0.484		1.109		17.4		0.691		5.752		1.224		16.659	
143.5		0.375		0.688		8.7		0.478		4.453		0.612		11.534	

Date: _____ By: _____

u4 _i =		u5; =		x _{u3} =	:	x _{u4} =	:	×u5, =	:
4.421	klf	5.4	klf	22.8	ft	26.4	ft	34.9	ft
4.969		0.6		23.8		27.8		35.9	
5.052		0.0		23.9		28.0		36.0	
5.052		0.0		23.9		28.0		36.0	
2.526		0.0		23.9		28.0		36.0	

h _{H2} =	=	УН2 _і =	= 12 _i =	
38.0	ft	12.7	ft 45.1	klf
31.3		10.4	30.5	
24.5		8.2	18.8	
17.8		5.9	9.8	
11.0		3.7	3.8	

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_{\hat{i}}} \coloneqq \gamma_{\mathbf{W}} \cdot \frac{\left(E_{wtoe_{\hat{i}}} - E_{fitg}\right)^{2}}{2}$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	·
By:	
₩	

$$\Delta P_{2_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \cos\left(\alpha\right) + \sin\left(\alpha\right)\right) - U_{\hat{i}} \cdot \tan\left(\varphi_{d_{\hat{i}}}\right) + \left(H_{L_{\hat{i}}} - H_{R_{\hat{i}}}\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha\right) - \cos\left(\alpha\right)\right) + \frac{c}{FS_{1_{\hat{i}}}} \cdot L\right]}{\left(\cos\left(\alpha\right) - \tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha\right)\right)}$$

$$\begin{split} ok &:= if \left\lfloor \max \left\lfloor \left\lfloor L_{brg} - \left(L_{fig} - L_{tl}\right) \right\rfloor \right\rfloor < 0.001 \cdot ft, ok, \text{"Uplift area does not match."} \right\rfloor \\ ok &:= if \left(\min \left(L_{brg}\right) < x_{key} + \frac{L_{key}}{2}, \text{"Uplift assumptions incorrect."}, ok \right) \\ &ok = \text{"Ok"} \end{split}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
V	

Resisting Wedge (#3):

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c = 0 \cdot ksf$$

$$\phi_{d_{i}} := \operatorname{atan}\left(\frac{\tan(\phi)}{\operatorname{FS}_{1_{i}}}\right)$$

$$\alpha_{i} := 45 \cdot \operatorname{deg} - \frac{\phi_{d_{i}}}{2}$$

$$\phi_{d_{i}} = \begin{pmatrix} 24.7 \\ 23.6 \\ 22.5 \\ 21.2 \\ 19.9 \end{pmatrix} deg$$

$$\alpha_{i} = \begin{pmatrix} 32.7 \\ 33.2 \\ 33.8 \\ 34.4 \\ 35.1 \end{pmatrix} deg \qquad L = \begin{pmatrix} 11.118 \\ 10.958 \\ 10.797 \\ 10.622 \end{pmatrix} ft$$

$$L_{i} := \frac{t_{base}}{\sin(\alpha_{i})}$$

$$W_{i} := \gamma_{sat} \cdot \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot t_{base}}{2} + \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{fig}\right) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_{i} = \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{fig} + \frac{t_{base}}{2}\right) \cdot L_{i}$$

$$H_L := 0 \cdot klf$$

$$H_R = 0$$
 klf

$$V := 0 \cdot klf$$

$$\Delta P_{3_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\phi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{1_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

$$\Sigma P_i := \Delta P_{1a_i} + \Delta P_{1b_i} + \Delta P_{2_i} + \Delta P_{3_i}$$

$$\Delta P_{1a_{i}} = \frac{1}{-64.4}$$

-57.1

-52.0

-49.0

-48.1

$$\Delta P_{1b_{i}} =$$

0.0

0.0

0.0

0.0

0.0

$$\Delta P_{2_i} = 52.3$$

47.8

45.4

45.0

44.9

klf

$$\Delta P_{3_i} = \boxed{12.2}$$

3.5

$$\frac{\text{MP3}_{i}}{9.6} = \frac{12.2}{9.6}$$
 klf $\frac{6.9}{4.3}$

$$\Sigma P_{i} = \begin{bmatrix} 0.1 \\ 0.3 \\ 0.4 \end{bmatrix} \text{ klf } FS_{1} \equiv$$

0.2

0.3

10.442

ok := if
$$(FS_{1_1} \ge 1.33, ok, "Sliding instability: LC#1")$$

ok := if
$$(FS_{1_n} \ge 1.50, ok, "Sliding instability: LC#n")$$

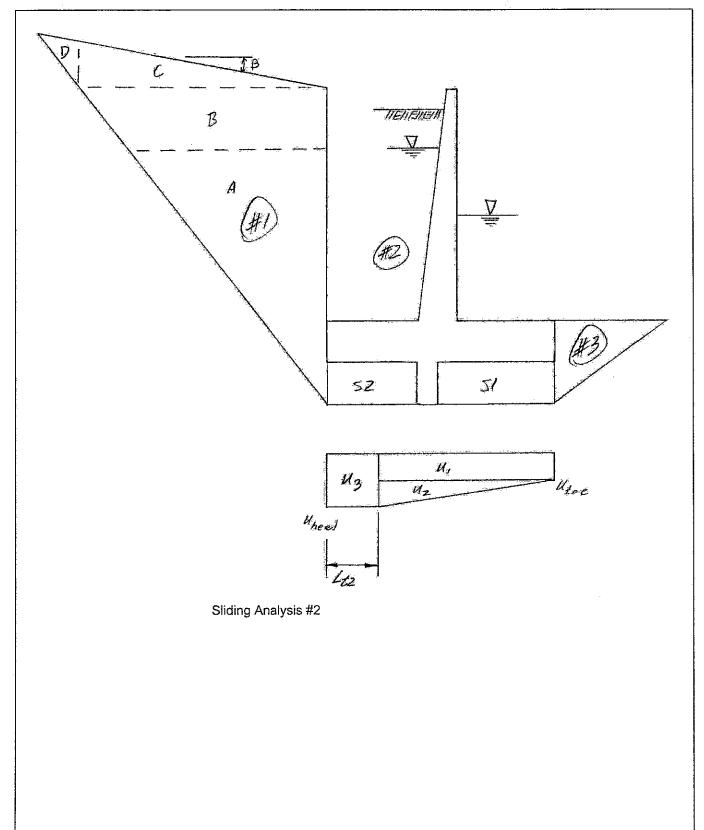
$$ok = "Ok"$$

3.3

2.0

1.36

1.43



Date:	
By:	

Sliding Analysis #2:	$L_{\beta} = 0.00 \text{ft}$	(32.0)	
$\phi_i = \phi_{fill}$ $\beta_w := \beta$	$\beta_{\rm W} = 33.7 \deg$	$\phi = \begin{vmatrix} 32.0 \\ 32.0 \end{vmatrix} \text{ deg}$	
$c := 0 \cdot ksf$		φ = 32.0 deg	(24.7)
$c := 0 \cdot \text{KSI}$ $\left(\tan(\phi_i) \right)$		32.0	23.6
$\phi_{\mathbf{d}_{i}} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi_{i})}{\operatorname{FS}_{2_{i}}}\right)$			$\phi_{\mathbf{d}_{\hat{\mathbf{I}}}} = \begin{vmatrix} 23.6 \\ 22.5 \\ 21.2 \end{vmatrix} \text{deg}$
(42.2)			(19.9)
$atan(tan(\beta) \cdot FS_{2_i}) = \begin{pmatrix} 42.2 \\ 43.6 \\ 45.2 \\ 47.0 \\ 49.1 \end{pmatrix} deg$			(27.07)
$atan(tan(\beta) \cdot FS_{2_i}) = \begin{vmatrix} 45.2 & \text{deg} \end{vmatrix}$	(back solve for minir	num φ value for stable slope	β, EM 1110-2-2502, pg. 3-31)
47.0		(42.2)	
[(491)) ((-)	43.6	(aubatitus minimum 4 if
$\phi_{i} := if \left[\left(c_{1} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left(\phi_{d_{i}}, \beta_{w} \right) \right] \right]$ $\phi_{d} \mid b_{i} := atan \left(\frac{tan(\phi_{i})}{TC} \right)$	< 0), atan(tan(β_{w}) · FS	$\phi = \begin{vmatrix} 45.2 \\ 47.0 \end{vmatrix}$ deg	(substitue minimum φ if slope is unstable)
	$\phi_{\mathbf{d}_{1}\mathbf{b}_{i}} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix}$	$\begin{pmatrix} 49.1 \end{pmatrix}$	
$\tan(\phi_i)$	33.7		
$\phi_{d_1b_i} := \operatorname{atan}\left(\frac{\tan(\phi_i)}{\operatorname{FS}_{2_i}}\right)$	$\phi_{d_1b_i} = 33.7$	deg (-	-33.7
	33./	j -	-33.7
$\alpha_{1b_i} := \alpha_{driving}(\phi_{d_1b_i}, \beta_w)$	(337	$\alpha_{1b} = -$	-33.7 -33.7 deg -33.7
			-33.7
$h_{1b} := (E_{\text{grade}} + L_{\text{WS5}} \cdot \tan(\beta_{\text{w}})) -$	$-\left(E_{bfig} - h_{key}\right) h_{1b} =$	<u> የ</u> የሰ ር	
$L_{\text{max}_{i}} := if \begin{bmatrix} -\alpha_{1b_{i}} = \phi_{d_{1}b_{i}}, 1000 & \text{ft} \end{bmatrix}$	h _{1b}	3.0 ×	10
	$cos(-\alpha_{1b_i})(tan(-\alpha_{1b_i}))$	$\left \frac{100}{100} \right = 100$	0.0 ft
$L_{\max_{i}} = if -\alpha_{1b_{i}} = \phi_{d_{1}b_{i}}, 1000 \cdot ft$	$\cos(-\alpha_{1b_i})$	100	0.0
L .	, ,	(3 \ \ 100	0.0
		ft $h_{1a} = \begin{pmatrix} 3 & 100 \\ 38.0 & 100 \end{pmatrix}$	
	$\tan(\beta) - \tan(-\alpha_{1b_i}), 0$	ft $h_{1a} = 38.0$ ft	
	, 4,	38.0	
		(38.0)	

Date: By: _____

Date: ____

Driving Wedge (#1a):	
$\beta_{\mathbf{W}} := 0 \cdot deg$	$\beta_{\rm W} = 0.0 \deg$
$\phi := \phi_{fill}$	$\phi = 32.0 \deg$
$c := 0 \cdot ksf$ $\phi_{d_i} := atan\left(\frac{tan(\phi)}{FS_{2_i}}\right)$ $\alpha_i := \alpha_{driving}(\phi_{d_i}, \beta_w) \qquad \alpha = \begin{pmatrix} -57 \\ -56 \\ -56 \\ -55 \\ -54 \end{pmatrix}$ $h_i := h_{1a_i}$	$\phi_{\mathbf{d}} = \begin{pmatrix} 24.7 \\ 23.6 \\ 22.5 \\ 21.2 \\ 10.0 \end{pmatrix} \text{ deg}$
$\alpha_{i} := \alpha_{driving}(\phi_{d_{i}}, \beta_{w}) \qquad \alpha = \begin{bmatrix} -56 \\ -55 \\ -54 \end{bmatrix}$ $h_{i} := h_{1a_{i}}$	(19.9) (38.0) (38.0) (38.0)
$h_i = h_{1a_i}$	$h = \begin{pmatrix} 38.0 \\ 38.0 \\ 38.0 \\ 38.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 45.14 \\ 45.41 \\ 45.71 \\ 46.05 \\ 46.43 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 138.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 24.5 \\ 17.8 \\ 11.0 \end{pmatrix} \text{ ft } \begin{pmatrix} 38.0 \\ 31.3 \\ 31.$
$L_{i} := \frac{1}{\cos(-\alpha_{i}) \cdot (\tan(-\alpha_{i}) - \tan(\beta_{w}))}$	$\begin{pmatrix} 38.0 \end{pmatrix} = \begin{vmatrix} 45.71 & \text{ft} \\ 46.05 & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
$h_{\text{sat}_i} = \max \left[\left[E_{\text{wheel}_i} - \left(E_{\text{fig}} - t_{\text{base}} \right) \right] \right]$	
$\tan(-\alpha_i)$	$L_{h} = \begin{pmatrix} 24.865 \\ 25.400 \\ 26.013 \\ 26.677 \end{pmatrix} \text{ ft } \begin{pmatrix} 24.36 \\ 20.45 \\ 16.38 \end{pmatrix} \text{ ft }$
$L_{sat_{i}} = \frac{h_{sat_{i}}}{\tan(-\alpha_{i})}$	$L_{\text{sat}} = \begin{bmatrix} 16.38 \\ 12.15 \\ 7.72 \end{bmatrix}$ ft
$h_{left} := 0 \cdot ft$ $h_{right_i} := h_{la_i}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{right_{i}}}{2} \right) + \left(\frac{1}{2} + \frac{1}{2} \right) + \left(\frac{1}{2} + \frac{1}$	
$V := 0 \cdot klf$	59.011 klf 60.617
$H_{L} := 0 \cdot klf$	62.236 63.983
$H_R = 0$ klf	65.787

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$$\boldsymbol{U}_i \coloneqq \boldsymbol{\gamma}_{\mathbf{w}} \cdot \left(\frac{\boldsymbol{h}_{sat_i}}{2}\right) \cdot \sqrt{\left(\boldsymbol{h}_{sat_i}\right)^2 + \left(\boldsymbol{L}_{sat_i}\right)^2}$$

$$U = \begin{pmatrix} 53.601 \\ 36.470 \\ 22.562 \\ 11.932 \\ 4.620 \end{pmatrix} \text{ klf}$$

$$\Delta P_{1a_{\hat{i}}} \coloneqq \frac{\left[\left(W_{\hat{i}} + V \right) \cdot \left(tan \left(\phi_{d_{\hat{i}}} \right) - cos \left(\alpha_{\hat{i}} \right) + sin \left(\alpha_{\hat{i}} \right) \right) - U_{\hat{i}} \cdot tan \left(\phi_{d_{\hat{i}}} \right) + \left(H_L - H_R \right) \cdot \left(tan \left(\phi_{d_{\hat{i}}} \right) \cdot sin \left(\alpha_{\hat{i}} \right) - cos \left(\alpha_{\hat{i}} \right) \right) + \frac{c}{FS_{2_{\hat{i}}}} \cdot L_{\hat{i}} \right]}{\left(cos \left(\alpha_{\hat{i}} \right) - tan \left(\phi_{d_{\hat{i}}} \right) - sin \left(\alpha_{\hat{i}} \right) \right)}$$

Driving Wedge (#1b):

$$L_{B} = 0.0 \, ft$$

$$\beta_w := \beta$$

$$\beta_{\rm W} = 33.7 \deg$$

$$\alpha \coloneqq \alpha_{1b}$$

$$\phi_{\mathbf{d}} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ \mathbf{deg} \end{pmatrix}$$

$$L_h := L_\beta$$

$$L_h = 0.0 \, ft$$

$$h = \begin{bmatrix} 38.0 & \text{ft} \\ 38.0 & \text{ft} \\ 38.0 & \text{ft} \end{bmatrix}$$

$$L_i := \frac{L_\beta}{\cos(\alpha_i)}$$

$$\mathbf{h_{satr}}_{i} \coloneqq \max \begin{bmatrix} \mathbf{E_{wheel}}_{i} - (\mathbf{E_{ftg}} - \mathbf{t_{base}} - \mathbf{h_{key}}) \\ \mathbf{0} \cdot \mathbf{ft} \end{bmatrix}$$

$$h_{satl_{i}} := max \begin{bmatrix} E_{wheel_{i}} - (E_{fig} - t_{base} - h_{key}) - \frac{L_{\beta}}{\cos(\alpha_{i})} \end{bmatrix} \quad h_{satl} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$L_{sat_{i}} := min \begin{bmatrix} L_{\beta} \\ h_{satr_{i}} \\ tan[(-\alpha)_{i}] \end{bmatrix} \qquad L_{sat} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \end{bmatrix} \text{ ft}$$

$$L_{sat_{\underline{i}}} \coloneqq \min \left[\begin{array}{c} L_{\beta} \\ \\ \frac{h_{satr_{\underline{i}}}}{tan[\left(-\alpha\right)_{\underline{i}}]} \end{array} \right]$$

$$L_{\text{sat}} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \text{ft}$$

$$\mathbf{h_{left}} = \begin{pmatrix} 38.0 \\ 38.0$$

$$h_{left_i} = h_{la_i}$$

$$h_{right} = 38.0 \text{ ft}$$

$$h_{right} := h_{1b}$$

$$\operatorname{sat}_{i} \cdot \left(\frac{\operatorname{h}_{\operatorname{satr}_{i}} + \operatorname{h}_{\operatorname{satl}_{i}}}{2} \right)$$

$$W_i \coloneqq \gamma_{fill} \cdot \left(L_h \cdot \frac{h_{left_i} + h_{right}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot L_{sat_i} \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right)$$

Date: ____

$V := 0 \cdot klf$	W _i =
$H_L := 0 \cdot klf$	0.0 klf
	0.0
$H_R := 0 \cdot klf$	0.0
$\mathbf{U_{i}} \coloneqq \gamma_{\mathbf{W}} \cdot \left(\frac{\mathbf{h_{satr_{i}}} + \mathbf{h_{satl}_{i}}}{2}\right) \sqrt{\left(\mathbf{h_{satr_{i}}} - \mathbf{h_{satl}_{i}}\right)^{2} + \left(\mathbf{L_{h}}\right)^{2}}$	0.0
$\left[\left(W_i + V \right) \cdot \left(\tan \left(\phi_{d_i} \right) \right) \cos \left(\alpha_i \right) + \sin \left(\alpha_i \right) \right) - U_i \cdot \tan \left(\phi_{d_i} \right) + \left(H_L - H_R \right) \right]$	$\left(\tan\!\left(\phi_{d_i}\right)\cdot\sin\!\left(\alpha_i\right)-\cos\!\left(\alpha_i\right)\right)+\frac{c}{FS_{2_i}}\cdot L_i\right]$
$\Delta P_{1b_i} = \frac{L}{\left(\cos(\alpha_i) - \tan(\phi_{d_i}) \cdot \sin(\alpha_i)\right)}$	

Structure Wedge (#2):

$$\beta_{\mathbf{w}} = 0 \cdot deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c = 0 \text{ ksf}$$

$$\phi_{\overset{\cdot}{d_i}} := atan\!\!\left(\frac{tan\!\left(\varphi\right)}{FS_{\overset{\cdot}{2}_i}}\right)$$

$$\phi_{\mathbf{d}_{\mathbf{i}}} = \begin{pmatrix} 24.7 \\ 23.6 \\ 22.5 \\ 21.2 \end{pmatrix} \text{deg}$$

$$\alpha := 0$$
 deg $\alpha = 0.0$ deg

$$L := \frac{L_{\text{ftg.}}}{\cos(\alpha)}$$

$$L = 360 ft$$

$$h_{S1} := h_{key}$$

$$\mathbf{h_{S1}} = 0.0\,\mathrm{ft}$$

$$L_{S1} := x_{key} - \frac{L_{key}}{2}$$

$$L_{S1} = 11.9 \, ft$$

$$x_{S1} := \frac{1}{2} L_{S1}$$

$$x_{S1} = 5.9 \, ft$$

$$S1 := \gamma_{sat} \cdot h_{S1} \cdot L_{S1}$$

$$S1 = 0.0 \, \text{klf}$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date: ______

 $h_{S2} := h_{key}$

$$h_{S2} = 0.0 \, ft$$

$$L_{S2} := L_{ftg} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 20.1 \text{ ft}$$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 25.9 \, ft$$

$$S2 := \gamma_{sat} \cdot h_{S2} \cdot L_{S2}$$

$$S2 = 0.0 \, \text{klf}$$

$$W_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_w |E_{wtoe_i} - (E_{bftg} - h_{key})|$$

$$u_{heel_i} := \gamma_w \mid E_{wheel_i} - (E_{bftg} - h_{key})|$$

$$\delta_{u_{i}} := \frac{\gamma_{w} \cdot \left(E_{wheel_{i}} - E_{wtoe_{i}}\right)}{L_{ftg} - L_{t2,}}$$

$$u_{1_{i}} = u_{toe_{i}} \cdot \left(L_{ftg} - L_{t2_{i}}\right)$$

$$x_{u1_i} \coloneqq \frac{L_{ftg} - L_{t2_i}}{2}$$

$$\mathbf{u_{2_i}} \coloneqq \left(\mathbf{u_{heel_i}} - \mathbf{u_{toe_i}}\right) \cdot \frac{\left(L_{ftg} - L_{t2_i}\right)}{2}$$

$$x_{u2_i} := \frac{2}{3} \left(L_{ftg} - L_{t2_i} \right)$$

$$\mathbf{u}_{3_{i}} = \mathbf{u}_{\mathbf{heel}_{i}} \left(\mathbf{L}_{\mathbf{t}2_{i}} \right)$$

$$x_{u3_i} := L_{fig} - \frac{L_{12_i}}{2}$$

$$U_{i} := u_{1_{i}} + u_{2_{i}} + u_{3_{i}}$$

$$x_{U_{i}} \coloneqq \frac{u_{1_{i}} - x_{u1_{i}} + u_{2_{i}} \cdot x_{u2_{i}} + u_{3_{i}} \cdot x_{u3_{i}}}{U_{i}}$$

$$\mathbf{x}_{u1} = \begin{pmatrix} 16.9 \\ 17.9 \\ 18.0 \\ 18.0 \\ 18.0 \end{pmatrix}$$
 ft
$$\begin{pmatrix} 22.5 \\ 23.8 \\ 24.0 \end{pmatrix}$$
 ft

$$\mathbf{x}_{\mathbf{U}} = \begin{pmatrix} 19.0 \\ 19.2 \\ 19.5 \\ 20.4 \\ 19.8 \end{pmatrix} \text{ft}$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
Ву:	
✓	

$$\begin{split} \Sigma M_{grav_{i}} &:= \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}}\right) \\ &+ W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U_{i} \cdot x_{U_{i}}\right) \end{split}$$

$$\begin{aligned} h_{\text{H1}_{i}} &\coloneqq E_{\text{wtoe}_{i}} - \left(E_{\text{bftg}} - h_{\text{key}}\right) \\ y_{\text{H1}_{i}} &\coloneqq \frac{h_{\text{H1}_{i}}}{3} - h_{\text{key}} \\ H1_{i} &\coloneqq \gamma_{\text{W}} \cdot \frac{\left(h_{\text{H1}_{i}}\right)^{2}}{2} \end{aligned}$$

$$\begin{array}{c} h_{H1}{}_{i} = \\ \hline 28.00 & ft \\ \hline 21.25 & & y_{H1}{}_{i} = \\ \hline 14.50 & & \hline 7.75 & & H1{}_{i} = \\ \hline 6.00 & & 4.83 & & 24.5 \\ \hline 2.58 & & 14.1 \\ \hline 2.00 & & 6.6 \\ \hline 1.9 & & 1.9 \\ \hline \end{array}$$

$$K1_i := 0$$
 klf

$$K2_i = 0$$
 klf

$$\begin{split} \Sigma M_{lat_{i}} &:= -H1_{i} \cdot \left(y_{H1_{i}}\right) - K1_{i} \cdot \left(y_{K1}\right) - K2_{i} \cdot \left(y_{K2}\right) + H2_{i} \cdot \left(y_{H2_{i}}\right) + H3_{i} \cdot \left(y_{H3}\right) \\ &+ A1_{i} \cdot \left(y_{A1_{i}}\right) + A2_{i} \cdot \left(y_{A2_{i}}\right) + A3_{i} \cdot \left(y_{A3_{i}}\right) - R_{key_{i}} \cdot \left(y_{Rkey}\right) \end{split}$$

$$x_{R_{i}} = \frac{\sum M_{grav_{i}} - \sum M_{lat_{i}}}{W_{i} - U_{i}}$$

$$L_{\text{brg}_{i}} := \min(3 \cdot x_{R_{i}}, L_{\text{ftg}})$$

 $ok_{u_{\underline{i}}} := if \left| \left| L_{brg_{\underline{i}}} - \left(L_{ftg} - L_{t2_{\underline{i}}} \right) \right| > 0.001 \cdot \text{ft}, "Uplift assumptions wrong in sliding analysis."}, "Matched." \right|$

$$\begin{array}{ccc} W_i = & u_{toe_i} = \\ \hline 155.8 & klf & 1.750 \\ \hline 152.0 & 1.328 \\ \hline 148.1 & 0.906 \\ \hline 144.3 & 0.484 \\ \hline 143.5 & 0.375 \\ \hline \end{array}$$

$$u_{heel_1} = ksf$$
 2.375
 1.953
 1.531
 1.109
 0.688

$$\delta_{u_{i}} = \frac{\delta_{u_{i}}}{18.5} = \frac{\text{psf}}{\text{ft}}$$
17.4
17.4
8.7

klf

$$u_{3_{i}} =$$
klf 5.429 klf 0.586 0.000 0.000 0.000

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
.	

Ku3 _i =	
34.9	ft
35.9	
36.0	
36.0	
36.0	

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_{i}} := \gamma_{w} \cdot \frac{\left(E_{wtoe_{i}} - E_{ftg}\right)^{2}}{2}$$

$$\Delta P_{2_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \cos\left(\alpha\right) + \sin\left(\alpha\right)\right) - U_{\hat{i}} \cdot \tan\left(\varphi_{d_{\hat{i}}}\right) + \left(H_{L_{\hat{i}}} - H_{R_{\hat{i}}}\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha\right) - \cos\left(\alpha\right)\right) + \frac{c}{FS_{2_{\hat{i}}}} \cdot L\right]}{\left(\cos\left(\alpha\right) - \tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha\right)\right)}$$

$$\begin{split} \text{ok} &\coloneqq \text{if} \left\lfloor \text{max} \right\lfloor \left| L_{brg} - \left(L_{ftg} - L_{t2} \right) \right| \rfloor < 0.001 \cdot \text{ft, ok, "Uplift area does not match."} \right] \\ \text{ok} &\coloneqq \text{if} \left(\text{min} \left(L_{brg} \right) < x_{key} + \frac{L_{key}}{2} \text{, "Uplift assumptions incorrect." , ok} \right) \qquad \text{ok} = \text{"Ok"} \end{split}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:

Resisting Wedge (#3):

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi = \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0 \cdot ksf$$

$$\phi_{d_i} := atan\left(\frac{tan(\phi)}{FS_{2_i}}\right)$$

$$\alpha_i := 45 \cdot \deg - \frac{\phi_{d_i}}{2}$$

$$L_{i} = \frac{t_{base} + h_{key}}{\sin(\alpha_{i})}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 24.7 \\ 23.6 \\ 22.5 \\ 21.2 \\ 19.9 \end{pmatrix} \operatorname{deg}$$

$$\alpha_{i} = \begin{pmatrix} 33.2 \\ 33.8 \\ 34.4 \\ 35.1 \end{pmatrix} deg$$

$$L = \begin{pmatrix} 11.118 \\ 10.958 \\ 10.797 \\ 10.622 \\ 10.442 \end{pmatrix}$$
 ft

$$W_{i} := \gamma_{sat} \cdot \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot (t_{base} + h_{key})}{2} + \gamma_{w} \cdot (E_{wtoe_{i}} - E_{ftg}) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_i := \gamma_w \cdot \left(E_{wtoe_i} - E_{ftg} + \frac{t_{base} + h_{key}}{2} \right) L_i$$

$$H_L = 0$$
 klf

$$H_R = 0 \cdot klf$$

$$V := 0 \cdot klf$$

$$\Delta P_{3_{i}} := \frac{\left[\left(W_{i} + V \right) \cdot \left(\tan \left(\phi_{d_{i}} \right) - \cos \left(\alpha_{i} \right) + \sin \left(\alpha_{i} \right) \right) - U_{i} \cdot \tan \left(\phi_{d_{i}} \right) + \left(H_{L} - H_{R} \right) \cdot \left(\tan \left(\phi_{d_{i}} \right) \cdot \sin \left(\alpha_{i} \right) - \cos \left(\alpha_{i} \right) \right) + \frac{c}{FS_{2_{i}}} \cdot L_{i} \right]}{\left(\cos \left(\alpha_{i} \right) - \tan \left(\phi_{d_{i}} \right) \cdot \sin \left(\alpha_{i} \right) \right)}$$

$$(1.36)$$

$$\Sigma P_i := \Delta P_{1a_i} + \Delta P_{1b_i} + \Delta P_{2_i} + \Delta P_{3_i}$$

$$\Delta P_{1a_i} =$$

$$\Delta P_{1b_{i}} = \begin{bmatrix} 0.0 & \text{klf} \\ 0.0 & 0.0 \\ 0.0 & 0.0 \end{bmatrix}$$

$$\Delta P_{2_i} = 52.3$$
 klf 47.8 45.4 45.0 44.9

$$\Delta P_{3_i} = \begin{bmatrix} 12.2 \\ 9.6 \\ 6.9 \end{bmatrix}$$
 klf

$$\Sigma P_i = \begin{bmatrix} 0.1 & \text{klf} \\ 0.3 & \end{bmatrix}$$

0.4

0.2

0.3

$$FS_2 = \begin{bmatrix} 1.51 \\ 1.61 \\ 1.73 \end{bmatrix}$$

1.43

$$h_{\text{key}} \equiv 0$$
 ft

$$L_{\text{ftg}} = 36.0 \, \text{ft}$$

ok = if
$$(FS_{2_1} \ge 1.33, ok, "Sliding instability: LC#1")$$

$$ok := if(FS_{2_n} \ge 1.50, ok, "Sliding instability: LC#n")$$

$$L_{\text{fig}} - x_{\text{key}} - \frac{L_{\text{key}}}{2} = 20.1 \text{ ft}$$

$$L_{\text{heel}} \equiv 26 \cdot \text{ft}$$

 $L_{toe} \equiv 10$ ft

$$ok = "Ok"$$

3.3

Section 3 Upstream Retaining Walls

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
✓	

507.0 506.5 506 0 ft

Upstream Training Wall at Right: (Grade = 507.0')

Reference:T:\ST\CALCS\Common geometry.mcd(R)

Geometry:

$$E_{\text{wall}} := 510 \cdot \text{ft}$$

$$E_{ftg} := E_{approach}$$

$$E_{ftg} = 500.0 \, ft$$

$$t_{base} := 5 \cdot ft$$

$$E_{bftg} := E_{ftg} - t_{base}$$

$$E_{\text{bftg}} = 495.0 \,\text{ft}$$

$$E_{grade} := 507 \cdot ft$$

$$i := 1..n$$

 $\Delta_w := 10 \cdot ft$ (maximum height of retained water above water in basin)

$$E_{\text{wheel}_{i}} = E_{\text{grade}} - \frac{\left[E_{\text{grade}} - \left(E_{\text{fig}} + \frac{\Delta_{\text{w}}}{2}\right)\right]}{n-1} \cdot (i-1)$$

$$E_{\text{wtoe}} := \max \begin{pmatrix} \left(E_{\text{wheel}_i} - \Delta_{\text{w}} \right) \\ E_{\text{ftg}} \end{pmatrix}$$

$$E_{\text{wtoe}} = \begin{pmatrix} E_{\text{wtoe}} - \Delta_{\text{w}} \\ E_{\text{ftg}} \end{pmatrix}$$

$$h := \min \begin{bmatrix} \begin{bmatrix} \frac{1.0}{1.5} \cdot 2 & (E_{grade} - E_{ftg}) \end{bmatrix} + E_{grade} \\ 527 \cdot ft - E_{ftg} \end{bmatrix} + E_{grade}$$

$$\beta := \operatorname{atan} \left(\frac{1.0}{1.5} \right) \qquad \beta = 33.7 \operatorname{deg}$$

$$\beta := \operatorname{atan}\left(\frac{1.0}{1.5}\right) \qquad \beta = 33.7 \operatorname{deg}$$

$$h_{\beta} := 527 \cdot ft - E_{grade}$$

$$h_{\beta} = 20.0 \, \mathrm{ft}$$

آ500.0)

500.0 500.0 ft 500.0

$$t_{w_top} = 1.5 \cdot \, \mathrm{ft}$$

$$t_{w_bot} := t_{w_top} + \frac{\left(E_{wall} - E_{ftg}\right)}{8}$$

$$t_{\text{w_bot}} = 2.75 \,\text{ft}$$

Date:

$$L_{toe} = 8.0 \, ft$$

$$L_{heel} = 20.0 \, ft$$

$$L_{ftg} := L_{toe} + L_{heel}$$

$$L_{ftg} = 28.0 \, ft$$

$$h_{wall} := E_{wall} - E_{ftg}$$

$$h_{\mathbf{wall}} = 10.0 \ \mathrm{ft}$$

$$h_{\hbox{\scriptsize key}}=8.0\,\hbox{ft}$$

$$L_{\text{key}} := 3 \cdot \text{ft}$$

$$L_{\text{key}} = 3.0 \, \text{ft}$$

$$x_{key} \coloneqq L_{toe} + t_{w_bot} - \frac{L_{key}}{2}$$

$$x_{key} = 9.250 \, ft$$

Constants:

$$\gamma_{\rm W} = 62.5\,{\rm pcf}^{\circ}$$

Soil parameters:

$$\gamma_{\text{fill_eff}} = 65.0 \,\text{pcf}$$

$$\gamma_{\text{sat}} = 127.5 \,\text{pcf}$$

$$\gamma_{\text{fill}} = 130.0\,\text{pcf}$$

$$k_{0_fill}=0.5$$

$$\phi_{\text{fill}} = 32.0 \text{ deg}$$

$$k_{0\beta} := k_{0_fill} \cdot (1 + \sin(\beta))$$

$$k_{0\beta} = 0.777$$

(USACE EM 1110-2-2502, Eq. 3-5)

Pre-Definitions:

$$kip \equiv 1000 \cdot lbf$$

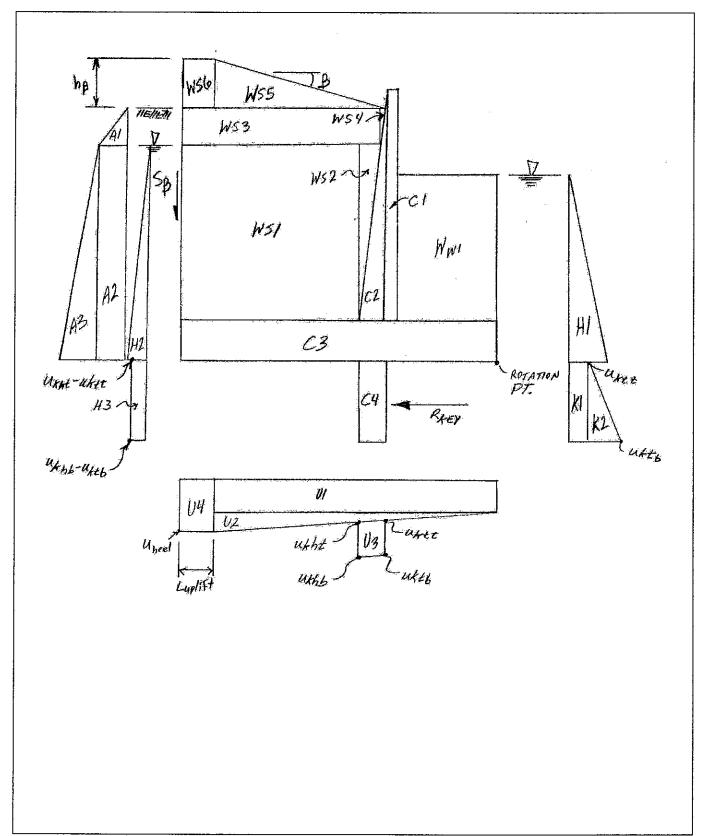
$$ksi \equiv 1000 psi$$

$$ok \equiv "Ok"$$

$$klf \equiv 1000 \cdot \frac{lbf}{ft}$$

$$psf \equiv \frac{lbf}{e^2}$$

$$plf \equiv \frac{lbf}{ft}$$


$$pcf = \frac{lbf}{ft^3}$$

$$ORIGIN = 1.0$$

(must equal to 1)

Date: Ву:

Date:

Analysis:

Gravity Loads:

$$h_{C_1} := h_{wall}$$

$$h_{C_1} = 10.0 \, ft$$

$$L_{C_1} := t_{w_top}$$

$$L_{C_i} = 1.5 \, \mathrm{ft}$$

$$x_{C_1} \coloneqq L_{toe} + \frac{L_{C_1}}{2}$$

$$x_{C_1} = 8.8 \, ft$$

$$W_{C_1} \coloneqq \gamma_c \cdot h_{C_1} \cdot L_{C_1}$$

$$W_{C_1} = 2.3 \, \text{klf}$$

$$h_{C_2} := h_{C_1}$$

$$h_{C_2} = 10.0 \, ft$$

$$L_{C_2} := t_{w_bot} - t_{w_top}$$

$$L_{C_2} = 1.3 \, \text{ft}$$

$$x_{C_2} := L_{toe} + L_{C_1} + \frac{L_{C_2}}{3}$$

$$x_{C_2} = 9.9 \, \text{ft}$$

$$W_{C_2} := \gamma_c \cdot \frac{h_{C_2} \cdot L_{C_2}}{2}$$

$$W_{C_2} = 0.9 \, \text{klf}$$

$$h_{\text{C_3}} \coloneqq t_{\text{base}}$$

$$h_{C_3} = 5.0 \, \text{ft}$$

$$L_{C_3} := L_{fig}$$

$$L_{C_3} = 28.0 \, \text{ft}$$

$$x_{C_3} := \frac{L_{C_3}}{2}$$

$$x_{C_3} = 14.0 \, \text{ft}$$

$$W_{C_3} := \gamma_c \cdot h_{C_3} \cdot L_{C_3}$$

$$W_{C_3} = 21.0 \, \text{klf}$$

$$h_{C_4} = h_{key}$$

$$h_{C_4} = 8.0 \, ft$$

$$L_{C_A} := L_{key}$$

$$L_{C_4} = 3.0 \, \text{ft}$$

$$x_{C_4} := x_{key}$$

$$x_{C_4} = 9.250 \, \text{ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
J	

$$W_{C_{\underline{a}}} := \gamma_c \cdot h_{C_{\underline{a}}} \cdot L_{C_{\underline{a}}}$$

$$W_{C_a} = 3.6 \text{klf}$$

Weight of water at toe.

$$h_{Wl_i} := E_{wtoe_i} - E_{ftg}$$

$$W_{l_i} := E_{\text{wtoe}_i} - E_{\text{ftg}}$$

$$L_{W1} := L_{toe}$$

$$V_1 := L_{toe}$$

$$x_{W1} := \frac{L_{toe}}{2}$$

$$x_{W1} = 4.0 \, ft$$

$$W_{W1_i} := \gamma_w \cdot h_{W1_i} \cdot L_{W1}$$

$$h_{WSl_i} := E_{wheel_i} - E_{fig}$$

$$L_{WS1} \coloneqq L_{heel} - t_{w_bot}$$

$$L_{S1} := L_{heel} - t_{w_{bot}}$$
 $L_{WS1} = 17.3 \text{ ft}$

$$x_{WS1} := L_{toe} + t_{w_bot} + \frac{L_{WS1}}{2}$$
 $x_{WS1} = 19.4 \text{ ft}$

$$W_{WS1_i} := (\gamma_{sat}) \cdot h_{WS1_i} \cdot L_{WS1}$$

$$h_{WS2_i} := h_{WS1_i}$$

$$L_{WS2_i} \coloneqq \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS2_i}$$

$$x_{\text{WS2}_{i}} := L_{\text{toe}} + t_{\text{w_bot}} - \frac{L_{\text{WS2}_{i}}}{3}$$

$$W_{C_4} = 3.6 \, \text{klf}$$

$$\mathbf{h_{W1}} = \begin{pmatrix} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ \end{pmatrix} \mathbf{ft}$$

 $L_{W1} = 8.0 \, \mathrm{ft}$

$$W_{W1} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \text{kif}$$

$$h_{WS1} = \begin{pmatrix} 7.00 \\ 6.50 \\ 6.00 \\ 5.50 \\ 5.00 \end{pmatrix} ft$$

$$W_{WS1} = \begin{pmatrix} 15.4 \\ 14.3 \\ 13.2 \\ 12.1 \\ 11.0 \end{pmatrix} \text{kIf}$$

$$L_{WS2} = \begin{pmatrix} 0.88 \\ 0.81 \\ 0.75 \\ 0.69 \\ 0.63 \end{pmatrix} ft$$

$$x_{WS2} = \begin{pmatrix} 10.5 \\ 10.5 \\ 10.5 \\ 10.5 \\ 10.5 \end{pmatrix} ft$$

Date:	
By:	
J	

	· · · · · · · · · · · · · · · · · · ·
$W_{WS2_{i}} := (\gamma_{sat}) \cdot \frac{h_{WS2_{i}} \cdot L_{WS2_{i}}}{2}$	$W_{WS2_i} =$
$h_{WS3_i} := E_{grade} - E_{wheel_i}$	$\begin{array}{c} 0.4 \\ 0.3 \end{array}$ klf $\begin{array}{c} \text{hwe}_{2} = \\ \end{array}$
$L_{WS3_i} := L_{WS1} + L_{WS2_i}$	$ \begin{array}{c cccc} \hline 0.3 & & & & \\ \hline 0.2 & & & & \\ \hline 0.2 & & & & \\ \hline 0.5 & & & & \\ \hline LWS3_i & = & \\ \end{array} $
$x_{WS3_i} := L_{ftg} - \frac{L_{WS3_i}}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$W_{WS3_i} := \gamma_{fill} \cdot h_{WS3_i} \cdot L_{WS3_i}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$h_{WS4_i} = h_{WS3_i}$	19.0 1.2 19.1 2.3
$L_{WS4_i} := \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS4_i}$	$L_{WS4_{i}} = \begin{bmatrix} 3.5 \\ 4.6 \end{bmatrix}$
$x_{WS4_{i}} := L_{ftg} - L_{WS3_{i}} - \frac{L_{WS4_{i}}}{3}$	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$
$W_{WS4_i} := \gamma_{fill} \cdot \frac{h_{WS4_i} L_{WS4_i}}{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$L_{WS5} := \min \begin{bmatrix} \begin{bmatrix} \frac{t_{w_bot} - t_{w_top}}{h_{wall}} & (E_{grade} - E_{grade}) \\ & \frac{h_{\beta}}{\tan(\beta)} \end{bmatrix}$	(10.0) $($
$h_{WS5} := L_{WS5} \cdot tan(\beta)$ $h_{WS5} =$	12.08 ft
$x_{WS5} := \frac{2}{3} L_{WS5} + L_{toe} + t_{w_top} + \frac{\left(E_{wall} - E_{wall}\right)}{E_{wall}}$	$\frac{-E_{\text{grade}}}{-E_{\text{fig}}} \cdot \left(t_{\text{w_bot}} - t_{\text{w_top}}\right) \qquad x_{\text{WS5}} = 21 \text{ 96 ft}$
$W_{WS5} := \gamma_{fill} \cdot \frac{h_{WS5} \cdot L_{WS5}}{2} \qquad W_{WS5} =$	= 14.2 klf
$L_{WS6} := \frac{E_{grade} - E_{ftg}}{h_{wall}} \cdot (t_{w_bot} - t_{w_top}) + I$	
$h_{WS6} := h_{WS5}$	$h_{WS6} = 12.1 ft$
$x_{WS6} := L_{ftg} - \frac{L_{WS6}}{2}$	$x_{WS6} = 28.0 \text{ ft}$

 $W_{WS6} := \gamma_{fill} \left(h_{WS6} \cdot L_{WS6} \right)$

 $W_{\rm WS6}=0.0\,\rm klf$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
Ū	

Uplift:

$$u_{toe_i} := \gamma_w \cdot \left(E_{wtoe_i} - E_{bftg}\right)$$

$$u_{heel_i} := \gamma_w \cdot (E_{wheel_i} - E_{bftg})$$

$$\delta_{seep_i} \coloneqq \frac{u_{heel_i} - u_{toe_i}}{L_{fig} - L_{uplift_i}}$$

$$u_{ktt_i} := u_{heel_i} + \left(x_{key} - \frac{L_{key}}{2}\right) - \delta_{seep_i}$$

$$u_{kht_i} := u_{ktt_i} + L_{key} \cdot \delta_{seep_i}$$

$$u_{ktb_i} := u_{ktt_i} + \gamma_w \cdot h_{key}$$

$$u_{khb_{\underline{i}}} \coloneqq u_{ktb_{\underline{i}}} + L_{key} \cdot \delta_{seep_{\underline{i}}}$$

$$x_{U1} := \frac{L_{ftg} - L_{uplift}}{2}$$

$$U1_i := u_{toe_i} \cdot L_{ftg}$$

$$x_{\text{U2}_{\hat{i}}} \coloneqq \frac{2}{3} \cdot \left(L_{\text{fig}} - L_{\text{uplift}_{\hat{i}}} \right)$$

$$U2_{i} := \left(u_{heel_{i}} - u_{toe_{i}}\right) \cdot \frac{L_{ftg}}{2}$$

$$x_{U3} := x_{key}$$

$$\text{U3}_i \coloneqq \left(\mathbf{u}_{ktb}_i - \mathbf{u}_{ktt}_i\right) \cdot \mathbf{L}_{key}$$

$$x_{\text{U4}_{\hat{i}}} \coloneqq L_{\text{fig}} - \frac{L_{\text{uplift}_{\hat{i}}}}{2}$$

$$L_{U4_{\hat{i}}}\coloneqq L_{uplift_{\hat{i}}}$$

$$U4_i := u_{heel_i} L_{U4_i}$$

0.313	ksf
0.010	

0.313	
0.313	1
0.040	٦

uktb_i ==

1.371

1.331

1.291

1.251

1.211

 $U2_i =$

6.1

5.7

5.3

4.8

4.4

klf

ksf

 $u_{khb_i} =$

1.418

1.375

1.331 1.288

1.245

 $x_{U3} = 9.3 \, ft$

$u_{toe_i} =$

$$u_{\text{heel}_{i}} = 0.750$$
 ks

ksf
$$\delta_{seep_i} =$$

$$\frac{psf}{ft}$$
 $u_{ktt_i} =$

15.625

0.918	ksf
0.875	
0.831	

$$x_{UI_{i}} = \frac{14.0}{14.0}$$
 ft

ksf

•
8.8
8.8
8.8

8.8

$$x_{U2_i} = 8.8$$
 8.8
 18.67

klf

$$U3 = \begin{bmatrix} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{bmatrix} \text{ klf}$$

Date:	
By:	

x_{U4}; =

28.0

28.0

28.0

28.0

28.0 ft

 $U4_i =$

0.0

0.0

0.0 0.0

0.0

klf

Lateral load due to water at toe:

$$\begin{aligned} h_{\text{H1}_{i}} &\coloneqq E_{\text{wtoe}_{i}} - E_{\text{bftg}} \\ y_{\text{H1}_{i}} &\coloneqq \frac{h_{\text{H1}_{i}}}{3} \end{aligned}$$

$$H1_{i} := \gamma_{w} \cdot \frac{\left(h_{H1_{i}}\right)^{2}}{2}$$

$$h_{H2_i} := E_{wheel_i} - E_{bftg}$$

$$y_{\text{H2}_i} \coloneqq \frac{h_{\text{H2}_i}}{3}$$

$$H2_{i} := \gamma_{W} \cdot \frac{\left(h_{H2_{i}}\right)^{2}}{2}$$

$$h_{H3} := h_{kev}$$

$$h_{H3} = 8.0 \, ft$$

 $y_{H3} = -4.0 \, ft$

$$y_{H3} := \frac{-h_{key}}{2}$$

$$H3_{\underline{i}} \coloneqq \left(u_{khb_{\underline{i}}} - u_{ktb_{\underline{i}}}\right) \cdot h_{H3}$$

$$h_{K1} := h_{key}$$

$$K1_i := u_{ktt_i} \cdot h_{K1}$$

$$h_{K2} := h_{key}$$

$$h_{K2} = 8.0 \, ft$$

 $h_{K1} = 8.0 \, ft$

$$K2_{i} := \left(u_{ktb_{i}} - u_{ktt_{i}}\right) \cdot \frac{h_{K2}}{2}$$

$$y_{K1} := \frac{-h_{key}}{2}$$

$$y_{K1} = -4.0 \, f$$

$$y_{K2} := \frac{-2}{3} h_{key}$$
 $y_{K2} = -5.33 \text{ ft}$

$$y_{K2} = -5.33 \text{ fi}$$

ун2 ==

4.0 ft

3.8

3.7

3.5

3.3

3.1

$$H3_i =$$

klf

0.27

$$K1_i =$$

$$7.0 \text{ klf}$$

$$K2_i =$$
 2.0 klf

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
<u>ن</u>	

Lateral load due to retained soil/water:

$$h_{Al_i} = E_{grade} - E_{wheel_i}$$

$$y_{A1_i} := E_{grade} - E_{bftg} - \frac{2}{3} \cdot h_{A1_i}$$

$$A1_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot \frac{\left(h_{A1_{i}}\right)^{2}}{2}$$

$$h_{A1} =$$

2.00

$$h_{A2} := E_{wheel} - E_{bftg}$$

$$y_{A2_i} := \frac{h_{A2_i}}{2}$$

$$A2_i := k_{0\beta} \cdot \gamma_{fill} h_{A1_i} \cdot h_{A2_i}$$

$$h_{A3} := h_{A2}$$

$$y_{A3_i} := \frac{h_{A3_i}}{3}$$

$$A3_{i} := k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$$

 $h_{A2} =$

$$y_{A2} = 6.00$$
 ft 5.75 5.50

5.25

5.00

0.2

$$\begin{array}{c|c} 0.0 & \text{kif} \\ \hline 0.6 & & h_{A3_i} = \\ \hline 1.1 & & 12.00 \\ \hline 1.6 & & 11.50 \\ \hline 2.0 & & 11.00 \\ \end{array}$$

10.50

10.00

3.33

2.8

2.5

$$h_2 := E_{grade} - E_{ftg}$$
 $h_2 = 7.0 \text{ ft}$
 $h_1 := h_2 + \tan(\beta) \cdot L_{WS5}$ $h_1 = 19.1 \text{ ft}$

$$P_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot \left(h_{A2_{i}} - t_{base}\right) + k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}} - t_{base}\right)^{2}}{2}$$

$$S_{\beta_{i}} := if \left[h_{1} > h_{2}, \left\lfloor \frac{P_{i} \cdot (h_{1} - h_{2})}{3 \cdot L_{WS5}} \right\rfloor, 0 \cdot klf \right]$$

$$x_{S\beta} := L_{fig}$$

$$x_{S\beta} = 28.0 \text{ ft}$$

Shear force due to sloped backfill: (EM 1110-2-2502, Fig 4-7)

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
Ÿ	

Sum forces:

$$\Sigma V_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S_{\beta_{i}} - \left(U1_{i} + U2_{i} + U3_{i} + U4_{i}\right)$$

$$\begin{split} \Sigma M_{grav_{i}} &:= \left(\sum_{i=1}^{4} \left. W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} + W_{WS4_{i}} \cdot x_{WS4_{i}} \right) ... \\ &+ W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U1_{i} \cdot x_{U1_{i}} + U2_{i} \cdot x_{U2_{i}} + U3_{i} \cdot x_{U3} + U4_{i} \cdot x_{U4_{i}} \right) \end{split}$$

$$R_{\text{key}_{i}} := -H1_{i} - K1_{i} - K2_{i} + H2_{i} + H3_{i} + A1_{i} + A2_{i} + A3_{i}$$

$$y_{Rkey} = \frac{-h_{key}}{2}$$
 $y_{Rkey} = -4.0 \, ft$

$$\Sigma H_i := -H1_i - K1_i - K2_i + H2_i + H3_i + A1_i + A2_i + A3_i - R_{key_i}$$

$$\begin{split} \Sigma M_{lat_{i}} &:= -H1_{i} \cdot y_{H1_{i}} - K1_{i} \cdot y_{K1} - K2_{i} \cdot y_{K2} + H2_{i} \cdot y_{H2_{i}} + H3_{i} \cdot y_{H3} \dots \\ &+ A1_{i} \cdot y_{A1_{i}} + A2_{i} \cdot y_{A2_{i}} + A3_{i} \cdot y_{A3_{i}} - R_{key_{i}} \cdot y_{Rkey} \end{split}$$

$$\Sigma M_i := \Sigma M_{grav_i} - \Sigma M_{lat_i}$$

$$x_{R_i} := \frac{\sum M_i}{\sum V_i}$$

$$L_{\text{brg}_{i}} = \max \left[\min \begin{pmatrix} 3 \cdot x_{R_{i}} \\ L_{\text{fig}} \end{pmatrix} \right], 0 \cdot \text{ft}$$

P. =		S _{βi} =	=	R _{key} i	=
1.2	klf	0.3	klf	-1.2	klf
1.4		0.3		-1.0	
1.5		0.3		-0.8	
1.6		0.4		-0.6	
1.6		0.4		-0.3	

=		ΣM_{gr}	av _i =	ΣΜ	at _i =	ΣM _i =	=	ΣH; =	=	$R_{ ext{key}_i}$	=	$x_{R_i} =$		$L_{brg_i} =$	
.7	klf	728.	kip	63	kip	665	kip	0.0	klf	-1.2	klf	15.94	ft	28.000	ft
.2		738		63		675		0.0		-1.0		16.00		28.000	
7		747		62		685		0.0		-0.8		16.05		28.000	
2		756		61		695		0.0		-0.6		16.10		28.000	
6		765		61		704		0.0		-0.3		16.14	}	28.000	

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

Bearing Capacity (per EM 1110-1-1905)

$$c := c_{fill}$$

$$c = 0.0 \, psf$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$\gamma_{\rm eff} := \gamma_{\rm fill} \, \, _{\rm eff}$$

$$\gamma_{eff} = 65.0 \, pcf$$

$$\gamma_{\text{H_eff}} = 65.0 \, \text{pcf}$$

$$B_{eff_{i}} := L_{fig} - 2 \cdot \left| \frac{L_{brg_{i}}}{2} - x_{R_{i}} \right|$$

$$B_{\text{eff}} = \begin{pmatrix} 24.1 \\ 24.0 \\ 23.9 \\ 23.8 \\ 23.7 \end{pmatrix} \text{ft}$$

Table 4-3

$$N_{\phi} := \tan \left(45 \cdot \deg + \frac{\phi}{2} \right)^2$$

$$N_{\dot{0}} = 3.255$$

$$N_q := if \left(\phi = 0, 1.0, N_{\phi} \cdot e^{\pi \cdot tan(\phi)} \right)$$

$$N_q = 23.2$$

$$N_c := if | \phi = 0,5.14, (N_q - 1) \cdot \cot(\phi) |$$

$$N_c = 35.5$$

$$N_{\gamma} := \text{ if } \left[\begin{array}{c} \varphi = 0 \,, 0.00 \,, \left(N_q - 1 \right) \cdot \tan \! \left(1.4 \cdot \varphi \right) \right] \end{array}$$

$$N_{\gamma} = 22.0$$

Inclined loading correction:

$$\theta_i := atan \left(\frac{R_{key_i} + K1_i + K2_i}{\Sigma V_i} \right)$$

$$\theta = \begin{pmatrix} 10.50 \\ 10.25 \\ 10.02 \\ 9.79 \end{pmatrix} \operatorname{deg}$$

9.57

$$\xi_{ci_i} := if \left[\phi = 0, \left(1 - \frac{\theta_i}{90 \cdot \text{deg}} \right), \left(1 - \frac{\theta_i}{90 \cdot \text{deg}} \right)^2 \right]$$

 $\xi_{\gamma i_i} := \text{if} \left| \phi = 0, 1.0, \text{if} \right| \theta_i \le \phi, \left(1 - \frac{\theta_i}{\phi}\right)^2, 0.0 \right|$

$$\xi_{ci} = \begin{pmatrix} 0.780 \\ 0.785 \\ 0.790 \\ 0.794 \\ 0.799 \end{pmatrix}$$

$$\begin{bmatrix} 0.794 \\ 0.799 \end{bmatrix} \xi_{\gamma i} = \begin{bmatrix} 0.451 \\ 0.462 \\ 0.472 \\ 0.482 \\ 0.491 \end{bmatrix} \xi_{0}$$

$$\xi_{qi_i} := if \left[\phi = 0, \left(1 - \frac{\theta_i}{90 \cdot \deg} \right), \left(1 - \frac{\theta_i}{90 \cdot \deg} \right)^2 \right]$$

$$B = \begin{vmatrix} 28.0 \\ 28.0 \\ 28.0 \end{vmatrix}$$
 ft

28.0

$$B_i := L_{brg_i}$$

$$W := 100 \cdot ft$$

0.780

0.785

0.790

0.794

0.799

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
. d	

Foundation depth correction: (at toe)

$$D := t_{base}$$

$$D = 5.0 \, \mathrm{ft}$$

$$\sigma_{D_{eff}} := \gamma_{eff} \cdot D$$

$$\sigma_{D \text{ eff}} = 325.0 \, \text{psf}$$

$$\xi_{\text{cd}_{i}} := 1 + 0.2 \cdot \left(N_{\phi}\right)^{\frac{1}{2}} \cdot \frac{D}{B_{i}}$$

$$\xi_{cd} = \begin{pmatrix} 1.064 \\ 1.064 \\ 1.064 \\ 1.064 \\ 1.064 \end{pmatrix}$$

$$\xi_{\gamma d_{10}} := 1 + 0.1 \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^{2} \right)^{\frac{1}{2}} \frac{D}{B_{i}}$$

$$\xi_{\gamma d_i} \coloneqq if \left[\begin{array}{c} \varphi \leq 10 \cdot \deg, \xi_{\gamma d_0} + \frac{\varphi}{10 \cdot \deg} \left(\xi_{\gamma d_10_i} - \xi_{\gamma d_0} \right), 1 + 0 \cdot 1 \cdot \left(N_{\varphi} \right)^{\frac{1}{2}} \cdot \frac{D}{B_i} \end{array} \right]$$

$$\xi_{qd} = \begin{pmatrix} 1.021 \\ 1.021 \\ 1.032 \\ 1.032 \\ 1.032 \\ 1.032 \end{pmatrix}$$

$$\xi_{\gamma d} = \begin{pmatrix} 1.032 \\ 1.032 \\ 1.032 \\ 1.032 \\ 1.032 \end{pmatrix}$$

1.021

1.021 1.021

$$\xi_{qd_i} = \xi_{\gamma d_i}$$

$$q_{u_toe_{j}} := c - N_c \cdot \xi_{cd} - \xi_{ci} + \frac{1}{2} - B_{eff_{j}} \cdot \gamma_{H_eff} \cdot N_{\gamma} - \xi_{\gamma d} - \xi_{\gamma i} + \sigma_{D_eff} - N_{q} - \xi_{qd} - \xi_{qi}$$

$$\begin{array}{c}
1 \\
1.1 \\
q_{u_toe} = \begin{pmatrix} 72.708 \\
72.512 \\
72.332 \\
72.168 \\
72.019 \end{pmatrix} \text{ksf}
\end{array}$$

1.032

Foundation depth correction: (at heel)

$$D := E_{grade} - E_{ftg} + t_{base} + h_{\beta}$$

$$D = 32.0 \, ft$$

$$\sigma_{\text{D_eff_heel}} := \gamma_{\text{eff}} \cdot D$$

$$\frac{1}{2} \quad D$$

$$\sigma_{\text{D_eff}} = 0.325 \, \text{ksf}$$

$$\xi_{\gamma d_{1} 10_{i}} := 1 + 0.1 \cdot \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^{2} \right)^{\frac{1}{2}} \frac{D}{B_{i}}$$

$$\xi_{\gamma d_{i}} := if \left[\phi \leq 10 \cdot \deg, \xi_{\gamma d_{0}} + \frac{\phi}{10 \cdot \deg} \left(\xi_{\gamma d_{1} 10_{i}} - \xi_{\gamma d_{0}} \right), 1 + 0.1 \cdot \left(N_{\phi} \right)^{\frac{1}{2}} \cdot \frac{D}{B_{i}} \right]$$

$$\xi_{\text{cd}} = \begin{bmatrix} 1.412 \\ 1.412 \\ 1.412 \end{bmatrix}$$
 ξ_{γ}

$$\xi_{\text{rd}} = \begin{bmatrix} 1 & 136 \\ 1 & 136 \\ 1 & 136 \\ 1 & 136 \\ 1 & 136 \\ 1 & 206 \\ 1 & 206 \\ 1 & 206 \\ 1 & 206 \\ 1 & 206 \end{bmatrix}$$

$$\xi_{\text{rd}} = \begin{bmatrix} 1.206 \\ 1.206 \\ 1.206 \\ 1.206 \\ 1.206 \\ 1.206 \end{bmatrix}$$

1.136

$$\xi_{qd_i} = \xi_{\gamma d_i}$$

$$q_{u_heel_{\hat{i}}} \coloneqq c \cdot N_c \cdot \xi_{cd} \cdot \xi_{ci} + \frac{1}{2} \cdot B_{eff_{\hat{i}}} \quad \gamma_{H_eff} \cdot N_{\gamma} \cdot \xi_{\gamma d} \cdot \xi_{\gamma i} + \sigma_{D_eff} \cdot N_{q} \cdot \xi_{qd} \cdot \xi_{qi}$$

1.
$$q_{u_heel} = \begin{pmatrix} 84.962 \\ 84.732 \\ 84.522 \\ 84.331 \\ 84.156 \end{pmatrix} \text{ ksf}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
J	

 $\begin{aligned} & \text{check_uplift}_i \coloneqq L_{ftg} - L_{brg_i} - L_{uplift_i} & \text{check_uplift}_i = \\ & \text{ok} \coloneqq \text{if}(\max(\left|\text{check_uplift}\right|) < 0.001 \cdot \text{ft}, \text{ok}, \text{"Uplift assumptions do not match bearing area."}) & \begin{bmatrix} 0.0000 \\ 0.0000 \\ 0.0000 \\ \end{bmatrix} \\ & \text{ok} = \text{"Ok"} \\ & e_{brg_i} \coloneqq \frac{L_{brg_i}}{2} - x_{R_i} \end{aligned}$

 $\sigma_{\text{brg_toe}_{i}} := \frac{\sum V_{i}}{L_{\text{brg}_{i}}} + \frac{\sum V_{i} \cdot \text{corg}_{i}}{\frac{\left(L_{\text{brg}_{i}}\right)^{2}}{6}}$ $\sum V_{i} \cdot e_{\text{brg}_{i}}$

 $\sigma_{brg_heel_i} \coloneqq \frac{\Sigma V_i}{L_{brg_i}} - \frac{\Sigma V_i \cdot e_{brg_i}}{\frac{\left(L_{brg_i}\right)^2}{6}}$

 $FS_{brg_{i}} = min \left(\frac{q_{u_toe_{i}}}{\sigma_{brg_toe_{i}}}, if \left(\sigma_{brg_heel_{i}} \neq 0 \text{ psf}, \frac{q_{u_heel_{i}}}{\sigma_{brg_heel_{i}}}, 100 \right) \right)$

 $\%_{\text{brg}_{i}} := \frac{L_{\text{brg}_{i}}}{L_{\text{flg}}}$ $\%_{\text{brg}_{i}} = \begin{pmatrix} 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \\ 100.0 \end{pmatrix} \%$

ok := if $(\%_{\text{brg}_1} \ge 75 \%, \text{ok}, "OT instability: LC#1"}$

ok := if $\left(\%_{\text{brg}_n} \ge 100\%, \text{ok}, \text{"OT instability LC#n"}\right)$

 $t_{w_bot} = 2.8 \, ft$

 $\frac{\text{ftg}}{} = 7000\,\text{ft}$ $L_{ftg} - L_{brg_i} =$ $e_{\text{brg}_i} =$ $\sigma_{brg_toe} =$ σ_{brg_heel} = -1.94 ft 0.870 ksf 2.109 40.28 0.000 ft -2.00 0.862 2.153 0.000 39.36 -2.05 0.855 0.000 2.194 38.52 -2.10 0.849 2.234 0.000 -2.14 0.844 2.273 0.000

 $ok := \left. if \left\lfloor max \right\lfloor \left| L_{brg} - \left(L_{ftg} - L_{uplift} \right) \right| \, \right\rfloor < 0.001 \cdot ft, ok, "Uplift area does not match"$

ok := $if(FS_{brg_1} < 2,"Bearing problem LC#1", ok)$

 $ok := if \Big(FS_{brg_n} < 3 \text{,"Bearing problem LC#n", ok} \Big)$

 $L_{\text{ftg}} = 28.0 \,\text{ft}$

ok = "Ok"

Date:	
By:	
Ū	

Base Pressures:

$$e_{ftg_i} := \frac{L_{ftg}}{2} - x_{R_i}$$

(eccentricity with respect to the footing centroid)

$$\begin{array}{c|cccc} \Sigma H_i + R_{key_i} = \Sigma V_i = \\ \hline -1.2 & klf & 41.7 \\ \hline -1.0 & 42.2 \\ \hline -0.8 & 42.7 \\ \hline -0.6 & 43.2 \\ \hline -0.3 & 43.6 \\ \hline \end{array}$$

$$\begin{array}{lll} e_{ftg_i} = & x_{R_i} = \\ \hline -1.94 & ft & 15.94 & ft \\ -2.00 & 16.00 & \\ -2.05 & 16.05 & \\ -2.10 & 16.10 & \\ -2.14 & 16.14 & \\ \end{array}$$

$$L_{brg_1} = 28.00 \, ft$$

$$\frac{L_{brg}}{L_{ftg}} = \begin{pmatrix} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0 \end{pmatrix} \%$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

Sliding Analysis:

Function Definitions:

$$c_1(\phi_d) := 2 \cdot \tan(\phi_d)$$

$$c_2(\phi_d, \beta) := 1 - \tan(\phi_d) \tan(\beta) - \left(\frac{\tan(\beta)}{\tan(\phi_d)}\right)$$

$$\begin{split} \alpha_{driving} & \left(\phi_d, \beta \right) := -atan \left(\frac{c_1 \left(\phi_d \right) + \sqrt{c_1 \left(\phi_d \right)^2 + 4 \cdot c_2 \left(\phi_d, \beta \right)}}{2} \right) \\ L_{\beta} & := max \left(\left(\frac{h_{\beta}}{tan(\beta)} - L_{WS5} - L_{WS6} \right) \right) \\ 0 \cdot ft \end{split} \right) \end{split}$$

$$L_{\beta}=11.9\,\mathrm{ft}$$

Sliding Analysis #1:

$$\beta_{\mathbf{w}} := \beta$$

$$\phi_i := \phi_{fill}$$

$$\phi_{d} := \operatorname{atan} \left(\frac{\tan(\phi_i)}{-1} \right)$$

$$\phi_{\mathbf{d}_{i}} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi_{i})}{\operatorname{FS}_{\mathbf{1}_{i}}}\right)$$

$$\beta_{W} = 33.7 \text{ deg}$$

$$\phi = \begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} \text{ deg}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 18.6 \\ 18.3 \\ 18.0 \\ 17.8 \\ 17.5 \end{pmatrix} \text{deg}$$

(back solve for minimum φ value for stable slope β, EM 1110-2-2502, pg. 3-31)

$$\phi_{i} := if \left[\left(c_{1} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left(\phi_{d_{i}}, \beta_{w} \right) < 0 \right), atan \left(tan \left(\beta_{w} \right) \text{ FS}_{1_{i}} \right), \phi_{i} \right] \qquad \phi = \begin{bmatrix} 5 \\ 5 \\ 2 \end{bmatrix}$$

$$\phi = \begin{vmatrix} 51.6 \\ 52.0 \\ 52.4 \end{vmatrix}$$
 deg (s)

(substitue minimum ¢ if slope is unstable)

33 7

33.7

33.7 deg

$$\phi_{d_1b_i} := \operatorname{atan} \left(\frac{\operatorname{tan}(\phi_i)}{\operatorname{FS}_{1_i}} \right)$$

$$\alpha_{1b} := \alpha_{\text{driving}}(\phi_{d_1b_1}, \beta_{w_1})$$

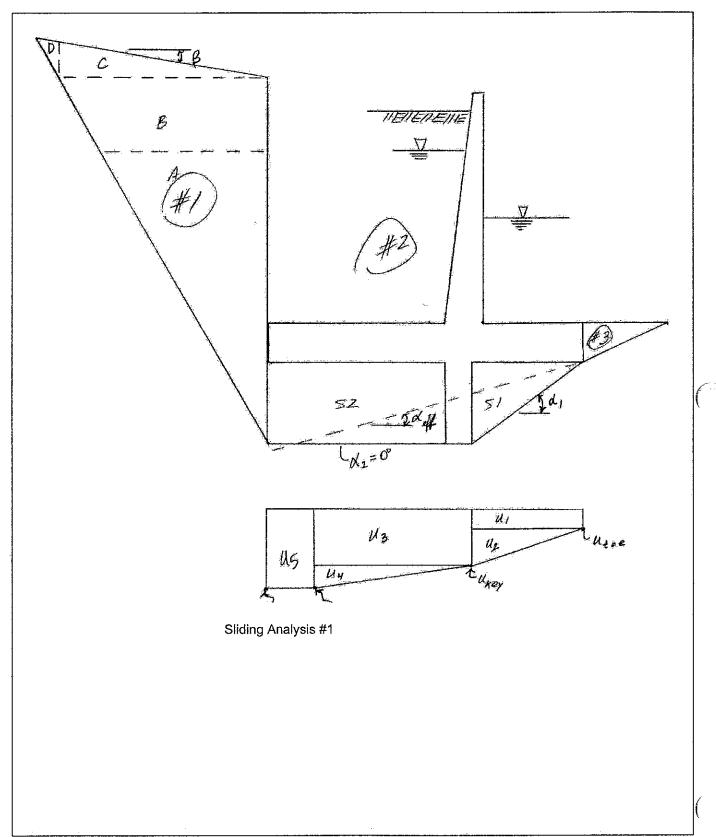
$$\alpha_{1b_i} := \alpha_{driving} (\phi_{d_1b_i}, \beta_w)$$

$$h_{1b} = (E_{grade} + L_{WS5} tan(\beta_{w})) - (E_{bftg} - h_{key}) \quad h_{1b} = 32.1 \text{ ft}$$

$$h_{1b} = \frac{h_{1b}}{h_{1b}} \alpha_{1b} = 32.1 \text{ ft}$$

$$\frac{h_{1b}}{\cos(-\alpha_{1b_{i}}) (tan(-\alpha_{1b_{i}}) - tan(\beta_{w}) - tan(\beta_{w}) - tan(\beta_{w}) } \alpha_{1b} = \frac{33.7}{-33.7}$$

$$cos(-\alpha_{1b_{i}}) = \frac{1}{33.7} (a + b) = \frac{1}{33.$$


$$\begin{pmatrix} -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \end{pmatrix} deg \begin{pmatrix} 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \end{pmatrix} ft$$

$$h_{1a_{i}} := if \left[L_{\beta} < L_{\max_{i}}, h_{1b} + L_{\beta} \left(\tan(\beta) - \tan(-\alpha_{1b_{i}}) \right), 0 \cdot ft \right]$$

$$1000.0$$

Date: By:

Date: ______

Driving Wedge (#1a):		(32.1)
$\beta_{\mathbf{w}} := 0 \cdot \deg$	$\beta_{\rm W} = 0.0 \deg$	32.1
$\phi := \phi_{fill}$	$\phi = 32.0 \deg$	$h_{1a} = \begin{vmatrix} 32.1 \\ 32.1 \end{vmatrix}$ ft
$c := 0 \cdot ksf$	(18.6) 18.3	(32.1)
$\phi_{\mathbf{d}_{i}} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi)}{\operatorname{FS}_{1_{i}}}\right) \qquad \left(\begin{array}{c} -54 \\ -54 \end{array}\right)$		
$\alpha_{i} := \alpha_{\text{driving}}(\phi_{d_{i}}, \beta_{w}) \qquad \alpha = \begin{vmatrix} -54 \\ -53 \end{vmatrix}$	$\begin{array}{c cccc} .0 & \text{deg} & (17.5) & (32.1) \\ 0 & & 32.1 \end{array}$	
$h_{\overline{i}} := h_{1a_{\overline{i}}} \qquad \qquad \begin{pmatrix} -53 \\ -53 \end{pmatrix}$	$h = \begin{vmatrix} 32.1 & \text{ft} \\ 22.1 & \text{ft} \end{vmatrix}$	39.5
$L_i \coloneqq \frac{h_i}{\cos(-\alpha_i) \cdot \left(\tan(-\alpha_i) - \tan(\beta_w) \right)}$	$ \begin{pmatrix} 32.1 \\ 32.1 \end{pmatrix} $ $ L = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} $	39.6 39.7 ft (12.1)
$h_{\text{sat}_{i}} := \max \left[\left[E_{\text{wheel}_{i}} - \left(E_{\text{ftg}} - t_{\text{base}} \right) \right] \right]$	$\beta_{w} = 0.0 \deg$ $\phi = 32.0 \deg$ $\begin{pmatrix} 18.6 \\ 18.3 \\ 18.0 \\ 17.8 \\ 17.5 \end{pmatrix} \deg$ $h = \begin{pmatrix} 32.1 \\ 32.1 \\ 32.1 \\ 32.1 \end{pmatrix} \text{ ft}$ $32.1 \\ 32.1 \\ 32.1 \end{pmatrix} L = \begin{pmatrix} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 23.5 \end{pmatrix}$ $h = \begin{pmatrix} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 23.5 \end{pmatrix}$ L_{Sa}	$h_{\text{sat}} = \begin{vmatrix} 11.6 \\ 11.1 \\ 10.6 \end{vmatrix}$ ft
$\mathrm{L}_{\mathrm{h}_{\mathrm{i}}} \coloneqq rac{\mathrm{h}_{\mathrm{i}}}{\mathrm{tan}\left(-lpha_{\mathrm{i}} ight)}$	$L_{h} = \begin{vmatrix} 23.2 \\ 23.3 \\ 23.4 \end{vmatrix}$ ft	(8.7)
$L_{\text{sat}_{i}} := \frac{h_{\text{sat}_{i}}}{\tan(-\alpha_{i})}$	(23.5) L _{sa}	$t = \begin{bmatrix} 8.4 \\ 8.0 \\ 7.7 \end{bmatrix}$ ft
$h_{left} := 0 \cdot ft$		(7.4)
$h_{right_i} := h_{1a_i}$		
$W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{right_{i}}}{2}\right) + \left(\gamma_{fill} \cdot \frac{h_{right_{i}}}{2}\right) + \left(\gamma_{fill} \cdot \frac{h_{right_{i}$		
V := 0 klf	48.0 k 48.2	df
$H_L := 0 \cdot klf$	48.5 48.7	
$H_R = 0$ klf	49.0	$\begin{pmatrix} 5.6 \\ 5.2 \end{pmatrix}$
$\boldsymbol{U}_{i} \coloneqq \boldsymbol{\gamma}_{w} \cdot \left(\frac{\boldsymbol{h}_{sat_{i}}}{2}\right) \cdot \sqrt{\left(\boldsymbol{h}_{sat_{i}}\right)^{2} + \left(\boldsymbol{L}_{sat_{i}}\right)}$	2	$U = \begin{vmatrix} 5.2 \\ 4.7 \\ 4.3 \end{vmatrix} \text{klf}$
		$\binom{3.9}{3.9}$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
. 4	

$$\Delta P_{1a_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) \cdot cos\left(\alpha_{i}\right) + sin\left(\alpha_{i}\right)\right) - U_{i} \cdot tan\left(\varphi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) \cdot sin\left(\alpha_{i}\right) - cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{1}} \cdot L_{i}\right]}{\left(cos\left(\alpha_{i}\right) - tan\left(\varphi_{d_{i}}\right) \cdot sin\left(\alpha_{i}\right)\right)}$$

 $\beta_{\rm w} = 33.7 \deg$


Driving Wedge (#1b):

$$\beta_{w} := \beta$$

$$\alpha := \alpha_{1b}$$

$$\phi_{d} := \phi_{d_1b}$$

$$L_h = 11.9 \,\mathrm{ft}$$

4.7 ft

$$h_{satl_{i}} := \max \begin{bmatrix} E_{wheel_{i}} - (E_{ftg} - t_{base} - h_{key}) - \frac{L_{\beta}}{\cos(\alpha_{i})} \end{bmatrix}$$

 $h_{\text{satr}_i} = \max \begin{bmatrix} E_{\text{wheel}_i} - (E_{\text{ftg}} - t_{\text{base}} - h_{\text{key}}) \\ 0 \cdot \text{ft} \end{bmatrix}$

$$\mathbf{L}_{sat_{i}} := \min \begin{bmatrix} \mathbf{E}_{wheel_{i}} - \left(\mathbf{E}_{ftg} - \mathbf{t}_{base} - \mathbf{h}_{key}\right) - \frac{\mathbf{L}_{\beta}}{\cos(\alpha_{i})} \end{bmatrix} \\ \mathbf{L}_{sat_{i}} := \min \begin{bmatrix} \mathbf{L}_{\beta} \\ \mathbf{h}_{sat_{i}} \\ \hline \tan \left[\left(-\alpha\right)_{\underline{i}}\right] \end{bmatrix} \end{bmatrix} \qquad \mathbf{L}_{sat} = \begin{bmatrix} 11.9 \\ 11.9 \\ 11.9 \\ 11.9 \end{bmatrix}$$

$$h_{left_i} := h_{1a_i}$$
 $h_{right} := h_{1b}$

$$h_{left} = \begin{pmatrix} 32.1 \\ 32.1 \\ 32.1 \\ 32.1 \\ 32.1 \end{pmatrix} ft$$

Samuels Ave. Dam Training wall at right

Date: By:	
ر اند	

klf

klf

18.0 deg

14.927

14.347

13.767 13.187

12.606

49.2

$$\begin{split} W_i &:= \gamma_{fill} \cdot \left(L_h \cdot \frac{h_{left_i} + h_{right}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot L_{sat_i} \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right) & W_i = \\ V &:= 0 \quad klf & 49.1 \\ H_L &:= 0 \quad klf & 49.2 \\ 49.2 & 49.2 \end{split}$$

$$H_R := 0 \cdot klf$$

$$\begin{split} U_i &:= \gamma_W \ \left(\frac{h_{satr_i} + h_{satl_i}}{2} \right) \cdot \sqrt{\left(h_{satr_i} - h_{satl_i}\right)^2 + \left(L_h\right)^2} \\ \Delta P_{1b_i} &:= \frac{\left[\left(W_i + V\right) \cdot \left(tan\left(\phi_{d_i}\right) \cdot cos(\alpha_i) + sin(\alpha_i)\right) - U_i \cdot tan\left(\phi_{d_i}\right) + \left(H_L - H_R\right) \cdot \left(tan\left(\phi_{d_i}\right) \cdot sin(\alpha_i) - cos(\alpha_i)\right) + \frac{c}{FS_{1_i}} \cdot L_i \right]}{\left(cos(\alpha_i) - tan\left(\phi_{d_i}\right) \cdot sin(\alpha_i)\right)} \end{split}$$

Structure Wedge (#2):

$$\beta_W := 0 \text{ deg}$$

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$c := 0 \text{ ksf}$$

$$\phi_{d_i} := \operatorname{atan}\left(\frac{\tan(\phi)}{\operatorname{FS}_{l_i}}\right)$$

$$\alpha_1 := \operatorname{atan} \left(\frac{h_{\text{key}}}{x_{\text{key}} - \frac{L_{\text{key}}}{2}} \right)$$

$$\phi = 32.0 \deg$$

$$\alpha_1 := \text{atan} \left(\frac{h_{key}}{x_{key} - \frac{L_{key}}{2}} \right) \qquad \alpha_1 = 45.9 \, \text{deg} \quad \text{(angle of shear plane between toe and key)}$$

$$\alpha_2 := 0 \cdot \deg$$

(angle of shear plane between key and heel)

$$\alpha := \alpha_1 \cdot \left(\frac{x_{key}}{L_{ftg}}\right) + \alpha_2 \cdot \left(\frac{L_{ftg} - x_{key}}{L_{ftg}}\right) \quad \alpha = 15.2 \deg \text{ (average angle of shear plane for structural wedge)}$$

$$L := \frac{L_{ftg}}{\cos(\alpha)}$$

$$L=29.0\,\mathrm{ft}$$

$$\mathbf{h}_{S1} := \mathbf{h}_{key}$$

$$h_{S1} = 8.0 \, ft$$

$$L_{S1} := x_{key} - \frac{L_{key}}{2}$$

$$L_{S1} = 7.8 \, \text{ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$$x_{S1} := \frac{2}{3} \cdot L_{S1}$$

$$x_{S1} = 5.2 \, ft$$

$$S1 := \gamma_{sat} \cdot \frac{h_{S1} \cdot L_{S1}}{2}$$

$$S1 = 4.0 \, \text{klf}$$

$$h_{S2} := h_{key}$$

$$h_{S2} = 8.0 \, ft$$

$$L_{S2} := L_{ftg} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 17.3 \, ft$$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 19.4 \, \text{ft}$$

$$S2 \coloneqq \gamma_{sat} \cdot h_{S2} \cdot L_{S2}$$

$$S2 = 17.6 \, \text{klf}$$

$$W_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_w \cdot \left(E_{wtoe_i} - E_{bftg} \right)$$

$$u_{heel_i} := \gamma_w \cdot |E_{wheel_i} - (E_{bftg} - h_{key})|$$

$$\delta_{u_i} \coloneqq \frac{\gamma_w \ \left(E_{wheel_i} - E_{wtoe_i} \right)}{L_{ftg} - L_{t1_i}}$$

$$u_{\text{key}_i} := u_{\text{toe}_i} + \delta_{u_i} \cdot \left(x_{\text{key}} - \frac{L_{\text{key}}}{2} \right) + \gamma_w \cdot h_{\text{key}}$$

$$ok := if \left[u_{\text{key}_1} + \delta_{u_1} \cdot \left(L_{\text{fig}} - x_{\text{key}} + \frac{L_{\text{key}}}{2} - L_{\text{tl}_1} \right) = u_{\text{heel}_1} \right], ok, "Uplift pressures do not close."$$

$$ok = "Ok"$$

$$u_{l_i} := u_{toe_i} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u1} := \frac{x_{key} - \frac{L_{key}}{2}}{2}$$

$$x_{u1} = 3.9 \, ft$$

$$u_{2_{i}} := \left(u_{\text{key}_{i}} - u_{\text{toe}_{i}}\right) \cdot \frac{\left(x_{\text{key}} - \frac{L_{\text{key}}}{2}\right)}{2}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

$$x_{u2} := \frac{2}{3} \cdot \left(x_{\text{key}} - \frac{L_{\text{key}}}{2} \right)$$

$$x_{u2} = 5.2 \, ft$$

$$\mathbf{u_{3}}_{i} \coloneqq \mathbf{u_{key}}_{i} \cdot \left(\mathbf{L_{ftg}} - \mathbf{L_{tl}}_{i} - \mathbf{x_{key}} + \frac{\mathbf{L_{key}}}{2} \right)$$

$$x_{u3_i} := x_{key} - \frac{L_{key}}{2} + \frac{1}{2} \cdot \left[L_{ftg} - L_{t1_i} - \left(x_{key} - \frac{L_{key}}{2} \right) \right]$$

$$\mathbf{u_{4}}_{i} \coloneqq \left(\mathbf{u_{heel}}_{i} - \mathbf{u_{key}}_{i}\right) \cdot \frac{\left(L_{ftg} - L_{tl_{i}} - \mathbf{x_{key}} + \frac{L_{key}}{2}\right)}{2}$$

$$\mathbf{x_{u4}}_i \coloneqq \mathbf{x_{key}} - \frac{\mathbf{L_{key}}}{2} + \frac{2}{3} \cdot \left[\mathbf{L_{ftg}} - \mathbf{L_{t1}}_i - \left(\mathbf{x_{key}} - \frac{\mathbf{L_{key}}}{2} \right) \right]$$

$$u_{5_i} \coloneqq u_{heel_i} \cdot L_{tl_i}$$

$$x_{\mathbf{u5}_{i}} := L_{ftg} - \frac{L_{t1_{i}}}{2}$$

$$U_i := u_{1_i} + u_{2_i} + u_{3_i} + u_{4_i} + u_{5_i}$$

$$x_{U_{i}} := \frac{u_{1_{i}} \cdot x_{u1} + u_{2_{i}} \cdot x_{u2} + u_{3_{i}} \cdot x_{u3_{i}} + u_{4_{i}} \cdot x_{u4_{i}} + u_{5_{i}} \cdot x_{u5_{i}}}{U_{i}}$$

$$\begin{split} \Sigma M_{grav_{i}} &:= \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} \right) ... \\ &+ W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U_{i} \cdot x_{U_{i}} \right) \end{split}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$h_{A2_i} := E_{wheel_i} - E_{bftg} + h_{key}$	$h_{A2_i} =$		
$y_{A2_i} := \frac{h_{A2_i}}{2} - h_{key}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$A2_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot h_{A2_{i}}$	19.00 2.00 ft 18.50 1.75	1	
$\mathbf{h_{A3}}_{i} \coloneqq \mathbf{h_{A2}}_{i}$	18.00 1.50 1.25	$\begin{array}{ c c }\hline 0.0 & klf & h_{A3_i} = \\\hline 1.0 & & & \\\hline \end{array}$	
$y_{A3_i} := \frac{h_{A3_i}}{3} - h_{key}$	1.00	1.9 2.8 20.00 ft 19.50	у _{А3} =
$A3_{i} := k_{0\beta} \cdot \gamma_{\text{fill_eff}} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$		3.6 19.00 18.50 18.00	$\begin{array}{c c} -1.33 & \text{ft} \\ -1.50 & & \text{A3}_{i} = \\ \end{array}$
$H3_{i} := 0 \cdot klf$		[18.00]	-1.87 -1.83 10.1 klf
$h_{H2_i} := E_{wheel_i} - E_{bftg} + h_{key}$			-2.00 9.6 9.1
$y_{\text{H2}_{i}} \coloneqq \frac{h_{\text{H2}_{i}}}{3} - h_{\text{key}}$			8.6 8.2
1 3			0.2

$$H2_{i} := \gamma_{w} \cdot \frac{\left(h_{H2_{i}}\right)^{2}}{2}$$

$$\begin{split} \Sigma M_{lat_{i}} &:= -H1_{i} \cdot \left(y_{H1_{i}}\right) - K1_{i} \cdot \left(y_{K1}\right) - K2_{i} \cdot \left(y_{K2}\right) + H2_{i} \cdot \left(y_{H2_{i}}\right) + H3_{i} \cdot \left(y_{H3}\right) \dots \\ &+ A1_{i} \cdot \left(y_{A1_{i}}\right) + A2_{i} \cdot \left(y_{A2_{i}}\right) + A3_{i} \cdot \left(y_{A3_{i}}\right) - R_{key_{i}} \cdot \left(y_{Rkey}\right) \end{split}$$

$$\mathbf{x}_{R_i} \coloneqq \frac{\mathbf{\Sigma} \mathbf{M}_{grav_i} - \mathbf{\Sigma} \mathbf{M}_{lat_i}}{\mathbf{W}_i - \mathbf{U}_i} \qquad \qquad \mathbf{L}_{brg_i} \coloneqq \min \left(3 \cdot \mathbf{x}_{R_i}, \mathbf{L}_{flg} \right)$$

$$ok_{u_i} := if \left[\left| L_{brg_i} - \left(L_{ftg} - L_{t1_i} \right) \right| > 0.001 \cdot ft, \text{"Uplift assumptions wrong in sliding analysis.", "Matched."} \right]$$

Date:	
By:	
<u> </u>	

	W _i =		$u_{toe_i} =$		u _{heel} =		$\delta_{u_{i}} =$	^	u _{key} =		u ₁ =		u ₂ =		u3 _i =	
į	79.6	klf	0.313	ksf	1.250	ksf	15.6	psf	0.934	ksf	2.422	klf	2.407	klf	18.905	klf
	79.7		0.313		1.219		14.5	ft	0.925		2.422		2.373		18.730	
	79.7		0.313		1.188		13.4		0.916		2.422		2.340		18.555	
	79.8		0.313		1.156		12.3		0.908		2.422		2.306		18.380	
	79.8		0.313		1.125		11.2		0.899		2.422		2.273		18.205	

u ₄ =		u ₅ =		$x_{u3_i} =$	7	x _{u4} =	:	x _{u5} =	h _{H2} =	=	УН2 _і з	= H2 _i =	:	
3.204	klf	0.0	klf	17.9	ft [21.3	ft	28.0 ft	20.0	ft	-1.3	ft 12.5	1	klf
2.975		0.0		17.9		21.3		28.0	19.5		-1.5	11.9	4	
2.746		0.0		17.9		21.3		28.0	19.0		-1.7	11.3		
2.517		0.0		17.9	Ī	21.3		28.0	18.5		-1.8	10.7		
2.288		0.0		17.9		21.3		28.0	18.0		-2.0	10.1]	

U) _i =		$x_{U_i} =$		$\Sigma M_{ m gr}$	av _i =	ΣΜ	at _i =	$x_{R_i} =$		$^{ m L}_{ m brg}_{ m i}$	==
[26.9	klf	15.9	ft	912	kip	2	kip	17.3	ft	28.0	ft
	26.5		15.8		922		2		17.3		28.0	
	26.1		15.8		931		1		17.3	:	28.0	
	25.6		15.7	:	940		0		17.4		28.0	
	25.2		15.7		949		-0		17.4		28.0	

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_{i}} := \gamma_{w} \cdot \frac{\left(E_{wtoe_{i}} - E_{ftg}\right)^{2}}{2}$$

$$\Delta P_{2_{i}} \coloneqq \frac{\left[\left(W_{i} + V\right) \cdot \left(tan\left(\phi_{d_{i}}\right) \cdot cos(\alpha) + sin(\alpha)\right) - U_{i} \cdot tan\left(\phi_{d_{i}}\right) + \left(H_{L_{i}} - H_{R_{i}}\right) \cdot \left(tan\left(\phi_{d_{i}}\right) \cdot sin(\alpha) - cos(\alpha)\right) + \frac{c}{FS_{1_{i}}} \cdot L\right]}{\left(cos(\alpha) - tan\left(\phi_{d_{i}}\right) \cdot sin(\alpha)\right)}$$

$$L_{ftg} - L_{brg_i} =$$

$$\begin{array}{c|c}
0.000 & \text{ft} \\
0.000 & \\
0.000 & \\
0.000 & \\
\hline
0.000 & \\
\end{array}$$

$$L_{t1} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot \text{ft}$$

 $ok := if \lfloor max \lfloor \left| L_{brg} - \left(L_{ftg} - L_{t1} \right) \right| \rfloor < 0.001 \cdot ft, ok, "Uplift area does not match." \rfloor$

ok := if
$$\left(\min(L_{brg}) < x_{key} + \frac{L_{key}}{2}, \text{"Uplift assumptions incorrect.", ok}\right)$$
 ok = "Ok"

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
✓	

Resisting Wedge (#3):

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi = \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0 \cdot ksf$$

$$\phi_{d_{i}} := \operatorname{atan}\left(\frac{\tan(\phi)}{\operatorname{FS}_{1_{i}}}\right)$$

$$\alpha_{i} := 45 \cdot \operatorname{deg} - \frac{\phi_{d_{i}}}{2}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 18.6 \\ 18.3 \\ 18.0 \\ 17.8 \\ 17.5 \end{pmatrix} \deg$$

$$\alpha_{i} = \begin{pmatrix} 35.7 \\ 35.9 \\ 36.0 \\ 36.1 \\ 36.2 \end{pmatrix} deg$$

$$L_{i} = \frac{t_{base}}{\sin(\alpha_{i})}$$

$$W_{i} := \gamma_{sat} \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot t_{base}}{2} + \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{fig}\right) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_{i} := \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg} + \frac{t_{base}}{2}\right) \cdot L_{i}$$

$$H_L := 0$$
 klf

$$H_R := 0 \cdot klf$$

$$V := 0$$
 klf

$$\Delta P_{3_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\phi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{1_{i}}} \cdot L_{i}}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

$$\Sigma P_i := \Delta P_{1a_i} + \Delta P_{1b_i} + \Delta P_{2_i} + \Delta P_{3_i}$$

$$\Delta P_{1a_{i}} = \begin{bmatrix} -36.7 & k1 \end{bmatrix}$$

$$\Delta P_{1b_i} =$$

$$\Delta P_{2_i} =$$

$$\Delta P_{3_i} = \frac{1}{2.4} \text{ kif}$$

$$\Sigma P_{i} = \begin{bmatrix} 0.2 \\ 0.2 \\ 0.2 \end{bmatrix}$$
 klf $FS_{1} = \begin{bmatrix} 1.89 \\ 1.92 \\ 1.95 \\ 1.98 \end{bmatrix}$

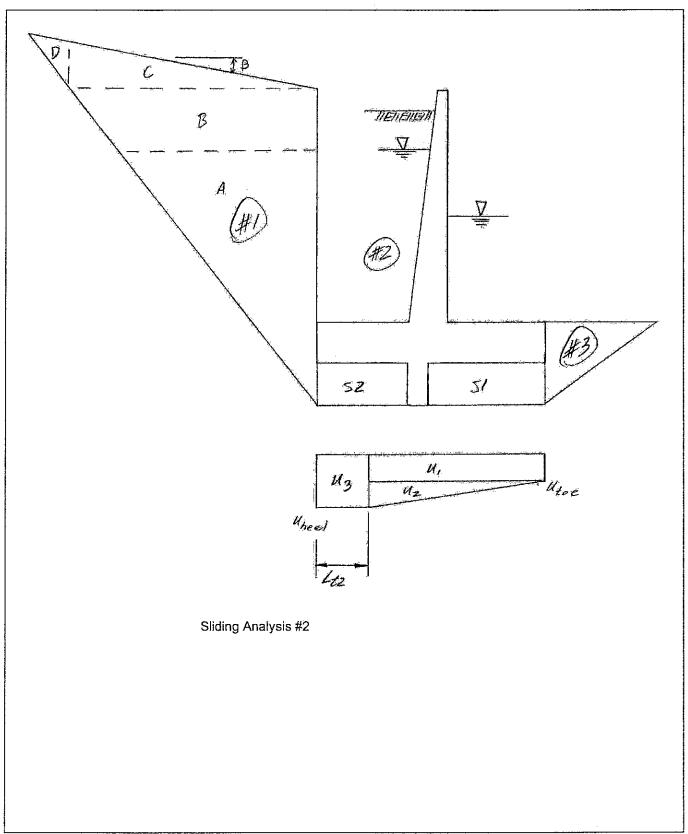
1.86

8.509 ft

8.457

ok := if(
$$FS_{l_1} \ge 1.33$$
, ok, "Sliding instability' LC#1")

ok := if
$$(FS_{1_n} \ge 1.50, ok, "Sliding instability: LC#n")$$



Date:	
By:	

Sliding Analysis #2:	$L_{\beta} = 11.88 \mathrm{ft}$	$= \begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} deg$	
$\phi_i := \phi_{\text{fill}}$ $\beta_w := \beta$	$\beta_{\rm W} = 33.7 \deg$	32.0 deg	
$c := 0 \cdot ksf$	Ŷ	32.0	(22.8)
$\phi_{\mathbf{d}_{i}} := \operatorname{atan} \left(\frac{\operatorname{tan}(\phi_{i})}{\operatorname{FS}_{2_{i}}} \right)$		(32.0)	$\phi_{d_{i}} = \begin{bmatrix} 22.5 \\ 22.5 \\ 22.2 \\ 22.0 \end{bmatrix} \text{deg}$
FS ₂			22.0
$\begin{pmatrix} 44.8 \\ 45.2 \end{pmatrix}$			(21.7)
$atan(tan(\beta) \cdot FS_{2_{i}}) = \begin{pmatrix} 44.8 \\ 45.2 \\ 45.6 \\ 45.9 \\ 46.3 \end{pmatrix}$	eg (back solve for minimur	n φ value for stable slope	β, EM 1110-2-2502, pg. 3-31)
45.9		(44.8)	
(46.3)	. \	45.2	
$\phi_{i} := if \left[\left(c_{1} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left(\phi_{d_{i}} \right)^{2} \right] + 4 \cdot c_{2} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left$	(back solve for minimum, β_{w}) < 0, atan(tan(β_{w}) · FS ₂), (33.7)	ϕ_{i} $\phi = \begin{vmatrix} 45.6 \\ 45.6 \end{vmatrix} \deg$	(substitue minimum φ if slope is unstable)
	$\phi_{d_{1}b_{i}} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix}$	$\binom{45.9}{46.3}$,
$\phi_{\underline{\mathbf{d}}_{1}b_{i}} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi_{i})}{\operatorname{FS}_{2_{i}}}\right)$	33.7	(10.2)	
FS ₂	$\phi_{d_1b_i} = \begin{bmatrix} 33.7 \\ 33.7 \end{bmatrix} dc$	207	
	$\begin{pmatrix} 33.7 \\ 33.7 \end{pmatrix}$	V	-33.7 -33.7 -33.7 deg
$\alpha_{1b_{i}} := \alpha_{driving}(\phi_{d_{1}b_{i}}, \beta_{w})$		$\alpha_{1b} =$	-33.7 deg
hin := (Egrado + Lawes tan(B	$(w) - (E_{bftg} - h_{key}) h_{1b} = 32.$	1	-33.7)
			(1000.0)
$L_{\text{max}_{i}} := if \left[-\alpha_{1b_{i}} = \phi_{d_{1}b_{j}}, 100 \right]$	h _{1b.}	<u>(a))</u>	1000.0
$L_{\text{max.}} := if_1 - \alpha_{1b.} = \phi_{d-1b.}, 100$	$(0 \cdot \text{ft}, \frac{\cos(-\alpha_{1b_i})(\tan(-\alpha_{1b_i})-\tan(-\alpha_{1b_i}))}{(-\alpha_{1b_i})}$	$\frac{n(\beta_{w})}{}$ $L_{max} =$	1000.0 ft
1 1 - 3	$\cos(-\alpha_{1b_i})$		1000.0
		$\begin{pmatrix} 32.1 \\ 32.1 \end{pmatrix}$	(1000,0)
$\begin{vmatrix} h_{1a} := if L_{B} < L_{max}, h_{1h} + I \end{vmatrix}$	$_{\beta} \left(\tan(\beta) - \tan(-\alpha_{1b_{i}}) \right), 0 \cdot \text{ft}$	$h_{1a} = \begin{vmatrix} 32.1 \\ 32.1 \end{vmatrix}$ ft	
	b (, , , , , , ,),]	32.1	
		(32.1)	

Date: _____ By: _____

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	

Driving Wedge (#1a): $\beta_{\rm W} = 0.0 \deg$ $\beta_{\mathbf{w}} := 0 \cdot \deg$ $\phi := \phi_{fill}$ $\phi = 32.0 \deg$ 22.8 c := 0 ksf22.5 $\phi_{d_i} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi)}{\operatorname{FS}_{2_i}}\right)$ $\phi_d = |22.2| \deg$ $h_i = h_{1a_i}$ ^{32.1} 32.1 h = 32.1 | ft (38.53) $h_i := h_{1a_i}$ 32 1 38.59 38.65 ft 12.1 38.71 11.6 $\mathbf{h}_{sat_i} \coloneqq \text{max} \begin{bmatrix} \mathbf{E}_{wheel_i} - \left(\mathbf{E}_{ftg} - \mathbf{t}_{base} - \mathbf{h}_{key}\right) - \mathbf{L}_{\beta} + \tan\left(-\alpha_{1b_i}\right) \end{bmatrix} \end{bmatrix}$ (38.77) 11,1 ft 21.336 10.6 21.445 101 $L_h = |21.553|$ ft 21.658 7.74 7.45 ft 6.84 $h_{left} = 0$ ft $h_{right} := h_{la}$ $W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{right_{i}}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \frac{L_{sat_{i}} \cdot h_{sat_{j}}}{2}$ $W_i =$ 44.372 klf 44.610 V := 0 klf 44.843 45.072 $H_L := 0 \cdot klf$ 45.296

 $H_R := 0 \cdot klf$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
4	

$$\mathbf{U_i} \coloneqq \gamma_{\mathbf{w}} \cdot \left(\frac{\mathbf{h_{sat_i}}}{2}\right) \cdot \sqrt{\left(\mathbf{h_{sat_i}}\right)^2 + \left(\mathbf{L_{sat_i}}\right)^2}$$

$$U = \begin{pmatrix} 5.479 \\ 5.043 \\ 4.625 \\ 4.223 \\ 3.839 \end{pmatrix} \text{ klf}$$

$$\Delta P_{1a_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) - cos\left(\alpha_{i}\right) + sin\left(\alpha_{i}\right)\right) - U_{i} - tan\left(\varphi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) \cdot sin\left(\alpha_{i}\right) - cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L_{i}\right]}{\left(cos\left(\alpha_{i}\right) - tan\left(\varphi_{d_{i}}\right) \cdot sin\left(\alpha_{i}\right)\right)}$$

Driving Wedge (#1b):

$$L_{B} = 11.9 \, ft$$

$$\beta_w := \beta$$

$$\beta_{\rm W} = 33.7 \deg$$

$$\alpha := \alpha_{1b}$$

$$\beta_{\rm W} = 33.7 \deg$$

$$p_W = 33 / \text{deg}$$

$$\phi_d := \phi_{d_1}$$

$$h = \begin{pmatrix} 32.1 \\ 32.1 \\ 32.1 \end{pmatrix} ft$$

$$= \begin{pmatrix} -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \end{pmatrix} deg \begin{pmatrix} 33 \\ 33 \\ 34 \\ 33 \end{pmatrix}$$

$$\phi_{d} = \begin{vmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{vmatrix} deg$$

$$L_i := \frac{L_{\beta}}{-1}$$

$$L_{\rm h} = 11.9 \, {\rm ft}$$

$$= \begin{bmatrix} 32.1 & \text{ft} \\ 32.1 & \text{grade} \end{bmatrix}$$

$$A = \begin{bmatrix} 14.3 & \text{ft} \\ 14.3 & \\ 14.3 & \\ 14.3 & \\ n_{\text{satr}} = \begin{bmatrix} 20.0 \\ 19.5 \\ 19.0 & \\ \end{bmatrix}$$

$$h_{satr_i} := max \begin{bmatrix} E_{wheel_i} - (E_{fig} - t_{base} - h_{key}) \\ 0 \cdot ft \end{bmatrix}$$

$$\begin{aligned} h_{satl_{i}} &:= \max \begin{bmatrix} E_{wheel_{i}} - \left(E_{ftg} - t_{base} - h_{key}\right) - \frac{L_{\beta}}{\cos(\alpha_{i})} \end{bmatrix} \end{bmatrix} \quad h_{satl} = \begin{pmatrix} 5.7\\ 5.2\\ 4.7\\ 4.2\\ 3.7 \end{pmatrix} \text{ft} \\ L_{sat_{i}} &:= \min \begin{bmatrix} L_{\beta}\\ h_{satr_{i}}\\ \hline \tan\left(-\alpha\right)_{i} \end{bmatrix} \end{bmatrix} \quad L_{sat} = \begin{pmatrix} 11.9\\ 11.9\\ 11.9\\ 11.9 \end{pmatrix} \text{ft} \end{aligned}$$

$$L_{sat_{\underline{i}}} \coloneqq \min \left[\begin{array}{c} L_{\beta} \\ h_{satr_{\underline{i}}} \\ \hline \left[\frac{t_{\beta}}{tan_{\underline{i}} \left(-\alpha \right)_{\underline{i}}} \right] \end{array} \right]$$

$$L_{\text{sat}} = \begin{pmatrix} 11.9 \\ 11.9 \\ 11.9 \\ 11.9 \\ 11.9 \end{pmatrix} \text{ft}$$

$$h_{left} = \begin{pmatrix} 32.1 \\ 32.1 \\ 32.1 \\ 32.1 \\ 32.1 \end{pmatrix} ft$$

32.1

$$h_{left_i} := h_{1a_i}$$

$$h_{right} = 32.1 ft$$

$$h_{right} := h_{1b}$$

$$h_{\text{satr}_{i}} + h_{\text{satl}_{i}}$$

$$W_{i} := \gamma_{fill} \cdot \left(L_{h} \cdot \frac{h_{left_{i}} + h_{right}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot L_{sat_{i}} \cdot \left(\frac{h_{satr_{i}} + h_{satl_{i}}}{2}\right)$$

$$V = 0 \text{ klf}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$$H_L = 0 \cdot klf$$

$$H_R := 0 \cdot klf$$

$$\boldsymbol{U_{i}} \coloneqq \boldsymbol{\gamma_{w}} \cdot \left(\frac{\boldsymbol{h_{satr_{i}}} + \boldsymbol{h_{satl}_{i}}}{2}\right) \cdot \sqrt{\left(\boldsymbol{h_{satr_{i}}} - \boldsymbol{h_{satl}_{i}}\right)^{2} + \left(\boldsymbol{L_{h}}\right)^{2}}$$

$$W_i =$$

$$\frac{\left(\mathbf{W}_{i} + \mathbf{V} \right) \left(\tan \left(\phi_{\mathbf{d}_{i}} \right) \cdot \cos \left(\alpha_{i} \right) + \sin \left(\alpha_{i} \right) \right) - \mathbf{U}_{i} \cdot \tan \left(\phi_{\mathbf{d}_{i}} \right) + \left(\mathbf{H}_{L} - \mathbf{H}_{R} \right) \left(\tan \left(\phi_{\mathbf{d}_{i}} \right) \cdot \sin \left(\alpha_{i} \right) - \cos \left(\alpha_{i} \right) \right) + \frac{\mathbf{c}}{FS_{2_{i}}} \mathbf{L}_{i} }{\left(\cos \left(\alpha_{i} \right) - \tan \left(\phi_{\mathbf{d}_{i}} \right) \cdot \sin \left(\alpha_{i} \right) \right) }$$

$$\left(\cos\left(\alpha_{i}\right) - \tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)$$

Structure Wedge (#2)

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$c := 0 \text{ ksf}$$

$$\phi_{d_i} \coloneqq \text{atan}\!\!\left(\frac{\text{tan}\!\left(\phi\right)}{\text{FS}_{2_i}}\right)$$

$$U_i =$$

$$\alpha := 0 \cdot \deg$$

$$\alpha = 0.0 \deg$$

$$L := \frac{L_{ftg}}{\cos(\alpha)}$$

$$L = 28.0 \, \mathrm{ft}$$

$$h_{S1} := h_{key}$$

$$h_{S1} = 8.0 \, ft$$

$$L_{S1} := x_{key} - \frac{L_{key}}{2}$$

$$L_{S1} = 7.8 \, ft$$

$$\mathbf{x}_{\mathbf{S}1} := \frac{1}{2} \cdot \mathbf{L}_{\mathbf{S}1}$$

$$x_{\rm S1}=3.9\,\rm ft$$

$$S1 := \gamma_{sat} \cdot h_{S1} \cdot L_{S1}$$

$$S1 = 7.9 \text{ klf}$$

$$h_{S2} := h_{kev}$$

$$h_{S2} = 8.0 \, ft$$

$$L_{S2} := L_{ftg} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 17.3 \, ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
.	

$$x_{S2} \coloneqq L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 19.4 \, ft$$

$$S2 := \gamma_{sat} \cdot h_{S2} \cdot L_{S2}$$

$$S2 = 17.6 \, \text{klf}$$

$$W_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_w \left[E_{wtoe_i} - \left(E_{bftg} - h_{key} \right) \right]$$

$$u_{\text{heel}_{i}} := \gamma_{w} \cdot |E_{\text{wheel}_{i}} - (E_{\text{bftg}} - h_{\text{key}})|$$

$$\delta_{\mathbf{u}_{i}} := \frac{\gamma_{\mathbf{w}} \cdot \left(E_{\mathbf{wheel}_{i}} - E_{\mathbf{wtoe}_{i}} \right)}{L_{ftg} - L_{t2_{i}}}$$

$$\mathbf{u}_{1_{i}} := \mathbf{u}_{toe_{i}} \cdot \left(\mathbf{L}_{ftg} - \mathbf{L}_{t2_{i}} \right)$$

$$\mathbf{x_{u1}}_{i} \coloneqq \frac{\mathbf{L_{ftg}} - \mathbf{L_{t2}}_{i}}{2}$$

$$\mathbf{u_{2_i}} \coloneqq \left(\mathbf{u_{heel_i}} - \mathbf{u_{toe_i}}\right) \cdot \frac{\left(L_{ftg} - L_{t2_i}\right)}{2}$$

$$x_{u2_{i}} := \frac{2}{3} \cdot \left(L_{ftg} - L_{t2_{i}} \right)$$

$$u_{3_i} = u_{heel_i} \left(L_{t2_i} \right)$$

$$x_{u3_i} := L_{ftg} - \frac{L_{t2_i}}{2}$$

$$\mathbf{U_i} = \mathbf{u_1_i} + \mathbf{u_2_i} + \mathbf{u_3_i}$$

$$x_{U_{i}} := \frac{u_{1_{i}} \cdot x_{u1_{i}} + u_{2_{i}} \cdot x_{u2_{i}} + u_{3_{i}} \cdot x_{u3_{i}}}{U_{i}}$$

$$\Sigma M_{grav_{i}} := \left(\sum_{i=1}^{4} W_{C_{i}} x_{C_{i}} + W_{W1_{i}} x_{W1} + W_{WS1_{i}} x_{WS1} + W_{WS2_{i}} x_{WS2_{i}} + W_{WS3_{i}} x_{WS3_{i}} \right)$$

$$x_{u1} = \begin{pmatrix} 14.0 \\ 14.0 \\ 14.0 \\ 14.0 \\ 14.0 \\ 14.0 \\ 18.7 \\ 18.$$

18.7

$$x_{U} = \begin{pmatrix} 15.0 \\ 14.9 \\ 14.9 \\ 14.8 \\ 14.8 \end{pmatrix}$$

Samuels Ave. Dam Training wall at right CDM04188

Date: _____ By: ____

$\Sigma M_{lat_{i}} := -H1_{i} \cdot (y_{H1_{i}}) - K1_{i} \cdot (y_{K1}) - K2_{i} \cdot (y_{K2}) + H2_{i} \cdot (y_{H2_{i}}) + H3_{i} \cdot (y_{H2_{i}})$	—— H.,
$\begin{split} \Sigma M_{lat_{i}} &= -H1_{i} \cdot \left(y_{H1_{i}}\right) - K1_{i} \cdot \left(y_{K1}\right) - K2_{i} \cdot \left(y_{K2}\right) + H2_{i} \cdot \left(y_{H2_{i}}\right) + H3_{i} \cdot \left(y_{I}\right) \\ &+ A1_{i} \cdot \left(y_{A1_{i}}\right) + A2_{i} \cdot \left(y_{A2_{i}}\right) + A3_{i} \cdot \left(y_{A3_{i}}\right) - R_{key_{i}} \cdot \left(y_{Rkey}\right) \end{split}$	

$$\mathbf{x}_{R_i} \coloneqq \frac{\Sigma M_{grav_i} - \Sigma M_{lat_i}}{W_i - U_i}$$

$$L_{brg_i} = min(3 \cdot \mathbf{x}_{R_i}, L_{ftg})$$

 $ok_{u_{\underline{i}}} \coloneqq if[\left|L_{brg_{\underline{i}}} - \left(L_{ftg} - L_{t2_{\underline{i}}}\right)\right| > 0.001 \cdot ft, "Uplift assumptions wrong in sliding analysis.", "Matched."]$

1				`	, .		s _						_	
	$W_i =$		$u_{toe_i} =$		u _{heel} =		$\delta_{\mathbf{u_i}} =$		$u_{1_i} =$		$u_{2_i} =$		$\mathbf{u_3}_{\mathbf{i}} =$	
	83.6	klf	0.813	ksf	1.250	ksf	15.6	$\frac{psf}{c}$	22.750	klf	6.125	klf	0.000	klf
	83.6		0.813		1.219		14.5	ft	22.750		5.688		0.000	
	83.7		0.813		1.188		13.4		22.750		5.250		0.000	
	83.7		0.813		1.156		12.3		22.750		4.812		0.000	!
	83.8		0.813		1.125		11.2		22.750		4.375		0.000	I
ľ			1					'						

$x_{u3_i} =$	$h_{H2_i} =$	y _{H2} =	H2 _i =	
28.0 ft	20.0 ft	-1.3 ft	12.5	klf
28.0	19.5	-1.5	11.9	
28.0	19.0	-1.7	11.3	
28.0	18.5	-1.8	10.7	
28.0	18.0	-2.0	10.1	

$U_i =$		$xU_i =$		Σıνıgra	av _i =	ΣM_{la}	nt _i =	$x_{R_i} =$		$\mathrm{L}_{\mathrm{brg}_{\mathrm{i}}}$	=
28.9	klf	15.0	ft	918	kip	-16	kip	17.1	ft	28.0	ft
28.4		14.9		927		-15		17.1		28.0	
28.0		14.9		937		-14		17.1		28.0	
27.6		14.8		946		-14		17.1		28.0	
27.1		14.8		955		-13		17.1		28.0	

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	
Ū	

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_i} \coloneqq \gamma_w \cdot \frac{\left(E_{wtoe_i} - E_{ftg}\right)^2}{2}$$

$$\Delta P_{2_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \cos(\alpha) + \sin(\alpha)\right) - U_{i} \cdot \tan\left(\phi_{d_{i}}\right) + \left(H_{L_{i}} - H_{R_{i}}\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \sin(\alpha) - \cos(\alpha)\right) + \frac{c}{FS_{2_{i}}} \cdot L\right]}{\left(\cos(\alpha) - \tan\left(\phi_{d_{i}}\right) \cdot \sin(\alpha)\right)}$$

$$\begin{array}{c} L_{ftg} - L_{brg_i} = \\ \hline 0.000 & \text{ft} \\ \hline 0.000 & \\ \hline 0.000 & \\ \hline 0.000 & \\ \hline 0.000 & \\ \hline \end{array}$$

$$\mathbf{L}_{12} \equiv \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{ft}$$

$$ok := if \left\lfloor \max \left\lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{t2} \right) \right\rfloor \right\rfloor < 0.001 \quad \text{ft, ok, "Uplift area does not match."} \right\rfloor$$

ok := if
$$\left(\min(L_{brg}) < x_{key} + \frac{L_{key}}{2}, \text{"Uplift assumptions incorrect.", ok}\right)$$
 ok = "Ok

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

Resisting Wedge (#3):

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0 \cdot ksf$$

$$\phi_{d_i} := atan\left(\frac{tan(\phi)}{FS_{2_i}}\right)$$

$$\alpha_i = 45 \cdot \text{deg} - \frac{\phi_{d_i}}{2}$$

$$L_{i} := \frac{t_{base} + h_{key}}{\sin(\alpha_{i})}$$

$$\phi_{\mathbf{d}_{\underline{i}}} = \begin{vmatrix} 22.5 \\ 22.2 \\ 22.0 \\ 21.7 \end{vmatrix} \text{deg}$$

$$\alpha_{i} = \begin{pmatrix} 33.6 \\ 33.8 \\ 33.9 \\ 34.0 \\ 34.1 \end{pmatrix} deg$$

$$L = \begin{pmatrix} 23.477 \\ 23.394 \\ 23.313 \\ 23.235 \end{pmatrix} f$$

23.159

$$W_{i} := \gamma_{sat} \cdot \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot (t_{base} + h_{key})}{2} + \gamma_{w} \cdot (E_{wtoe_{i}} - E_{ftg}) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_i = \gamma_w \cdot \left(E_{wtoe_i} - E_{ftg} + \frac{t_{base} + h_{key}}{2}\right) \cdot L_i$$

$$H_L := 0 \cdot klf$$

$$H_R = 0 \cdot klf$$

$$V := 0 \cdot klf$$

$$\Delta P_{3_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \cos\left(\alpha_{\hat{i}}\right) + \sin\left(\alpha_{\hat{i}}\right)\right) - U_{\hat{i}} \cdot \tan\left(\varphi_{d_{\hat{i}}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha_{\hat{i}}\right) - \cos\left(\alpha_{\hat{i}}\right)\right) + \frac{c}{FS_{2_{\hat{i}}}} \cdot L_{\hat{i}}\right]}{\left(\cos\left(\alpha_{\hat{i}}\right) - \tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha_{\hat{i}}\right)\right)}$$

$$\begin{aligned} \text{ok} &\coloneqq \text{if} \Big(\text{FS}_{2_1} \geq 1.33 \,, \text{ok}, \text{"Sliding instability: LC#1"} \Big) \\ \text{ok} &\coloneqq \text{if} \Big(\text{FS}_{2_n} \geq 1.50 \,, \text{ok}, \text{"Sliding instability: LC#n"} \Big) \end{aligned}$$

$$L_{\text{ftg}} - x_{\text{key}} - \frac{L_{\text{key}}}{2} = 17.3 \, \text{ft}$$

ok = "Ok"

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	-
V	

Upstream Training Wall at Right: (Grade = 517.0')

Reference:T:\ST\CALCS\Common geometry.mcd(R)

Geometry:

$$E_{\text{wall}} := 520 \cdot \text{ft}$$

$$E_{ftg} := E_{approach}$$

$$E_{ftg} = 500.0 \, ft$$

$$t_{base} := 5 \cdot ft$$

$$E_{bftg} := E_{ftg} - t_{base}$$

$$E_{
m bftg} = 495.0\,{
m ft}$$

$$E_{grade} = 517 \cdot ft$$

$$n := 5$$

$$i := 1 ... n$$

 $\Delta_w := 10 \cdot ft$ (maximum height of retained water above water in basin)

$$E_{\text{wheel}_{i}} := E_{\text{grade}} - \frac{\left[E_{\text{grade}} - \left(E_{\text{ftg}} + \frac{\Delta_{\mathbf{w}}}{2}\right)\right]}{n-1} \cdot (i-1)$$

$$E_{\text{wtoe}_{i}} := \max \begin{pmatrix} \left(E_{\text{wheel}_{i}} - \Delta_{\mathbf{w}}\right)\right) & E_{\text{wtoe}} = \begin{pmatrix} 507.0 \\ 504.0 \\ 501.0 \\ 500.0 \end{pmatrix} \text{ ft}$$

$$E_{\text{wheel}} = \begin{pmatrix} 517.0 \\ 514.0 \\ 511.0 \\ 508.0 \\ 505.0 \end{pmatrix} \text{ ft}$$

$$\mathbf{E_{wtoe}}_{i} \coloneqq \max \left(\left(\begin{array}{c} \mathbf{E_{wheel}}_{i} - \Delta_{w} \\ \\ \mathbf{E_{ftg}} \end{array} \right) \right)$$

$$E_{\text{wtoe}} = \begin{bmatrix} 504.0 \\ 501.0 \\ 500.0 \\ 500.0 \end{bmatrix} \text{ft}$$

$$h := \min \begin{bmatrix} \begin{bmatrix} \frac{1.0}{1.5} & 2 \cdot (E_{grade} - E_{ftg}) \end{bmatrix} + E_{grade} \\ 527 \cdot ft - E_{ftg} \end{bmatrix}$$

$$h = 27.0 \text{ ft}$$

$$h = 27.0 \, ft$$

$$\beta := atan\left(\frac{1.0}{1.5}\right) \qquad \beta = 33.7 deg$$

$$h_{\beta} := 527 \cdot ft - E_{grade}$$

$$h_{\beta} = 10.0 \, ft$$

$$t_{w_top} \coloneqq 1.5~\mathrm{ft}$$

$$t_{w_bot} := t_{w_top} + \frac{\left(E_{wall} - E_{ftg}\right)}{8}$$

$$t_{w_bot} = 4.00 \, ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date: ____ By: _____

$$L_{toe} = 8.0 \, ft$$

$$L_{heel} = 21.0 \, ft$$

$$L_{ftg} := L_{toe} + L_{heel}$$

$$L_{ftg} = 29.0 \, ft$$

$$h_{wall} := E_{wall} - E_{ftg}$$

$$h_{\text{wall}} = 20.0 \text{ ft}$$

$$h_{\text{key}} = 5.0 \, \text{ft}$$

$$L_{\text{key}} := 3 \cdot \text{ft}$$

$$L_{key} = 3.0 \, ft$$

$$x_{key} \coloneqq L_{toe} + t_{w_bot} - \frac{L_{key}}{2}$$

$$x_{\text{kev}} = 10.5 \,\text{ft}$$

Constants:

$$\gamma_{\rm W} = 62.5 \, \rm pcf$$

Soil parameters:

$$\gamma_{\text{fill eff}} = 65.0 \,\text{pcf}$$

$$\gamma_{\text{sat}} = 127.5 \,\text{pcf}$$

$$\gamma_{\text{fill}} = 130 \text{ 0 pcf}$$

$$k_{0_fill} = 0.5$$

$$\varphi_{fill} = 32.0\,deg$$

$$k_{0\beta} \coloneqq k_{0_fill} \cdot (1 + \sin(\beta))$$

$$k_{0B} = 0.777$$

(USACE EM 1110-2-2502, Eq. 3-5)

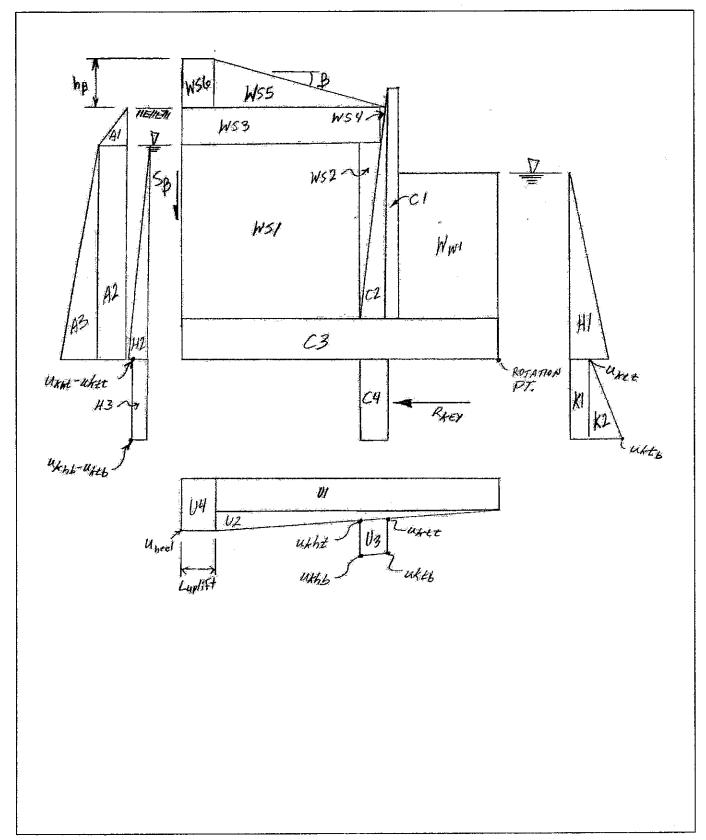
Pre-Definitions:

$$kip \equiv 1000 \cdot lbf$$

$$ok \equiv "Ok"$$
 $klf = 1000 \cdot \frac{lbf}{ft}$

$$psf \equiv \frac{lbf}{ft^2}$$

$$plf \equiv \frac{lbf}{ft}$$


$$pcf \equiv \frac{lbf}{ft^3}$$

$$ORIGIN = 1.0$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _____

Title Samuels Ave. Dam Training wall at right CDM04188

Date: ____ By:

Analysis:

Gravity Loads:

$$h_{C_1} := h_{wall}$$

$$h_{C_1} = 20.0 \, ft$$

$$L_{C_1} := t_{w_top}$$

$$L_{C_1} = 1..5 \, ft$$

$$x_{C_1} := L_{toe} + \frac{L_{C_1}}{2}$$

$$x_{C_1} = 8.8 \, ft$$

$$W_{C_1} := \gamma_c \cdot h_{C_1} \cdot L_{C_1}$$

$$W_{C_1} = 4.5 \,\mathrm{klf}$$

$$h_{C_2} = h_{C_1}$$

$$h_{C_2} = 20.0 \text{ ft}$$

$$\mathsf{L}_{\mathsf{C}_2} \coloneqq \mathsf{t}_{\mathsf{w_bot}} - \mathsf{t}_{\mathsf{w_top}}$$

$$L_{C_2} = 2.5 \, ft$$

$$x_{C_2} := L_{toe} + L_{C_1} + \frac{L_{C_2}}{3}$$

$$x_{C_2} = 10.3 \, ft$$

$$W_{C_2} \coloneqq \gamma_c \cdot \frac{h_{C_2} L_{C_2}}{2}$$

$$W_{C_2} = 3.8 \, \text{klf}$$

$$h_{C_3} = t_{base}$$

$$h_{C_3} = 5.0 \, ft$$

$$L_{C_3} = L_{ftg}$$

$$L_{C_3} = 29.0 \, \text{ft}$$

$$x_{C_3} = \frac{L_{C_3}}{2}$$

$$x_{C_3} = 14.5 \, ft$$

$$W_{C_3} = \gamma_c \cdot h_{C_3} \cdot L_{C_3}$$

$$W_{C_3} = 21.7 \, \text{klf}$$

$$h_{C_4} := h_{key}$$

$$h_{C_4} = 5.0 \, ft$$

$$L_{C_{\Delta}} := L_{key}$$

$$L_{C_4} = 3.0 \, \text{ft}$$

$$x_{C_4} = x_{key}$$

$$x_{C_4} = 10.5 \, \text{ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$$W_{C_4} := \gamma_e \cdot h_{C_4} \cdot L_{C_4}$$

$$W_{C_4} = 2.3 \, klf$$

Weight of water at toe:

$$h_{Wl_i} := E_{wtoe_i} - E_{ftg}$$

$$\mathbf{h_{W1}} = \begin{pmatrix} 7.00 \\ 4.00 \\ 1.00 \\ 0.00 \\ 0.00 \end{pmatrix} \mathbf{ft}$$

$$L_{W1} := L_{toe}$$

$$\mathrm{L}_{W1} = 8.0\,\mathrm{ft}$$

$$x_{W1} := \frac{L_{toe}}{2}$$

$$x_{W1} = 4.0 \, ft$$

$$W_{\mathbf{W}\mathbf{1}_i} := \gamma_{\mathbf{w}} \cdot \mathbf{h}_{\mathbf{W}\mathbf{1}_i} \cdot \mathbf{L}_{\mathbf{W}\mathbf{1}}$$

$$W_{W1} = \begin{pmatrix} 3.5 \\ 2.0 \\ 0.5 \\ 0.0 \\ 0.0 \end{pmatrix} \text{ kif}$$

Weight of water/soil at heel:

$$h_{WS1_i} := E_{wheel_i} - E_{fig}$$

$$h_{WS1} = \begin{pmatrix} 17.00 \\ 14.00 \\ 11.00 \\ 8.00 \\ 5.00 \end{pmatrix} ft$$

$$L_{\text{WS1}} \coloneqq L_{\text{heel}} - t_{\text{w_bot}}$$

$$L_{WS1} = 17.0 \, ft$$

$$x_{WS1} := L_{toe} + t_{w_bot} + \frac{L_{WS1}}{2}$$
 $x_{WS1} = 20.5 \text{ ft}$

$$W_{WS1}_i \coloneqq \left(\gamma_{sat}\right) \cdot h_{WS1}_i \cdot L_{WS1}$$

$$W_{WS1} = \begin{pmatrix} 36.8 \\ 30.3 \\ 23.8 \\ 17.3 \\ 10.8 \end{pmatrix} klf$$

$$h_{WS2_i} := h_{WS1_i}$$

$$L_{WS2_i} \coloneqq \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS2_i}$$

$$x_{WS2_{i}} = L_{toe} + t_{w_bot} - \frac{L_{WS2_{i}}}{3}$$

$$L_{WS2} = \begin{pmatrix} 2.13 \\ 1.75 \\ 1.38 \\ 1.00 \\ 0.63 \end{pmatrix} \text{ft}$$

$$x_{WS2} = \begin{pmatrix} 11.3 \\ 11.4 \\ 11.5 \\ 11.7 \\ 11.8 \end{pmatrix} ft$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	·

_							
	$W_{WS2_{i}} := (\gamma_{sat}) \cdot \frac{h_{WS2_{i}} \cdot L_{WS2_{i}}}{2}$	$W_{WS2_i} =$					
	$h_{WS3_i} = E_{grade} - E_{wheel_i}$	2.3 klf	huves =				
		1.0	$h_{WS3_i} = 0.0$ ft	Υ			
	$L_{WS3_{i}} := L_{WS1} + L_{WS2_{i}}$ L_{WS3}	0.2	3.0 6.0	$L_{WS3_i} =$			
	$x_{WS3_i} := L_{fig} - \frac{L_{WS3_i}}{2}$		9.0 12.0	18.8 18.4	$x_{WS3_i} =$		
	$W_{WS3_i} := \gamma_{fill} \cdot h_{WS3_i} L_{WS3_i}$			17.6	19.4 It	$W_{WS3_i} = $ $\begin{array}{ c c c }\hline 0.0 & \text{kif} \end{array}$	
	$h_{WS4_{i}} := h_{WS3_{i}}$				20.0	7.3 14.3	
	$L_{WS4_{i}} := \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS4_{i}}$	$L_{WS4_i} = 0.0$ ft				27.5	
	$x_{WS4_{i}} := L_{ftg} - L_{WS3_{i}} - \frac{L_{WS4_{i}}}{3}$	0.4	xws4 _i =				
	$W_{WS4_{i}} := \gamma_{fill} \frac{h_{WS4_{i}} L_{WS4_{i}}}{2}$	1.1	9.9 ft 10.1 10.4	W _{WS4}			
	$L_{WS5} := min \begin{bmatrix} \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot (E_{grade} - E_{ftg}) + L_{WS1} \\ \frac{h_{\beta}}{tan(\beta)} \end{bmatrix}$		10.6	0.0 k 0.1 0.3 0.7 1.2	lf L _{WS5} = 15	5.00 ft	
	$h_{WS5} := L_{WS5} \cdot tan(\beta)$ $h_{WS5} = 10.00 ft$			LI			
	$x_{WS5} = \frac{2}{3} \cdot L_{WS5} + L_{toe} + t_{w_top} + \frac{\left(E_{wall} - E_{grade}\right)}{E_{wall} - E_{ftg}} \cdot \left(e^{-\frac{1}{2}}\right)$	t _{w_bot} t _{w_}	top)		$x_{WS5} = 19.$	88 fi	
	$W_{WS5} := \gamma_{fill} \frac{h_{WS5} \cdot L_{WS5}}{2} \qquad W_{WS5} = 9.8 \text{ kif}$						
	$L_{WS6} := \frac{E_{grade} - E_{ftg}}{h_{wall}} \cdot (t_{w_bot} - t_{w_top}) + L_{WS1} - L_{WS}$	LWS6	5 = 4,1 ft				
	$h_{WS6} := h_{WS5}$	h _{WS6}	s = 10.0 ft				
	$x_{WS6} := L_{ftg} - \frac{L_{WS6}}{2}$	xws6	5 = 26.9 ft				
	Wwse := Yell (hwse Lwse)	W_{WS}	6 = 5.4 klf				

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
•	

Uplift:

$$u_{toe_i} := \gamma_W \cdot \left(E_{wtoe_i} - E_{bftg}\right)$$

$$u_{heel_i} := \gamma_w \cdot \left(E_{wheel_i} - E_{bftg}\right)$$

$$\delta_{seep_i} \coloneqq \frac{u_{heel_i} - u_{toe_i}}{L_{fig} - L_{uplift_i}}$$

$$u_{ktt_{i}} := u_{heel_{i}} + \left(x_{key} - \frac{L_{key}}{2}\right) \cdot \delta_{seep_{i}}$$

$$u_{kht_i} := u_{ktt_i} + L_{key} \delta_{seep_i}$$

$$u_{ktb_i} := u_{ktt_i} + \gamma_w \cdot h_{key}$$

$$u_{khb_i} \coloneqq u_{ktb_i} + L_{key} \ \delta_{seep_i}$$

$$x_{U1} := \frac{L_{ftg} - L_{uplift}}{2}$$

$$U1_i := u_{toe_i} \cdot L_{ftg}$$

$$x_{U2_i} := \frac{2}{3} \cdot \left(L_{fig} - L_{uplift_i} \right)$$

$$U2_{i} := \left(u_{heel_{i}} - u_{toe_{i}}\right) \frac{L_{ftg}}{2}$$

$$x_{U3} = x_{kev}$$

$$U3_{i} = \left(u_{ktb_{i}} - u_{ktt_{i}}\right) \cdot L_{key}$$

$$x_{\text{U4}_{i}} := L_{\text{ftg}} - \frac{L_{\text{uplift}_{i}}}{2}$$

$$L_{U4} = L_{uplift}$$

$$U4_i := u_{heel_i} \cdot L_{U4_i}$$

$$u_{toe_i} =$$

0.750
0.563
0.375

 $u_{ktb_i} =$

1.881

1.694

1.506

1.280

1.034

 $U2_i =$

9.1

9.1

9.1

7.3

4.5

klf

ksf

$$u_{\text{heel}_{i}} = 1.375$$
 ksf

$$\delta_{\text{seep}_i} = \frac{21.552}{2}$$

ksf

$$u_{kht_i} =$$

$$\begin{array}{|c|c|c|}\hline 1.634 & ksf \\\hline 1.446 & \end{array}$$

 $u_{khb_i} =$

	1	
	21.7	klf
	16.3	
	10.9	
į	9.1	

9.1

$$x_{U2_i} = 19.33$$
 f

$$U3 = \begin{pmatrix} 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \\ 0.9 \end{pmatrix} \text{klf}$$

 $x_{\rm U3}=10.5\,\rm ft$

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	·

 $x_{U4_i} =$

29.0

29.0

29.0

29.0

29.0 ft

 $U4_i =$

0.0

0.0

0.0

0.0

0.0

klf

Lateral load due to water at toe.

$$\begin{aligned} \mathbf{h}_{\mathrm{H1}_{i}} &\coloneqq \mathbf{E}_{\mathrm{wtoe}_{i}} - \mathbf{E}_{\mathrm{bftg}} \\ \\ \mathbf{y}_{\mathrm{H1}_{i}} &\coloneqq \frac{\mathbf{h}_{\mathrm{H1}_{i}}}{3} \end{aligned}$$

$$H1_{i} := \gamma_{\mathbf{w}} \cdot \frac{\left(h_{H1_{i}}\right)^{2}}{2}$$

$$h_{\text{H2}_i} \coloneqq E_{\text{wheel}_i} - E_{\text{bftg}}$$

$$y_{\text{H2}_i} := \frac{h_{\text{H2}_i}}{3}$$

$$H2_{i} := \gamma_{w} \cdot \frac{\left(h_{H2_{i}}\right)^{2}}{2}$$

$$h_{H3} := h_{kev}$$

$$\rm h_{H3}=5.0\,\rm ft$$

 $y_{H3} = -2.5 \, ft$

$$y_{H3} := \frac{-h_{key}}{2}$$

$$\text{H3}_i \coloneqq \left(u_{khb_i} - u_{ktb_i} \right) \cdot h_{H3}$$

$$h_{K1} := h_{key}$$

$$\mathbf{h_{K1}} := \mathbf{h_{key}} \qquad \qquad \mathbf{h_{K1}} = 5.0 \, \mathrm{ft}$$

$$\mathbf{K1}_{\mathbf{i}} = \mathbf{u}_{\mathbf{ktt}_{\mathbf{i}}} \cdot \mathbf{h}_{\mathbf{K1}}$$

$$h_{K2} := h_{key}$$

$$h_{K2} = 50 \, ft$$

$$K2_{i} := \left(u_{ktb_{i}} - u_{ktt_{i}}\right) \cdot \frac{h_{K2}}{2}$$

$$y_{K1} := \frac{-h_{key}}{2}$$

$$y_{K1} = -2.5 \, ft$$

$$y_{K2} := \frac{-2}{3} \cdot h_{key}$$
 $y_{K2} = -3.3 \, ft$

$$y_{K2} = -3.3 \, fr$$

1	
12.00	fì
9.00	
6.00	
5.00	

5.00

 $y_{H2} =$

7.3 ft 6.3

5.3

$$h_{H2} = \frac{1}{1000}$$
 $h_{H2} = \frac{1}{1000}$
 $h_{H3} = \frac{1}{1000}$
 $h_{H3} = \frac{1}{1000}$

10.00

$$H2_i =$$

i	
15.1	klf
11.3	
8.0	
5.3	

3.1

$$H3_{i} =$$

klf

$$K1_i =$$

$$K2_i =$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	

Lateral load due to retained soil/water:

$$h_{Al_i} := E_{grade} - E_{wheel_i}$$

$$y_{A1_{i}} := E_{grade} - E_{bftg} - \frac{2}{3} \cdot h_{A1_{i}}$$

$$A1_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot \frac{\left(h_{A1_{i}}\right)^{2}}{2}$$

$$h_{A1} =$$

0.00	1
3.00	
6.00	
9.00	
12.00	

 $y_{A2_i} =$

9.50

8.00

6.50

5.00

$$A1_{i} = \begin{bmatrix} 0.0 & \text{klf} \\ 0.5 & \end{bmatrix}$$

1.8 4.1

7.3

$$h_{A2} := E_{wheel} - E_{bftg}$$

$$y_{A2_i} := \frac{h_{A2_i}}{2}$$

$$A2_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot h_{A2_{i}}$$

$$h_{A3} := h_{A2}$$

$$y_{A3_i} := \frac{h_{A3_i}}{3}$$

$$A3_{i} = k_{0\beta} \cdot \gamma_{\text{fill_eff}} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$$

 $h_{A2_i} =$

$$\frac{11.00}{9.50}$$
 ft $A2_{i} =$

$$h_{A3_i} =$$

$$\begin{array}{c}
22.00 \\
19.00 \\
16.00 \\
13.00
\end{array}$$

10.00

$$y_{A3_{i}} = 7.33 \text{ ft}$$

 $A3_i =$

4.3

2.5

klf

$$h_2 = E_{grade} - E_{fig}$$

$$h_2 = 17.0 \, ft$$

Shear force due to sloped backfill: (EM 1110-2-2502, Fig. 4-7)

$$h_1 := h_2 + \tan(\beta) \cdot L_{WS5}$$
 $h_1 = 27.0 \text{ ft}$

$$h_1 = 27.0 \, ft$$

$$P_{i} := k_{0\beta} \cdot \gamma_{\text{fill}} \cdot h_{\text{Al}_{i}} \cdot \left(h_{\text{A2}_{i}} - t_{\text{base}}\right) + k_{0\beta} \cdot \gamma_{\text{fill}} \cdot \frac{\left(h_{\text{A3}_{i}} - t_{\text{base}}\right)^{2}}{2}$$

$$S_{\beta_i} := if \left[h_1 > h_2, \left[\frac{P_i \cdot (h_1 - h_2)}{3 \text{ LWS5}} \right], 0 \text{ klf} \right]$$

$$x_{S\beta} := L_{ftg}$$

$$x_{S\beta} = 29.0 \text{ ft}$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _	
By: _	
V	

Sum forces:

$$\Sigma V_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S_{\beta_{i}} - \left(U1_{i} + U2_{i} + U3_{i} + U4_{i}\right)$$

$$\begin{split} \Sigma M_{grav_{i}} &:= \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} + W_{WS4_{i}} \cdot x_{WS4_{i}} \right) \\ &+ W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U1_{i} \cdot x_{U1_{i}} + U2_{i} \cdot x_{U2_{i}} + U3_{i} \cdot x_{U3} + U4_{i} \cdot x_{U4_{i}} \right) \end{split}$$

$$R_{key_i} := -H1_i - K1_i - K2_i + H2_i + H3_i + A1_i + A2_i + A3_i$$

$$y_{\text{Rkey}} = \frac{-h_{\text{key}}}{2}$$
 $y_{\text{Rkey}} = -2.5 \,\text{ft}$

$$\Sigma H_i := -H1_i - K1_i - K2_i + H2_i + H3_i + A1_i + A2_i + A3_i - R_{key_i}$$

$$\begin{split} \Sigma M_{lat_{\hat{i}}} &:= -H1_{\hat{i}} \cdot y_{H1_{\hat{i}}} - K1_{\hat{i}} \cdot y_{K1} - K2_{\hat{i}} \cdot y_{K2} + H2_{\hat{i}} \cdot y_{H2_{\hat{i}}} + H3_{\hat{i}} \cdot y_{H3} - \\ &+ A1_{\hat{i}} \cdot y_{A1_{\hat{i}}} + A2_{\hat{i}} \cdot y_{A2_{\hat{i}}} + A3_{\hat{i}} \cdot y_{A3_{\hat{i}}} - R_{key_{\hat{i}}} \cdot y_{Rkey} \end{split}$$

$$\Sigma M_i = \Sigma M_{grav_i} - \Sigma M_{lat_i}$$

$$x_{R_i} := \frac{\Sigma M_i}{\Sigma V_i}$$

	$P_i =$		Sβ; =	=	R_{key_i}	=
ļ	7.3	klf	1.6	klf	14.5	klf
	9.2		2.0		16.7	
	9.7		2.2		18.4	
	8.9		2.0		19.3	
	6.7		1.5		20.0	

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	

$$L_{brg_{_{\hat{i}}}} \coloneqq max \\ \begin{bmatrix} min \\ \\ L_{ftg} \end{bmatrix}, 0 \cdot ft \end{bmatrix}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:

Bearing Capacity: (per EM 1110-1-1905)

$$c := c_{fill}$$

$$c = 0.0 \, psf$$

$$\phi = 32.0 \deg$$

$$\gamma_{\rm eff} := \gamma_{\rm fill} \,\, {\rm eff}$$

$$\gamma_{\text{eff}} = 65.0 \, \text{pcf}$$

$$\gamma_{\mbox{H_eff}} = \gamma_{\mbox{eff}}$$
 $\gamma_{\mbox{H_eff}} = 65.0 \, \mbox{pcf}$

$$B_{eff_i} := L_{ftg} - 2 \cdot \left| \frac{L_{brg_i}}{2} - x_{R_i} \right|$$

$$B_{eff} = \begin{pmatrix} 28.6 \\ 28.8 \\ 28.4 \\ 28.0 \\ 27.7 \end{pmatrix} ft$$

Table 4-3:

$$N_{\phi} := \tan\left(45 \cdot \deg + \frac{\phi}{2}\right)^2$$

$$N_{\phi} = 3.255$$

$$N_q := if(\phi = 0, 1.0, N_{\phi} \cdot e^{\pi \cdot tan(\phi)})$$

$$N_q = 23.2$$

$$N_c := if[\phi = 0, 5.14, (N_q - 1) \cdot \cot(\phi)]$$

$$N_c = 35.5$$

$$N_{\gamma} := if[\phi = 0, 0.00, (N_q - 1) \cdot tan(1.4 \cdot \phi)]$$

$$N_{\gamma} = 22.0$$

Inclined loading correction:

$$\theta_i := atan \left(\frac{R_{key_i} + K1_i + K2_i}{\Sigma V_i} \right)$$

$$0 = \begin{pmatrix} 21.16 \\ 20.76 \\ 20.17 \\ 19.19 \end{pmatrix} \operatorname{deg}$$

18.27

$$\xi_{\text{ci}_i} := \text{if} \left[\phi = 0, \left(1 - \frac{\theta_i}{90 \cdot \text{deg}} \right), \left(1 - \frac{\theta_i}{90 \cdot \text{deg}} \right)^{-1} \right]$$

$$\xi_{ci} = \begin{pmatrix} 0.585 \\ 0.592 \\ 0.602 \\ 0.619 \\ 0.635 \end{pmatrix} \begin{pmatrix} 0.115 \\ 0.123 \\ \xi_{yi} = \begin{pmatrix} 0.137 \\ 0.137 \end{pmatrix}$$

29.0

$$\begin{aligned} \xi_{\gamma i_{\underline{i}}} &:= if \left[\phi = 0, 1.0, if \left[\theta_{\underline{i}} \leq \phi, \left(1 - \frac{\theta_{\underline{i}}}{\phi} \right)^2, 0.0 \right] \right] \\ \xi_{q i_{\underline{i}}} &:= if \left[\phi = 0, \left(1 - \frac{\theta_{\underline{i}}}{90 \cdot \text{deg}} \right), \left(1 - \frac{\theta_{\underline{i}}}{90 \cdot \text{deg}} \right)^2 \right] \end{aligned}$$

$$\xi_{\gamma i} = \begin{pmatrix} 0.123 \\ 0.137 \\ 0.160 \\ 0.184 \end{pmatrix} \quad \xi_{q i} = \begin{pmatrix} 0.585 \\ 0.592 \\ 0.602 \\ 0.619 \\ 0.635 \end{pmatrix}$$

$$B = \begin{pmatrix} 29.0 \\ 29.0 \\ 29.0 \\ 29.0 \end{pmatrix} \text{ ft}$$

$$B_i := L_{brg_i}$$

$$W := 100 \cdot ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
V	

Foundation depth correction: (at toe)

$$D := t_{base}$$

$$D = 5.0 \, ft$$

$$\sigma_{D_{eff}} := \gamma_{eff} \cdot D$$

$$\sigma_{D_eff} = 325.0 \, psf$$

$$\xi_{\text{cd}_{\underline{i}}} := 1 + 0.2 \cdot \left(N_{\varphi}\right)^{\frac{\underline{i}}{2}} \cdot \frac{\underline{D}}{\underline{B}_{\underline{i}}}$$

$$\xi_{\text{cd}} = \begin{pmatrix} 1.062 \\ 1.062 \\ 1.062 \\ 1.062 \end{pmatrix}$$

1.062

1.398 1.398 1.398

1.398

1.398

$$\xi_{\gamma \underline{d}_{\underline{1}} \underline{10}_{\underline{i}}} \coloneqq 1 + 0.1 \cdot \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^{2} \right)^{\underline{2}} \cdot \frac{D}{B_{\underline{i}}}$$

$$\xi qd_i := \xi \gamma d_i$$

$$q_{u_toe_i} \coloneqq c \cdot N_c \cdot \xi_{cd} \cdot \xi_{ci} + \frac{1}{2} \cdot B_{eff_i} \cdot \gamma_{H_eff} \cdot N_{\gamma} \cdot \xi_{\gamma d} \cdot \xi_{\gamma i} + \sigma_{D_eff} \cdot N_q \cdot \xi_{qd} \cdot \xi_{qi}$$

$$qd = \begin{pmatrix} 1.031 \\ 1.031 \\ 1.031 \\ 1.1 \\ qu_{toe} = \begin{pmatrix} 38.750 \\ 38.864 \\ 38.615 \\ 38.402 \\ 38.273 \end{pmatrix}$$

1.031

1.031

1.031

1.021

1.021 1.021

1.021

1.021

 $\xi_{\gamma d}$ 10 =

Foundation depth correction: (at heel)

$$D := E_{grade} - E_{ftg} + t_{base} + h_{\beta}$$

$$D = 32.0 \, ft$$

$$σ_{D_{eff_heel}} := γ_{eff} \cdot D$$

$$\frac{1}{2} \frac{1}{2} \frac{D}{D}$$

$$\sigma_{D_eff} = 0.325 \, \text{ksf}$$

$$\xi_{\gamma d_10_i} := 1 + 0.1 \cdot \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^2 \right)^{\frac{1}{2}} \cdot \frac{D}{B_i}$$

$$\xi_{\gamma d_{i}} = if \left[\phi \leq 10 \ \deg, \xi_{\gamma d_{0}} + \frac{\phi}{10 \cdot \deg} \left(\xi_{\gamma d_{1} 10_{i}} - \xi_{\gamma d_{0}} \right), 1 + 0.1 \left(N_{\phi} \right)^{2} \cdot \frac{D}{B_{i}} \right]$$

$$\xi_{qd_i} := \xi_{\gamma d_i}$$

$$\xi_{\gamma d} = \begin{bmatrix} 1.132 \\ 1.132 \\ 1.132 \\ 1.132 \\ 1.199 \\ 1.199 \\ 1.199 \\ 1.199 \\ 1.199 \\ 1.199 \end{bmatrix}$$

$$\xi_{\gamma d} = \begin{bmatrix} 1.199 \\ 1.199 \\ 1.199 \\ 1.199 \\ 1.199 \\ 1.199 \end{bmatrix}$$

1.132

USACE EM 1110-1-1905, Eq. 4-16:

$$q_{u_heel_i} = c \ N_c - \xi_{cd} - \xi_{ci} + \frac{1}{2} \cdot B_{eff_i} - \gamma_{H_eff} \ N_{\gamma} \cdot \xi_{\gamma d} - \xi_{\gamma i} + \sigma_{D_eff} \ N_q \cdot \xi_{qd} \cdot \xi_{qi}$$

1.
$$q_{u_heel} = \begin{pmatrix} 45.063 \\ 45.195 \\ 44.906 \\ 44.658 \\ 44.508 \end{pmatrix}$$
 ksf

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
ن	

 $check_uplift_i := L_{ftg} - L_{brg_i} - L_{uplift_i}$

ok := if(max(|check_uplift|) < 0.001 · ft, ok, "Uplift assumptions do not match bearing area.")

ok = "Ok"

$$e_{brg_i} := \frac{L_{brg_i}}{2} - x_{R_i}$$

$$\sigma_{brg_toe_i} \coloneqq \frac{\Sigma V_i}{L_{brg_i}} + \frac{\Sigma V_i \cdot e_{brg_i}}{\frac{\left(L_{brg_i}\right)^2}{6}}$$

$$\sigma_{\text{brg_heel}_{i}} \coloneqq \frac{\Sigma V_{i}}{L_{\text{brg}_{i}}} - \frac{\Sigma V_{i} \cdot e_{\text{brg}_{i}}}{\frac{\left(L_{\text{brg}_{i}}\right)^{2}}{6}}$$

$$\%_{\text{brg}_{i}} \coloneqq \frac{L_{\text{brg}_{i}}}{L_{\text{ftg}}}$$

$$\%_{\text{brg}_{\underline{i}}} = \begin{vmatrix} 100 & 0 \\ 100.0 \\ 100.0 \\ 100.0 \end{vmatrix} \%$$

%brg; =

ok := if $(\%_{\text{brg}_1} \ge 75 \cdot \%, \text{ok}, "OT instability: LC#1"})$

ok := if
$$\left(\%_{\text{brg}_n} \ge 100\%, \text{ok}, "OT instability: LC#n"}\right)$$

$$FS_{brg_{i}} = \begin{vmatrix} 17.81 \\ 17.47 \\ 16.33 \\ 15.40 \end{vmatrix}$$

$$S_{\text{brg}_{i}} = \begin{pmatrix} 18.00 \\ 17.81 \\ 17.47 \\ 16.33 \\ 15.40 \end{pmatrix} \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$$

 $L_{ftg} - L_{brg_i} =$

 $FS_{brg_{i}} := min \left(\frac{q_{u_toe_{i}}}{\sigma_{brg_toe_{i}}}, \frac{q_{u_heel_{i}}}{\sigma_{brg_toe_{i}}} \right)$

$$L_{\text{uplift}} = \begin{bmatrix} 0 & \text{ft} \\ 0 & \\ 0 & \end{bmatrix}$$

 $L_{\text{fig}} = 29.0 \text{ ft}$

 $t_{\rm w_bot} = 4.0\,{\rm ft}$

 $ok := \left. if \left\lfloor max \right\lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{uplift} \right) \right\rfloor \right\rfloor < 0.001 \quad \text{ft, ok, "Uplift area does not match} \quad \ \ \, \rfloor$

$$ok := if(FS_{brg_1} < 2, "Bearing problem LC#1", ok)$$

$$ok := if(FS_{brg_n} < 3, "Bearing problem LC#n", ok)$$

0.0000	ft
0.0000	
0.0000	
0.0000	
0.0000	İ

0.0000	ft
0.0000	
0.0000	
0.0000	
0.0000	

$$L_{ftg} = 29.0 \text{ ft}$$

 $\frac{L_{\text{fig}}}{4} = 7.250 \,\text{ft}$

$$L_{toe} = 8 \cdot ft$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	
✓	

Base Pressures:

$$e_{ftg_{\underline{i}}} \coloneqq \frac{L_{ftg}}{2} - x_{R_{\underline{i}}}$$

(eccentricity with respect to the footing centroid)

$$\Sigma H_i + R_{key_i} = \Sigma V_i =$$

14.5 klf 59.9 klf

$$e_{fig_i} = x_{R_i} = 0.19$$
 ft 14.31 ft 14.58 -0.32 14.82 -0.52 15.02 -0.64 15.14

$$L_{\rm brg_{1}} = 29.00\,{\rm ft}$$

$$\frac{L_{\text{brg}}}{L_{\text{fig}}} = \begin{pmatrix} 100.0\\100.0\\100.0\\100.0\\100.0 \end{pmatrix} \%$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	·	
By:		
Ú		,

Sliding Analysis:

Function Definitions:

$$c_1(\phi_d) := 2 \cdot \tan(\phi_d)$$

$$c_2(\phi_d, \beta) := 1 - \tan(\phi_d) \cdot \tan(\beta) - \left(\frac{\tan(\beta)}{\tan(\phi_d)}\right)$$

$$\alpha_{driving}(\phi_d, \beta) := -atan \left(\frac{c_1(\phi_d) + \sqrt{c_1(\phi_d)^2 + 4 \cdot c_2(\phi_d, \beta)}}{2} \right)$$

$$L_{\beta} := max \left(\left(\frac{h_{\beta}}{tan(\beta)} - L_{WS5} + L_{WS6} \right) \right)$$

$$0 \cdot ft$$

$$L_{\beta} = 0.0 \, \text{ft}$$

Sliding Analysis #1:

$$\beta_{\mathbf{w}} \coloneqq \beta$$

$$\phi_i := \phi_{fill}$$

$$c = 0 \text{ ksf}$$

$$\phi_{d_i} \coloneqq \text{atan}\!\!\left(\frac{\text{tan}\!\left(\phi_i\right)}{\text{FS}_{1_i}}\right)$$

$$\beta_{\rm w} = 33.7 \deg$$

$$\phi = \begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} \text{deg}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 20.7 \\ 20.0 \\ 19.3 \\ 18.6 \\ 17.9 \end{pmatrix} \operatorname{deg}$$

$$atan(tan(\beta) FS_{1}) = \begin{vmatrix} 48.9 \\ 49.9 \\ 51.1 \end{vmatrix}$$
 deg (back solve for minimum ϕ value for stable slope β , EM 1110-2-2502, pg 3-31)

$$\phi_{i} := if \left[\left(c_{I} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left(\phi_{d_{i}}, \beta_{w} \right) < 0 \right), atan \left(tan \left(\beta_{w} \right) \cdot FS_{1_{i}} \right), \phi_{i} \right]$$

$$\phi = \begin{vmatrix} 48.9 \\ 49.9 \\ 51.1 \end{vmatrix} \text{deg}$$

(substitue minimum ϕ if slope is unstable)

$$\phi_{d_1b_i} := atan \left(\frac{tan(\phi_i)}{FS_{1_i}} \right)$$

$$\alpha_{1b_i} := \alpha_{driving}(\phi_{d_1b_i}, \beta_w)$$

$$h_{1b} := \left(E_{grade} + L_{WS5} \cdot \tan(\beta_{w})\right) - \left(E_{bftg} - h_{key}\right) \quad h_{1b} = 37 \text{ 0 ft}$$

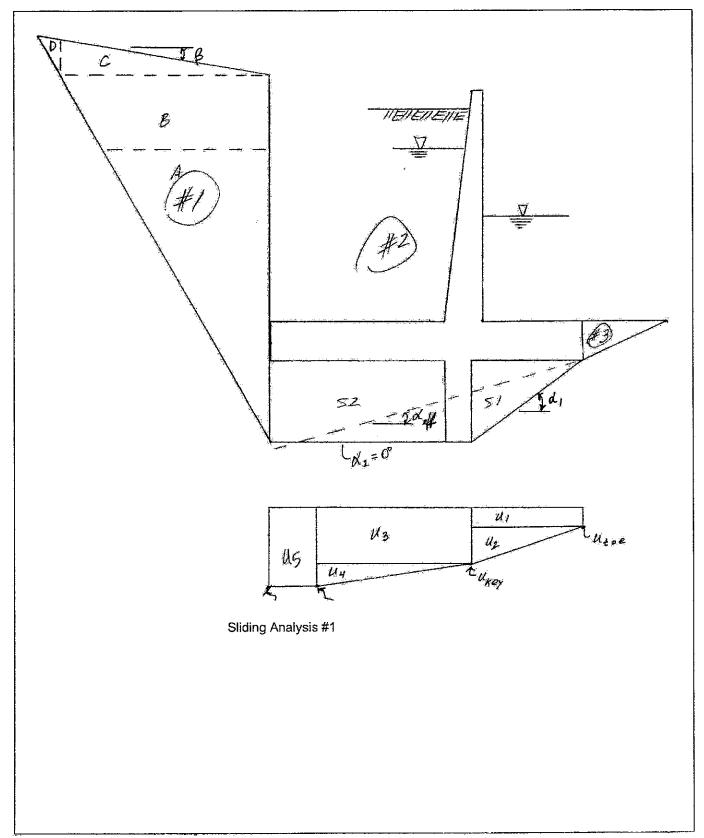
$$h_{1b} = \left(E_{grade} + L_{WS5} \cdot \tan(\beta_{w})\right) - \left(E_{bftg} - h_{key}\right) \quad h_{1b} = 37 \text{ 0 ft}$$

$$\frac{h_{1b}}{\cos(-\alpha_{1b_{i}}) \cdot (\tan(-\alpha_{1b_{i}}) - \tan(\beta_{w}))} \quad \alpha_{1b} = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} deg$$

$$L_{max_{i}} := if \left[-\alpha_{1b_{i}} + \phi_{d_{1}b_{i}}, 1000 \right] \quad ft, \quad \frac{\cos(-\alpha_{1b_{i}}) \cdot (\tan(-\alpha_{1b_{i}}) - \tan(\beta_{w}))}{\cos(-\alpha_{1b_{i}})} \right] \quad \alpha_{1b} = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix}$$

$$h_{1a_{i}} := if \left[L_{\beta} < L_{max_{i}}, h_{1b} + L_{\beta} \cdot \left(tan(\beta) - tan(-\alpha_{1b_{i}}) \right), 0 \cdot ft \right]$$

$$\phi_{d_{1}b_{i}} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix} deg$$


$$b = \begin{pmatrix} -33 & & & & & \\ -33.7 & & & & & \\ -33.7 & & & & \\ -33.7 & & & \\ -33.7 & & & \\ L_{max} = \begin{pmatrix} 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \end{pmatrix}$$
ft

$$\left(2.9 \times 10^9\right)$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date: By: _____

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
4	

Driving	Wedge	(#1a):
---------	-------	--------

$$\beta_{\mathbf{W}} := 0 \cdot deg$$

$$\beta_{\rm W} = 0.0 \deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$\mathbf{h}_{1a} = \begin{pmatrix} 37.0 \\ 37.0 \\ 37.0 \\ 37.0 \\ 37.0 \end{pmatrix} \mathbf{ft}$$

$$c := 0 \cdot ksf$$

 $h_i := h_{1a_i}$

$$\begin{split} \phi_{d_i} &:= atan\!\!\left(\frac{tan(\phi)}{FS_{1_i}}\right) \\ \alpha_i &:= \alpha_{driving}\!\!\left(\phi_{d_i}, \beta_w\right) \end{split}$$

$$\alpha = \begin{pmatrix} -55.4 \\ -55.0 \\ -54.7 \\ -54.3 \end{pmatrix} deg$$

$$\phi_{\mathbf{d}} = \begin{pmatrix} 20.0 \\ 19.3 \\ 18.6 \\ 17.9 \end{pmatrix} deg$$

20.7

$$= \begin{pmatrix} 37.0 \\ 37.0 \\ 37.0 \\ 37.0 \\ 37.0 \end{pmatrix}$$
ft $\begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$

$$\begin{pmatrix} 27.0 \\ 24.0 \\ 21.0 \end{pmatrix}$$

$$L_{i} := \frac{h_{i}}{\cos(-\alpha_{i}) \cdot \left(\tan(-\alpha_{i}) - \tan(\beta_{w})\right)}$$

$$h_{sat_{i}} := \max \begin{bmatrix} \begin{bmatrix} E_{wheel_{i}} - \left(E_{ftg} - t_{base} - h_{key}\right) - L_{\beta} \cdot tan\left(-\alpha_{1b_{i}}\right) \end{bmatrix} \end{bmatrix}$$

$$0 \cdot \text{ft}$$

$$a_{\text{sat}} = \begin{bmatrix} 21.0 & \text{ft} \\ 18.0 & \\ 15.0 & \end{bmatrix}$$

$$L_{h_i} := \frac{h_i}{\tan(-\alpha_i)}$$

$$L_{sat_{\underline{i}}} \coloneqq \frac{h_{sat_{\underline{i}}}}{\tan(-\alpha_{\underline{i}})}$$

$$L_{h} = \begin{vmatrix} 25.9 \\ 26.2 \\ 26.6 \\ 26.9 \end{vmatrix}$$
 ft

$$L_{\text{sat}} = \begin{pmatrix} 18.6 \\ 16.8 \\ 14.9 \\ 12.9 \\ 10.9 \end{pmatrix} \text{ft}$$

$$\mathbf{h}_{left} := \mathbf{0} \cdot \mathbf{ft}$$

$$h_{right_i} = h_{1a_i}$$

$$W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} - \frac{h_{left} + h_{right_{i}}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot \frac{L_{sat_{i}} \cdot h_{sat_{i}}}{2}$$

$$V:=-0+klf$$

64.5

$$H_R := 0 \cdot klf$$

 $H_{L} := 0 \cdot klf$

$$\boldsymbol{U_i} \coloneqq \boldsymbol{\gamma_w} \cdot \left(\frac{\boldsymbol{h_{sat_i}}}{2}\right) \cdot \sqrt{\left(\boldsymbol{h_{sat_i}}\right)^2 + \left(\boldsymbol{L_{sat_i}}\right)^2}$$

$$U = \begin{pmatrix} 27.7 \\ 22.0 \\ 16.9 \\ 12.5 \\ 8.7 \end{pmatrix} \text{klf}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
J	

$$\Delta P_{1a_{\underline{i}}} := \frac{\left[\left(W_{\underline{i}} + V\right) \cdot \left(tan\left(\varphi_{d_{\underline{i}}}\right) \cdot cos\left(\alpha_{\underline{i}}\right) + sin\left(\alpha_{\underline{i}}\right)\right) - U_{\underline{i}} \cdot tan\left(\varphi_{d_{\underline{i}}}\right) + \left(H_L - H_R\right) \cdot \left(tan\left(\varphi_{d_{\underline{i}}}\right) \cdot sin\left(\alpha_{\underline{i}}\right) - cos\left(\alpha_{\underline{i}}\right)\right) + \frac{c}{FS_{1_{\underline{i}}}} \cdot L_{\underline{i}}\right]}{\left(cos\left(\alpha_{\underline{i}}\right) - tan\left(\varphi_{d_{\underline{i}}}\right) \cdot sin\left(\alpha_{\underline{i}}\right)\right)}$$

 $\beta_w = 33.7 deg$

Driving Wedge (#1b)

$$\beta_{\mathbf{w}} := \beta$$

$$\alpha := \alpha_{1b}$$

$$\phi_{\mathbf{d}} := \phi_{\mathbf{d} \ 1b}$$

$$L_h := L_{\beta}$$

$$L_h = 0.0 \text{ ft}$$

$$L_{\beta} = \frac{L_{\beta}}{(1 - 1)^{-1}}$$

$$\mathbf{h_{satr}}_{i} \coloneqq \text{max} \begin{bmatrix} \begin{bmatrix} \mathbf{E_{wheel}}_{i} - \left(\mathbf{E_{ftg}} - \mathbf{t_{base}} - \mathbf{h_{key}} \right) \end{bmatrix} \\ \mathbf{0} \cdot \mathbf{ft} \end{bmatrix}$$

$$\begin{aligned} h_{satl_{i}} &:= \max \left[\begin{array}{c} E_{wheel_{i}} - \left(E_{ftg} - t_{base} - h_{key} \right) - \frac{L_{\beta}}{\cos(\alpha_{i})} \\ 0 \cdot \text{ft} \end{array} \right] \\ L_{sat_{i}} &:= \min \left[\begin{array}{c} L_{\beta} \\ h_{satr_{i}} \\ \hline \tan\left(\left(-\alpha \right)_{\underline{i}} \right) \end{array} \right] \\ L_{sat} &= \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ft} \end{aligned}$$

$$h_{left_i} := h_{1a_i}$$
 $h_{right} := h_{1b}$

$$\alpha = \begin{pmatrix} -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \end{pmatrix} deg$$

$$\phi_{\mathbf{d}} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix} deg$$

$$h = \begin{pmatrix} 37.0 \\ 3$$

$$h_{\text{satl}} = \begin{pmatrix} 27.0 \\ 24.0 \\ 21.0 \\ 18.0 \\ 15.0 \end{pmatrix} \text{ft}$$

$$h_{left} = \begin{pmatrix} 37.0 \\ 37.0 \\ 37.0 \\ 37.0 \\ 37.0 \\ 37.0 \end{pmatrix} ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:

$$\begin{aligned} W_i &:= \gamma_{fill} \cdot \left(L_h \cdot \frac{h_{left_i} + h_{right}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot L_{sat_i} \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right) & W_i &= \\ V &:= 0 \cdot klf & 0.0 & klf \\ H_L &:= 0 \cdot klf & 0.0 \\ H_R &:= 0 \cdot klf & 0.0 & 0.0 \end{aligned}$$

$$\begin{split} U_i &= \gamma_W \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right) \cdot \sqrt{\left(h_{satr_i} - h_{satl_i}\right)^2 + \left(L_h\right)^2} \\ \Delta P_{1b_i} &:= \frac{\left[\left(W_i + V\right) \cdot \left(tan\left(\phi_{d_i}\right) \cdot cos\left(\alpha_i\right) + sin\left(\alpha_i\right)\right) - U_i \cdot tan\left(\phi_{d_i}\right) + \left(H_L - H_R\right) \cdot \left(tan\left(\phi_{d_i}\right) \cdot sin\left(\alpha_i\right) - cos\left(\alpha_i\right)\right) + \frac{c}{FS_{1_i}} \cdot L_i\right]}{\left(cos\left(\alpha_i\right) - tan\left(\phi_{d_i}\right) \cdot sin\left(\alpha_i\right)\right)} \end{split}$$

Structure Wedge (#2)

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi \coloneqq \phi_{\mathrm{fill}}$$

$$\phi = 32.0 \text{ deg}$$

$$c = 0 \cdot ksf$$

$$\phi_{d_i} := atan\left(\frac{tan(\phi)}{FS_{1_i}}\right)$$

$$\alpha_1 := \operatorname{atan} \left(\frac{h_{key}}{x_{key} - \frac{L_{key}}{2}} \right)$$

$$\varphi = 32.0 \ deg$$

$$\alpha_1 := atan \left(\frac{h_{key}}{x_{key} - \frac{L_{key}}{2}} \right)$$
 $\alpha_1 = 29.1 \, deg$ (angle of shear plane between toe and key)

 $U_i =$

0.000

0.000

0.000 0.000

0.000

klf

20.0 19.3 deg

$$\alpha_2 := 0 \cdot \deg$$

(angle of shear plane between key and heel)

$$\alpha := \alpha_1 \cdot \left(\frac{x_{key}}{L_{ftg}}\right) + \alpha_2 \cdot \left(\frac{L_{ftg} - x_{key}}{L_{ftg}}\right) \quad \alpha = 10.5 \deg (\text{average angle of shear plane for structural wedge})$$

$$L := \frac{L_{ftg}}{\cos(\alpha)}$$

$$L = 29.5 \, \mathrm{ft}$$

$$h_{S1} := h_{key}$$

$$h_{S1} = 5.0 \, ft$$

$$L_{S1} := x_{key} - \frac{L_{key}}{2}$$

$$L_{S1} = 9.0 \, ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$$x_{S1} := \frac{2}{3} \cdot L_{S1}$$

$$x_{S1} = 6.0 \, ft$$

$$S1 := \gamma_{sat} \cdot \frac{h_{S1} \cdot L_{S1}}{2}$$

$$S1 = 2.9 \, \text{klf}$$

$$h_{S2} = h_{key}$$

$$h_{S2} = 5.0 \, ft$$

$$L_{S2} \coloneqq L_{ftg} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 17.0 \, ft$$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 20.5 \, ft$$

$$S2 := \gamma_{sat} \cdot h_{S2} \cdot L_{S2}$$

$$S2 = 10.8 \, \text{klf}$$

$$W_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_{\mathbf{w}} \cdot \left(E_{wtoe_i} - E_{bftg} \right)$$

$$u_{\text{heel}_{i}} := \gamma_{\mathbf{w}} \cdot \left| E_{\text{wheel}_{i}} - \left(E_{\text{bftg}} - h_{\text{key}} \right) \right|$$

$$\delta_{u_{i}} := \frac{\gamma_{w} \left(E_{wheel_{i}} - E_{wtoe_{i}}\right)}{L_{ftg} - L_{t1}}$$

$$\mathbf{u}_{\text{key}_{i}} := \mathbf{u}_{\text{toe}_{i}} + \delta_{\mathbf{u}_{i}} \cdot \left(\mathbf{x}_{\text{key}} - \frac{\mathbf{L}_{\text{key}}}{2}\right) + \gamma_{\mathbf{w}} \cdot \mathbf{h}_{\text{key}}$$

$$ok := if \left[u_{key_1} + \delta_{u_1} \left(L_{ftg} - x_{key} + \frac{L_{key}}{2} - L_{tl_1} \right) = u_{heel_1} \right], ok, "Uplift pressures do not close."$$

$$u_{l_i} := u_{toe_i} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u1} = \frac{x_{key} - \frac{L_{key}}{2}}{2}$$

$$x_{u1} = 4.5 \, ft$$

$$u_{2_i} = \left(u_{\text{key}_i} - u_{\text{toe}_i}\right) \cdot \frac{\left(x_{\text{key}} - \frac{L_{\text{key}}}{2}\right)}{2}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$$x_{u2} := \frac{2}{3} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u2} = 6.0 \, ft$$

$$u_{3_i} := u_{\text{key}_i} \left(L_{\text{ftg}} - L_{t1_i} - x_{\text{key}} + \frac{L_{\text{key}}}{2} \right)$$

$$x_{u3_i} := x_{key} - \frac{L_{key}}{2} + \frac{1}{2} \cdot \left[L_{ftg} - L_{t1_i} - \left(x_{key} - \frac{L_{key}}{2} \right) \right]$$

$$u_{4_i} \coloneqq \left(u_{heel_i} - u_{key_i}\right) \cdot \frac{\left(L_{fig} - L_{tl_i} - x_{key} + \frac{L_{key}}{2}\right)}{2}$$

$$x_{u4_{i}} := x_{key} - \frac{L_{key}}{2} + \frac{2}{3} \cdot \left[L_{fig} - L_{t1_{i}} - \left(x_{key} - \frac{L_{key}}{2} \right) \right]$$

$$u_{5_i} = u_{heel_i} L_{tl_i}$$

$$x_{\mathbf{u5}_{i}} \coloneqq L_{\mathbf{ftg}} - \frac{L_{\mathbf{t1}_{i}}}{2}$$

$$U_i := u_{1_i} + u_{2_i} + u_{3_i} + u_{4_i} + u_{5_i}$$

$$\mathbf{x}_{U_i} \coloneqq \frac{\mathbf{u}_{1_i} \cdot \mathbf{x}_{\mathbf{u}1} + \mathbf{u}_{2_i} \cdot \mathbf{x}_{\mathbf{u}2} + \mathbf{u}_{3_i} \cdot \mathbf{x}_{\mathbf{u}3_i} + \mathbf{u}_{4_i} \cdot \mathbf{x}_{\mathbf{u}4_i} + \mathbf{u}_{5_i} \cdot \mathbf{x}_{\mathbf{u}5_i}}{U_i}$$

$$\begin{split} \Sigma M_{grav_{i}} &:= \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}}\right) \\ &+ W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U_{i} \cdot x_{U_{i}}\right) \end{split}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
J	

$$h_{A2_{i}} := E_{wheel_{i}} - E_{bftg} + h_{key}$$

$$y_{A2_{i}} := \frac{h_{A2_{i}}}{2} - h_{key}$$

$$A2_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot h_{A2_{i}}$$

$$h_{A3_{i}} := h_{A2_{i}}$$

$$y_{A3_{i}} := \frac{h_{A3_{i}}}{3} - h_{key}$$

$$A3_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot eff \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$$

$$H3_{i} := 0 \cdot klf$$

 $h_{\text{H2}_i} := E_{\text{wheel}_i} - E_{\text{bftg}} + h_{\text{key}}$

 $y_{H2_i} := \frac{h_{H2_i}}{3} - h_{key}$

$h_{A2_i} =$					
1 27.00 ft 24.00 18.00 15.00	$y_{A2_{i}} = \frac{8.50}{7.00}$ ft $\frac{5.50}{4.00}$ $\frac{4.00}{2.50}$	A2 ₁ = 0.0 7.3 12.7 16.4 18.2	$klf h_{A3_i} = $	$y_{A3_i} = \frac{4.00}{3.00}$ ft $\frac{2.00}{1.00}$	A3 ₁ = 18.4 14.6 11.1 8.2

$$\begin{split} \text{H2}_{i} &:= \gamma_{w} \frac{\left(h_{\text{H2}_{i}}\right)^{2}}{2} \\ \Sigma M_{\text{lat}_{i}} &:= -\text{H1}_{i} \cdot \left(y_{\text{H1}_{i}}\right) - \text{K1}_{i} \cdot \left(y_{\text{K1}}\right) - \text{K2}_{i} \cdot \left(y_{\text{K2}}\right) + \text{H2}_{i} \cdot \left(y_{\text{H2}_{i}}\right) + \text{H3}_{i} \cdot \left(y_{\text{H3}}\right) \dots \\ &+ \text{A1}_{i} \cdot \left(y_{\text{A1}_{i}}\right) + \text{A2}_{i} \cdot \left(y_{\text{A2}_{i}}\right) + \text{A3}_{i} \cdot \left(y_{\text{A3}_{i}}\right) - R_{\text{key}_{i}} \cdot \left(y_{\text{Rkey}}\right) \end{split}$$

$$x_{R_i} := \frac{\sum M_{grav_i} - \sum M_{lat_i}}{W_i - U_i}$$

$$L_{brg_i} := min(3 \quad x_{R_i}, L_{ftg})$$

 $ok_{u_{i}} \coloneqq if \left[\left| L_{brg_{i}} - \left(L_{ftg} - L_{tl_{i}} \right) \right| > 0.001 \cdot ft, "Uplift assumptions wrong in sliding analysis.", "Matched." \right]$

klf

8.2 5.7

Title Samuels Ave. Dam Training wall at right CDM04188

Date: _____ By: _____

W _i =	u _{to}	oe _i =		u _{heel} =		$\delta_{u_{i}} =$	^	$u_{key_i} =$		u 1 _i =		u ₂ =		u ₃ =	
105.3	klf 0	.750	ksf	1.688	ksf	21.6	psf	1.256	ksf	6.750	klf	2.279	klf	25.129	klf
104.4	Ō	.563		1.500		21.6	ft	1.069		5.063		2.279		21.379	
103.2	0	.375		1.313		21.6		0.881		3.375		2.279		17.629	
102.6	0	.313		1.125		17.2		0.780		2.813		2.105		15.603	
102.3	0	.313		0.938		10.8		0.722		2.813		1.843		14.440	

u ₄ =		.u ₅ =		$x_{u3_i} =$		x _{u4} =	:	x _{u5} =		h _{H2} ;	=	УН2 _i	= ;	H2 _i =	
4.310	klf	0.0	klf	19.0	ft ·	22.3	ft	29.0	ft	27.0	ft	4.0	ft	22.8	klf
4.310		0.0		19.0		22.3		29.0		24.0		3.0		18.0	
4.310		0.0		19.0		22.3		29.0		21.0		2.0		13.8	
3.448		0.0		19.0		22.3		29.0		18.0		1.0		10.1	
2.155		0.0		19.0		22.3		29.0		15.0		0.0		7.0	

$U_i =$		$x_{U_i} =$		ΣM_{grav}	_{v_i} =	ΣM_{iat}	t = i	$x_{R_i} =$		$L_{\mathrm{brg}_{\mathrm{i}}}$	=
38.5	klf	16.1	ft	1219	kip	205	kip	15.2	ft	29.0	ft
33.0)	16.3		1307		212		15.3		29.0	
27.6	3	16.7		1386		214		15.5		29.0	
24.0)	16.6		1443		211		15.7		29.0	
21.3	3	16.3		1484		208		15.8		29.0	

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	
✓	

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_{i}} = \gamma_{w} \cdot \frac{\left(E_{wtoe_{i}} - E_{ftg}\right)^{2}}{2}$$

$$\Delta P_{2_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) \cdot cos(\alpha) + sin(\alpha)\right) - U_{i} \cdot tan\left(\varphi_{d_{i}}\right) + \left(H_{L_{i}} - H_{R_{i}}\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) \cdot sin(\alpha) - cos(\alpha)\right) + \frac{c}{FS_{1_{i}}} \cdot L\right]}{\left(cos(\alpha) - tan\left(\varphi_{d_{i}}\right) \cdot sin(\alpha)\right)}$$

$$\begin{array}{c} L_{ftg} - L_{brg_i} = \\ \hline 0.000 & ft \\ \hline 0.000 \\ \hline 0.000 \\ \hline 0.000 \\ \hline 0.000 \\ \hline \end{array}$$

$$L_{t1} \equiv \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} - ft$$

 $ok := if \left\lfloor \max \left\lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{t1}\right) \right\rfloor \right\rfloor < 0.001 \cdot ft, ok, "Uplift area does not match." \right\rfloor$

ok = if
$$\left(\min(L_{brg}) < x_{key} + \frac{L_{key}}{2}, \text{"Uplift assumptions incorrect.", ok}\right)$$
 ok = "Ok"

Samuels Ave. Dam Training wall at right

Date:	
Ву:	
✓	

Resisting Wedge (#3):

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi := \phi_{fill}$$

$$\phi = 320 \deg$$

$$c := 0 \cdot ksf$$

$$\phi_{d_i} := atan \left(\frac{tan(\phi)}{FS_{l_i}} \right)$$

$$\alpha_i := 45 \cdot \deg - \frac{\varphi_{d_i}}{2}$$

$$L_{i} := \frac{t_{base}}{\sin(\alpha_{i})}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 20.7 \\ 20.0 \\ 19.3 \\ 18.6 \\ 17.9 \end{pmatrix} \text{deg}$$

$$\alpha_{i} = \begin{pmatrix} 34.6 \\ 35.0 \\ 35.3 \\ 35.7 \\ 36.0 \end{pmatrix} deg$$

$$L = \begin{pmatrix} 8.799 \\ 8.714 \\ 8.647 \\ 8.565 \\ 8.500 \end{pmatrix}$$

 $W_{i} := \gamma_{sat} \cdot \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot t_{base}}{2} + \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg}\right) \cdot L_{i} \cdot \cos(\alpha_{i})$

$$\begin{aligned} &U_{i} \coloneqq \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{fig} + \frac{t_{base}}{2} \right) \cdot L_{i} \\ &H_{L} \coloneqq 0 \cdot klf \end{aligned}$$

$$H_R = 0$$
 klf

$$V := 0 \cdot klf$$

$$\Delta P_{3_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) - \cos\left(\alpha_{\hat{i}}\right) + \sin\left(\alpha_{\hat{i}}\right)\right) - U_{\hat{i}} \cdot \tan\left(\varphi_{d_{\hat{i}}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha_{\hat{i}}\right) - \cos\left(\alpha_{\hat{i}}\right)\right) + \frac{c}{FS_{1_{\hat{i}}}} - L_{\hat{i}}\right]}{\left(\cos\left(\alpha_{\hat{i}}\right) - \tan\left(\varphi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha_{\hat{i}}\right)\right)}$$

$$\Sigma P_i := \Delta P_{1a_i} + \Delta P_{1b_i} + \Delta P_{2_i} + \Delta P_{3_i}$$

1.3

$$\Delta P_{1a_{i}} = \frac{}{\text{klf}} = \frac{}{-53.9} \text{ kl}$$

$$\frac{}{-52.5} = \frac{}{}$$

$$\Delta P_{1b_i} =$$

klf

$$\Delta P_{3_{i}} = \frac{4.7}{3.7}$$
 klf $\frac{2.7}{2.4}$ $\frac{2.3}{2.3}$

$$\Sigma P_i =$$

$$\begin{array}{|c|c|c|c|}\hline
0.3 & klf & FS_i \equiv \end{array}$$

0.2

0.0

0.1

$$FS_{1} = \begin{bmatrix} 1.72 \\ 1.78 \\ 1.86 \\ 1.93 \end{bmatrix}$$

1.65

ok := if $(FS_{1_1} \ge 1.33, ok, "Sliding instability: LC#1")$

ok := if
$$(FS_{1_n} \ge 1.50, ok, "Sliding instability: LC#n")$$

$$ok = "Ok"$$

2.2

Samuels Ave. Dam Training wall at right CDM04188

Date:

Sliding Analysis #2:	$L_{\beta} = 0.00 \text{ ft}$	(32.0)	
$\beta_{w} := \beta$	$\beta_{\rm W} = 33.7 \deg$	32.0	
$\phi_i := \phi_{\text{fill}}$. "	$\phi = 32.0 \text{ deg}$	(25.2)
$c := 0 \cdot ksf$		32.0	24.5
$\phi_{d_i} := \operatorname{atan} \left(\frac{\operatorname{tan}(\phi_i)}{\operatorname{FS}_{2_i}} \right)$ (41.6)		(32.0)	$\phi_{d_i} = \begin{vmatrix} 24.3 \\ 23.9 \\ 23.0 \end{vmatrix} \text{deg}$

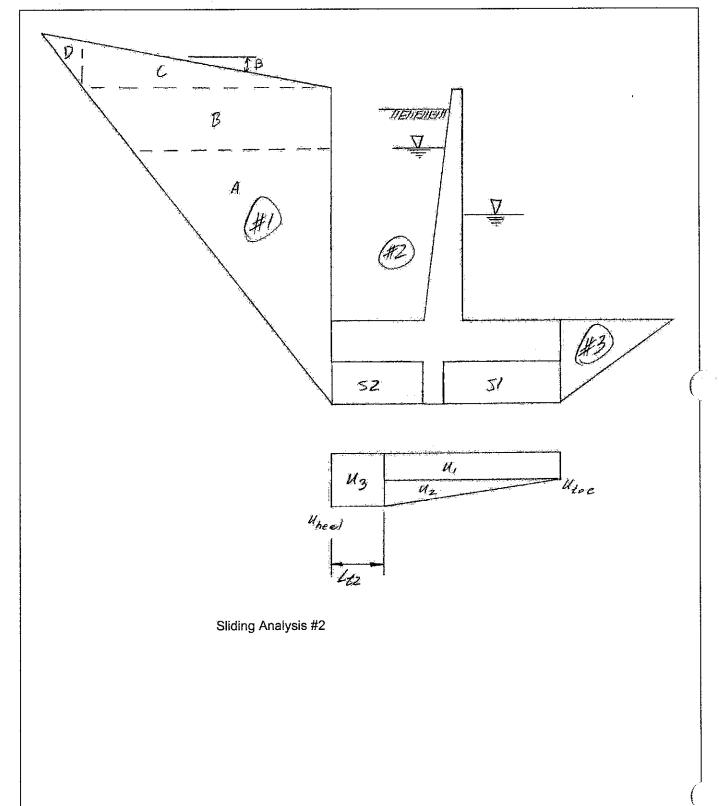
$$\begin{aligned} & \text{atan} \Big(\tan(\beta) \cdot FS_{2_i} \Big) = \begin{pmatrix} 41.6 \\ 42.4 \\ 43.2 \\ 44.4 \\ 45.6 \end{pmatrix} \\ & \phi_i = \text{if} \Bigg[\Big(c_1 \Big(\phi_{d_i} \Big)^2 + 4 \cdot c_2 \Big(\phi_{d_i}, \beta_w \Big) < 0 \Big), \\ & \text{atan} \Big(\tan(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_i = \text{if} \Bigg[\left(c_1 \Big(\phi_{d_i} \Big)^2 + 4 \cdot c_2 \Big(\phi_{d_i}, \beta_w \Big) < 0 \Big), \\ & \text{atan} \Big(\tan(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Bigg[\left(c_1 \Big(\phi_{d_i} \Big)^2 + 4 \cdot c_2 \Big(\phi_{d_i}, \beta_w \Big) < 0 \Big), \\ & \text{atan} \Big(\tan(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Bigg[\left(c_1 \Big(\phi_{d_i} \Big)^2 + 4 \cdot c_2 \Big(\phi_{d_i}, \beta_w \Big) < 0 \Big), \\ & \text{atan} \Big(\tan(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Bigg[\left(c_1 \Big(\phi_{d_i} \Big)^2 + 4 \cdot c_2 \Big(\phi_{d_i}, \beta_w \Big) < 0 \Big), \\ & \text{atan} \Big(\tan(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Bigg[\left(c_1 \Big(\phi_{d_i} \Big)^2 + 4 \cdot c_2 \Big(\phi_{d_i}, \beta_w \Big) < 0 \Big), \\ & \text{atan} \Big(\tan(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Bigg[\left(c_1 \Big(\phi_{d_i} \Big)^2 + 4 \cdot c_2 \Big(\phi_{d_i}, \beta_w \Big) < 0 \Big), \\ & \text{atan} \Big(\tan(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Bigg[\left(c_1 \Big(\phi_{d_i} \Big)^2 + 4 \cdot c_2 \Big(\phi_{d_i}, \beta_w \Big) < 0 \Big), \\ & \text{atan} \Big(\tan(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(c_1 \Big(\phi_{d_i} \Big)^2 + 4 \cdot c_2 \Big(\phi_{d_i}, \beta_w \Big) < 0 \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_i} \Big), \\ & \phi_{d_i} = \text{if} \Big(\cos(\beta_w) \cdot FS_{2_$$

$$\phi_{d_1b_i} := \operatorname{atan} \left(\frac{\operatorname{m}(+1)}{\operatorname{FS}_{2_i}} \right) \qquad \phi_{d_1b_i} = \left[\begin{array}{c} 33.7 \\ 33.7 \end{array} \right] \operatorname{deg}$$

$$\alpha_{1b_i} := \alpha_{\operatorname{driving}} \left(\phi_{d_1b_i}, \beta_{w} \right) \qquad \alpha_{1b} = \left[\begin{array}{c} -33.7 \\ -33.7 \end{array} \right] \operatorname{deg}$$

$$\alpha_{1b_i} := \alpha_{\operatorname{driving}} \left(\phi_{d_1b_i}, \beta_{w} \right) \qquad \alpha_{1b} = \left[\begin{array}{c} -33.7 \\ -33.7 \end{array} \right] \operatorname{deg}$$

$$h_{1b} := \left(E_{\text{grade}} + L_{\text{WS5}} \cdot \tan(\beta_{\text{w}})\right) - \left(E_{\text{bftg}} - h_{\text{key}}\right) \quad h_{1b} = 37.0 \text{ ft}$$


$$a_{1b} = \begin{bmatrix} -33.7 \\ -33.7 \end{bmatrix}$$

$$L_{\max_{i}} := if \begin{bmatrix} h_{1b} & \frac{h_{1b}}{\cos(-\alpha_{1b_{i}})(\tan(-\alpha_{1b_{i}})-\tan(\beta_{w}))} \\ -\alpha_{1b_{i}} = \phi_{d_{1}b_{i}}, 1000 \cdot ft, \frac{\cos(-\alpha_{1b_{i}})(\tan(-\alpha_{1b_{i}})-\tan(\beta_{w}))}{\cos(-\alpha_{1b_{i}})} \end{bmatrix} \quad L_{\max} = \begin{pmatrix} 1000 & 0 \\ 1000 & 0 \\ 1000 & 0 \\ 1000 & 0 \\ 1000 & 0 \end{pmatrix} ft$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date: ___ By: _

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
V	·

Driving Wedge (#1a): $\beta_{\mathbf{W}} := 0 \cdot \deg$ $\beta_{\rm W} = 0.0 \deg$ $\phi := \phi_{\text{fill}}$ $\phi = 32.0 \deg$ $\phi_{\mathbf{d}_{i}} := \operatorname{atan}\left(\frac{\operatorname{tan}(\phi)}{\operatorname{FS}_{2_{i}}}\right)$ $\alpha_{i} := \alpha_{\operatorname{driving}}(\phi_{\mathbf{d}_{i}}, \beta_{w})$ $\alpha = \begin{pmatrix} -57.58 \\ -57.26 \\ -56.95 \\ -56.51 \\ -56.11 \end{pmatrix}$ $\alpha = \begin{pmatrix} 24.5 \\ 23.9 \\ 23.0 \\ 22.2 \end{pmatrix}$ $\alpha_{i} := h_{1a_{i}}$ $c := 0 \cdot ksf$ $L_{i} := \frac{h_{i}}{\cos(-\alpha_{i}) \cdot (\tan(-\alpha_{i}) - \tan(\beta_{w}))}$ $h_{sat_{i}} := \max \begin{bmatrix} E_{wheel_{i}} - (E_{ftg} - t_{base} - h_{key}) - L_{\beta} \cdot \tan(-\alpha_{1b_{i}}) \\ 0 & \text{ft} \end{bmatrix}$ (37.0)27.0 24.0 21.0 ft 18.0 15.0 10.08 $h_{left} := 0$ ft $h_{right_i} := h_{1a_i}$ $W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{right_{i}}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot \frac{L_{sat_{i}} \cdot h_{sat_{i}}}{2}$ 55.931 klf 56.754 $V := 0 \cdot klf$ 57.538 $H_L := 0 \cdot klf$ 58.597 59.589 $H_R := 0 \cdot klf$

Samuels Ave. Dam Training wall at right CDM04188

Date:		
By:		•
	=	

$$\boldsymbol{U}_{i} \coloneqq \boldsymbol{\gamma}_{w} \cdot \left(\frac{\boldsymbol{h}_{sat_{i}}}{2}\right) \cdot \sqrt{\left(\boldsymbol{h}_{sat_{i}}\right)^{2} + \left(\boldsymbol{L}_{sat_{i}}\right)^{2}}$$

$$U = \begin{pmatrix} 26.987 \\ 21.400 \\ 16.441 \\ 12.140 \\ 8.470 \end{pmatrix} \text{klf}$$

$$\Delta P_{1a_{i}} \coloneqq \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\varphi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

Driving Wedge (#1b)

$$L_{\beta} = 0.0 \, \text{ft}$$

$$\beta_w \coloneqq \beta$$

 $\alpha := \alpha_{1b}$

$$\beta_{\rm W} = 33.7 \deg$$

$$\beta_{\rm W} = 33.7 \deg$$

$$\alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} deg = \begin{bmatrix} 33.7 \\ 33.7 \\ 33.7 \end{bmatrix} deg$$

$$\phi_{\mathbf{d}} = \begin{bmatrix} 33.7 \\ 33.7 \\ 33.7 \end{bmatrix} deg$$

$$\phi_d := \phi_{d_1b}$$

$$L_{\rm h} = 0.0$$

$$h = \begin{vmatrix} 37.0 \\ 37.0 \\ 37.0 \\ 37.0 \end{vmatrix}$$
 ft

$$L = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \text{ft}$$

$$L_i \coloneqq \frac{L_\beta}{\cos(\alpha_i)}$$

$$h_{\text{satr}} := \max \begin{bmatrix} E_{\text{wheel}_i} - (E_{\text{ftg}} - t_{\text{base}} - h_{\text{key}}) \\ 0 \text{ ft} \end{bmatrix}$$

$$L = \begin{bmatrix} 0.0 & \text{ft} \\ 0.0 & \text{0} \\ 0.0 & \text{h}_{\text{satr}} = \begin{bmatrix} 27.0 \\ 24.0 \\ 21.0 & \text{ft} \\ 18.0 & \text{ft} \end{bmatrix}$$

$$\begin{aligned} \mathbf{h_{satl}}_{i} &\coloneqq \max \begin{bmatrix} \mathbf{E_{wheel}}_{i} - \left(\mathbf{E_{ftg}} - \mathbf{t_{base}} - \mathbf{h_{key}}\right) - \frac{\mathbf{L_{\beta}}}{\cos(\alpha_{i})} \end{bmatrix} \end{bmatrix} \quad \mathbf{h_{satl}} = \begin{bmatrix} 27.0 \\ 24.0 \\ 21.0 \\ 18.0 \\ 15.0 \end{bmatrix} \mathbf{ft} \\ \mathbf{L_{sat}}_{i} &\coloneqq \min \begin{bmatrix} \mathbf{L_{\beta}} \\ \mathbf{h_{satr}}_{i} \\ \tan[\left(-\alpha\right)_{i}\right] \end{bmatrix} \end{bmatrix} \quad \mathbf{L_{sat}} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix} \mathbf{ft} \end{aligned}$$

$$L_{sat_{i}} := min \left[\begin{array}{c} L_{\beta} \\ h_{satr_{i}} \end{array} \right]$$

$$\left[\frac{h_{satr_{i}}}{tan|(-\alpha)_{i}|} \right]$$

$$L_{sat} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} ft$$

$$h_{sati} = \begin{vmatrix} 24.0 \\ 21.0 \\ 18.0 \\ 15.0 \end{vmatrix} ft$$

$$h_{left_i} := h_{1a_i}$$

$$L_{sat} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$
ft

$$\mathbf{h_{left}} = \begin{pmatrix} 37.0 \\ 37.0 \\ 37.0 \\ 37.0 \end{pmatrix} \mathbf{ft}$$

$$h_{right} := h_{1b}$$

$$h_{right} = 37.0 ft$$

$$W_{i} := \gamma_{fill} \left(L_{h} \cdot \frac{h_{left_{i}} + h_{right}}{2} \right) + \left(\gamma_{sat} - \gamma_{fill} \right) \cdot L_{sat_{i}} \cdot \left(\frac{h_{sat_{i}} + h_{satl_{i}}}{2} \right)$$

$$V := 0 \cdot klf$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	S
By:	

$$H_L \coloneqq 0 \cdot klf$$

$$W_i =$$

$$H_{\mathbf{R}} := 0 \cdot klf$$

$$HR := 0 \cdot KH$$

$$U_{i} := \gamma_{w} \cdot \left(\frac{h_{satr_{i}} + h_{satl_{i}}}{2}\right) \cdot \sqrt{\left(h_{satr_{i}} - h_{satl_{i}}\right)^{2} + \left(L_{h}\right)^{2}}$$

$$\Delta P_{1b_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\phi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

Structure Wedge (#2):

 $U_i =$

$$\beta_w = 0 \text{ deg}$$

$$\phi := \phi_{fil}$$

$$\varphi = 32.0 \ deg$$

$$c := 0$$
 ksf

$$\phi_{d_i} := atan \left(\frac{tan(\phi)}{FS_{2_i}} \right)$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 25.2 \\ 24.5 \\ 23.9 \\ 23.0 \\ 22.2 \end{pmatrix} \operatorname{deg}$$

$$\alpha := 0 \cdot deg$$

$$\alpha = 0.0 \deg$$

$$L := \frac{L_{ftg}}{\cos(\alpha)}$$

$$L = 29.0 \, ft$$

$$h_{S1} := h_{kev}$$

$$h_{S1} = 5.0 \, ft$$

$$L_{S1} := x_{\text{key}} - \frac{L_{\text{key}}}{2}$$

$$L_{S1} = 9.0 \, ft$$

$$\mathbf{x}_{\mathbf{S}1} \coloneqq \frac{1}{2} \cdot \mathbf{L}_{\mathbf{S}}$$

$$x_{S1} = 4.5 \, ft$$

$$S1 := \gamma_{sat} \cdot h_{S1} \cdot L_{S1}$$

$$S1 = 5.7 \text{klf}$$

$$\mathsf{h}_{S2} \coloneqq \mathsf{h}_{key}$$

$$h_{S2} = 50 \, ft$$

$$L_{S2} := L_{ftg} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 17.0 \, ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
, i	 (

$$x_{S2} \coloneqq L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 20.5 \, ft$$

$$S2 := \gamma_{sat} \cdot h_{S2} \cdot L_{S2}$$

$$S2 = 10.8 \, \text{klf}$$

$$W_{i} := \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge:

$$\mathbf{u}_{toe_{_{i}}} \coloneqq \gamma_{w} \cdot \left\lfloor \mathbf{E}_{wtoe_{_{i}}} - \left(\mathbf{E}_{bftg} - \mathbf{h}_{key}\right) \right\rfloor$$

$$u_{\text{heel}_i} := \gamma_{\mathbf{w}} \cdot |E_{\text{wheel}_i} - (E_{\text{bftg}} - h_{\text{key}})|$$

$$\delta_{u_{i}} := \frac{\gamma_{w} \left(E_{wheel_{i}} - E_{wtoe_{i}}\right)}{L_{ftg} - L_{t2_{i}}}$$

$$u_{1_i} := u_{toe_i} \cdot \left(L_{ftg} - L_{t2_i}\right)$$

$$\mathbf{x_{u1}}_i \coloneqq \frac{\mathbf{L_{ftg}} - \mathbf{L_{t2}}_i}{2}$$

$$\mathbf{u_{2_i}} \coloneqq \left(\mathbf{u_{heel_i}} - \mathbf{u_{toe_i}}\right) \cdot \frac{\left(L_{ftg} - L_{t2_i}\right)}{2}$$

$$x_{u2_i} := \frac{2}{3} \left(L_{ftg} - L_{t2_i} \right)$$

$$\mathbf{u_{3}}_{i} := \mathbf{u_{heel}}_{i} \left(\mathbf{L_{t2}}_{i}\right)$$

$$\mathbf{x_{u3}}_{i} \coloneqq \mathbf{L_{ftg}} - \frac{\mathbf{L_{t2}}_{i}}{2}$$

$$\mathbf{U_i} = \mathbf{u_1_i} + \mathbf{u_2_i} + \mathbf{u_3_i}$$

$$\mathbf{x}_{\mathbf{U_{i}}} \coloneqq \frac{\mathbf{u}_{\mathbf{I_{i}}} \cdot \mathbf{x}_{\mathbf{u}\mathbf{I_{i}}} + \mathbf{u}_{\mathbf{2_{i}}} \cdot \mathbf{x}_{\mathbf{u}\mathbf{2_{i}}} + \mathbf{u}_{\mathbf{3_{i}}} \cdot \mathbf{x}_{\mathbf{u}\mathbf{3_{i}}}}{\mathbf{U_{i}}}$$

$$x_{U} = \begin{vmatrix} 15.8 \\ 160 \\ 15.9 \end{vmatrix}$$
 ft

14.5

14.5 19.3 19.3

19.3 ft

19.3

14.5 ft

$$\Sigma M_{grav_{i}} := \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}}\right) - \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}}\right) - \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}}\right) - \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}}\right) - \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}}\right) - \left(\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_$$

15.6

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

15.5

1488

22.7

15.6

29.0

203

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_i} := \gamma_W \cdot \frac{\left(E_{wtoe_i} - E_{ftg}\right)^2}{2}$$

$$\Delta P_{2_{i}} \coloneqq \frac{\left[\left(W_{i} + V\right) \cdot \left(tan\left(\phi_{d_{i}}\right) \cdot cos(\alpha) + sin(\alpha)\right) - U_{i} \cdot tan\left(\phi_{d_{i}}\right) + \left(H_{L_{i}} - H_{R_{i}}\right) \cdot \left(tan\left(\phi_{d_{i}}\right) \cdot sin(\alpha) - cos(\alpha)\right) + \frac{c}{FS_{2_{i}}} \cdot L\right]}{\left(cos(\alpha) - tan\left(\phi_{d_{i}}\right) \cdot sin(\alpha)\right)}$$

"Matched."

$$\begin{split} L_{fig} - L_{brg_i} &= \\ \hline 0.000 & ft \\ 0.000 & \\ 0.000 & \\ 0.000 & \\ 0.000 & \\ \end{split}$$

$$L_{t2} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot \text{ft}$$

$$\begin{split} \text{ok} &:= \text{if} \left\lfloor \text{max} \left\lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{t2} \right) \right\rfloor \right\rfloor < 0.001 \cdot \text{ft, ok, "Uplift area does not match."} \right\rfloor \\ \text{ok} &:= \text{if} \left(\text{min} \left(L_{brg} \right) < x_{key} + \frac{L_{key}}{2}, \text{"Uplift assumptions incorrect." , ok} \right) \\ \text{ok} &= \text{"Ok"} \end{split}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
~	

Resisting Wedge (#3):

$$\beta_{\mathbf{W}} := 0 \cdot \deg$$

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$c := 0 \text{ ksf}$$

$$\phi_{d_i} := atan \left(\frac{tan(\phi)}{FS_{2_i}} \right)$$

$$\alpha_i := 45 \cdot \text{deg} - \frac{\phi_{d_i}}{2}$$

$$L_{i} = \frac{t_{base} + h_{key}}{\sin(\alpha_{i})}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 25.2 \\ 24.5 \\ 23.9 \\ 23.0 \\ 22.2 \end{pmatrix} \operatorname{deg}$$

$$\alpha_{i} = \begin{pmatrix} 32.4 \\ 32.7 \\ 33.0 \\ 33.5 \\ 33.9 \end{pmatrix} deg$$

$$L = \begin{pmatrix} 18.654 \\ 18.490 \\ 18.337 \\ 18.125 \\ 17.933 \end{pmatrix}$$
 ft

$$W_{i} := \gamma_{sat} \cdot \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot \left(t_{base} + h_{key}\right)}{2} + \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg}\right) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_{i} := \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{fig} + \frac{t_{base} + h_{key}}{2} \right) \cdot L_{i}$$

$$H_L := 0 \cdot klf$$

$$H_R := 0 \cdot klf$$

$$V := 0 \cdot klf$$

$$\Delta P_{3_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\varphi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\varphi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

$$\Sigma P_i := \Delta P_{1a_i} + \Delta P_{1b_i} + \Delta P_{2_i} + \Delta P_{3_i}$$

-44.5

-43.9

$$\Delta P_{1b_{i}} = \begin{bmatrix} 0.0 & k1 \\ 0.0 & k1 \end{bmatrix}$$

0.0

$$\Delta P_{2_i} = \begin{bmatrix} 33.6 & kl \\ 33.7 & 34.2 \end{bmatrix}$$

33.7

$$\Sigma P_{i} = \begin{bmatrix} 0.1 \\ 0.2 \\ 0.2 \end{bmatrix} \text{ kif}$$

0.1

0.1

$$L_{heel} = 21$$
 ft $h_{key} = 5$ ft

$$L_{\text{fig}} = 29.0 \,\text{ft}$$

1.37

ok = if
$$(FS_{2_1} \ge 1.33, ok, "Sliding instability: LC#1")$$

ok := if
$$(FS_{2_n} \ge 1.50, ok, "Sliding instability: LC#n")$$

9.5

$$L_{ftoe} = 8.0 \text{ ft}$$

$$L_{ftg} - x_{key} - \frac{L_{key}}{2} = 17.0 \text{ ft}$$

5.6

·		
		· ·
		(

Samuels Ave. Dam Training wall at right CDM04188

Date: _____

Upstream Training Wall at Right: (Grade = 527.0')

Reference:T:\ST\CALCS\Common geometry.mcd(R)

Geometry:

$$E_{\text{wall}} := 530 \cdot \text{ft}$$

$$E_{ftg} := E_{approach}$$

$$E_{fig} = 500.0 \,\mathrm{ft}$$

$$t_{base} = 5 \cdot ft$$

$$E_{\text{bftg}} = E_{\text{ftg}} - t_{\text{base}}$$

$$E_{bftg} = 495.0\,\mathrm{ft}$$

$$E_{grade} := 527 \cdot ft$$

$$n := 5$$

$$i := 1 \cdot n$$

 $\Delta_{\mathbf{w}} \coloneqq 10 \cdot \mathbf{ft}$ (maximum height of retained water above water in basin)

$$E_{\text{wheel}_{i}} := E_{\text{grade}} - \frac{\left[E_{\text{grade}} - \left(E_{\text{ftg}} + \frac{\Delta_{w}}{2}\right)\right]}{n-1} \cdot (i-1)$$

$$E_{\text{wtoe}_{i}} := \max \begin{pmatrix} \left(E_{\text{wheel}_{i}} - \Delta_{w}\right) \\ E_{\text{ftg}} \end{pmatrix}$$

$$E_{\text{wtoe}} = \begin{pmatrix} 517.0 \\ 511.5 \\ 506.0 \\ 500.5 \end{pmatrix}$$

$$E_{\text{wheel}} = \begin{bmatrix} 521.5 \\ 516.0 \\ 510.5 \\ 505.0 \end{bmatrix} \text{ft}$$

527.0

$$E_{wtoe_{i}} \coloneqq \max \begin{pmatrix} \left(E_{wheel_{i}} - \Delta_{w} \right) \\ E_{fig} \end{pmatrix}$$

$$E_{\text{wtoe}} = \begin{bmatrix} 506.0 \\ 500.5 \end{bmatrix}$$
 ft
$$\begin{bmatrix} 500.0 \\ 500.0 \end{bmatrix}$$

$$h = 27.0 \text{ ft}$$

$$h := \min \begin{bmatrix} \begin{bmatrix} \frac{1.0}{1.5} \cdot 2 \cdot (E_{grade} - E_{ftg}) \end{bmatrix} + E_{grade} \\ 527 \text{ ft} - E_{ftg} \end{bmatrix} + E_{grade} \end{bmatrix}$$

$$h = 27.0 \text{ ft}$$

$$\beta := \operatorname{atan}\left(\frac{1.0}{1.5}\right) \qquad \beta = 33.7 \operatorname{deg}$$

$$h_{\beta} := 527 \cdot ft - E_{grade}$$

$$h_{\beta} = 0.0 \, ft$$

$$t_{w_top} = 1.5 \cdot ft$$

$$t_{w_bot} := t_{w_top} + \frac{\left(E_{wall} - E_{ftg}\right)}{g}$$

$$t_{w_bot} = 5.25 \, ft$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date: ____ By: _____

 $L_{toe} = 8.0 \, ft$

 $L_{heel} = 24.0 \text{ ft}$

 $L_{ftg} := L_{toe} + L_{heel}$

 $L_{ftg} = 32.0 \, ft$

 $h_{wall} := E_{wall} - E_{ftg}$

 $h_{wall} = 30.0 ft$

 $h_{key}=0.00\,\mathrm{ft}$

 $L_{key} \coloneqq 4 \cdot \mathrm{ft}$

 $L_{\text{key}} = 4.0 \, \text{ft}$

$$x_{key} \coloneqq L_{toe} + t_{w_bot} - \frac{L_{key}}{2}$$

 $x_{\text{key}} = 11.3 \text{ ft}$

Constants:

 $\gamma_{\rm W} = 62.5\,{\rm pcf}^{\circ}$

Soil parameters:

 $\gamma_{\text{fill_eff}} = 65.0 \, \text{pcf}$

 $\gamma_{\text{sat}} = 127.5 \,\text{pcf}$

 $\gamma_{\text{fill}} = 130.0\,\text{pcf}$

 k_0 fill = 0.5

 $\phi_{fill} = 32.0 \text{ deg}$

 $k_{0\beta} := k_{0_fill} \left(1 + \sin(\beta) \right)$

 $k_{0\beta} = 0.777$

(USACE EM 1110-2-2502, Eq 3-5)

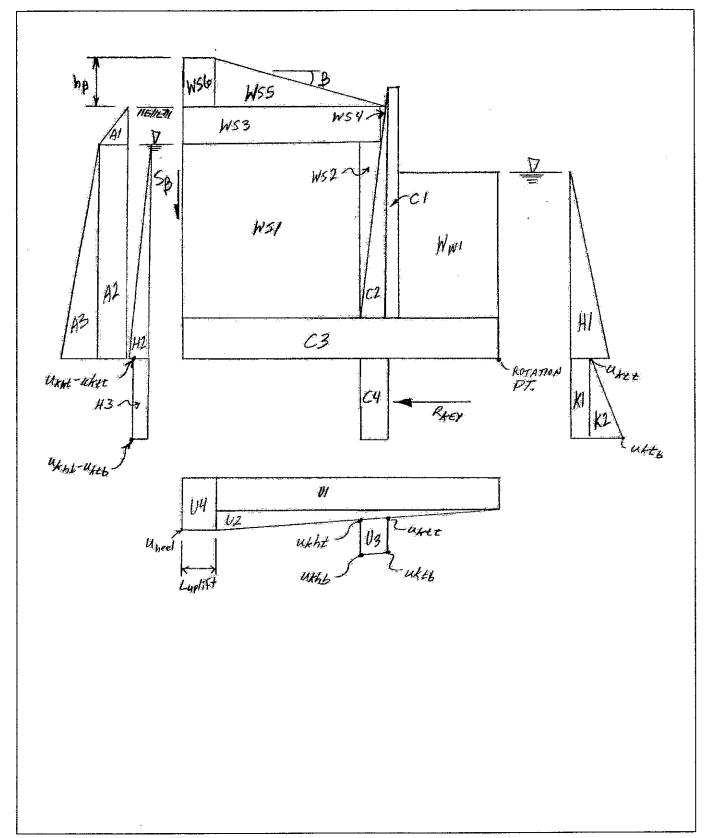
Pre-Definitions:

 $kip \equiv 1000 \text{ lbf}$

 $ksi \equiv 1000 \text{ psi}$

 $ok \equiv "Ok"$

 $klf = 1000 \cdot \frac{lbf}{l}$


ORIGIN = 1.0

(must equal to 1)

Samuels Ave. Dam
Training wall at right
CDM04188

Date: ______

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _____

Analysis:

Gravity Loads:

$$h_{C_1} = h_{wall}$$

$$h_{C_1} = 30.0 \, ft$$

$$L_{C_1} := t_{w_top}$$

$$L_{C_1} = 1.5 \, \text{ft}$$

$$x_{C_1} := L_{toe} + \frac{L_{C_1}}{2}$$

$$x_{C_1} = 8.8 \, ft$$

$$W_{C_1} := \gamma_c \cdot h_{C_1} \cdot L_{C_1}$$

$$W_{C_1} = 6.8 \, \mathrm{klf}$$

$$h_{C_2} := h_{C_1}$$

$$h_{C_2} = 30.0 \text{ ft}$$

$$L_{C_2} := t_{w_bot} - t_{w_top}$$

$$L_{C_2} = 3.8 \, ft$$

$$x_{C_2} = L_{toe} + L_{C_1} + \frac{L_{C_2}}{3}$$

$$x_{C_2} = 10.8 \, ft$$

$$W_{C_2} \coloneqq \gamma_c \cdot \frac{h_{C_2} \cdot L_{C_2}}{2}$$

$$W_{C_2} = 8.4 \,\mathrm{klf}$$

$$h_{C_3} := t_{base}$$

$$h_{C_3} = 5.0 \, ft$$

$$L_{C_3} := L_{ftg}$$

$$L_{C_3} = 32.0 \text{ ft}$$

$$x_{C_3} \coloneqq \frac{L_{C_3}}{2}$$

$$x_{C_3} = 16.0 \, ft$$

$$W_{C_3} := \gamma_c \cdot h_{C_3} \cdot L_{C_3}$$

$$W_{C_3} = 24.0 \, \text{klf}$$

$$h_{C_{\underline{a}}} := h_{\text{key}}$$

$$h_{C_4} = 0.0 \, ft$$

$$L_{C_4} := L_{key}$$

$$L_{C_4} = 4.0 \, \text{ft}$$

$$x_{C_4} := x_{key}$$

$$x_{C_4} = 11.3 \text{ ft}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
(4)	

$$W_{C_4} = \gamma_c \cdot h_{C_4} \cdot L_{C_4}$$

$$W_{C_4} = 0.0 \, klf$$

Weight of water at toe

$$h_{Wl_i} := E_{wtoe_i} - E_{fig}$$

$$h_{W1} = \begin{pmatrix} 17.00 \\ 11.50 \\ 6.00 \\ 0.50 \\ 0.00 \end{pmatrix} \text{ft}$$

$$L_{W1} := L_{toe}$$

$$L_{W1} = 8.0 \, ft$$

$$x_{W1} := \frac{L_{toe}}{2}$$

$$x_{W1} = 4.0 \, ft$$

$$W_{W1_i} := \gamma_w \cdot h_{W1_i} \cdot L_{W1}$$

$$W_{W1} = \begin{pmatrix} 8.5 \\ 5.8 \\ 3.0 \\ 0.3 \\ 0.0 \end{pmatrix} \text{klf}$$

Weight of water/soil at heel

$$h_{WS1_i} \coloneqq E_{wheel_i} - E_{ftg}$$

$$\mathbf{h_{WS1}} = \begin{pmatrix} 27.00 \\ 21.50 \\ 16.00 \\ 10.50 \\ 5.00 \end{pmatrix} \text{ft}$$

$$L_{WS1} \coloneqq L_{heel} - t_{w_bot}$$

$$L_{WS1} = 18.8 \, ft$$

$$x_{WS1} := L_{toe} + t_{w_bot} + \frac{L_{WS1}}{2}$$
 $x_{WS1} = 22.6 \text{ ft}$

$$W_{WS1_i} := (\gamma_{sat}) \cdot h_{WS1_i} \cdot L_{WS1}$$

$$W_{WS1} = \begin{pmatrix} 64.5 \\ 51.4 \\ 38.3 \\ 25.1 \\ 12.0 \end{pmatrix} \text{klf}$$

$$h_{WS2} := h_{WS1}$$

$$L_{WS2_i} := \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS2_i}$$

$$x_{WS2_{i}} := L_{toe} + t_{w_bot} - \frac{L_{WS2_{i}}}{3}$$

$$L_{WS2} = \begin{pmatrix} 3.38 \\ 2.69 \\ 2.00 \\ 1.31 \\ 0.63 \end{pmatrix}$$
 ft

$$x_{WS2} = \begin{pmatrix} 12.1 \\ 12.4 \\ 12.6 \\ 12.8 \\ 13.0 \end{pmatrix} ft$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$W_{WS2_i} := (\gamma_{sat}) \cdot \frac{h_{WS2_i} \cdot L_{WS2_i}}{2}$	
$W_{WS2_i} := (\gamma_{sat}) \cdot {2}$	$W_{WS2_i} =$
	5.8 klf
$h_{WS3_i} := E_{grade} - E_{wheel_i}$	$\frac{3.7}{2.0} \qquad h_{WS3_i} =$
	0.9 0.0 ft
$L_{WS3_i} := L_{WS1} + L_{WS2_i}$	0.2 5.5 LWS3 _i =
$x_{WS3_i} = L_{ftg} - \frac{L_{WS3_i}}{2}$	11.0 22.1 ft 16.5 21.4
Awss, 2	22.0 20.8 XWS3 _i =
$W_{WS3_i} := \gamma_{fill} h_{WS3_i} \cdot L_{WS3_i}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
1 1 1 .	19.4 21.3 W33 _i 21.6 0.0 klf
$h_{WS4_i} := h_{WS3_i}$	22.0 15.3
tu hot—tu ton	22.3 29.7 43.0
$L_{WS4_{i}} := \frac{t_{w_bot} - t_{w_top}}{h_{wall}} \cdot h_{WS4_{i}}$	L _{WS4} = 55.4
${ m L_{WS4.}}$	0.0 ft 0.7
$x_{WS4_i} := L_{ftg} - L_{WS3_i} - \frac{1}{3}$	$x_{WS4_i} =$
$W_{WS4_i} := \gamma_{fill} \frac{h_{WS4_i} L_{WS4_i}}{2}$	2.1 9.9 ft
$W_{WS4} := \gamma_{fill} \cdot \frac{\gamma_{fill}}{2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	11.3 0.0 klf
L _{WS5} := min L Mwall -	11.7 1.0 $L_{WS5} = 0.00 \text{ft}$
$L_{WS5} := min \begin{bmatrix} \begin{bmatrix} t_{w_bot} - t_{w_top} \\ h_{wall} \end{bmatrix} & (E_{grade} - E_{ftg}) + L_{WS1} \\ & \frac{h_{\beta}}{tan(\beta)} \end{bmatrix}$	2.2
$h_{WS5} := L_{WS5} \cdot tan(\beta)$ $h_{WS5} = 0.00 \text{ ft}$	3.9
$x_{WS5} := \frac{2}{3} \cdot L_{WS5} + L_{toe} + t_{w_top} + \frac{\left(E_{wall} - E_{grade}\right)}{E_{wall} - E_{ftg}} \cdot \left(t_{wall} - E_{ftg}\right)$	$x_{\text{WS5}} = 9.88 \text{ft}$
$W_{WS5} := \gamma_{fill} \frac{h_{WS5} \cdot L_{WS5}}{2} \qquad W_{WS5} = 0.0 \text{klf}$	
$L_{WS6} := \frac{E_{grade} - E_{ftg}}{h_{wall}} \cdot (t_{w_bot} - t_{w_top}) + L_{WS1} - L_{WS2}$	$L_{WS6} = 22.1 \text{ft}$
hws6 := hws5	$h_{WS6} = 0.0 ft$
$x_{WS6} = L_{fig} - \frac{L_{WS6}}{2}$	$x_{WS6} = 20.9 \text{ft}$
$W_{WS6} := \gamma_{fill} \cdot (h_{WS6} L_{WS6})$	$W_{WS6} = 0.0 \mathrm{klf}$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
J	

Uplift:

$$u_{toe_i} := \gamma_w \cdot \left(\mathbb{E}_{wtoe_i} - \mathbb{E}_{bftg} \right)$$

$$u_{heel_i} := \gamma_w \cdot \left(E_{wheel_i} - E_{bftg}\right)$$

$$\delta_{seep}_{i} = \frac{u_{heel_{i}} - u_{toe_{i}}}{L_{ftg} - L_{uplift_{i}}}$$

$$\mathbf{u}_{ktt_i} := \mathbf{u}_{heel_i} + \left(\mathbf{x}_{key} - \frac{\mathbf{L}_{key}}{2}\right) \cdot \delta_{seep_i}$$

$$u_{kht_i} := u_{ktt_i} + L_{key} \cdot \delta_{seep_i}$$

$$u_{ktb_i} = u_{ktt_i} + \gamma_w \cdot h_{key}$$

$$u_{khb_i} := u_{ktb_i} + L_{key} \delta_{seep_i}$$

$$x_{U1} := \frac{L_{ftg} - L_{uplift}}{2}$$

$$U1_i := u_{toe_i} \cdot L_{ftg}$$

$$x_{U2_i} := \frac{2}{3} \cdot \left(L_{fig} - L_{uplift_i} \right)$$

$$U2_{i} := \left(u_{heel_{i}} - u_{toe_{i}}\right) \cdot \frac{L_{fitg}}{2}$$

$$x_{U3} := x_{key}$$

$$U3_{i} \coloneqq \left(u_{ktb_{i}} - u_{ktt_{i}}\right) L_{key}$$

$$x_{U4_i} = L_{ftg} - \frac{L_{uplift_i}}{2}$$

$$L_{U4_i} := L_{uplift_i}$$

$$U4_i := \mathbf{u}_{heel_i} \ L_{U4_i}$$

$$u_{toe_i} =$$

I	1.375
I	1.031
Γ	0.688

 $u_{ktb_i} =$

2.187

1.837

 $U2_i =$

10.0

10.0

10.0

10.0

5.0

klf

ksf $u_{heel_i} =$

0.969

0.625

ksf

 $\delta_{\text{seep}_i} =$

u _{kht} =	
2.268	ksf
1.915	
1.571	
1.228	

0.754

 $u_{khb_i} =$ 1.493 2.268 ksf 1.149 1.915 0.715 1.571 1.228

0.754

 $x_{U3}=11.3\,\mathrm{ft}$

ksf

$$x_{Ul_i} = 15.5 \text{ ft}$$
 16.0
 16.0

$$U3 = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \text{klf}$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
_	

 $x_{U4_i} = U4_i =$

Lateral load due to water at toe:			31.5 ft	2.1	klf
Editional load ddo to water at too.			32.0	0.0	ĺ
$h_{\text{Hl}_{i}} = E_{\text{wtoe}_{i}} - E_{\text{bftg}}$	$h_{H1} =$		32.0	0.0	
	<u> </u>		32.0	0.0	
$y_{H1_i} := \frac{h_{H1_i}}{3}$	22.00 ft 16.50 y _{H1} =		32.0	0.0	
$H1_{i} := \gamma_{\mathbf{W}} \cdot \frac{\left(\mathbf{h}_{H1_{i}}\right)^{2}}{2}$	11.00 7.33 ft				
$H1_{i} := \gamma_{\mathbf{w}} \cdot \frac{(-1)}{2}$	5.50 5.50	H1 _i =	•		
$h_{\text{H2}_{i}} = E_{\text{wheel}_{i}} - E_{\text{bftg}}$	3.67 1.83	$\begin{array}{c c} 15.1 & \text{klf} \\ \hline 8.5 & h_{\text{H2}} = \end{array}$			
h _{H2,}	1.67	3.8 32.00 ft			
$y_{H2_i} := \frac{h_{H2_i}}{3}$		0.9 26.50			
(1,)2		0.8 21.00			
$H2_{i} := \gamma_{w} \cdot \frac{\left(h_{H2_{i}}\right)^{2}}{2}$		15.50	H2, =		
$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	VIIO ==	10.00	i		

 $H3_{i} := \left(u_{khb_{i}} - u_{ktb_{i}}\right) \cdot h_{H3}$

 $h_{K1} = 0.0 \, ft$

 $h_{H3}=0.0\,\mathrm{ft}$

 $y_{H3} = 0.0 \, ft$

 $K1_i := u_{ktt_i} \cdot h_{K1}$

 $h_{K1} := h_{key}$

 $h_{H3} = h_{key}$

 $h_{K2} = 0.0 \, ft$ $h_{K2} := h_{key}$

 $K2_i := \left(u_{ktb_i} - u_{ktt_i}\right) \cdot \frac{h_{K2}}{2}$

 $y_{K,1} = 0.0 \, ft$

 $y_{K2} = \frac{-2}{3} h_{key}$ $y_{K2} = 0.0 \, ft$

УН2 $_{\rm i}$ 10.7 ft 8.8 7.0 5.2 3.3

 $H3_i =$ 0.00 klf 0.00

0.00 0.00 0.00

 $K1_i =$ 0.0 klf

0,0 0.0 0.0 0.0

klf 32.0 21.9 13.8 7.5

3.1

 $K2_i =$ klf 0.0 0.0 0.0 0.0

0.0

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

Lateral load due to retained soil/water:

$$h_{Al_i} := E_{grade} - E_{wheel_i}$$

$$y_{A1_{i}} := E_{grade} - E_{bftg} - \frac{2}{3} \cdot h_{A1_{i}}$$

$$A1_{i} := k_{0\beta} \cdot \gamma_{fill} \cdot \frac{\left(h_{A1_{i}}\right)^{2}}{2}$$

$$h_{Al_i} =$$

0.00	ft		
5.50		$y_{A1} =$	
11.00		32.00	ft
16.50		28.33	^•
22.00		24.67	
		21.00	
		17.33	

$$h_{A2_i} := E_{wheel_i} - E_{bftg}$$

$$y_{A2_i} := \frac{h_{A2_i}}{2}$$

$$A2_{i} = k_{0\beta} \quad \gamma_{fill} \quad h_{A1_{i}} \quad h_{A2_{i}}$$

$$h_{A3} := h_{A2}$$

$$y_{A3_i} := \frac{h_{A3_i}}{3}$$

$$A3_{i} := k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$$

 $h_{A2} =$

$$y_{A2_i} =$$

$$A2_i =$$

22.2

 $h_{A3_i} =$

26.50

21.00

15.50

10.00

32.00 ft

 $y_{A3_i} =$

10.67 ft

 $A3_i =$

25.9

17.7

11.1 6.1

2.5

klf

8.83

7.00

5.17

3.33

Shear force due to sloped backfill: (EM 1110-2-2502, Fig. 4-7)

$$h_2 := E_{grade} - E_{ftg}$$

$$h_2 = 270 \, ft$$

$$h_1 := h_2 + \tan(\beta) \cdot L_{WS5}$$
 $h_1 = 27.0 \text{ ft}$

$$h_1 = 27.0 \, ft$$

$$\begin{split} &P_{i} := k_{0\beta} \quad \gamma_{fill} \cdot h_{A1_{i}} \cdot \left(h_{A2_{i}} - t_{base}\right) + k_{0\beta} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}} - t_{base}\right)^{2}}{2} \\ &S_{\beta_{i}} := \left. if \right| h_{1} > h_{2}, \left| \frac{P_{i} \cdot \left(h_{1} - h_{2}\right)}{3 \cdot L_{WS5}} \right|, 0 \cdot klf \right| \end{split}$$

$$x_{S\beta} := L_{ftg}$$

$$x_{S\beta} = 32.0 \, \text{ft}$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	
✓	

 $S_{\beta_i} =$

0.0

0.0

0.0

0.0

18.4

23.6 24.3

20.3

11.7

klf 0.0 klf 42.7

 $R_{\text{key}_i} =$

47.4

50.6

52.2

51.6

klf

Sum forces:

$$\Sigma V_{i} := \sum_{i = 1}^{4} \left. W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S_{\beta_{i}} - \left(U1_{i} + U2_{i} + U3_{i} + U4_{i} \right) \right)$$

$$\begin{split} \Sigma M_{grav_{i}} := & \left(\sum_{i=1}^{4} \ W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} + W_{WS4_{i}} \cdot x_{WS4_{i}} \right) \dots \\ & + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U1_{i} \cdot x_{U1_{i}} + U2_{i} \cdot x_{U2_{i}} + U3_{i} \cdot x_{U3} + U4_{i} \cdot x_{U4_{i}} \right) \end{split}$$

$$R_{\text{key}_{i}} := -H1_{i} - K1_{i} - K2_{i} + H2_{i} + H3_{i} + A1_{i} + A2_{i} + A3_{i}$$

$$y_{Rkey} := \frac{-h_{key}}{2}$$
 $y_{Rkey} = 0.0 \, ft$

$$\Sigma H_i := -H1_i - K1_i - K2_i + H2_i + H3_i + A1_i + A2_i + A3_i - R_{key_i}$$

$$\begin{split} \Sigma M_{lat_{i}} &:= -H1_{i} \cdot y_{H1_{i}} - K1_{i} \cdot y_{K1} - K2_{i} \cdot y_{K2} + H2_{i} \quad y_{H2_{i}} + H3_{i} \cdot y_{H3} \dots \\ &+ A1_{i} \cdot y_{A1_{i}} + A2_{i} \quad y_{A2_{i}} + A3_{i} \quad y_{A3_{i}} - R_{key_{i}} \cdot y_{Rkey} \end{split}$$

$$\Sigma M_i := \Sigma M_{grav_i} - \Sigma M_{lat_i}$$

$$x_{R_i} = \frac{\Sigma M_i}{\Sigma V_i}$$

$$L_{brg_i} := max \left[min \begin{pmatrix} 3 \cdot x_{R_i} \\ L_{ftg} \end{pmatrix} \right], 0 \cdot ft \right]$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date: _		
By: _		
J		

Bearing Capacity: (per EM 1110-1-1905)

$$c := c_{fill}$$

$$c = 0.0 \, psf$$

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$\gamma_{eff} = 65.0 \, pcf$$

$$\gamma_{H}$$
 eff := γ_{eff}

$$\gamma_{H eff} = 65.0 \, pcf$$

$$B_{eff_i} := L_{ftg} - 2 \left| \frac{L_{brg_i}}{2} - x_{R_i} \right|$$

$$B_{\text{eff}} = \begin{pmatrix} 21.7 \\ 22.3 \\ 23.8 \\ 25.4 \\ 26.5 \end{pmatrix} \text{ft}$$

Table 4-3:

$$N_{\phi} := \tan\left(45 - \deg + \frac{\phi}{2}\right)^2$$

$$N_{\dot{\Phi}} = 3.255$$

$$N_q := if(\phi = 0, 1.0, N_\phi - e^{\pi \tan(\phi)})$$

$$N_q = 23.2$$

$$N_c := if [\phi = 0, 5.14, (N_q - 1) \cdot \cot(\phi)]$$

$$N_c = 35.5$$

$$N_y := if | \phi = 0,0.00, (N_q - 1) \tan(1.4 \phi) |$$

$$N_{y} = 22.0$$

Inclined loading correction:

$$\theta_{i} := atan \left(\frac{R_{key_{i}} + K1_{i} + K2_{i}}{\Sigma V_{i}} \right)$$

$$\theta = \begin{pmatrix} 34.63 \\ 33.16 \\ 31.95 \\ 30.22 \\ 28.32 \end{pmatrix} deg$$

$$\xi_{\text{ci}_i} := \text{if} \left[\phi = 0, \left(1 - \frac{\theta_i}{90 \text{ deg}} \right), \left(1 - \frac{\theta_i}{90 \cdot \text{deg}} \right)^{-1} \right]$$

$$\xi_{ci} = \begin{bmatrix} 0.399 \\ 0.416 \\ 0.441 \\ 0.470 \end{bmatrix}$$

0.379

$$= \begin{pmatrix} 0.000 \\ 0.000 \\ 2.449 \times 10^{-6} \\ 3.084 \times 10^{-3} \\ 0.013 \end{pmatrix} \begin{pmatrix} 0.379 \\ 0.399 \\ 0.416 \end{pmatrix}$$

0.441

0.470

$$\xi_{\gamma i_{1}} = if \left[\phi = 0, 1, 0, if \left[\theta_{1} \leq \phi, \left(1 - \frac{\theta_{1}}{\phi} \right)^{2}, 0.0 \right] \right]$$

$$\xi_{q i_{1}} = if \left[\phi = 0, \left(1 - \frac{\theta_{1}}{90 \cdot \deg} \right), \left(1 - \frac{\theta_{1}}{90 \cdot \deg} \right)^{2} \right]$$

$$B = \begin{pmatrix} 30.9 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} \text{ ft}$$

32.0

$$B_i := L_{brg_i}$$

$$W = 100 \cdot ft$$

Samuels Ave. Dam Training wall at right

Date:	
By:	

Foundation	depth	correction:	(at toe)
------------	-------	-------------	----------

$$D := t_{base}$$

$$D = 5.0 \, ft$$

$$\sigma_{D \text{ eff}} := \gamma_{\text{eff}} \cdot D$$

$$\sigma_{\text{D_eff}} = 325.0 \, \text{psf}$$

$$\xi_{\text{cd}_{\underline{i}}} \coloneqq 1 + 0.2 \cdot \left(N_{\underline{\phi}}\right)^{\frac{1}{2}} \cdot \frac{D}{B_{\underline{i}}}$$

$$\xi_{\text{cd}} = \begin{pmatrix} 1.058 \\ 1.056 \\ 1.056 \\ 1.056 \\ 1.056 \end{pmatrix}$$

$$\xi_{\gamma d_10_i} := 1 + 0.1 \cdot \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^2 \right)^{\frac{1}{2}} \cdot \frac{D}{B_i}$$

$$\xi_{\gamma d_{\underline{i}}} \coloneqq \mathrm{if} \left[\varphi \leq 10 \cdot \deg, \xi_{\gamma d_0} + \frac{\varphi}{10 \cdot \deg} \left(\xi_{\gamma d_10_{\underline{i}}} - \xi_{\gamma d_0} \right), 1 + 0.1 \cdot \left(N_{\varphi} \right)^{\frac{1}{2}} \cdot \frac{D}{B_{\underline{i}}} \right]$$

$$:= \inf_{\alpha \in \mathbb{R}} \left(\phi \leq 10 \cdot \deg, \xi_{\gamma d_0} + \frac{1}{10 \cdot \deg} \left(\xi_{\gamma d_10} - \xi_{\gamma d_0} \right), 1 + 0.1 \cdot \left(N_{\phi} \right) \right) = \frac{1}{B}$$

$$\xi_{qd_i} := \xi_{\gamma d_i}$$

$$q_{u_toe_{\hat{i}}} \coloneqq c \cdot N_c \cdot \xi_{cd} - \xi_{c\hat{i}} + \frac{1}{2} \cdot B_{eff_{\hat{i}}} - \gamma_{H_eff} \cdot N_{\gamma} \cdot \xi_{\gamma d} \cdot \xi_{\gamma \hat{i}} + \sigma_{D_eff} - N_q \cdot \xi_{qd} \cdot \xi_{q\hat{i}}$$

$$\xi_{qd} = \begin{pmatrix} 1.019 \\ 1.019 \\ 1.028 \\ 1$$

[1.019]

1.019 1.019

 $\xi_{yd} = 10$

Foundation depth correction: (at heel)

$$D = E_{grade} - E_{ftg} + t_{base} + h_{\beta}$$

$$D = 32.0 \, ft$$

$$σ$$
D_eff_heel = $γ$ eff D
$$\frac{1}{2}$$
 $ρ$

$$\sigma_{D_eff} = 0.325 \, \text{ksf}$$

$$\xi_{cd} = \begin{pmatrix} 1.373 \\ 1.361 \\ 1.361 \\ 1.361 \end{pmatrix}$$

$$\xi_{\gamma d_10_i} := 1 + 0.1 \left(\tan \left(45 \cdot \deg + \frac{10 \cdot \deg}{2} \right)^2 \right)^{\frac{1}{2}} \cdot \frac{D}{B_i}$$

$$\xi_{\gamma d_{i}} := if \left[\begin{array}{c} \phi \\ \leq 10 \end{array} \right. deg, \\ \xi_{\gamma d_{-}0} + \frac{\phi}{10 \cdot deg} \cdot \left(\xi_{\gamma d_{-}10_{i}} - \xi_{\gamma d_{-}0} \right), \\ 1 + 0.1 \cdot \left(N_{\phi} \right)^{\frac{1}{2}} \cdot \frac{D}{B_{i}} \right]$$

$$\xi_{qd_{\underline{i}}} = \xi_{\gamma d_{\underline{i}}}$$

$$\xi_{\text{yd}_10} = \begin{bmatrix} 1.119 \\ 1.119 \\ 1.119 \\ 1.180 \\ 1.1$$

USACE EM 1110-1-1905, Eq. 4-16:

$$q_{u_heel_i} \coloneqq c \cdot N_c \cdot \xi_{cd} \cdot \xi_{ci} + \frac{1}{2} \cdot B_{eff_i} \cdot \gamma_{H_eff} \cdot N_{\gamma} - \xi_{\gamma d} \cdot \xi_{\gamma i} + \sigma_{D_eff} \cdot N_q \cdot \xi_{qd} \cdot \xi_{qi}$$

$$\begin{array}{c|c}
1 & & & \\
1 & & & \\
q_{u_heel} = & & 19.027 \\
19.036 & & & \\
19.078 & & \\
19.078 & & \\
19.094
\end{array}$$
 ksf

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
5.4	

 $check_uplift_{\underline{i}} \coloneqq L_{ftg} - L_{brg_{\underline{i}}} - L_{uplift_{\underline{i}}}$

ok := if(max(|check_uplift|) < 0.001 · ft, ok, "Uplift assumptions do not match bearing area.")

ok = "Ok"

$$e_{brg_i} := \frac{L_{brg_i}}{2} - x_{R_i}$$

check_uplift =

-0.0002 ft 0.0000

0.0000

0.0000

$$\Sigma V_i = \epsilon_{\text{brg}}$$

$$\sigma_{brg_toe_i} := \frac{\Sigma V_i}{L_{brg_i}} + \frac{\Sigma V_i \cdot e_{brg_i}}{\frac{\left(L_{brg_i}\right)^2}{6}}$$

$$\sigma_{brg_heel}_{i} \coloneqq \frac{\Sigma V_{i}}{L_{brg}_{i}} - \frac{\Sigma V_{i} \quad e_{brg}_{i}}{\frac{\left(L_{brg}_{i}\right)^{2}}{6}}$$

$$FS_{brg_{i}} := min \left(\frac{q_{u_toe_{i}}}{\sigma_{brg_toe_{i}}}, if \left(\sigma_{brg_heel_{i}} \neq 0 \text{ psf}, \frac{q_{u_heel_{i}}}{\sigma_{brg_heel_{i}}}, 100 \right) \right)$$

$$\%_{\text{brg}_i} := \frac{L_{\text{brg}_i}}{L_{\text{fig}}}$$

$$\%_{\text{brg}_{i}} = \begin{pmatrix} 96.7\\100.0\\100.0\\100.0\\100.0 \end{pmatrix} \%$$

ok := if
$$(\%_{\text{brg}_1} \ge 75 \%, \text{ok}, "OT instability: LC#1"})$$

$$L_{\rm ftg} = 32.0 \, {\rm ft}$$

ok :=
$$if(\%_{brg_n} \ge 100\%, ok, "OT instability: LC#n")$$

$$t_{w_bot} = 5.3 \, ft$$

$$ok := if \lfloor max \lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{uplift} \right) \right\rfloor \\ \le 0.001 \cdot ft, ok, "Uplift area does not match"$$

ok :=
$$if(FS_{brg_1} < 2, "Bearing problem LC#1", ok)$$

$$ok := if(FS_{brg_n} < 3$$
, "Bearing problem LC#n", ok)

$$L_{ftg} = 32.0 \, ft$$

 $\frac{L_{\text{ftg}}}{} = 8.000 \,\text{ft}$

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
✓	

Base Pressures:

$$e_{ftg_i} := \frac{L_{ftg}}{2} - x_{R_i}$$

(eccentricity with respect to the footing centroid)

$$\Sigma H_i + R_{key_i} = \Sigma V_i =$$

$$\begin{bmatrix} 42.7 & klf \\ 47.4 & \\ \hline & 81.1 \end{bmatrix}$$
klf

89.7

95.7

 $L_{\text{brg}_1} = 30.93 \, \text{ft}$

$$\begin{array}{cccc} e_{ftg_j} = & x_{R_j} = \\ \hline 5.69 & ft & 10.31 & ft \\ \hline 4.84 & 11.16 & \\ \hline 4.08 & 11.92 & \\ \hline 3.32 & 12.68 & \\ \hline 2.73 & 13.27 & \\ \end{array}$$

$$\sigma_{\text{brg_heel}_{1}} = 0.000$$
 ksf 0.211 0.597 1.060 1.461

 $\sigma_{\text{brg_toe}_i} =$

4.003

4.326

4.474

4.544

4.519

$$\frac{L_{\text{brg}}}{L_{\text{ftg}}} = \begin{pmatrix} 96.7\\100.0\\100.0\\100.0\\100.0 \end{pmatrix} \%$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
✓	

Sliding Analysis:

Function Definitions:

$$c_1(\phi_d) := 2 \cdot \tan(\phi_d)$$

$$c_2(\phi_d, \beta) := 1 - \tan(\phi_d) \cdot \tan(\beta) - \left(\frac{\tan(\beta)}{\tan(\phi_d)}\right)$$

$$\begin{split} \alpha_{driving}(\phi_d,\beta) &:= -\text{atan}\!\!\left(\frac{c_1\!\left(\phi_d\right) + \sqrt{c_1\!\left(\phi_d\right)^2 + 4 \cdot c_2\!\left(\phi_d,\beta\right)}}{2}\right) \\ L_\beta &:= max\!\!\left(\!\!\left(\frac{h_\beta}{\tan(\beta)} - L_{WS5} - L_{WS6}\right)\!\!\right) \\ 0 \cdot \text{ft} \end{split}$$

Sliding Analysis #1:

$$\beta_{\mathbf{w}} := \beta$$

$$\phi^{i} = \phi^{\text{till}}$$

$$c := 0 \cdot ksf$$

$$\phi_{d_i} \coloneqq \text{atan}\left(\frac{\text{tan}(\phi_i)}{\text{FS}_{1_i}}\right)$$

$\beta_w = 33.7 \deg$

 $L_{B} = 0.0 \, ft$

$$\phi = \begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} \text{deg}$$

$$\phi_{\mathbf{d}_{i}} = \begin{pmatrix} 24.4 \\ 23.0 \\ 21.7 \\ 20.4 \end{pmatrix} \operatorname{deg}$$

$$atan(tan(\beta) \cdot FS_{1}) = \begin{vmatrix} 44.4 \\ 46.3 \\ 48.2 \end{vmatrix}$$
 deg (back solve for minimum ϕ value for stable slope β , EM 1110–2–2502, pg 3-31)

$$\phi_{i} := if \left[\left(c_{1} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left(\phi_{d_{i}}, \beta_{w} \right) < 0 \right), atan\left(tan\left(\beta_{w} \right) \cdot FS_{1_{i}} \right), \phi_{i} \right]$$

(substitue minimum & if slope is unstable)

$$\phi_{d_1b_i} := atan \left(\frac{tan(\phi_i)}{FS_{l_i}} \right)$$

$$\alpha_{1b_i} := \alpha_{driving}(\phi_{d_1b_i}, \beta_w)$$

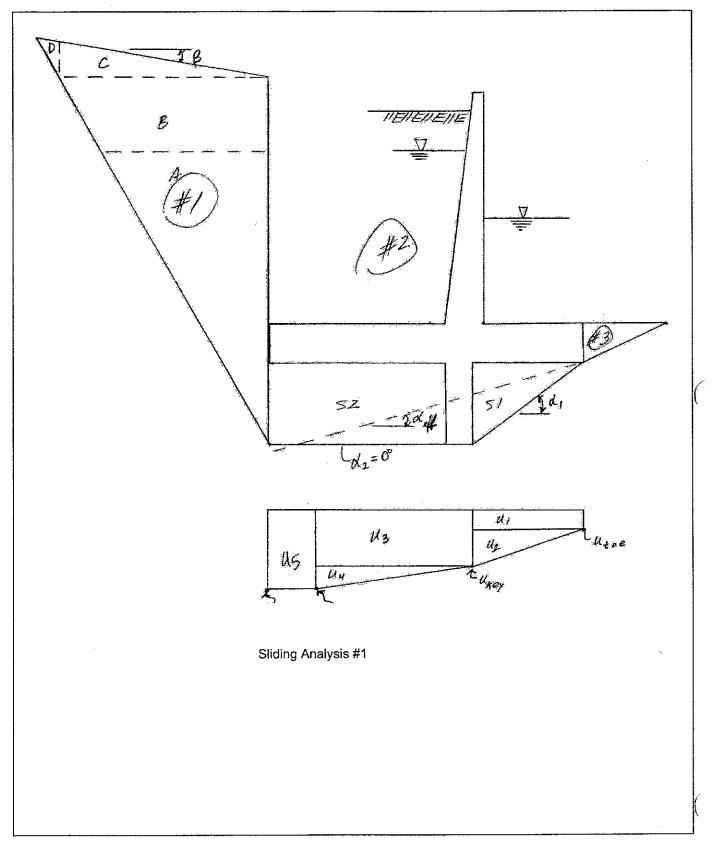
$$h_{1b} := \left(E_{grade} + L_{WS5} \tan(\beta_{w})\right) - \left(E_{bftg} - h_{key}\right) \quad h_{1b} = 32.0 \text{ ft}$$

$$\frac{h_{1b}}{\cos(-\alpha_{1b_{i}}) - \tan(\beta_{w})} \alpha_{1b} = \begin{cases} -33.7 \\ -33.7 \\ -33.7 \end{cases} deg$$

$$L_{max_{i}} := if \begin{bmatrix} -\alpha_{1b_{i}} = \phi_{d_{-1b_{i}}}, 1000 \cdot \text{ft}, \frac{\cos(-\alpha_{1b_{i}}) - \tan(\beta_{w})}{\cos(-\alpha_{1b_{i}})} - \frac{\cos(-\alpha_{1b_{i}})}{\cos(-\alpha_{1b_{i}})} \end{cases}$$

$$L_{\max_{i}} := if \left[-\alpha_{1b_{i}} = \phi_{d_{1}b_{i}}, 1000 \cdot ft, \frac{\eta}{\cos(-\alpha_{1b_{i}})} \right]$$

$$h_{1a_{i}} := if \left[L_{\beta} < L_{\max_{i}}, h_{1b} + L_{\beta} \cdot \left(\tan(\beta) - \tan(-\alpha_{1b_{i}}) \right), 0 \cdot ft \right]$$


$$\phi_{d_1b_1} = \begin{vmatrix} 33.7 & \text{deg} \\ 33.7 & \\ 33.7 & \\ -33.7 & \\ -33.7 & \\ \text{deg} & \\ 100$$

$$L_{\text{max}} = \begin{pmatrix} 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \end{pmatrix} \text{ft}$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date: By:

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

Driving Wedge (#1a): 32.0 32.0 $\beta_w := 0$ deg $\beta_w = 0.0 \deg$ 32.0 ft $h_{1a} =$ $\phi = 32.0 \deg$ $\phi := \phi_{\text{fill}}$ 32.0 c := 0 ksf23 0 $\alpha = \begin{pmatrix} -57.2 \\ -56.5 \\ -55.9 \\ -55.2 \end{pmatrix} \text{ deg} \begin{pmatrix} 21.7 \\ 20.4 \\ 19.0 \end{pmatrix}$ ´32..0` 32.0 32.0 ft 38.1 32.0 38.4 $L_{i} := \frac{h_{i}}{\cos(-\alpha_{i}) \cdot (\tan(-\alpha_{i}) - \tan(\beta_{w}))}$ 32.0 38.7 ft 39.0 $\mathbf{h}_{sat_{i}} \coloneqq \max \begin{bmatrix} \mathbf{E}_{wheel_{i}} - \left(\mathbf{E}_{ftg} - \mathbf{t}_{base} - \mathbf{h}_{key}\right) - \mathbf{L}_{\beta} \cdot \tan\left(-\alpha_{1b_{i}}\right) \end{bmatrix}$ 21.0 ft 1/20.6 21.2 21.7 **ft** 17 5 $L_{\text{sat}} = 14.2 \text{ ft}$ $h_{left} := 0 \cdot ft$ $h_{right_i} = h_{1a_i}$ $W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} - \frac{h_{left} + h_{right_{i}}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot \frac{L_{sat_{i}} - h_{sat_{i}}}{2}$ klf 42.1 $V := 0 \cdot klf$ 43.4 44.8 $H_L := 0$ klf 46.0 47.3 38.1 $H_R = 0$ klf 26.3 $U_{i} := \gamma_{\mathbf{w}} \cdot \left(\frac{h_{\text{sat}_{i}}}{2}\right) \cdot \sqrt{\left(h_{\text{sat}_{i}}\right)^{2} + \left(L_{\text{sat}_{i}}\right)^{2}}$ 16.7 klf U =

9.1 3.8

Samuels Ave. Dam Training wall at right CDM04188

Date:	
Ву:	
. 4	

$$\Delta P_{1a_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) \cdot cos\left(\alpha_{i}\right) + sin\left(\alpha_{i}\right)\right) - U_{i} \cdot tan\left(\varphi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(tan\left(\varphi_{d_{i}}\right) \cdot sin\left(\alpha_{i}\right) - cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{1_{i}}} \cdot L_{i}\right]}{\left(cos\left(\alpha_{i}\right) - tan\left(\varphi_{d_{i}}\right) \cdot sin\left(\alpha_{i}\right)\right)}$$

Driving Wedge (#1b):

$$\beta_{\mathbf{w}} := \beta$$

$$\alpha := \alpha_{1b}$$

$$\phi_{\mathbf{d}} = \phi_{\mathbf{d}_1\mathbf{b}}$$

$$L_{i} = \frac{L_{\beta}}{\cos(\alpha_{i})}$$

$$h_{satr_i} := max \begin{bmatrix} E_{wheel_i} - (E_{ftg} - t_{base} - h_{key}) \\ 0 \cdot ft \end{bmatrix}$$

$$\begin{aligned} h_{satl_{i}} &:= \max \begin{bmatrix} E_{wheel_{i}} - (E_{ftg} - t_{base} - h_{key}) - \frac{L_{\beta}}{\cos(\alpha_{i})} \\ 0 & \text{ft} \end{bmatrix} \\ L_{sat_{i}} &:= \min \begin{bmatrix} L_{\beta} \\ h_{satr_{i}} \\ \hline \tan(-\alpha)_{i} \end{bmatrix} \end{bmatrix} \qquad L_{sat} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix} \text{ft} \end{aligned}$$

 $L_h = 0.0 \, ft$

$$L_{sat_{i}} \coloneqq \min \left[\begin{array}{c} L_{\beta} \\ h_{satr_{i}} \end{array} \right]$$

$$\left[\frac{1}{\tan \left(-\alpha \right)_{i}} \right]$$

$$h_{left_i} := h_{1a_i}$$

$$h_{right} := h_{1b}$$

$$\beta_{\rm W} = 33.7 \deg$$

$$\alpha = \begin{bmatrix} -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \end{bmatrix} \text{ deg}$$

$$\begin{pmatrix} -33.7 \\ -33.7 \end{pmatrix} \qquad \phi_{\mathbf{d}} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix} \operatorname{deg}$$

$$\begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 33.7 \end{pmatrix}$$

$$\mathbf{h} = \begin{bmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{bmatrix}$$
 ft
$$\begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$
 ft
$$\begin{bmatrix} 33.7 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$
 ft
$$\begin{bmatrix} 32.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$
 ft
$$\begin{bmatrix} 32.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$\begin{pmatrix} 0 & 0 \\ h_{\text{satr}} = \begin{pmatrix} 26.5 \\ 21.0 \\ 15.5 \\ 10.0 \end{pmatrix} \text{ ft}$$

$$h_{\text{satl}} = \begin{pmatrix} 32.0 \\ 26.5 \\ 21.0 \\ 15.5 \\ 10.0 \end{pmatrix} \text{ ft}$$

$$h_{left} = \begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} ft$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
. ت	

$$\begin{aligned} W_i &= \gamma_{fill} \cdot \left(L_h \cdot \frac{h_{left_i} + h_{right}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \quad L_{sat_i} \cdot \left(\frac{h_{satr_i} + h_{satl_i}}{2}\right) & W_i &= \\ V &= 0 \cdot klf & 0.0 \\ H_L &= 0 \cdot klf & 0.0 \end{aligned}$$

$$H_R := 0 \cdot klf$$

$$\begin{split} \boldsymbol{U}_{i} &\coloneqq \boldsymbol{\gamma}_{\mathbf{w}} \ \left(\frac{\boldsymbol{h}_{satr_{i}} + \boldsymbol{h}_{satl_{i}}}{2} \right) \cdot \sqrt{\left(\boldsymbol{h}_{satr_{i}} - \boldsymbol{h}_{satl_{i}}\right)^{2} + \left(\boldsymbol{L}_{h}\right)^{2}} \\ \Delta \boldsymbol{P}_{1b_{i}} &\coloneqq \frac{\left[\left(\boldsymbol{W}_{i} + \boldsymbol{V}\right) \cdot \left(tan\left(\boldsymbol{\varphi}_{d_{i}}\right) \cdot cos\left(\boldsymbol{\alpha}_{i}\right) + sin\left(\boldsymbol{\alpha}_{i}\right)\right) - \boldsymbol{U}_{i} \quad tan\left(\boldsymbol{\varphi}_{d_{i}}\right) + \left(\boldsymbol{H}_{L} - \boldsymbol{H}_{R}\right) \cdot \left(tan\left(\boldsymbol{\varphi}_{d_{i}}\right) \cdot sin\left(\boldsymbol{\alpha}_{i}\right) - cos\left(\boldsymbol{\alpha}_{i}\right)\right) + \frac{c}{FS_{1_{i}}} \quad \boldsymbol{L}_{i} \right]}{\left(cos\left(\boldsymbol{\alpha}_{i}\right) - tan\left(\boldsymbol{\varphi}_{d_{i}}\right) \cdot sin\left(\boldsymbol{\alpha}_{i}\right)\right)} \end{split}$$

Structure Wedge (#2):

$$\beta_{\mathbf{W}} := 0$$
 deg

$$\phi = 32.0 \deg$$

$$\phi_{\mathbf{d}_{i}} = \operatorname{atan}\left(\frac{\tan(\phi)}{\mathrm{FS}_{1_{i}}}\right)$$

$$\alpha_1 := \operatorname{atan} \left(\frac{h_{\text{key}}}{L_{\text{key}}} \right)$$

$$U_i =$$

klf

klf

0.0

$$\phi_{d_{1}} = \begin{pmatrix} 24.4 \\ 23.0 \\ 21.7 \\ 20.4 \\ 19.0 \end{pmatrix} \text{deg}$$

$$\alpha_1 \coloneqq \text{atan} \left(\frac{h_{key}}{x_{key} - \frac{L_{key}}{2}} \right) \qquad \alpha_1 = 0.0 \, \text{deg} \quad \text{(angle of shear plane between toe and key)}$$

$$\alpha_2 := 0 \operatorname{deg}$$

(angle of shear plane between key and heel)

$$\alpha := \alpha_1 \cdot \left(\frac{x_{key}}{L_{ftg}}\right) + \alpha_2 \cdot \left(\frac{L_{ftg} - x_{key}}{L_{ftg}}\right) \quad \alpha = 0.0 \, deg \quad \text{(average angle of shear plane for structural wedge)}$$

$$L := \frac{L_{ftg}}{\cos(\alpha)}$$

$$L = 32.0 \, \mathrm{ft}$$

$$h_{S1} := h_{key}$$

$$h_{S1} = 0.0 \, ft$$

$$L_{S1} := x_{\text{key}} - \frac{L_{\text{key}}}{2}$$

$$L_{S1} = 9.3 \, \mathrm{ft}$$

Samuels Ave. Dam Training wall at right

Date:	
By:	
J.	

$$x_{S1} \coloneqq \frac{2}{3} \cdot L_{S1}$$

$$x_{S1} = 6.2 \, \text{ft}$$

$$S1 := \gamma_{sat} \frac{h_{S1} \cdot L_{S1}}{2}$$

$$S1 = 0.0 \, \text{klf}$$

$$h_{S2} := h_{key}$$

$$h_{S2} = 0.0 \, ft$$

$$L_{S2} := L_{fig} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 18.8 \, ft$$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 22.6 \, ft$$

$$S2 := \gamma_{sat} \ h_{S2} \cdot L_{S2}$$

$$S2 = 0.0 \, klf$$

$$W_{i} = \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge:

$$u_{toe_i} := \gamma_w \cdot (E_{wtoe_i} - E_{bftg})$$

$$u_{\text{heel}_i} = \gamma_w \mid E_{\text{wheel}_i} - (E_{\text{bftg}} - h_{\text{key}})$$

$$\delta_{u_{i}} \coloneqq \frac{\gamma_{w} \cdot \left(E_{wheel_{i}} - E_{wtoe_{i}}\right)}{L_{ftg} - L_{tl_{i}}}$$

$$\mathbf{u}_{\text{key}_{i}} := \mathbf{u}_{\text{toe}_{i}} + \delta_{\mathbf{u}_{i}} \cdot \left(\mathbf{x}_{\text{key}} - \frac{\mathbf{L}_{\text{key}}}{2} \right) + \gamma_{\mathbf{w}} \cdot \mathbf{h}_{\text{key}}$$

ok := if
$$\left[u_{\text{key}_1} + \delta_{u_1} \left(L_{\text{fig}} - x_{\text{key}} + \frac{L_{\text{key}}}{2} - L_{tl_1} \right) = u_{\text{heel}_1} \right]$$
, ok, "Uplift pressures do not close"

$$ok = "Ok"$$

$$u_{1_i} := u_{toe_i} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$$

$$x_{u1} := \frac{x_{key} - \frac{L_{key}}{2}}{2}$$

$$x_{u1} = 4.6 \, ft$$

$$x_{u1} := \frac{x_{key} - \frac{L_{key}}{2}}{2}$$

$$u_{2_i} := \left(u_{key_i} - u_{toe_i}\right) \frac{\left(x_{key} - \frac{L_{key}}{2}\right)}{2}$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
. نت	

$x_{u2} := \frac{2}{3} \cdot \left(x_{key} - \frac{L_{key}}{2} \right)$	$x_{u2} = 6.2 \text{ft}$	
$\mathbf{u_{3}}_{i} \coloneqq \mathbf{u_{key}}_{i} \cdot \left(\mathbf{L_{ftg}} - \mathbf{L_{tl}}_{i} - \mathbf{x_{key}} + \frac{\mathbf{L_{key}}}{2} \right)$		
$x_{u3_i} := x_{key} - \frac{L_{key}}{2} + \frac{1}{2} \left[L_{ftg} - L_{t1_i} - \left(x_{t1_i} - \frac{L_{t1_i}}{2} \right) \right]$	$K_{\text{key}} - \frac{L_{\text{key}}}{2}$	
$\mathbf{u_{4_i}} \coloneqq \left(\mathbf{u_{heel_i}} - \mathbf{u_{key_i}}\right) - \frac{\left(L_{ftg} - L_{tl_i} - \mathbf{x_{key}}\right)}{2}$	$+\frac{L_{\text{key}}}{2}$	
$x_{u4_i} := x_{key} - \frac{L_{key}}{2} + \frac{2}{3} \cdot \left[L_{fig} - L_{t1_i} - \left(x_{t1_i} - \frac{L_{t1_i}}{2} - L$	$K_{\text{key}} - \frac{L_{\text{key}}}{2}$	
$\mathbf{u}_{5_{\mathbf{i}}} \coloneqq \mathbf{u}_{\mathbf{heel}_{\mathbf{i}}} \cdot \mathbf{L}_{\mathbf{f}_{1_{\mathbf{i}}}}$		
$\mathbf{x_{u5}}_{i} \coloneqq \mathbf{L_{ftg}} - \frac{\mathbf{L_{t1}}_{i}}{2}$		
$U_i := u_{1_i} + u_{2_i} + u_{3_i} + u_{4_i} + u_{5_i}$		
$x_{U_{i}} := \frac{u_{1_{i}} \cdot x_{u1} + u_{2_{i}} \cdot x_{u2} + u_{3_{i}} \cdot x_{u3_{i}} + u}{U_{i}}$	$\frac{4_{\mathbf{i}} \cdot \mathbf{x_{\mathbf{u}4}}_{\mathbf{i}} + \mathbf{u_{5_{\mathbf{i}}} \cdot \mathbf{x_{\mathbf{u}5_{\mathbf{i}}}}}{\mathbf{u_{5_{\mathbf{i}}}}}$	
$\Sigma M_{grav_{i}} := \begin{cases} \sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} \\ + W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{W1} \end{cases}$	$+ W_{WS1_i} \cdot x_{WS1} + W_{WS2_i} \cdot x_{WS2_i} + W_{WS3_i} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_i}$	$\left(\mathbf{x}_{\mathbf{SS}_{i}}\right) \cdots \left(\mathbf{x}_{\mathbf{S}\beta} - \left(\mathbf{U}_{i} \cdot \mathbf{x}_{\mathbf{U}_{i}}\right)\right)$
$h_{A2_i} = E_{wheel_i} - E_{bftg} + h_{key}$	h _{A2} =	
$y_{A2_i} := \frac{h_{A2_i}}{2} - h_{key}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$A2_{i} = k_{0\beta} \cdot \gamma_{fill} \cdot h_{A1_{i}} \cdot h_{A2_{i}}$	21.00 16.00 ft $A2_i =$ 15.50 13.25	
$\mathbf{h_{A3}}_{i} \coloneqq \mathbf{h_{A2}}_{i}$	10.00 10.50 0.0 kif $h_{A3_i} =$	
$y_{A3_{i}} := \frac{h_{A3_{i}}}{3} - h_{key}$ $A3_{i} := k_{0\beta} \gamma_{fill_eff} \frac{\left(h_{A3_{i}}\right)^{2}}{2}$	7.75 5.00 23.3 25.8 22.2 32,00 ft 26.50 21.00	$y_{A3_i} = $ (25.9) 10.67 ft (17.7)
$A3_i := k_{0\beta} \gamma_{\text{fill_eff}} \frac{\sqrt{1-1}}{2}$	15.50 10.00	8.83
$H3_{i} := 0 \cdot klf$	10.00	7.00 5.17 6.1 2.5
$h_{\text{H2}_{i}} = E_{\text{wheel}_{i}} - E_{\text{bftg}} + h_{\text{key}}$		3.33

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	
V	,

$$y_{\text{H2}_{i}} \coloneqq \frac{h_{\text{H2}_{i}}}{3} - h_{\text{key}}$$

$$H2_{i} := \gamma_{w} \cdot \frac{\left(h_{H2_{i}}\right)^{2}}{2}$$

$$\begin{split} \Sigma M_{lat_{i}} &:= -H1_{i} \cdot \left(y_{H1_{i}}\right) - K1_{i} \cdot \left(y_{K1}\right) - K2_{i} \cdot \left(y_{K2}\right) + H2_{i} \cdot \left(y_{H2_{i}}\right) + H3_{i} \cdot \left(y_{H3}\right) \dots \\ &+ A1_{i} \cdot \left(y_{A1_{i}}\right) + A2_{i} \cdot \left(y_{A2_{i}}\right) + A3_{i} \cdot \left(y_{A3_{i}}\right) - R_{key_{i}} \cdot \left(y_{Rkey}\right) \end{split}$$

$$\mathbf{x_{R_i}} \coloneqq \frac{\Sigma \mathbf{M_{grav_i}} - \Sigma \mathbf{M_{lat_i}}}{\mathbf{W_i} - \mathbf{U_i}}$$

$$L_{\text{brg}_{i}} := \min(3 \cdot x_{R_{i}}, L_{\text{ftg}})$$

 $ok_{u_i} := if ||L_{brg_i} - (L_{ftg} - L_{tl_i})|| > 0.001 \cdot ft$, "Uplift assumptions wrong in sliding analysis.", "Matched."

	$W_i =$		u _{toe} ; =		u _{heel} =	:	$\delta_{\mathbf{u}_{i}} =$		u _{key} =		u ₁ =		u ₂ =		$u_{3_{i}} =$	
	118.0	klf	1.375	ksf	2.000	ksf	19.8	$\frac{psf}{c}$	1.558	ksf	12.719	klf	0.848	klf	34.737	klf
l	115.6		1.031		1.656		19.5	ft	1.212		9.539		0.836		27.571	
l	113.1		0.688		1.313		19.5		0.868		6.359		0.836		19.751	
	110.7		0.344		0.969		19.5		0.524		3.180		0.836		11.930	
ı	110.7		0.313		0.625		9.8		0.403		2.891		0.418		9.164	

$u_{4_{i}} =$		u5 ==		$x_{u3_i} =$		x _{u4} =		x _{u5} ; =		h _{H2}	=	y _{H2} =	=	12 _i =	
4.923	klf	0.9	klf	20.4	ft	24.1	ft	31.8	ft	32.0	ft	10.7	ft	32.0	klf
5.054		0.0		20.6		24.4		32.0		26.5		8.8		21.9	
5.054		0.0		20.6		24.4		32.0		21.0		7.0		13.8	
5.054		0.0		20.6		24.4		32.0		15.5		5.2		7.5	
2.527		0.0		20.6		24.4		32.0		10.0		3.3	ĺ	3.1	

$U_i =$	$x_{U_i} =$	$\Sigma M_{grav_i} =$	$\Sigma M_{lat_i} =$	$x_{R_i} =$	$L_{\mathbf{brg}_{i}} =$
54.1 k	lf 17.0 ft	1178 kip	506 kip	10.5 ft	31.5 ft
43.0	17.2	1353	542	11.2	32.0
32.0	17.7	1524	557	11.9	32.0
21.0	18.5	1695	558	12.7	32.0
15.0	17.8	1823	553	13.3	32.0

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	
•	

$$H_{L_i} := 0 \cdot klf$$

$$H_{R_{\hat{i}}} \coloneqq \gamma_{w} \cdot \frac{\left(E_{wtoe_{\hat{i}}} - E_{ftg}\right)^{2}}{2}$$

$$\Delta P_{2_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(tan\left(\phi_{d_{i}}\right) \cdot \cos(\alpha) + \sin(\alpha)\right) - U_{i} \cdot tan\left(\phi_{d_{i}}\right) + \left(H_{L_{i}} - H_{R_{i}}\right) \cdot \left(tan\left(\phi_{d_{i}}\right) \cdot \sin(\alpha) - \cos(\alpha)\right) + \frac{c}{FS_{1_{i}}} \cdot L\right]}{\left(\cos(\alpha) - tan\left(\phi_{d_{i}}\right) \cdot \sin(\alpha)\right)}$$

$$\begin{aligned} L_{fig} - L_{brg_{i}} &= \\ \hline 0.458 & \text{ft} \\ \hline 0.000 \\ \hline 0.000 \\ \hline 0.000 \\ \hline 0.000 \end{aligned}$$

$$L_{t1} \equiv \begin{pmatrix} 0.458 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot ft$$

 $ok := if \left\lfloor \max \left\lfloor \left| L_{brg} - \left(L_{ftg} - L_{t1} \right) \right| \right\rfloor < 0.001 \quad \text{ft, ok, "Uplift area does not match."} \right\rfloor$

$$ok := if \left(min \left(L_{brg} \right) < x_{key} + \frac{L_{key}}{2}, "Uplift assumptions incorrect.", ok \right) \qquad ok = "Ok"$$

Samuels Ave. Dam Training wall at right CDM04188

Resisting Wedge (#3).

$$\beta_{\mathbf{W}} := 0 \cdot \deg$$

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$c := 0 \cdot ksf$$

$$\phi_{d_i} := atan \left(\frac{tan(\phi)}{FS_{1_i}} \right)$$

$$\alpha_i := 45 \cdot deg - \frac{\phi_{d_i}}{2}$$

$$\phi_{\mathbf{d}_{1}} = \begin{pmatrix} 23.0 \\ 21.7 \\ 20.4 \\ 19.0 \end{pmatrix} \text{deg}$$

$$\alpha_{i} = \begin{pmatrix} 32.8 \\ 33.5 \\ 34.1 \\ 34.8 \\ 35.5 \end{pmatrix} deg$$

$$L = \begin{pmatrix} 9.225 \\ 9.063 \\ 8.907 \\ 8.761 \\ 8.615 \end{pmatrix}$$

$$L_i := \frac{t_{base}}{\sin(\alpha_i)}$$

$$W_{i} := \gamma_{sat} \cdot \frac{L_{i} \cdot \cos(\alpha_{i}) \cdot t_{base}}{2} + \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg}\right) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_{i} := \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg} + \frac{t_{base}}{2}\right) \cdot L_{i}$$

$$H_L := 0 \cdot klf$$

$$H_R = 0$$
 klf

$$V := 0 \cdot klf$$

$$\Delta P_{3_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(\tan\left(\phi_{d_{\hat{i}}}\right) \cdot \cos\left(\alpha_{\hat{i}}\right) + \sin\left(\alpha_{\hat{i}}\right)\right) - U_{\hat{i}} \cdot \tan\left(\phi_{d_{\hat{i}}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\phi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha_{\hat{i}}\right) - \cos\left(\alpha_{\hat{i}}\right)\right) + \frac{c}{FS_{1_{\hat{i}}}} \cdot L_{\hat{i}}\right]}{\left(\cos\left(\alpha_{\hat{i}}\right) - \tan\left(\phi_{d_{\hat{i}}}\right) \cdot \sin\left(\alpha_{\hat{i}}\right)\right)}$$

$$\Sigma P_{i} := \Delta P_{1a_{i}} + \Delta P_{1b_{i}} + \Delta P_{2_{i}} + \Delta P_{3_{i}}$$

$$W_{i} = I_{i} = 1$$

$$10.7 \text{ klf} 11.2 \text{ klf}$$

$$7.8 \text{ } 7.9$$

$$5.1 \text{ } 4.7$$

$$2.5 \text{ } 1.6$$

$$2.2 \text{ } 1.3$$

$$\Delta P_{1a_i} =$$

$$\Delta P_{1b_{i}} =$$

$$\Delta P_{2_i} =$$

$$\Delta P_{3_i} = \frac{8.0}{8.0}$$
 klf

$$\Sigma P_1 = \begin{bmatrix} 0.2 \\ 0.1 \\ 0.0 \end{bmatrix}$$
 klf $FS_1 \equiv \begin{bmatrix} 1.47 \\ 1.57 \\ 1.68 \\ 1.81 \end{bmatrix}$

-35.3

ok := if
$$(FS_{1_1} \ge 1.33, ok, "Sliding instability: LC#1")$$

ok := if
$$(FS_{1_n} \ge 1.50, ok, "Sliding instability: LC#n")$$

$$ok = "Ok"$$

1.38

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	
J	

Sliding Analysis #2:

$$L_{\beta}=0.00\,\mathrm{ft}$$

$$\phi_i := \phi_{fill}$$

$$\beta_{\mathbf{w}} := \beta$$

$$\beta_{\rm w} = 33.7 \, \rm de$$

$$\phi = \begin{vmatrix} 32.0 \\ 32.0 \\ 32.0 \end{vmatrix} \text{deg}$$

$$c := 0 \cdot ksf$$

$$\phi_{\vec{\mathbf{d}}_{\mathbf{i}}} := \operatorname{atan} \left(\frac{\operatorname{tan}(\phi_{\mathbf{i}})}{\operatorname{FS}_{2}} \right)$$

$$\phi = 33.7 \deg \qquad \phi = \begin{vmatrix} 32.0 \\ 32.0 \\ 32.0 \end{vmatrix}$$

$$atan(tan(\beta) \cdot FS_{2_i}) = \begin{pmatrix} 42.6 \\ 44.4 \\ 46.3 \\ 48.2 \end{pmatrix} deg$$

(back solve for minimum $_{\varphi}$ value for stable slope $\beta,$ EM 1110–2–2502, pg. 3-31)

$$\phi_{i} := if \left[\left(c_{1} \left(\phi_{d_{i}} \right)^{2} + 4 \cdot c_{2} \left(\phi_{d_{i}}, \beta_{w} \right) < 0 \right), atan \left(tan \left(\beta_{w} \right) \cdot FS_{2_{i}} \right), \phi_{i} \right]$$

$$(33.7)$$

$$\phi = \begin{vmatrix} 44.4 \\ 46.3 \\ 48.2 \\ 50.4 \end{vmatrix} \text{deg}$$

(substitue minimum ϕ if slope is unstable)

$$\phi_{d_1b_i} := \text{atan}\!\!\left(\frac{\text{tan}\!\left(\phi_i\right)}{\text{FS}_{2_i}}\right)$$

$$\phi_{\mathbf{d}_{1}\mathbf{b}_{i}} = \begin{pmatrix} 33.7 \\ 33.7 \\ 33.7 \\ 33.7 \end{pmatrix} \operatorname{deg}$$

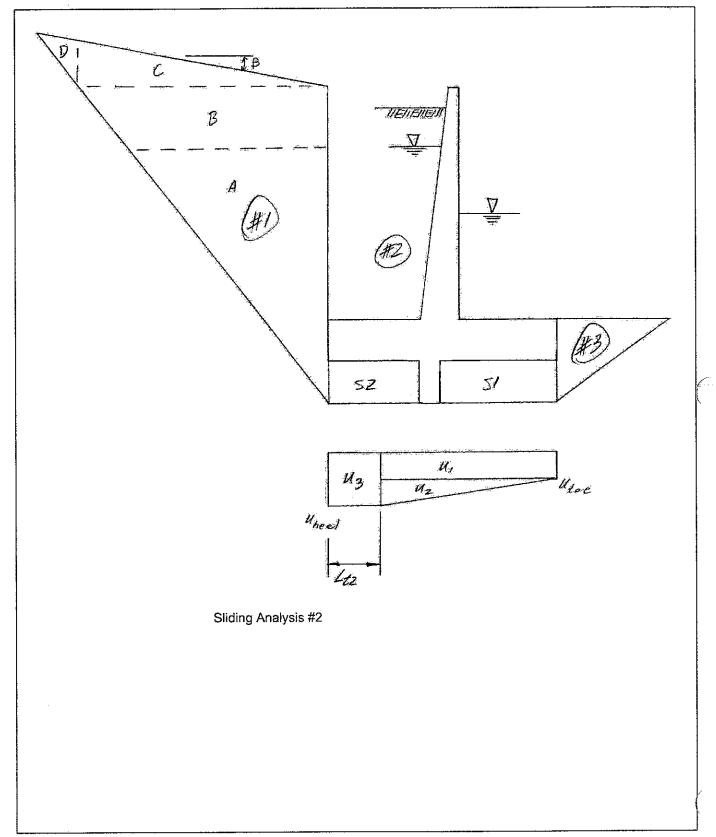
$$\alpha_{1b} = \begin{pmatrix} -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \\ -33.7 \end{pmatrix} deg$$

$$\alpha_{1b_i} := \alpha_{driving} (\phi_{d_1b_i}, \beta_w)$$

$$h_{1b} := (E_{grade} + L_{WS5} \tan(\beta_w)) - (E_{bftg} - h_{key})$$
 $h_{1b} = 32.0 \text{ ft}$

$$L_{\text{max}_{i}} := if \left[-\alpha_{1b_{i}} = \phi_{d_1b_{i}}, 1000 \cdot ft, \frac{\frac{h_{1b}}{\cos(-\alpha_{1b_{i}})(\tan(-\alpha_{1b_{i}}) - \tan(\beta_{w}))}}{\cos(-\alpha_{1b_{i}})} \right]$$

$$L_{\text{max}} = \begin{pmatrix} 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \\ 1000.0 \end{pmatrix} \text{ft}$$


$$\mathbf{h}_{1a_{_{i}}} \coloneqq if \left[L_{\beta} < L_{max_{_{i}}}, \mathbf{h}_{1b} + L_{\beta} \cdot \left(tan(\beta) - tan(-\alpha_{1b_{_{i}}}) \right), 0 \quad ft \right]$$

$$h_{1a} = \begin{pmatrix} 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \\ 32.0 \end{pmatrix} ft$$

Title Samuels Ave. Dam Training wall at right CDM04188

Date: _____ By: _____

Samuels Ave. Dam Training wall at right CDM04188

32.0 32.0

32.0 |ft 32 0

32.0 *)*

Date:	
By:	
المن ا	

Driving Wedge (#1a):

$$\beta_{\mathbf{W}} := 0 \cdot \deg$$

$$\beta_{\rm w} = 0.0 \deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32.0 \deg$$

$$c := 0 \cdot ksf$$

$$\phi_{\mathbf{d}_{i}} := \operatorname{atan} \left(\frac{\tan(\phi)}{FS_{2_{i}}} \right)$$

$$\alpha_{i} := \alpha_{\operatorname{driving}} (\phi_{\mathbf{d}_{i}}, \beta_{w})$$

$$\alpha = \begin{pmatrix} -57.18 \\ -56.51 \\ -55.85 \\ -55.20 \end{pmatrix} deg$$

$$\phi_{\mathbf{d}} = \begin{pmatrix} 24.4 \\ 23.0 \\ 21.7 \\ 20.4 \\ 19.0 \end{pmatrix} deg$$

$$\mathbf{h}_{\mathbf{i}} \coloneqq \mathbf{h}_{1\mathbf{a}_{\mathbf{i}}}$$

$$h_i := h_{1a_i}$$

$$L_i \coloneqq \frac{h_i}{\cos(-\alpha_i) \cdot \left(\tan(-\alpha_i) - \tan(\beta_w)\right)}$$

$$L_{i} := \frac{h_{i}}{\cos(-\alpha_{i}) \left(\tan(-\alpha_{i}) - \tan(\beta_{w})\right)}$$

$$h_{sat_{i}} := \max \begin{bmatrix} E_{wheel_{i}} - \left(E_{ftg} - t_{base} - h_{key}\right) - L_{\beta} \cdot \tan(-\alpha_{1b_{i}}) \\ 0 \cdot \text{ft} \end{bmatrix}$$

$$L_{h_i} \coloneqq \frac{h_i}{\tan(-\alpha_i)}$$

$$L_{sat_{\underline{i}}} \coloneqq \frac{h_{sat_{\underline{i}}}}{\tan(-\alpha_{\underline{i}})}$$

$$h_{left} := 0 \cdot ft$$

$$\mathbf{h_{right}}_{i} \coloneqq \mathbf{h_{1a}}_{i}$$

$$W_{i} := \gamma_{fill} \cdot \left(L_{h_{i}} \cdot \frac{h_{left} + h_{right_{i}}}{2}\right) + \left(\gamma_{sat} - \gamma_{fill}\right) \cdot \frac{L_{sat_{i}} \cdot h_{sat_{i}}}{2}$$

$$V := 0$$
 klf

$$H_L := 0 \cdot klf$$

$$H_R := 0 \cdot klf$$

38.67 ft

38.97

20 638`

21.169

22,240

22 806

 $L_h = |21.705| ft$

32.0

26.5 21.0 ft

15.5

10.0

20.64

17.53

14.24 ft 10.77 7.13

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
By:	

$$U_{i} := \gamma_{w} \cdot \left(\frac{h_{sat_{i}}}{2}\right) \cdot \sqrt{\left(h_{sat_{i}}\right)^{2} + \left(L_{sat_{i}}\right)^{2}}$$

$$U = \begin{pmatrix} 38.078 \\ 26.312 \\ 16.652 \\ 9.143 \\ 3.837 \end{pmatrix} \text{klf}$$

$$\Delta P_{1a_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) - \cos\left(\alpha_{\hat{i}}\right) + \sin\left(\alpha_{\hat{i}}\right)\right) - U_{\hat{i}} - \tan\left(\varphi_{d_{\hat{i}}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\varphi_{d_{\hat{i}}}\right) - \sin\left(\alpha_{\hat{i}}\right) - \cos\left(\alpha_{\hat{i}}\right)\right) + \frac{c}{FS_{2_{\hat{i}}}} \cdot L_{\hat{i}}\right]}{\left(\cos\left(\alpha_{\hat{i}}\right) - \tan\left(\varphi_{d_{\hat{i}}}\right) - \sin\left(\alpha_{\hat{i}}\right)\right)}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	·
By:	

Driving Wedge (#1b): $L_{\beta} = 0.0 \, \mathrm{ft}$ $\beta_w := \beta$ $\beta_{\mathbf{W}} = 33.7 \deg$ -33.733.7 -33.7 deg $\alpha = \alpha_{1b}$ 33.7 32.0 33.7 deg 32.0 33.7 32.0 ft (0.0) $L_h = 0.0 \, ft$ 33.7 32.0 0.0 $L_i := \frac{L_{\beta}}{\cos(\alpha_i)}$ 0.0 ft 32.0 0..0 26.5 $h_{satr_i} := max \begin{bmatrix} E_{wheel_i} - (E_{ftg} - t_{base} - h_{key}) \\ 0 \cdot ft \end{bmatrix}$ 21.0 ft 15.5 $h_{satl_i} = max \begin{bmatrix} E_{wheel_i} - (E_{ftg} - t_{base} - h_{key}) - \frac{L_{\beta}}{\cos(\alpha_i)} \\ 0 \cdot ft \end{bmatrix}$ 21.0 ft 15.5 32.0 32.0 32.0 $h_{left} := h_{1a}$ 32.0 $h_{right} = 32.0 \text{ ft}$ $h_{right} = h_{1b}$ 32.0 $W_{i} = \gamma_{fill} \cdot \left(L_{h} \cdot \frac{h_{left_{i}} + h_{right}}{2} \right) + \left(\gamma_{sat} - \gamma_{fill} \right) \cdot L_{sat_{i}} \cdot \left(\frac{h_{satr_{i}} + h_{satl_{i}}}{2} \right)$ $W_i =$ 0.0 klf $V = 0 \cdot klf$ 0.0 0.0 $H_L := 0 \cdot klf$ 0.0 0.0 $\mathrm{H}_R := 0 \cdot \mathrm{klf}$ $U_{i} := \gamma_{w} \cdot \left(\frac{h_{satr_{i}} + h_{satl_{i}}}{2}\right) \cdot \sqrt{\left(h_{satr_{i}} - h_{satl_{i}}\right)^{2} + \left(L_{h}\right)^{2}}$ $\left(W_{i} + V\right) \cdot \left(tan\left(\phi_{d_{i}}\right) \cdot cos\left(\alpha_{i}\right) + sin\left(\alpha_{i}\right)\right) - U_{i} \cdot tan\left(\phi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(tan\left(\phi_{d_{i}}\right) \cdot sin\left(\alpha_{i}\right) - cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot sin\left(\alpha_{i}\right) + cos\left(\alpha_{i}\right) + \frac{c}{FS_{2_{i}}} \cdot sin\left(\alpha_{i}\right) + cos\left(\alpha_{i}\right) + cos\left(\alpha_$ $\left(\cos(\alpha_i) - \tan(\phi_{d_i}) \cdot \sin(\alpha_i)\right)$

Samuels Ave. Dam Training wall at right CDM04188

U_i =

0.0

0.0

0.0

klf

Date:	
By:	

Structure Wedge (#2)

$$\beta_{\mathbf{w}} := 0 \cdot \deg$$

$$\phi := \phi_{fill}$$

$$\phi = 32 0 deg$$

$$c := 0 \cdot ksf$$

$$\phi_{\, \boldsymbol{d}_{\underline{i}}} := \, \text{atan}\!\!\left(\frac{\text{tan}\!\left(\boldsymbol{\phi}\right)}{\text{FS}_{2_{\,\underline{i}}}}\right)$$

$$\alpha = 0.0 \deg$$

$$L := \frac{L_{fitg}}{\cos(\alpha)}$$

 $\alpha := 0 \cdot \deg$

$$L = 32.0 \, ft$$

$$h_{S1} := h_{key}$$

$$h_{S1} = 0.0 \, ft$$

$$L_{S1} := x_{key} - \frac{L_{key}}{2}$$

$$L_{S1} = 9.3 \, ft$$

$$x_{S1} \coloneqq \frac{1}{2} \cdot L_{S1}$$

$$x_{S1} = 4.6\,\mathrm{ft}$$

$$S1 := \gamma_{sat} \cdot h_{S1} \cdot L_{S1}$$

$$S1 = 0.0 \, klf$$

$$h_{S2} := h_{key}$$

$$\mathbf{h}_{S2} = 0.0\,\mathrm{ft}$$

$$L_{S2} := L_{fig} - x_{key} - \frac{L_{key}}{2}$$

$$L_{S2} = 18.8 \, ft$$

$$x_{S2} := L_{ftg} - \frac{L_{S2}}{2}$$

$$x_{S2} = 22.6 \, ft$$

$$S2 := \gamma_{sat} \ h_{S2} \cdot L_{S2}$$

$$S2 = 0.0 \text{ klf}$$

$$W_{i} = \sum_{i=1}^{4} W_{C_{i}} + W_{W1_{i}} + W_{WS1_{i}} + W_{WS2_{i}} + W_{WS3_{i}} + W_{WS4_{i}} + W_{WS5} + W_{WS6} + S1 + S2 + S_{\beta_{i}}$$

Uplift below structural wedge

$$u_{toe_i} := \gamma_w \left[E_{wtoe_i} - \left(E_{bftg} - h_{key} \right) \right]$$

$$u_{heel_i} := \gamma_w \left[E_{wheel_i} - \left(E_{bftg} - h_{key} \right) \right]$$

$$\delta_{u_{i}} \coloneqq \frac{\gamma_{w} \cdot \left(E_{wheel_{i}} - E_{wtoe_{i}}\right)}{L_{ftg} - L_{t2}}$$

Samuels Ave. Dam
Training wall at right
CDM04188

21.3 ft

21.3 21.3

 $x_{112} =$

Date:	
By:	

$$\begin{aligned} \mathbf{u}_{1_{i}} &\coloneqq \mathbf{u}_{toe_{i}} \cdot \left(\mathbf{L}_{fig} - \mathbf{L}_{t2_{i}} \right) \\ \mathbf{x}_{u1_{i}} &\coloneqq \frac{\mathbf{L}_{fig} - \mathbf{L}_{t2_{i}}}{2} \\ \mathbf{u}_{2_{i}} &\coloneqq \left(\mathbf{u}_{heel_{i}} - \mathbf{u}_{toe_{i}} \right) \quad \frac{\left(\mathbf{L}_{fig} - \mathbf{L}_{t2_{i}} \right)}{2} \\ \end{aligned} \qquad \mathbf{x}_{u1} &\coloneqq \begin{pmatrix} 15.8 \\ 16.0 \\ 16.0 \\ 16.0 \end{pmatrix} \quad \mathbf{f}t \\ \begin{pmatrix} 21.0 \\ 21.3 \end{pmatrix}$$

$$x_{u2_i} := \frac{2}{3} \left(L_{fig} - L_{t2_i} \right)$$

$$u_{3_{\underline{i}}} \coloneqq u_{heel_{\underline{i}}} \cdot \left(L_{t2_{\underline{i}}}\right)$$

$$x_{u3_i} := L_{ftg} - \frac{L_{t2_i}}{2}$$

$$U_i := u_{1_i} + u_{2_i} + u_{3_i}$$

$$\mathbf{x}_{\mathbf{U}_{i}} \coloneqq \frac{\mathbf{u}_{\mathbf{1}_{i}} \cdot \mathbf{x}_{\mathbf{u}\mathbf{1}_{i}} + \mathbf{u}_{\mathbf{2}_{i}} \cdot \mathbf{x}_{\mathbf{u}\mathbf{2}_{i}} + \mathbf{u}_{\mathbf{3}_{i}} \cdot \mathbf{x}_{\mathbf{u}\mathbf{3}_{i}}}{\mathbf{U}_{i}}$$

$$\mathbf{x}_{U} = \begin{pmatrix} 17.0 \\ 17.2 \\ 17.7 \\ 18.5 \\ 17.8 \end{pmatrix} \mathbf{ft}$$

$$\Sigma M_{grav_{i}} := \left[\sum_{i=1}^{4} W_{C_{i}} \cdot x_{C_{i}} + W_{W1_{i}} \cdot x_{W1} + W_{WS1_{i}} \cdot x_{WS1} + W_{WS2_{i}} \cdot x_{WS2_{i}} + W_{WS3_{i}} \cdot x_{WS3_{i}} \right] ...$$

$$+ W_{WS4_{i}} \cdot x_{WS4_{i}} + W_{WS5} \cdot x_{WS5} + W_{WS6} \cdot x_{WS6} + S1 \cdot x_{S1} + S2 \cdot x_{S2} + S_{\beta_{i}} \cdot x_{S\beta} - \left(U_{i} \cdot x_{U_{i}} \right)$$

$$h_{\text{H1}_{i}} := E_{\text{wtoe}_{i}} - \left(E_{\text{bftg}} - h_{\text{key}}\right)$$

$$y_{\text{H1}_{i}} := \frac{h_{\text{H1}_{i}}}{3} - h_{\text{key}}$$

$$H_{i} := \gamma_{w} \cdot \frac{\left(h_{\text{H1}_{i}}\right)^{2}}{2}$$

$$\begin{array}{c} h_{H1}{}_{i} = \\ \hline 22.00 & \text{ft} \\ \hline 16.50 & & & \\ \hline 11.00 & & & \\ \hline 5.50 & & & \\ \hline 5.00 & & & \\ \hline 1.83 & & \\ \hline 1.67 & & \\ \hline \end{array}$$

H1 _i =	
15.1	klf
8.5	
3.8	
0.9	
8.0	

$$K1_i := 0 \cdot klf$$

$$K2_i := 0 \cdot klf$$

$$\begin{split} \Sigma M_{lat_{i}} &:= -H1_{i} \left(y_{H1_{i}} \right) - K1_{i} \left(y_{K1} \right) - K2_{i} \cdot \left(y_{K2} \right) + H2_{i} \left(y_{H2_{i}} \right) + H3_{i} \cdot \left(y_{H3} \right) \\ &+ A1_{i} \left(y_{A1_{i}} \right) + A2_{i} \left(y_{A2_{i}} \right) + A3_{i} \cdot \left(y_{A3_{i}} \right) - R_{key_{i}} \left(y_{Rkey} \right) \end{split}$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

$$\mathbf{x}_{R_i} \coloneqq \frac{\Sigma \mathbf{M}_{grav_i} - \Sigma \mathbf{M}_{lat_i}}{\mathbf{W}_i - \mathbf{U}_i}$$

$$L_{\text{brg}_{i}} := \min(3 x_{R_{i}}, L_{\text{ftg}})$$

 $ok_{u_i} := if \left| \left| L_{brg_i} - \left(L_{ftg} - L_{t2_i} \right) \right| > 0.001 \cdot \text{ft, "Uplift assumptions wrong in sliding analysis.", "Matched."} \right|$

$$\begin{array}{ccc} W_i = & u_{toe_i} = \\ \hline 118.0 & klf & 1.375 \\ 115.6 & & 1.031 \\ \hline 113.1 & & 0.688 \\ \hline 110.7 & & 0.344 \\ \hline \end{array}$$

110.7

$$u_{toe_{i}} = u_{heel_{i}}$$
 1.375 ksf
 2.00
 1.031
 0.688
 1.31

0.313

$$\delta_{u_{i}} = \frac{\delta_{u_{i}}}{19.8}$$

19.5

19.5

19.5

9.8

	43.370	klf
I	33.000	
ľ	22.000	
ľ	11.000	
	10.000	

$$u_{2_{i}} = u_{3_{i}} = 0.857$$
 0.916
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000

$$\begin{array}{c|cccc}
10.000 & 0.000 \\
10.000 & 0.000 \\
\hline
10.000 & 0.000 \\
\hline
5.000 & 0.000 \\
\end{array}$$

$$y_{H2_i} = 12_i =$$

 $u_{3_i} =$

klf

15.0

17.8

$$\Sigma M_{grav_i} =$$

1178 ki

1353

1524

1695

1823

$$\Sigma M_{lat_i}$$
ip 506
542
557
558
553

$$\Sigma M_{lat_{1}} = x_{R_{1}} =$$

$$\begin{array}{c|ccc}
506 & kip & 10.5 & ft \\
542 & & 11.2 & \\
557 & & 11.9 & \\
558 & & 12.7 & \\
553 & & 13.3 & \\
\end{array}$$

$$L_{\text{brg}_{i}} = \frac{31.5}{32.0} \text{ ft} = \frac{32.0}{32.0} = \frac{32$$

Samuels Ave. Dam
Training wall at right
CDM04188

Date:	
Ву:	

$$H_{\underline{L}_i} := 0 \cdot klf$$

$$H_{R_{i}} := \gamma_{w} \cdot \frac{\left(E_{wtoe_{i}} - E_{fitg}\right)^{2}}{2}$$

$$\Delta P_{2_{\hat{i}}} := \frac{\left[\left(W_{\hat{i}} + V\right) \cdot \left(tan\left(\phi_{d_{\hat{i}}}\right) \cdot cos(\alpha) + sin(\alpha)\right) - U_{\hat{i}} \cdot tan\left(\phi_{d_{\hat{i}}}\right) + \left(H_{L_{\hat{i}}} - H_{R_{\hat{i}}}\right) \cdot \left(tan\left(\phi_{d_{\hat{i}}}\right) \cdot sin(\alpha) - cos(\alpha)\right) + \frac{c}{FS_{2_{\hat{i}}}} \right]}{\left(cos(\alpha) - tan\left(\phi_{d_{\hat{i}}}\right) \cdot sin(\alpha)\right)}$$

$$L_{ftg} - L_{brg_i} =$$

$$\begin{bmatrix}
0.458 & \text{ft} \\
0.000 & \\
0.000 & \\
0.000 & \\
0.000 & \\
0.000 & \\
\end{bmatrix}$$

$$L_{t2} \equiv \begin{pmatrix} 0.458 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot \mathbf{ft}$$

$$ok := \left. \text{if} \left\lfloor \text{max} \left\lfloor \left\lfloor L_{brg} - \left(L_{ftg} - L_{t2} \right) \right\rfloor \right\rfloor < 0.001 \quad \text{ft, ok, "Uplift area does not match."} \right\rfloor$$

$$ok := if \left(min(L_{brg}) < x_{key} + \frac{L_{key}}{2}, "Uplift assumptions incorrect.", ok \right)$$

$$ok = "Ok"$$

Samuels Ave. Dam Training wall at right CDM04188

Date:	
By:	

Resisting Wedge (#3)

$$\beta_{\mathbf{W}} := 0 \cdot \deg$$

$$\phi := \phi_{\text{fill}}$$

$$\phi = 32.0 \deg$$

$$c = 0 \text{ ksf}$$

$$\phi_{d_i} := atan\left(\frac{tan(\phi)}{FS_{2_i}}\right)$$

$$\alpha_i := 45 \cdot \deg - \frac{\phi_{d_i}}{2}$$

$$L_{i} := \frac{t_{base} + h_{key}}{\sin(\alpha_{i})}$$

$$p_{\mathbf{d_i}} = \begin{pmatrix} 24.4 \\ 23.0 \\ 21.7 \end{pmatrix}$$

$$\phi_{\mathbf{d_i}} = \begin{pmatrix} 24.7 \\ 23.0 \\ 21.7 \\ 20.4 \\ 19.0 \end{pmatrix} \text{deg}$$

$$\alpha_{i} = \begin{pmatrix} 32.8 \\ 33.5 \\ 34.1 \\ 34.8 \\ 25.5 \end{pmatrix} deg$$

$$L = \begin{pmatrix} 9.223 \\ 9.063 \\ 8.907 \\ 8.761 \\ 8.615 \end{pmatrix}$$

$$W_{i} = \gamma_{sat} \frac{L_{i} \cos(\alpha_{i}) \cdot (t_{base} + h_{key})}{2} + \gamma_{w} \cdot (E_{wtoe_{i}} - E_{ftg}) \cdot L_{i} \cdot \cos(\alpha_{i})$$

$$U_{i} = \gamma_{w} \cdot \left(E_{wtoe_{i}} - E_{ftg} + \frac{t_{base} + h_{key}}{2}\right) \cdot L_{i}$$

$$H_L := 0 \cdot klf$$

$$H_R := 0 \cdot klf$$

$$V := 0$$
 klf

$$\Delta P_{3_{i}} := \frac{\left[\left(W_{i} + V\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \cos\left(\alpha_{i}\right) + \sin\left(\alpha_{i}\right)\right) - U_{i} \cdot \tan\left(\phi_{d_{i}}\right) + \left(H_{L} - H_{R}\right) \cdot \left(\tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right) - \cos\left(\alpha_{i}\right)\right) + \frac{c}{FS_{2_{i}}} \cdot L_{i}\right]}{\left(\cos\left(\alpha_{i}\right) - \tan\left(\phi_{d_{i}}\right) \cdot \sin\left(\alpha_{i}\right)\right)}$$

$$\Sigma P_i := \Delta P_{1a_i} + \Delta P_{1b_i} + \Delta P_{2_i} + \Delta P_{3_i}$$

$$W_{i} = \begin{bmatrix} 10.7 & klf \\ 7.8 & \end{bmatrix}$$

5.1

2.5

2.2

ok = "Ok"

$$W_{i} = U_{i} = \frac{10.7}{7.8}$$
 klf $\frac{11.2}{7.9}$ klf

$$\Delta P_{1a} =$$

ok = if $(FS_{2_1} \ge 1.33, ok, "Sliding instability: LC#1")$

ok := if $(FS_{2_n} \ge 1.50, ok, "Sliding instability: LC#n")$

$$\Delta P_{1b_i} = \Delta P_{2_i} =$$

$$\begin{bmatrix} 0.0 & \text{klf} & 38.0 \\ 0.0 & \text{klf} \end{bmatrix}$$

$$\Delta P_{2_i} = \frac{38.0}{35.0}$$
 kl

$$\Delta P_{3_{i}} = \begin{bmatrix} 8.0 & \text{klf} \\ 6.2 & \end{bmatrix}$$

$$\Sigma P_i = \begin{bmatrix} 0.2 & \text{klf} \\ 0.1 & \end{bmatrix}$$

0.1

0.1

$$EP_{i} = \frac{0.2}{0.1}$$
 klf $\frac{0.1}{0.0}$

$$L_{\text{heel}} \equiv 24 \cdot \text{ft}$$

1.47 1.57

$$h_{\text{key}} \equiv 0 \cdot \text{ft}$$

$$L_{ftg} = 32.0 \text{ ft}$$

$$L_{toe} \equiv 8 \cdot ft$$

$$L_{\text{fig}} - x_{\text{key}} - \frac{L_{\text{key}}}{2} = 18.8 \, \text{ft}$$

Section 4 Headwall

Headwall at Ramp Level (right side):

Reference: T:\ST\CALCS\Common geometry.mcd(R)

Geometry:

$$\Delta_{\mathbf{w}} := 10 \cdot \mathbf{f}$$

(maximum height of retained water above water in basin)

$$E_{wall} = 530 \text{ fi}$$

$$E_{\text{grade}} := 527 \cdot \text{ft}$$

$$E_{fre} = E_{ramr}$$

$$E_{ftg} = 503.5 \, ft$$

$$t_{w \text{ top}} := 18 \cdot in$$

$$t_{w_bot} := \frac{\left(E_{wall} - E_{ftg}\right)}{8} + t_{w_top}$$

$$t_{w_bot} = 4.8125 \, ft$$

$$E_{rot} := E_{fto} - 3 \cdot ft$$

$$n := floor \left(\frac{E_{grade} - E_{ftg}}{2ft} \right) + 1$$

$$n = 12.0$$

$$i := 1..n$$

$$E_{\text{wheel}_{i}} := E_{\text{fig}} + (n - i) \cdot \frac{\left(E_{\text{grade}} - E_{\text{fig}}\right)}{n - 1}$$

$$\begin{split} E_{wall} &= 530 \quad \mathrm{ft} \\ E_{grade} &\coloneqq 527 \quad \mathrm{ft} \\ E_{ftg} &\coloneqq E_{ramp} \qquad \qquad E_{ftg} = 503.5 \, \mathrm{ft} \\ t_{w_top} &\coloneqq 18 \cdot \mathrm{in} \\ t_{w_bot} &\coloneqq \frac{\left(E_{wall} - E_{ftg}\right)}{8} + t_{w_top} \qquad \qquad t_{w_bot} = 4.8125 \, \mathrm{ft} \\ E_{rot} &\coloneqq E_{ftg} - 3 \cdot \mathrm{ft} \\ n &\coloneqq floor \left(\frac{E_{grade} - E_{ftg}}{2 \mathrm{ft}}\right) + 1 \qquad \qquad n = 12.0 \\ i &\coloneqq 1 \cdot \cdot \cdot n \\ E_{wheel}_{i} &\coloneqq E_{ftg} + (n - i) \cdot \frac{\left(E_{grade} - E_{ftg}\right)}{n - 1} \\ E_{wtoe}_{i} &\coloneqq \max \left(\begin{pmatrix} E_{wheel}_{i} - \Delta_{w} \\ E_{ftg} \end{pmatrix}\right) \\ t_{ftg} &\coloneqq 6 \cdot \mathrm{ft} \end{split}$$

$$t_{flo} := 6 \cdot ft$$

$$L_{heel} := ceil \left(\frac{t_{w_bot}}{ft}\right) \cdot ft + 14 \cdot ft \qquad \qquad L_{heel} = 19.0 ft$$

$$L_{toe} := 15 \cdot ft$$

$$L_{fig} := L_{toe} + L_{heel} \qquad \qquad L_{fig} = 34.0 ft$$

$$L_{\text{heel}} = 19.0 \, \text{fm}$$

$$L_{toe} := 15 \cdot f$$

$$L_{flor} = 34.0 \, ft$$

CDM04188

Material:

$$\gamma_{\text{fill_eff}} := 65 \cdot \text{pcf}$$

$$\gamma_{\text{fill}} := 130 \cdot \text{pcf}$$

$$k_{0_fill} := 0.5$$

$$\phi_{fill} = 28 \text{ deg}$$

Constants:

$$\gamma_{\rm W} = 62.5\,{\rm pcf}$$

$$\gamma_c = 150.0 \, pcf$$

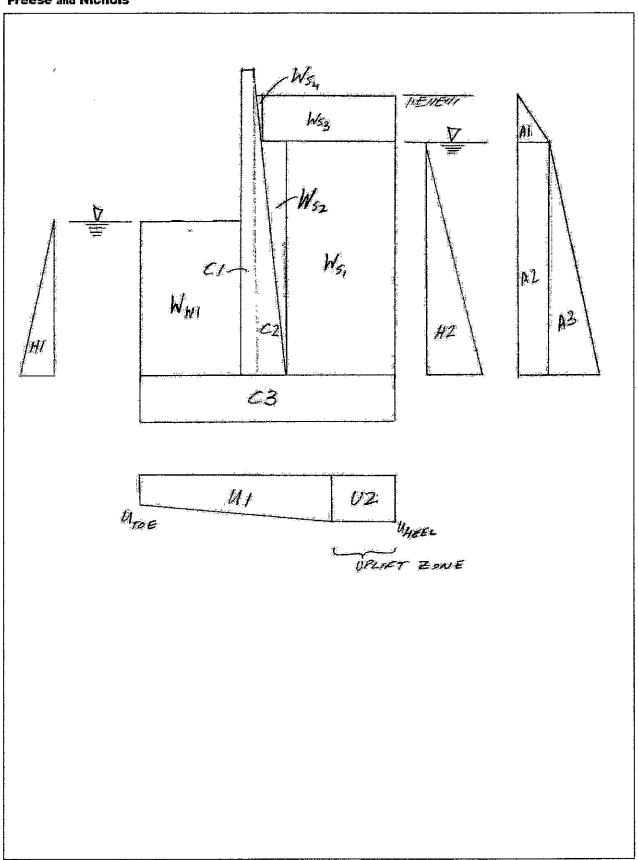
Pre-Definitions:

$$kip \equiv 1000 \cdot lbf$$

$$psf = \frac{lbf}{ft^2}$$

$$plf \equiv \frac{lbf}{ft}$$

$$ORIGIN = 1.0$$


$$pcf = \frac{10}{100}$$

$$klf \equiv 1000 \cdot plf$$

ksi ≡ 1000 · psi

$$sf := \frac{1000 \cdot 11}{n^2}$$

CDM04188

Analysis:

Gravity Loads:

$$h_{C_1} = E_{wall} - E_{fig}$$

$$h_{C_1} = 26.5 \, ft$$

$$L_{C_1} := t_{w_top}$$

$$L_{C_1} = 1.5 \, \text{ft}$$

$$\mathbf{x}_{\mathbf{C}_1} \coloneqq \mathbf{L}_{\mathsf{toe}} + \frac{\mathbf{L}_{\mathbf{C}_1}}{2}$$

$$x_{C_1} = 15.8 \, ft$$

$$W_{C_1} := \gamma_c \cdot h_{C_1} \cdot L_{C_1}$$

$$W_{C_1} = 6.0 \, \text{klf}$$

$$h_{C_2} := h_{C_1}$$

$$h_{C_2} = 26.5 \, ft$$

$$L_{C_2} := t_{w_bot} - t_{w_top}$$

$$L_{C_2} = 3.3 \, \mathrm{ft}$$

$$x_{C_2} := L_{toe} + L_{C_1} + \frac{L_{C_2}}{3}$$

$$x_{C_2} = 17.6 \, \text{ft}$$

$$W_{C_2} := \gamma_c \cdot \frac{h_{C_2} \cdot L_{C_2}}{2}$$

$$W_{C_2} = 6.6 \text{klf}$$

$$h_{C_3} = t_{ftg}$$

$$h_{C_3} = 6.0 \, ft$$

$$L_{C_3} = L_{ftg}$$

$$L_{C_3} = 34.0 \, ft$$

$$x_{C_3} = \frac{L_{C_3}}{2}$$

$$x_{C_3} = 17.0 \, \text{ft}$$

$$W_{C_{\stackrel{\cdot}{3}}} \coloneqq \gamma_c \cdot h_{C_{\stackrel{\cdot}{3}}} \ L_{C_{\stackrel{\cdot}{3}}}$$

$$W_{C_3} = 30.6 \,\mathrm{klf}$$

$$h_{W1_i} \coloneqq E_{wheel_i} - E_{ftg}$$

$$L_{W1} = 15.0 \, ft$$

$$x_{W1} := \frac{L_{W1}}{2}$$

$$x_{W1} = 7.5 \, ft$$

$$W_{Wl_i} = \gamma_w \cdot h_{Wl_i} \cdot L_{Wl}$$

$$h_{WSl_i} := E_{wtoe_i} - E_{ftg}$$

$$L_{WS1} \coloneqq L_{heel} - t_{w_bot}$$

$$L_{WS1} = 14.2 \, ft$$

$$x_{WS1} := L_{ftg} - \frac{L_{WS1}}{2}$$

$$x_{WS1} = 26.9 \, ft$$

$$W_{Sl_i} := (\gamma_{fill_eff} + \gamma_w) \cdot h_{WSl_i} \cdot L_{WS1}$$

$$h_{WS2} := h_{WS1}$$

$$h_{WS2_{i}} := h_{WS1_{i}}$$

$$L_{WS2_{i}} := (t_{w_bot} - t_{w_top}) \cdot \frac{h_{WS2_{i}}}{E_{wall} - E_{ftg}}$$

$$x_{WS2_{i}} := L_{ftg} - L_{heel} + t_{w_bot} - \frac{L_{WS2_{i}}}{3}$$

$$x_{\text{WS2}_i} := L_{\text{ftg}} - L_{\text{heel}} + t_{\text{w_bot}} - \frac{L_{\text{WS2}_i}}{3}$$

$$W_{S2_i} := \left(\gamma_{fill_eff} + \gamma_{\mathbf{w}}\right) \frac{h_{WS2_i} \cdot L_{WS2_i}}{2}$$

$$h_{WS3_i} := max(E_{grade} - E_{wheel_i}, 0 \text{ ft})$$

$$L_{\text{WS3}_i} \coloneqq L_{\text{WS1}} + L_{\text{WS2}_i}$$

$$L_{\text{WS3}_{i}} := L_{\text{WS1}} + L_{\text{WS2}_{i}}$$

$$x_{\text{WS3}_{i}} := L_{\text{ftg}} - \frac{L_{\text{WS3}_{i}}}{2}$$

$$W_{S3_i} := \gamma_{fill} \cdot h_{WS3_i} L_{WS3_i}$$

$$\mathbf{h_{WS4}}_i \coloneqq \mathbf{h_{WS3}}_i$$

$$L_{WS4_{i}} := \left(t_{w_bot} - t_{w_top}\right) \cdot \frac{h_{WS4_{i}}}{E_{wall} - E_{ftg}}$$

$$x_{WS4_{i}} := L_{fig} - L_{WS3_{i}} - \frac{L_{WS4_{i}}}{3}$$

$$W_{S4_i} \coloneqq \gamma_{fill} \cdot \frac{h_{WS4_i} \cdot L_{WS4_i}}{2}$$

$wtoe_{i} =$	Ewheel i	= h _{WS}	$h_{i} = h_{WS}$	32 _i =	hws3 _i =	hws4	$=$ L_{WS2}	$2_i = L_{WS3_i} =$	$L_{WS4_i} =$
517.0 ft	527.0		_1		0.0 ft				0.0 ft
514.9	524.9	11.4	11.	4	2.1	2.1	1.4	15.6	0.3
512.7	522.7	9.2			4.3	4.3		15.3	0.5
10.6	520.6	7.1	7.	1	6.4	6.4	0.9	15.1	0.8
08.5	518.5	5.0			8.5	8.5	0.6	14.8	1.1
06.3	516.3	2.8			10.7	10.7	0.4	14.5	1.3
04.2	514.2	0.7	- 1		12.8	12.8	0.1	14.3	1.6
03.5	512.0	0.0			15.0	15.0	0.0	14.2	1.9
03.5	509.9	0.0			17.1	17.1	0.0	14.2	2.1
03.5	507.8	0.0	_		19.2	19.2	0.0	14.2	2.4
03.5	505.6	0.0			21.4	21.4	0.0	14.2	2.7
503.5	503.5	0.0	0.	0	23.5	23.5	0.0	14.2	2.9
		<u> </u>		_	<u> </u>				
		<u> </u>	<u> </u>						
			┨	_				 	<u> </u>
				4	<u> </u>				<u></u>
		<u> </u>] [<u> </u>			
ws2. = xv	$w_{S3} = x$	ws4. =	W _{W1.} =	$w_{S1.}$	= V	V _{S2.} =	$W_{S3_i} =$	$W_{S4.} =$	
•		18.1 ft		If 24.4			3,	1	
		10.111	144.01 1	u 24.4	kit i	1.5 klf	0.0 klf	0.0 klf	
19.3 2		18.3	20.0	20.6		1.5 klf 1.0	0.0 klf 4.3	0.0 klf 0.0	
	26.2							L	
9.4 2	26.2 26.3	18.3	20.0	20.6		1.0	4.3	0.0	
9.4 2 9.5 2	26.2 26.3 26.5	18.3 18.5	20.0	20.6 16.7		1.0 0.7	4.3 8.5	0.0	
9.4 2 9.5 2 9.6 2	26.2 26.3 26.5 26.6	18.3 18.5 18.7	20.0 18.0 16.0	20.6 16.7 12.8		1.0 0.7 0.4	4.3 8.5 12.6	0.0 0.1 0.3	
9.4 2 9.5 2 9.6 2 9.7 2	26.2 26.3 26.5 26.6	18.3 18.5 18.7 18.8	20.0 18.0 16.0 14.0	20.6 16.7 12.8 9.0		1.0 0.7 0.4 0.2 0.1	4.3 8.5 12.6 16.4	0.0 0.1 0.3 0.6 0.9	
9.4 2 9.5 2 9.6 2 9.7 2 9.8 2	26.2 26.3 26.5 26.6 26.7	18.3 18.5 18.7 18.8 19.0	20.0 18.0 16.0 14.0 12.0	20.6 16.7 12.8 9.0 5.1		1.0 0.7 0.4 0.2	4.3 8.5 12.6 16.4 20.2	0.0 0.1 0.3 0.6 0.9	
9.4 2 9.5 2 9.6 2 9.7 2 9.8 2 9.8 2	26.2 26.3 26.5 26.6 26.7 26.9	18.3 18.5 18.7 18.8 19.0	20.0 18.0 16.0 14.0 12.0	20.6 16.7 12.8 9.0 5.1 1.2		1.0 0.7 0.4 0.2 0.1	4.3 8.5 12.6 16.4 20.2 23.8	0.0 0.1 0.3 0.6 0.9	
9.4 2 9.5 2 9.6 2 9.7 2 9.8 2 9.8 2 9.8 2	26.2 26.3 26.5 26.6 26.7 26.9 26.9	18.3 18.5 18.7 18.8 19.0 19.2	20.0 18.0 16.0 14.0 12.0 10.0 8.0	20.6 16.7 12.8 9.0 5.1 1.2 0.0		1.0 0.7 0.4 0.2 0.1 0.0	4.3 8.5 12.6 16.4 20.2 23.8 27.6	0.0 0.1 0.3 0.6 0.9 1.3	
9.4 2 9.5 2 9.6 2 9.7 2 9.8 2 9.8 2 9.8 2	26.2 26.3 26.5 26.6 26.7 26.9 26.9 26.9	18.3 18.5 18.7 18.8 19.0 19.2 19.2	20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0	20.6 16.7 12.8 9.0 5.1 1.2 0.0		1.0 0.7 0.4 0.2 0.1 0.0 0.0	4.3 8.5 12.6 16.4 20.2 23.8 27.6 31.5	0.0 0.1 0.3 0.6 0.9 1.3 1.8 2.4	
9.4 2 9.5 2 9.6 2 9.8 2 9.8 2 9.8 2 9.8 2	26.2 26.3 26.5 26.6 26.7 26.9 26.9 26.9 26.9	18.3 18.5 18.7 18.8 19.0 19.2 19.2 19.1	20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0	20.6 16.7 12.8 9.0 5.1 1.2 0.0 0.0		1.0 0.7 0.4 0.2 0.1 0.0 0.0 0.0	4.3 8.5 12.6 16.4 20.2 23.8 27.6 31.5	0.0 0.1 0.3 0.6 0.9 1.3 1.8 2.4 3.0	
9.4 2 2 19.5 2 19.6 2 19.8	26.2 26.3 26.5 26.6 26.7 26.9 26.9 26.9 26.9	18.3 18.5 18.7 18.8 19.0 19.2 19.2 19.1 19.0 18.9	20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0	20.6 16.7 12.8 9.0 5.1 1.2 0.0 0.0		1.0 0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0	4.3 8.5 12.6 16.4 20.2 23.8 27.6 31.5 35.5 39.4	0.0 0.1 0.3 0.6 0.9 1.3 1.8 2.4 3.0 3.7	
9.4 2 2 19.5 2 19.6 2 19.8	26.2 26.3 26.5 26.6 26.7 26.9 26.9 26.9 26.9	18.3 18.5 18.7 18.8 19.0 19.2 19.2 19.1 19.0 18.9	20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0	20.6 16.7 12.8 9.0 5.1 1.2 0.0 0.0		1.0 0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0	4.3 8.5 12.6 16.4 20.2 23.8 27.6 31.5 35.5 39.4	0.0 0.1 0.3 0.6 0.9 1.3 1.8 2.4 3.0 3.7	
9.4 2 2 19.5 2 19.6 2 19.8	26.2 26.3 26.5 26.6 26.7 26.9 26.9 26.9 26.9	18.3 18.5 18.7 18.8 19.0 19.2 19.2 19.1 19.0 18.9	20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0	20.6 16.7 12.8 9.0 5.1 1.2 0.0 0.0		1.0 0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0	4.3 8.5 12.6 16.4 20.2 23.8 27.6 31.5 35.5 39.4	0.0 0.1 0.3 0.6 0.9 1.3 1.8 2.4 3.0 3.7	
19.4 2 2 19.5 2 19.6 2 19.8	26.2 26.3 26.5 26.6 26.7 26.9 26.9 26.9 26.9	18.3 18.5 18.7 18.8 19.0 19.2 19.2 19.1 19.0 18.9	20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0	20.6 16.7 12.8 9.0 5.1 1.2 0.0 0.0		1.0 0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0	4.3 8.5 12.6 16.4 20.2 23.8 27.6 31.5 35.5 39.4	0.0 0.1 0.3 0.6 0.9 1.3 1.8 2.4 3.0 3.7	

CDM04188

Lateral loads:

$$h_{\text{H1}_i} := E_{\text{wtoe}_i} - E_{\text{ftg}}$$

$$y_{\text{H1}_{i}} := \frac{h_{\text{H1}_{i}}}{3} + \left(E_{\text{ftg}} - E_{\text{rot}}\right)$$

$$H1_{i} = \gamma_{w} \cdot \frac{\left(h_{H1_{i}}\right)^{2}}{2}$$

$$h_{\text{H2}_i} := E_{\text{wheel}_i} - E_{\text{fig}}$$

$$y_{\text{H2}_{i}} := \frac{h_{\text{H2}_{i}}}{3} + \left(E_{\text{ftg}} - E_{\text{rot}}\right)$$

$$H2_{i} := \gamma_{w} \cdot \frac{\left(h_{H2_{i}}\right)^{2}}{2}$$

$$h_{A1_i} := h_{WS4_i}$$

$$y_{A1_i} := E_{grade} - E_{rot} - \frac{2}{3} h_{A1_i}$$

$$y_{A1_i} := E_{grade} - E_{rot} - \frac{2}{3} h_{A1_i}$$

$$H_{A1_i} := k_{0_fill} \gamma_{fill} \frac{\left(h_{A1_i}\right)^2}{2}$$

$$h_{A2_i} = h_{H2_i}$$

$$y_{A2_i} = \frac{h_{H2_i}}{2} + E_{ftg} - E_{rot}$$

$$H_{A2_i} := k_0_{fill} \gamma_{fill} h_{A1_i} \cdot h_{A2_i}$$

$$h_{A3_i} := h_{A2_i}$$

$$y_{A3_i} := \frac{h_{A3_i}}{2} + E_{ftg} - E_{rot}$$

$$y_{A3_{i}} := \frac{h_{A3_{i}}}{3} + E_{fig} - E_{rot}$$

$$H_{A3_{i}} := k_{0_fill} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_{i}}\right)^{2}}{2}$$

Freese and Nichols

Samuels Ave. Dam

Freese and Nichol	ls			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.7 klf 23.5 ft 10 4.0 21.4 10 2.7 19.2 1.6 17.1 6 0.8 15.0 6 0.2 12.8 0.0 10.7 0.0 8.5 0.0 6.4 0.0 6.	2 _i = H2 _i = 0.8 ft 17.3 klf 14.3 0.1 11.6 3.7 9.1 7.0 7.3 5.1 3.6 5.8 2.3 5.1 1.3 4.4 0.6 3.7 0.1 3.0 0.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		y _{A2_i} = H _{A2_i} = 14.8 ft 0.0 klf 13.7 5.3 11.5 7.1 10.5 8.3 9.4 8.9 8.3 8.9 7.3 8.3 6.2 7.1 5.1 5.3 4.1 3.0 3.0 0.0	23.5 ft 10.8 ft 9 21.4 10.1 7 19.2 9.4 6 17.1 8.7 4 15.0 8.0 3 12.8 7.3 2 10.7 6.6 1 8.5 5.8 1 6.4 5.1 0 4.3 4.4 0 2.1 3.7 0	A3 _i = 0.0 klf 7.4 3.0 1.7 3.6 1.7 1.9 1.2 1.7 1.3 1.1 1.0 1.0

CDM04188

Uplift:

$$u_{heel}_{i} \coloneqq \gamma_{\mathbf{w}} \left[E_{wheel}_{i} - \left(E_{ftg} - t_{ftg} \right) \right]$$

$$\mathbf{u}_{toe_{i}} := \gamma_{\mathbf{w}} \cdot \lfloor \left(\mathbf{E}_{gate} + 2 \quad ft \right) - \left(\mathbf{E}_{ftg} - \mathbf{t}_{ftg} \right) \rfloor$$

(Base uplift pressure at toe on gates closed with two feet of flow over the top.)

$$u_{rect_{\underline{i}}} \coloneqq \min\!\!\left(u_{heel_{\underline{i}}}, u_{toe_{\underline{i}}}\right)$$

$$u_{tri_{\underline{i}}} \coloneqq \left| u_{heel_{\underline{i}}} - u_{toe_{\underline{i}}} \right|$$

$$L_{U1_{i}} \coloneqq if \begin{bmatrix} u_{toe_{i}} < u_{heel_{i}}, min \begin{pmatrix} 3 \cdot frac_{u_{i}} \cdot L_{ftg} \\ L_{ftg} \end{pmatrix}, L_{ftg} \end{bmatrix}$$

$$U_{rect_i} := u_{rect_i} L_{U1_i}$$

$$U_{tri_i} := \frac{u_{tri_i} \cdot L_{U1_i}}{2}$$

$$x_{rect_i} := \frac{L_{U1}}{2}$$

$$x_{tri_{i}} := \frac{L_{U1_{i}}}{2} + \frac{L_{U1_{i}}}{6} \quad if(u_{heel_{i}} > u_{toe_{i}}, 1, -1)$$

$$U1_i := U_{rect_i} + U_{tri_i}$$

$$\mathbf{x_{U1}_{i}} \coloneqq \frac{\mathbf{U_{rect_{i}} \cdot x_{rect_{i}} + U_{tri_{i}} \cdot x_{tri_{i}}}}{\mathbf{U1_{i}}}$$

$$L_{U2_{i}} := L_{ftg} - L_{U1_{i}}$$

$$U2_i := u_{heel_i} \cdot L_{U2_i}$$

$$U2_{i} := u_{heel_{i}} \cdot L_{U2_{i}}$$
$$x_{U2_{i}} := L_{U1_{i}} + \frac{L_{U2_{i}}}{2}$$

Freese and Nichol	5 			<u> </u>		
$u_{\text{heel}_{i}} = u_{\text{toe}_{i}}$	$=$ $u_{rect_{\hat{1}}} =$	u _{tri} =	$L_{Ul_i} =$	L _{U2} =	U1 _i =	U2; =
1.844 ksf 1.906	ksf 1.844 ksf	0.063 ksf	34.00 ft	0.00 ft	63.8 klf	0.0 klf
1.710 1.906	1.710	0.196	34.00	0.00	61.5	0.0
1.577 1.906	1.577	0.330	34.00	0.00	59.2	0.0
1.443 1.906	1.443	0.463	34.00	0.00	56.9	0.0
1.310 1.900	1.310	0.597	34.00	0.00	54.7	0.0
1.176 1.900	3 1.176	0.730	34.00	0.00	52.4	0.0
1.043 1.900	1.043	0.864	34.00	0.00	50.1	0.0
0.909 1.900	0.909	0.997	34.00	0.00	47.9	0.0
0.776 1.900	0.776	1.131	34.00	0.00	45.6	0.0
0.642 1.900	0.642	1.264	34.00	0.00	43.3	0.0
0.509 1.900	0.509	1.398	34.00	0.00	41.1	0.0
0.375 1.90	0.375	1.531	34.00	0.00	38.8	0.0
	-					
. <u>L</u>	<u></u>	<u> </u>	<u> </u>	<u>.</u>		L
$U_{rect_i} = U_{tri_i} =$	$x_{rect_i} = x_{tri_i} =$	$x_{U_{i}} =$	$x_{U2_i} =$	U2 _i =		
62.7 klf 1.1	klf 17.0 ft 11.3		34.0 ft	0.0 klf		
58.1 3.3	17.0 11.3	16.7	34.0	0.0		1
53.6 5.6	17.0 11.3	16.5	34.0	0.0		
49.1 7.9	17.0 11.3	16.2	34.0	0.0		,
44.5 10.1	17.0 11.3	15.9	34.0	0.0		
40.0 12.4	17.0 11.3	15.7	34.0	0.0		
35.4 14.7	17.0 11.3	15.3	34.0	0.0		
30.9 17.0	17.0 11.3	15.0	34.0	0.0		
26.4 19.2	17.0 11.3	14.6	34.0	0.0		
21.8 21.5	17.0 11.3	14.2	34.0	0.0		
17.3 23.8	17.0 11.3	13.7	34.0	0.0		
12.7 26.0	17.0 11.3	13.2	34.0	0.0		
12.7	1,7,0					
						Ī
			<u> </u>			

$$\begin{split} & \Sigma V_i \coloneqq \sum_{i=1}^3 \ W_{C_i} + W_{WI_i} + W_{SI_i} + W_{S2_i} + W_{S3_i} + W_{S4_i} - UI_i - U2_i \\ & \Sigma M_{grav_i} \coloneqq \sum_{i=1}^3 \ W_{C_i} \cdot x_{C_i} + W_{WI_i} \cdot x_{WI} + W_{SI_i} \cdot x_{WSI} + W_{S2_i} \cdot x_{WS2_i} + W_{S3_i} \cdot x_{WS3_i} \dots \\ & + W_{S4_i} \cdot x_{WS4_i} - UI_i \cdot x_{UI_i} - U2_i \cdot x_{U2_i} \\ & \Sigma H_i \coloneqq -HI_i + H2_j + H_{A1_i} + H_{A2_i} + H_{A3_i} \\ & \Sigma M_{lat_i} \coloneqq -HI_i + H2_j + W_{lat_i} + H2_j \cdot y_{H2_i} + H_{A1_i} \cdot y_{A1_i} + H_{A2_i} \cdot y_{A2_i} + H_{A3_i} \cdot y_{A3_i} \\ & \Sigma M_i \coloneqq \Sigma M_{grav_i} - \Sigma M_{lat_i} \\ & x_{res_i} \coloneqq \frac{\Sigma M_i}{\Sigma V_i} \qquad frac_i \coloneqq \frac{x_{res_i}}{L_{Rg}} \\ & frac_t = if \left(frac_i > \frac{2}{3} \cdot frac_i \ge \frac{1}{3}, \text{"Resultant in middle third. Okay normal case." , frac_text_i} \right) \\ & frac_t = if \left(frac_i < \frac{1}{3} \cdot frac_i \ge \frac{1}{3}, \text{"Resultant in middle half. Unusual case only " , frac_text_i} \right) \\ & frac_t = if \left(frac_i < \frac{1}{3} \cdot frac_i \ge 0, \text{"Resultant within base. Extreme case only." , frac_text_i} \right) \\ & frac_t = if \left(frac_i < 0, \text{"Unstable" , frac_text_i} \right) \\ & L_{contact_i} \coloneqq if \left(frac_i < 0, \text{"Unstable" , frac_text_i} \right) \\ & \Sigma M_{grav_i} = \sum M_{ij} = \sum \frac{\Sigma M_{ij}}{296.0} \\ & \Sigma M_{grav_i} = \sum \Sigma H_{ij} = \sum \frac{\Sigma M_{ij}}{296.0} \\ & \Sigma M_{grav_i} = \sum \Sigma H_{ij} = \sum \frac{\Sigma M_{ij}}{296.0} \\ & \Sigma M_{grav_i} = \sum \Sigma H_{ij} = \sum \frac{\Sigma M_{ij}}{296.0} \\ & \Sigma M_{grav_i} = \sum \Sigma H_{ij} = \sum \frac{\Sigma M_{ij}}{296.0} \\ & \Sigma M_{grav_i} = \sum \Sigma H_{ij} = \sum \frac{\Sigma M_{ij}}{296.0} \\ & \Sigma M_{ij} = \frac{\Sigma M_{ij}}{394.0} \\$$

Freese and Nichols	
	$E_{ m wheel}_{ m i} =$
1 0.281	"Resultant in middle half. Unusual case only." 527.0 ft
2 0.324	"Resultant in middle half. Unusual case only." 524.9
3 0.367	"Resultant in middle third. Okay normal case." 522.7
4 0.409	4 "Resultant in middle third. Okay normal case." 520.6
5 0.450	5 "Resultant in middle third. Okay normal case." 518.5
6 0.490	6 "Resultant in middle third. Okay normal case." 516.3
7 0.529	"Resultant in middle third. Okay normal case." 514.2
frac = 8 0.584	frac_text. = 8 "Resultant in middle third. Okay normal case." 512.0
$frac_{i} = \frac{0.037}{9 0.632}$	9 "Resultant in middle third. Okay normal case." 509.9
10 0.668	10 "Over stable" 507.8
11 0.696	"Over stable" 505.6
12 0.718	12 "Over stable" 503.5
13	43
14	14
15	15
16	16
17	
$error_i := \left frac_i - frac_{u_i} \right $	The same and the s
(.2813)	
.3242	1 0.2813
.3669	
.4090	3 0.3669 3 0.3669 3 0.0000 4 0.4090 4 0.0000
.4502	5 0.4502 5 0.4502 5 0.0000
.4902	6 0.4902 6 0.4902 9 0.0000
.5287	7 0.5287 7 0.5287 7 0.0000
.5835	State of the state
$frac_u \equiv 0.6319$	$\operatorname{frac}_{i} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
.6682	10 0.6682 10 0.6682 10 0.0000
.6962	11 0.6962 14 0.6962 11 0.0000
.7182	12 0.7182 12 0.7182 12 0.0000
1	13 13 13 13 13 13 13 13 13 13 13 13 13 1
į	12
	15
	16
1	
(1)	
$ok = if(error_{max} > 0.0$	00005, "Uplift does not match compression area.", ok) ok = "Ok"

CDM04188

Evaluate Overturning Stability as Retaining Wall:

$$rwfrac_{i} := \frac{L_{contact_{i}}}{L_{ftg}}$$

rw_text; := if
$$|(\text{rwfrac}_1 \ge 1.0)|$$
, "Overstable.", ""

$$rw_text_i := if(brg = "rock" \land rwfrac_i \ge 0.75, "Okay Usual case.", rw_text_i)$$

$$\text{rw_text}_{i} = \text{if} \left[\text{brg = "rock" } \land \text{rwfrac}_{i} < 0.75 \land \text{rwfrac}_{i} \ge 0.50 \right], "Unusual case only ", rw_text_{i} = 0.75 \land \text{rwfrac}_{i} \ge 0.50 \land$$

$$rw_{text_{i}} := if | ((brg = "rock" \land rwfrac_{i} < 0.50)), "Unstable.", rw_{text_{i}} |$$

$$rw_text_i := if | (brg = "soil" \land rwfrac_i < 1.0 \land rwfrac_i \ge 0.75), "Unusual case only.", $rw_text_i |$$$

1

$$rw_{text_{i}} := if_{i}((brg = "soil" \land rwfrac_{i} < 0.75)), "Unstable.", rw_{text_{i}}$$

	- 1
	1 84.4
	2 97.3
	3 100.0
	4 100.0
	5 100.0
	6 100.0
	7 100.0
rwfrac; =	8 100.0
i	9 100.0
	10 100.0
	11 100.0
	12 100.0
	13
	14
	15
	16
	17

		251774.001	
		1	"Okay Usual case.
		2	"Okay Usual case.
		3	"Okay Usual case.
		4	"Okay Usual case.
		5	"Okay Usual case.
		6	"Okay Usual case.
		7	"Okay Usual case.
%	rw_text; =	8	"Okay Usual case.
70	iw_uxi_i =	9	"Okay Usual case.
		10	"Okay Usual case.
		11	"Okay Usual case.
		12	"Okay Usual case.
		13	
		14	
		15	. "
		16	
		17	

Base Pressures:

$$e_{ftg_i} := \frac{L_{ftg}}{2} - x_{res_i}$$

(eccentricity with respect to the footing centroid)

$$\mathbf{e}_{\mathbf{i}} := \frac{\mathbf{L}_{\mathbf{contact}_{\mathbf{i}}}}{2} - \mathbf{x}_{\mathbf{res}_{\mathbf{i}}}$$

 $e_{\underline{i}} = \frac{L_{contact_{\underline{i}}}}{2} - x_{res_{\underline{i}}}$ (eccentricity with respect to the compression area)

$$\sigma_{toe_{\underline{i}}} \coloneqq \frac{\Sigma V_{\underline{i}}}{L_{contact_{\underline{i}}}} + \frac{\Sigma V_{\underline{i}} \cdot e_{\underline{i}}}{\frac{\left(L_{contact_{\underline{i}}}\right)^2}{6}}$$

$$\sigma_{\text{heel}_{i}} \coloneqq \frac{\Sigma V_{i}}{L_{\text{contact}_{i}}} - \frac{\Sigma V_{i} \cdot e_{i}}{\frac{\left(L_{\text{contact}_{i}}\right)^{2}}{6}}$$

$\Sigma H_i =$	$\Sigma V_i =$	$\mathbf{e_{i}} =$	e _{ftg} =	$\sigma_{\mathrm{heel}_{\hat{\mathbf{i}}}} =$	$\sigma_{toe_{i}} =$
20.5 klf	27.3 klf	4.78 ft	7.44 ft	0.000 ksf	1.903 ksf
20.8	27.7	5.51	5.98	0.000	1.672
20.8	28.0	4.53	4.53	0.166	1.481
20.8	28.3	3.09	3.09	0.378	1.289
20.5	28.7	1.69	1.69	0.592	1.096
20.2	29.0	0.33	0.33	0.804	0.904
19.6	29.4	-0.98	-0.98	1.013	0.715
19.0	32.7	-2.84	-2.84	1.444	0.480
18.6	37.5	-4.49	-4.49	1.974	0.230
18.2	42.3	-5.72	-5.72	2.500	-0.012
18.0	47.2	-6.67	-6.67	3.023	-0.246
17.9	52.2	-7.42	-7.42	3:545	-0.474

$$L_{contact_1} = 28.69 \, ft$$
 $\Sigma H_1 = 20.5 \, klf$

$$\Sigma H_1 = 20.5 \text{ klf}$$

$$\frac{L_{\text{contact}_1}}{L_{\text{ftg}}} = 84.4\%$$

$$x_{\text{res}_1} = 9.56 \,\text{ft}$$

$$\Sigma V_1 = 27.3 \text{ klf}$$

k_0	fill	γfill	=	65	0 pct
-------	------	-------	---	----	-------

$$k_{0_fill}$$
 $\gamma_{fill_eff} = 32.5 pcf$

Head wall at Basin (right side):

Reference:T:\ST\CALCS\Common geometry.mcd(R)

Geometry:

$$\Delta_{\mathbf{w}} = 10$$
 ft

(maximum height of retained water above water in basin)

$$E_{\text{wall}} = 530 \cdot \text{ft}$$

$$E_{grade} := 527 \cdot ft$$

$$E_{ftg} = E_{basin}$$

$$E_{ftg} = 491.0 \, ft$$

$$t_{w_top} := 18 \cdot in$$

$$t_{w_bot} := \frac{\left(E_{wali} - E_{ftg}\right)}{8} + t_{w_top}$$

$$t_{w_bot} = 6.3750 \, ft$$

$$E_{rot} := E_{ftg} - 3$$
 ft

$$n := floor \left(\frac{E_{grade} - E_{sill}}{2ft} \right) + 1$$

$$n = 17.0$$

$$i := 1..n$$

$$E_{\text{wheel}_{\underline{i}}} \coloneqq E_{\text{sill}} + (n-i) \cdot 2ft$$

$$E_{\text{wtoe}_{i}} := \max \left(\left(\begin{array}{c} E_{\text{wheel}_{i}} - \Delta_{w} \\ E_{\text{sill}} \end{array} \right) \right)$$

$$t_{ftg} := 6 \cdot ft$$

$$L_{heel} := ceil \left(\frac{t_{w_bot}}{ft} \right) ft + 18 \cdot ft$$
 $L_{heel} = 25.0 ft$

$$L_{heel} = 25.0 \, ft$$

$$L_{toe} := 17 \cdot ft$$

$$L_{ftg} = 42.0 \, ft$$

Material:

$$\gamma_{\text{fill_eff}} = 65.0 \, \text{pcf}$$

$$\gamma_{\rm fill} = 130.0\,{\rm pcf}$$

$$k_{0_{fill}} = 0.5$$

$$\phi_{fill} = 32.0\,deg$$

Constants:

$$\gamma_{\rm W} = 62.5 \, \rm pcf$$

$$\gamma_c = 150 \, 0 \, pcf$$

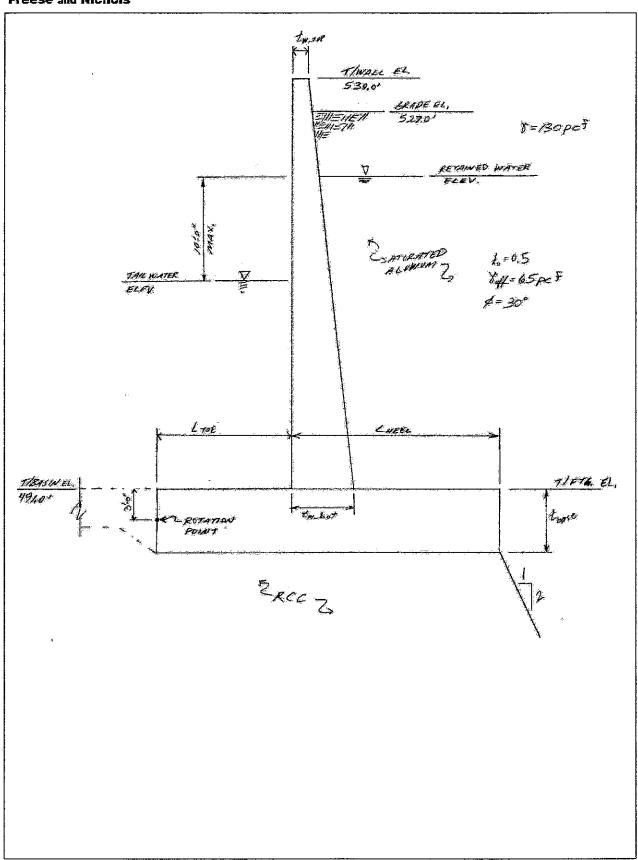
Pre-Definitions:

$$kip = 1000 \cdot lbf$$

$$ok \equiv "Ok"$$

$$psf \equiv \frac{lbf}{ft^2}$$

$$plf \equiv \frac{lbf}{ft}$$


$$ORIGIN = 1.0$$

$$pcf = \frac{ibt}{ft^3}$$

$$klf \equiv 1000 \cdot plf$$

$$ksf := \frac{1000 \cdot lb}{ft^2}$$

JOVEZ LANDI 7324N 3ely In E.7 ZH EX MM 7.0 ESM 11171171 Freese and Michals

CDM04188

Analysis:

Gravity Loads:

$$h_{C_1} := E_{wall} - E_{ftg}$$

$$h_{C_1} = 39.0 \, ft$$

$$L_{C_1} := t_{w_top}$$

$$L_{C_1} = 1.5 \, ft$$

$$\mathbf{x}_{\mathbf{C}_{\mathbf{I}}} \coloneqq \mathbf{L}_{\mathsf{toe}} + \frac{\mathbf{L}_{\mathbf{C}_{\mathbf{I}}}}{2}$$

$$x_{C_1} = 17.8 \, ft$$

$$W_{C_1} := \gamma_c \cdot h_{C_1} \cdot L_{C_1}$$

$$W_{C_1} = 8.8 \,\mathrm{klf}$$

$$h_{C_2} := h_C$$

$$h_{C_2} = 39.0 \text{ ft}$$

$$L_{C_2} := t_{w_bot} - t_{w_top}$$

$$L_{C_2} = 4.9 \, \text{ft}$$

$$x_{C_2} := L_{toe} + L_{C_1} + \frac{L_{C_2}}{3}$$

$$x_{C_2} = 20.1 \, ft$$

$$W_{C_2} \coloneqq \gamma_c \cdot \frac{h_{C_2} \cdot L_{C_2}}{2}$$

$$W_{C_2} = 14.3 \, \text{klf}$$

$$h_{C_3} = t_{ftg}$$

$$h_{C_3} = 6.0 \, \text{ft}$$

$$L_{C_3} := L_{ftg}$$

$$L_{C_3} = 42.0 \, ft$$

$$\mathbf{x}_{\mathbf{C_3}} \coloneqq \frac{\mathbf{L}_{\mathbf{C_3}}}{2}$$

$$x_{C_3} = 21.0 \text{ ft}$$

$$W_{C_3} := \gamma_c \cdot h_{C_3} \cdot L_{C_3}$$

$$W_{C_3} = 37.8 \, \text{kH} \, \text{f}$$

$$h_{W1_i} := E_{wheel_i} - E_{ftg}$$

$$L_{W1}=17.0\,\mathrm{ft}$$

$$\mathbf{x}_{\mathbf{W}1} \coloneqq \frac{\mathbf{L}_{\mathbf{W}1}}{2}$$

$$x_{W1} = 8.5 \, ft$$

 $W_{W1_i} := \gamma_w \cdot h_{W1_i} \cdot L_{W1}$

$$h_{WS1_i} := E_{wtoe_i} - E_{ftg}$$

$$L_{WS1} := L_{heel} - t_{w_bot}$$

$$L_{WS1} = 18.6 \, ft$$

$$x_{WS1} \coloneqq L_{ftg} - \frac{L_{WS1}}{2}$$

$$x_{WS1} = 32.7 \, ft$$

$$W_{S1_i} := (\gamma_{fill_eff} + \gamma_w) \cdot h_{WS1_i} \cdot L_{WS1}$$

$$\mathsf{h}_{WS2_i} \coloneqq \mathsf{h}_{WS1_i}$$

$$L_{WS2_{i}} = (t_{w_bot} - t_{w_top}) \cdot \frac{h_{WS2_{i}}}{E_{wall} - E_{ftg}}$$

$$x_{WS2_i} := L_{ftg} - L_{heel} + t_{w_bot} - \frac{L_{WS2_i}}{3}$$

$$W_{S2_{i}} = \left(\gamma_{fill_eff} + \gamma_{w}\right) \cdot \frac{h_{WS2_{i}} L_{WS2_{i}}}{2}$$

$$h_{WS3_i} := max(E_{grade} - E_{wheel_i}, 0 \text{ ft})$$

$$\mathsf{L}_{\mathsf{WS3}_{i}} \coloneqq \mathsf{L}_{\mathsf{WS1}} + \mathsf{L}_{\mathsf{WS2}_{i}}$$

$$x_{WS3_i} \coloneqq L_{ftg} - \frac{L_{WS3_i}}{2}$$

$$W_{S3_i} := \gamma_{fill} \cdot h_{WS3_i} \cdot L_{WS3_i}$$

$$\mathsf{h}_{WS4_i} \coloneqq \mathsf{h}_{WS3_i}$$

$$L_{WS4_{i}} := \left(t_{w_bot} - t_{w_top}\right) \cdot \frac{h_{WS4_{i}}}{E_{wall} - E_{ftg}}$$

$$x_{WS4_i} := L_{fitg} - L_{WS3_i} - \frac{L_{WS4_i}}{3}$$

$$W_{S4_{\underline{i}}} \coloneqq \gamma_{\mathrm{fill}} \cdot \frac{h_{WS4_{\underline{i}}} \cdot L_{WS4_{\underline{i}}}}{2}$$

Ewtoe; =	E _{wheel}	= hy	$VS1_i =$	$h_{\mathrm{WS2}_{\hat{i}}}$	$= h_{WS3_i}$	$= h_{WS4_i} =$	= L _{WS2} i	$= L_{WS3}$	$= L_{W}$	S4 _i =
517.0	ft 527.0	ft 2	6.0 ft	26.0	ft 0.0	ft 0.0 f	t 3.3 f	t 21.9	ft 0.0) ft
515.0	525.0	24	4.0	24.0	2.0	2.0	3.0	21.6	0.3	-
513.0	523.0	2:	2.0	22.0	4.0	4.0	2.8	21.4	0.5	5
511.0	521.0	20	0.0	20.0	6.0	6.0	2.5	21.1	0.8	1
509.0	519.0	18	3.0	18.0	8.0	8.0	2.3	20.9	1.0	ī
507.0	517.0	10	6.0	16.0	10.0	10.0	2.0	20.6	1.3	5
505.0	515.0	1/	4.0	14.0	12.0	12.0	1.8	20.4	1.5	5
503.0	513.0	12	2.0	12.0	14.0	14.0	1.5	20.1	1.8	3
501.0	511.0	10	0.0	10.0	16.0	16.0	1.3	19.9	2.0	7
499.0	509.0] [3.0	8.0	18.0	18.0	1.0	19.6	2.3	
497.0	507.0		6.0	6.0	20.0	20.0	8.0	19.4	2.5	
495.0	505.0		4.0	4.0	22.0	22.0	0.5	19.1	2.8	
495.0	503.0		4.0	4.0	24.0	24.0	0.5	19.1	3.0	
495.0	501.0	4	4.0	4.0	26.0	26.0	0.5	19.1	3.3	
495.0	499.0		1.0	4.0	28.0	28.0	0.5	19.1	3.5	
495.0	497.0		4.0	4.0	30.0	30.0	0.5	19.1	3.8	
	L							10,1		
495.0 WS2 _i =	495.0	xws4;	4.0 = W	4.0 W1 _i =	32.0 W _{S1} =	32.0 W _{S2} =	0.5 W _{S3} =	19.1 W _{S4}	4.0	
495.0	495.0	4	1.0 = W 3 3 3 2 2 2 2 2 1 1 1 1 1	4.0 W1 _i =	32.0 W _{S1} =	32.0 W _{S2} =	0.5	19.1 W _{S4}	4.0	

CDM04188

Lateral loads:

$$h_{H1_i} := E_{wtoe_i} - E_{fig}$$

$$y_{\text{H1}_{i}} := \frac{h_{\text{H1}_{i}}}{3} + \left(E_{\text{ftg}} - E_{\text{rot}}\right)$$

$$H1_{i} := \gamma_{w} \frac{\left(h_{H1_{i}}\right)^{2}}{2}$$

$$h_{\text{H2}_i} = E_{\text{wheel}_i} - E_{\text{fig}}$$

$$y_{\text{H2}_i} := \frac{h_{\text{H2}_i}}{3} + (E_{\text{ftg}} - E_{\text{rot}})$$

$$H2_{i} := \gamma_{w} \cdot \frac{\left(h_{H2_{i}}\right)^{2}}{2}$$

$$h_{A1_i} := h_{WS4_i}$$

$$y_{A1_i} := E_{grade} - E_{rot} - \frac{2}{3} h_{A1_i}$$

$$H_{A1_i} := k_{0_{fill}} \cdot \gamma_{fill} \cdot \frac{\left(h_{A1_i}\right)^2}{2}$$

$$h_{A2_i} := h_{H2_i}$$
 h_{H2_i}

$$y_{A2_i} := \frac{h_{H2_i}}{2} + E_{ftg} - E_{rot}$$

$$H_{A2_i} := k_{0_{\underline{i}}} \cdot \gamma_{\underline{fi}} \cdot \gamma_{\underline{fi}} \cdot h_{A1_i} \cdot h_{A2_i}$$

$$h_{A3} := h_{A2}$$

$$h_{A3_{i}} := h_{A2_{i}}$$
 $y_{A3_{i}} := \frac{h_{A3_{i}}}{3} + E_{fig} - E_{rot}$

$$H_{A3_i} = k_{0_fill} \cdot \gamma_{fill_eff} \cdot \frac{\left(h_{A3_i}\right)^2}{2}$$

h _{H1} =	y _{H1} =	H1 _i =	h _{H2} =	y _{H2} =	H2 _i =			
26.0 ft	11.7 ft	21.1	klf 36.0 ft	15.0 ft	40.5 kl	f		
24.0	11.0	18.0	34.0	14.3	36.1			
22.0	10.3	15.1	32.0	13.7	32.0			
20.0	9.7	12.5	30.0	13.0	28.1			
18.0	9.0	10.1	28.0	12.3	24.5			
16.0	8.3	8.0	26.0	11.7	21.1			
14.0	7.7	6.1	24.0	11.0	18.0			
12.0	7.0	4.5	22.0	10.3	15.1			
10.0	6.3	3.1	20.0	9.7	12.5			
8.0	5.7	2.0	18.0	9.0	10.1			
6.0	5.0	1.1	16.0	8.3	8.0			
4.0	4.3	0.5	14.0	7.7	6.1			
4.0	4.3	0.5	12.0	7.0	4.5			
4.0	4.3	0.5	10.0	6.3	3.1			
4.0	4.3	0.5	8.0	5.7	2.0			
4.0	4.3	0.5	6.0	5.0	1.1			
4.0	4.3	0.5	4.0	4.3	0.5			
					~~			
·	y _{A1} =					$h_{A3_i} =$		
0.0 ft			klf 36.0					
2.0	37.7	0.1	34.0	!	4.4	34.0	14.3	18.8
4.0	36.3	0.5	32.0	! L	8.3	32.0	13.7	16.6
6.0	35.0	1.2	30.0	l	11.7	30.0	13.0	14.6
10.0	33.7	3.3	28.0 26.0		14.6	28.0 26.0	12.3	12.7
12.0	31.0	4.7	24.0	t <u>L. </u>	18.7	24.0	11.0	9.4
14.0	29.7	6.4	22.0	l	20.0	22.0	10.3	7.9
16.0	28.3	8.3	20.0	13.0	20.8	20.0	9.7	6.5
18.0	27.0	10.5	18.0	12.0	21.1	18.0	9.0	5.3
20.0	25.7	13.0	16.0	11.0	20.8	16.0	8.3	4.2
22.0	24.3	15.7	14.0	10.0	20.0	14.0	7.7	3.2
24.0	23.0	18.7	12.0	9.0	18.7	12.0	7.0	2.3
26.0	21.7	22.0	10.0	8.0	16.9	10.0	6.3	1.6
28.0	20.3	25.5	8.0	7.0	14.6	8.0	5.7	1.0
30.0	19.0	29.3	6.0	6.0	11.7	6.0	5.0	0.6
32.0	17.7	33.3	4.0	5.0	8.3	4.0	4.3	0.3
		[]		1 [لتت		

CDM04188

Uplift:

$$u_{heel_{\underline{i}}} \coloneqq \gamma_{\underline{w}} \cdot \left\lfloor E_{wheel_{\underline{i}}} - \left(E_{ftg} - t_{ftg} \right) \right\rfloor$$

 $u_{toe\ dam} = 1.868 \cdot ksf$

(from dam analysis)

$$u_{toe_{i}} := max \begin{bmatrix} u_{toe_dam} - \gamma_{w} \cdot (20 \cdot ft - t_{ftg}) \\ \gamma_{w} \cdot \lfloor E_{wtoe_{i}} - (E_{ftg} - t_{ftg}) \rfloor \end{bmatrix}$$

$$u_{rect_i} := min(u_{heel_i}, u_{toe_i})$$

$$u_{tri_i} = \left[u_{heel_i} - u_{toe_i} \right]$$

$$L_{Ul_{i}} = \min \begin{pmatrix} 3 \cdot \operatorname{frac}_{u_{i}} L_{ftg} \\ L_{ftg} \end{pmatrix}$$

$$U_{rect_i} \coloneqq u_{rect_i} \cdot L_{U1_i}$$

$$U_{tri_{i}} := \frac{u_{tri_{i}} \cdot L_{U1_{i}}}{2}$$

$$x_{rect_i} := \frac{L_{Ul_i}}{2}$$

$$x_{\text{tri}_{i}} := \frac{L_{\text{U1}_{i}}}{2} + \frac{L_{\text{U1}_{i}}}{6} \cdot \text{if}(u_{\text{heel}_{i}} > u_{\text{toe}_{i}}, 1, -1)$$

$$U1_i := U_{rect_i} + U_{tri_i}$$

$$\mathbf{x}_{U1_i} \coloneqq \frac{\mathbf{U}_{rect_i} \cdot \mathbf{x}_{rect_i} + \mathbf{U}_{tri_i} \cdot \mathbf{x}_{tri_i}}{U1_i}$$

$$L_{U2_i} := L_{ftg} - L_{U1_i}$$

$$U2_i = u_{heel_i} \cdot L_{U2_i}$$

$$U2_{i} = u_{heel_{i}} \cdot L_{U2_{i}}$$
$$x_{U2_{i}} = L_{U1_{i}} + \frac{L_{U2_{i}}}{2}$$

 $L_{ftg} = 42.0 \text{ ft}$

uheel =	u _{toe} =	u _{rec}	_{t.} =	u _{tri} =	L _{U1} =	$L_{U2_i} =$	U1 _i =	U2 _i =
	ksf 2.000		000 ksf		37.94 ft	4.06 ft		klf 10.7 klf
2.500	1.875		75	0.625	40.43	1.57	88.4	3.9
2.375	1.750	1.7	50	0.625	42.00	0.00	86.6	0.0
2.250	1.625	1.6	25	0.625	42.00	0.00	81.4	0.0
2.125	1.500	1.5	00	0.625	42.00	0.00	76.1	0.0
2.000	1.375	1.3	75	0.625	42.00	0.00	70.9	0.0
1.875	1.250	1.2	50	0.625	42.00	0.00	65.6	0.0
1.750	1.125	1.1	25	0.625	42.00	0.00	60.4	0.0
1.625	1.000	1.0	00	0.625	42.00	0.00	55.1	0.0
1.500	0.993	0.9	93	0.507	42.00	0.00	52.4	0.0
1.375	0.993	0.9	93	0.382	42.00	0.00	49.7	0.0
1.250	0.993	0.9	93	0.257	42.00	0.00	47.1	0.0
1.125	0.993	0.9	93	0.132	42.00	0.00	44.5	0.0
1.000	0.993	0.9	93	0.007	42.00	0.00	41.9	0.0
0.875	0.993	0.8	75	0.118	42.00	0.00	39.2	0.0
0.750	0.993	0.7	50	0.243	42.00	0.00	36.6	0.0
0.625	0.993	0.6	25	0.368	42.00	0.00	34.0	0.0
				x _{U1} =	_	400 \oplus 40		
75.9 75.8 73.5 68.3 63.0 57.8 52.5 47.3 42.0 41.7 41.7 41.7 41.7	klf 11.9 kl 12.6 13.1 13.1 13.1 13.1 13.1 13.1 10.6 8.0 5.4 2.8 0.1 2.5	1f 19.0 ft 20.2 21.0 21.0 21.0 21.0 21.0 21.0 21.0	25.3 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	ft 19.8 ft 21.2 22.1 22.1 22.2 22.3 22.4 22.5 22.7 22.4 22.1 21.8 21.4 21.0 20.6		40.0 ft 10.41.2 3 42.0 0.42.0 0.42.0 42.0 42.0 42.0 42.0	7 klf 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
75.9 1.75.8 73.5 68.3 63.0 57.8 52.5 47.3 42.0 41.7 41.7 41.7 41.7	klf 11.9 kl 12.6 13.1 13.1 13.1 13.1 13.1 13.1 10.6 8.0 5.4 2.8 0.1	19.0 ft 20.2 21.0 21.0 21.0 21.0 21.0 21.0 21.0	25.3 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	ft 19.8 ft 21.2 22.1 22.1 22.2 22.3 22.4 22.5 22.7 22.4 22.1 21.8 21.4 21.0		40.0 ft 10.41.2	.7 klf .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	

$$\begin{split} \Sigma V_i &:= \sum_{i=1}^3 \ W_{C_i} + W_{W1_i} + W_{S1_i} + W_{S2_i} + W_{S3_i} + W_{S4_i} - U1_i - U2_i \\ \Sigma M_{grav_i} &:= \sum_{i=1}^3 \ W_{C_i} \cdot x_{C_i} + W_{W1_i} \cdot x_{W1} + W_{S1_i} \cdot x_{WS1} + W_{S2_i} \cdot x_{WS2_i} + W_{S3_i} \cdot x_{WS3_i} \cdots \\ & + W_{S4_i} \cdot x_{WS4_i} - U1_i \cdot x_{U1_i} - U2_i \cdot x_{U2_i} \\ \Sigma H_i &:= -H1_i + H2_i + H_{A1_i} + H_{A2_i} + H_{A3_i} \\ \Sigma M_{lat_i} &:= -H1_i \quad y_{H1_i} + H2_i \cdot y_{H2_i} + H_{A1_i} \cdot y_{A1_i} + H_{A2_i} \cdot y_{A2_i} + H_{A3_i} \quad y_{A3_i} \\ \Sigma M_i &= \Sigma M_{grav_i} - \Sigma M_{lat_i} \\ x_{res_i} &:= \frac{\Sigma M_i}{\Sigma V_i} \qquad frac_i &:= \frac{x_{res_i}}{L_{fig}} \\ frac_t &= x_i := if \left(frac_i > \frac{2}{3}, \text{ "Over stable", ""} \right) \\ frac_t &= x_i := if \left(frac_i < \frac{2}{3} \wedge frac_i \ge \frac{1}{3}, \text{ "Resultant in middle third. Okay normal case.", frac_text_i} \right) \\ frac_t &= x_i := if \left(frac_i < \frac{1}{3} \wedge frac_i \ge \frac{1}{4}, \text{ "Resultant in middle half. Unusual case only.", frac_text_i} \right) \\ frac_t &= x_i := if \left(frac_i < \frac{1}{4} \wedge frac_i \ge 0, \text{ "Resultant within base. Extreme case only.", frac_text_i} \right) \\ frac_text_i := if \left(frac_i < 0, \text{ "Unstable", frac_text_i} \right) \end{aligned}$$

$L_{contact_i} := min(3 \cdot x_{res_i}, L_{ftg})$
--

-contact.	i,	,				
$\Sigma V_i =$	$\Sigma M_{grav_i} =$	$\Sigma H_i =$	$\Sigma M_{lat_i} =$	$\Sigma M_i =$	$x_{res_i} =$	$L_{contact_i} =$
67.8 klf	1535 kip	40.4 k	lf 676.9 kip	857.7	kip 12.6 ft	37.9 ft
71.8	1651	41.5	682.3	968.2	13.5	40.4
75.6	1760	42.4	685.4	1.1 103	14.2	42.0
78.8	1855	43.1	686.5	1.2 10 ³	14.8	42.0
82.0	1951	43.8	685.7	1.3 10 ³	15.4	42.0
85.2	2046	44.3	683.4	1.4 10 ³	16.0	42.0
88.5	2141	44.6	679.9	1.5 10 ³	16.5	42.0
91.7	2237	44.9	675.3	1.6 10 ³	17.0	42.0
94.9	2332	45.0	670.0	1.7 10 ³	17.5	42.0
95.7	2393	45.0	664.2	1.7 10 ³	18.1	42.0
96.3	2452	44.8	658.2	1.8 10 ³	18.6	42.0
96.9	2510	44.6	652.2	1.9 103	19.2	42.0

	1			$E_{\text{wheel}_{\hat{i}}} =$	
	1 0.301	1	"Resultant in middle half. Unusual case only."	527.0 ft	
	2 0.321	2	"Resultant in middle half. Unusual case only."	525.0	
	3 0.338	a	"Resultant in middle third. Okay normal case."	523.0	
	4 0.353	4	"Resultant in middle third. Okay normal case."	521.0	
	5 0.367	5	"Resultant in middle third. Okay normal case."	519.0	
	6 0.381	6	"Resultant in middle third. Okay normal case."	517.0	
	7 0.393	7	"Resultant in middle third. Okay normal case."	515.0	
frac, =	8 0.405	frac_text; =	"Resultant in middle third. Okay normal case."	513.0	
1	9 0.417	- i 9	"Resultant in middle third. Okay normal case."	511.0	
	10 0.430	10	"Resultant in middle third. Okay normal case."	509.0	
	11 0.444	11	"Resultant in middle third. Okay normal case."	507.0	
	12 0.457	12	"Resultant in middle third. Okay normal case."	505.0	
	13 0.485	13	"Resultant in middle third. Okay normal case."	503.0	
	14 0.509	14	"Resultant in middle third. Okay normal case."	501.0	
	15 0.530	15	"Resultant in middle third. Okay normal case."	499.0	
	16 0.549	16	"Resultant in middle third. Okay normal case."	497.0	
	17 0.566	17	"Resultant in middle third. Okay normal case."	495.0	
frac _u =	33011 3209 3385 3532 3672 3806 3933 4055 4169 4302 4435 4567 4846 5089 5303	frac _i = 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
1 1	.5491 .5657 <i> </i>	17 0.565			
ok = if(error _{max} > 0.00005, "Uplift does not match compression area.", ok) ok = "Ok"					

CDM04188

Evaluate Overturning Stability as Retaining Wall:

$$rwfrac_i := \frac{L_{contact_i}}{L_{flg}}$$

$$rw_{i} := if_{i} (rwfrac_{i} \ge 1.0), "Overstable.", ""$$

$$rw_{i} = if(brg = "rock" \land rwfrac_{i} \ge 0.75, "Okay Usual case.", rw_{text_{i}})$$

$$rw_text_i := if|(brg = "rock" \land rwfrac_i < 0.75 \land rwfrac_i \ge 0.50)$$
, "Unusual case only ", rw_text_i

$$rw_{i} := if \left(\left(brg = "rock" \land rwfrac_{i} < 0.50 \right) \right), "Unstable.", rw_{text_{i}} \right)$$

$$rw_{i} = if(brg = "soil" \land rwfrac_{i} = 1.0, "Okay Usual case.", rw_text_{i})$$

$$rw_{i} := if_{i} (brg = "soil" \land rwfrac_{i} < 1.0 \land rwfrac_{i} \ge 0.75), "Unusual case only.", $rw_{i} = if_{i}$$$

$$rw_{text_{i}} = if \left(\left(brg = "soil" \land rwfrac_{i} < 0.75 \right) \right), "Unstable ", rw_{text_{i}} \right)$$

		1	
	1	90.3	
	2	96.3	
	3	100.0	
	4	100.0	
	5	100,0	
	6	100.0	
	7	100.0	
rwfrac _i =	8	100.0	
i	9	100.0	
	10	100.0	
	11	100.0	
	12	100.0	
	13	100.0	
	14	100.0	
	15	100.0	
	16	100.0	
	17	100.0	

		1	"Okay Usual case."
		2	"Okay Usual case."
		3	"Okay Usual case."
		4	"Okay Usual case."
		5	"Okay Usual case."
		6	"Okay Usual case."
		7	"Okay Usual case."
%	rw_text _i =	8	"Okay Usual case."
, ,	-	9	"Okay Usual case."
		10	"Okay Usual case."
		11	"Okay Usual case."
		12	"Okay Usual case."
		13	"Okay Usual case."
		14	"Okay Usual case."
		15	"Okay Usual case."
		16	"Okay Usual case."

CDM04188

Base Pressures:

$$e_{\text{ftg}_i} := \frac{L_{\text{ftg}}}{2} - x_{\text{res}_i}$$

(eccentricity with respect to the footing centroid)

$$e_i := \frac{L_{contact_i}}{2} - x_{res_i}$$

(eccentricity with respect to the compression area)

$$\sigma_{toe_{i}} \coloneqq \frac{\Sigma V_{i}}{L_{contact_{i}}} + \frac{\Sigma V_{i} \cdot e_{i}}{\frac{\left(L_{contact_{i}}\right)^{2}}{6}}$$

$$\sigma_{\text{heel}_{i}} := \frac{\Sigma V_{i}}{L_{\text{contact}_{i}}} - \frac{\Sigma V_{i} \cdot e_{i}}{\frac{\left(L_{\text{contact}_{i}}\right)^{2}}{6}}$$

$\Sigma H_i =$	$\Sigma V_i =$	e. =	e _{ftg} =	$\sigma_{\text{heel}_{\underline{i}}} =$	o _{toe} =
40.4 klf	67.8 klf	6.32 ft	8.35 ft	0.000 ksf	3.575 ksf
41.5	71.8	6.74	7.52	0.000	3.553
42.4	75.6	6.78	6.78	0.056	3.542
43.1	78.8	6.17	6.17	0.223	3.529
43.8	82.0	5.58	5.58	0.397	3.509
44.3	85.2	5.02	5.02	0.575	3.484
44.6	88.5	4.48	4.48	0.758	3.455
44.9	91.7	3.97	3.97	0.945	3.422
45.0	94.9	3.49	3.49	1.134	3.386
45.0	95.7	2.93	2.93	1.324	3.231
44.8	96.3	2.37	2.37	1.516	3.068
44.6	96.9	1.82	1.82	1.707	2.906
43.8	103.1	0.65	0:65	2.228	2.681
43.1	109.4	-0.38	-0.38	2.744	2.464
42.6	115.7	-1.27	-1.27	3.255	2.255
42.2	122.1	-2.06	-2.06	3.764	2.052
41.9	128.6	-2.76	-2.76	4.270	1.854

$$L_{contact_1} = 37.94 \, ft$$
 $\Sigma H_1 = 40.4 \, klf$

$$\Sigma H_1 = 40.4 \, \text{kl} \text{f}$$

$$\frac{L_{\text{contact}_1}}{L_{\text{fig}}} = 90.3\%$$

$$x_{res} = 12.65 \, ft$$

$$\Sigma V_1 = 67.8\,\mathrm{klf}$$

Section 5 Dam Stability Analysis

Dam Stability Analysis: (right end at deep rock)

Reference:T:\ST\CALCS\Common geometry.mcd(R)

Geometry:

$$E_{rock base} := 468.2 \text{ ft}$$

$$E_{RCC} := 498$$
 ft

$$slope_{RCCd} \equiv 1.0$$
 (run per unit rise, downstream)

$$slope_{RCCu} \equiv 2.0$$
 (run per unit rise, upstream)

$$E_{RCCd} = 485 \cdot ft$$
 (top of downstream RCC)

Constants:

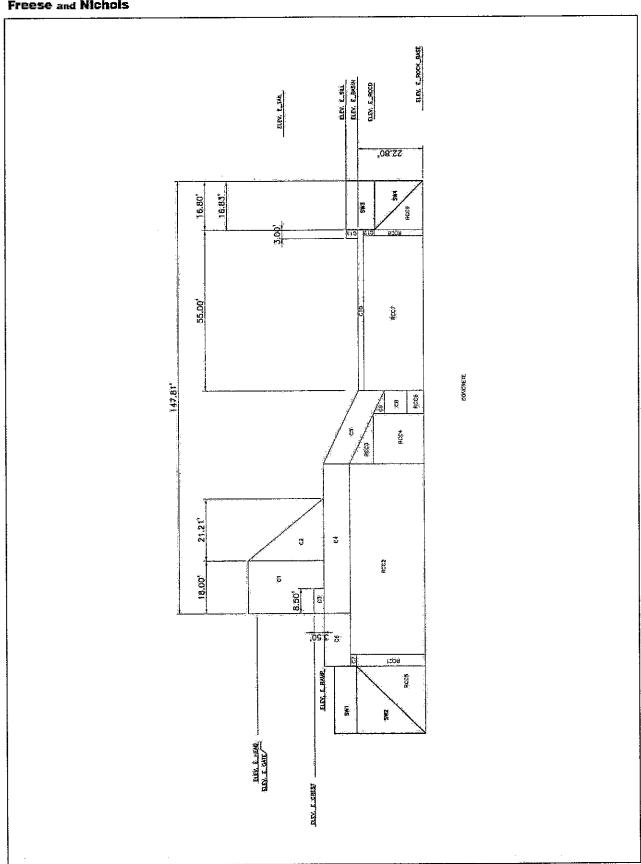
Pre-Definitions:

$$kip \equiv 1000 \cdot lbf$$

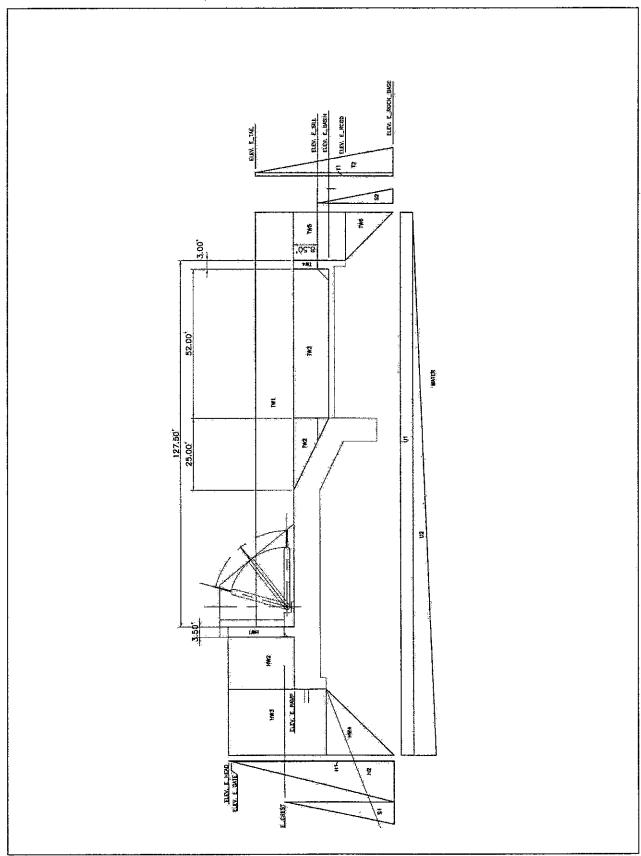
$$ok \equiv "Ok"$$

$$psf \equiv \frac{lbf}{ft^2}$$

$$plf \equiv \frac{lbt}{t}$$


$$ORIGIN = 1.0$$

$$pcf \equiv \frac{\pi}{1bt}$$


$$klf \equiv 1000 \cdot plf$$

$$ksf := \frac{1000 \cdot lbf}{ft^2}$$

CDM04188

Analysis:

Self-weight of stucture:

$$h_{C_5} := \frac{25 \cdot ft}{slope_{basin}}$$

$$h_{C_5} = 12.5 \, ft$$

$$L_{C_5} := h_{C_5} \cdot slope_{basin}$$

$$L_{C_5} = 25.0 \, \text{ft}$$

$$x_{C_5} := \frac{L_{C_5}}{2}$$

$$x_{C_5} = 12.5 \text{ ft}$$

$$W_{C_5} = \gamma_c \left[\left(h_{C_5} + t_c \right) \cdot L_{C_5} - h_{C_5} \cdot L_{C_5} \right]$$

$$W_{C_5} = 22.5 \, \text{klf}$$

$$h_{C_4} := t_c$$

$$h_{C_4} = 6.00 \, ft$$

$$L_{C_4} := 51 - ft$$

$$x_{C_4} := L_{C_5} + \frac{L_{C_4}}{2}$$

$$x_{C_4} = 50.5 \text{ ft}$$

$$W_{C_{\underline{4}}} \coloneqq \gamma_c \cdot h_{C_{\underline{4}}} \cdot L_{C_{\underline{4}}}$$

$$W_{C_4} = 45 \ 9 \ klf$$

$$h_{C_1} = E_{pier} - E_{ramp}$$

$$h_{C_1} = 26.5 \, \text{ft}$$

$$L_{C_{\underline{i}}} = 18 \text{ ft}$$

$$x_{C_1} := L_{C_4} + L_{C_5} - \frac{L_{C_1}}{2}$$

$$x_{C_1} = 67.0 \, ft$$

$$W_{C_1} := \gamma_c \cdot h_{C_1} \cdot L_{C_1} \cdot \frac{w_{pier}}{s_{pier}}$$

$$W_{C_1} = 10.2 \, \text{klf}$$

$$h_{C_2} := h_{C_1}$$

$$h_{C_2} = 26.5 \, \text{ft}$$

$$L_{C_2} := h_{C_2} \cdot \frac{1.00}{1.25}$$

$$L_{C_2} = 21.2 \, \mathrm{ft}$$

$$x_{C_2} := L_{C_4} + L_{C_5} - L_{C_1} - \frac{L_{C_2}}{3}$$

$$x_{C_2} = 50.9 \, \text{ft}$$

$$W_{C_2} := \gamma_c \cdot \frac{h_{C_2} \cdot L_{C_2}}{2} \cdot \frac{w_{pier}}{s_{pier}}$$

$$W_{C_2} = 6.0 \,\mathrm{klf}$$

$$h_{C_3} = E_{crest} - E_{ramp}$$

$$h_{C_3} = 3.5 \, ft$$

$$L_{C_3} := 8.5 \text{ ft}$$

$$x_{C_3} := L_{C_4} + L_{C_5} - \frac{L_{C_3}}{2}$$

$$x_{C_3} = 71 \ 8 \ ft$$

$$\begin{array}{c} \textbf{LC}_3 \coloneqq 8.5 \;\; \text{ft} \\ \\ \textbf{xC}_3 \coloneqq \textbf{LC}_4 + \textbf{LC}_5 - \frac{\textbf{LC}_3}{2} & \textbf{xC}_3 = 71 \; \text{8} \; \text{ft} \\ \\ \textbf{WC}_3 \coloneqq \textbf{\gamma}_{\textbf{c}} \cdot \textbf{hC}_3 \cdot \textbf{LC}_3 \cdot \frac{\left(\textbf{spier} - \textbf{wpier}\right)}{\textbf{spier}} & \textbf{WC}_3 = 3.8 \; \text{ki} \\ \\ \textbf{hC}_6 \coloneqq \textbf{hC}_4 & \textbf{hC}_6 = 6.0 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{18} \;\; \text{ft} & \textbf{LC}_6 = 18.0 \; \text{ft} \\ \\ \textbf{xC}_6 \coloneqq \textbf{LC}_4 + \textbf{LC}_5 + \frac{\textbf{LC}_6}{2} & \textbf{xC}_6 = 85.0 \; \text{ft} \\ \\ \textbf{WC}_6 \coloneqq \textbf{\gamma}_{\textbf{c}} \cdot \textbf{hC}_6 \cdot \textbf{LC}_6 & \textbf{WC}_6 = 16.2 \; \text{ki} \\ \\ \textbf{hC}_7 \coloneqq \textbf{E}_{\text{ramp}} - \textbf{t}_{\textbf{c}} - \textbf{E}_{\text{ukey}} & \textbf{LC}_7 = 9.5 \; \text{ft} \\ \\ \textbf{LC}_7 \coloneqq \textbf{L}_{\text{ukey}} & \textbf{LC}_7 = 6.0 \; \text{ft} \\ \\ \textbf{WC}_7 \coloneqq \textbf{C}_4 + \textbf{LC}_5 + \textbf{LC}_6 - \frac{\textbf{LC}_7}{2} & \textbf{xC}_7 = 91.0 \; \text{ft} \\ \\ \textbf{WC}_7 \coloneqq \textbf{\gamma}_{\textbf{c}} \cdot \textbf{hC}_7 \cdot \textbf{LC}_7 & \textbf{WC}_7 = 8.55 \; \text{ki} \\ \\ \textbf{hC}_8 \coloneqq \textbf{E}_{\text{ramp}} - \textbf{t}_{\textbf{c}} - \textbf{hC}_5 - \textbf{E}_{\text{dkey}} & \textbf{hC}_8 = 14.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 \coloneqq \textbf{Ldkey} & \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_6 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_7 \coloneqq \textbf{Ldkey} & \textbf{LC}_8 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_8 \coloneqq \textbf{Ldkey} & \textbf{LC}_8 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_8 \coloneqq \textbf{Ldkey} & \textbf{LC}_8 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_8 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_8 \coloneqq \textbf{Ldkey} & \textbf{LC}_8 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_8 \coloneqq \textbf{Ldkey} & \textbf{LC}_8 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_8 \coloneqq \textbf{Ldkey} & \textbf{LC}_8 = 6.00 \; \text{ft} \\ \\ \textbf{LC}_8 = 6.00 \; \text{ft} \\$$

$$W_{C_3} = 3.8 \, \text{klf}$$

$$h_{C_6} = h_{C_4}$$

$$h_{C_6} = 6.0 \, \text{ft}$$

$$L_{C_c} = 18 \text{ ft}$$

$$L_{C_6} = 18.0 \, ft$$

$$x_{C_6} := L_{C_4} + L_{C_5} + \frac{L_{C_6}}{2}$$

$$x_{C_6} = 85.0 \, \text{ft}$$

$$W_{C_6} := \gamma_c \cdot h_{C_6} \cdot L_{C_6}$$

$$W_{C_6} = 16.2 \, \text{klf}$$

$$h_{C_7} := E_{ramp} - t_c - E_{ukey}$$

$$h_{C_7} = 9.5 \, ft$$

$$L_{C_7} := L_{ukey}$$

$$L_{C_7} = 6.0 \, \text{ft}$$

$$x_{C_7} := L_{C_4} + L_{C_5} + L_{C_6} - \frac{L_{C_7}}{2}$$

$$x_{C_7} = 91.0 \, ft$$

$$W_{C_7} := \gamma_c \cdot h_{C_7} \cdot L_{C_7}$$

$$W_{C_7} = 8.55 \, \text{klf}$$

$$h_{C_8} := E_{ramp} - t_c - h_{C_5} - E_{dkey}$$

$$h_{C_g} = 14.00 \, ft$$

$$L_{C_a} := L_{dkey}$$

$$L_{C_8} = 6.00 \, \text{ft}$$

$$x_{C_8} := \frac{L_{C_8}}{2}$$

$$x_{C_g} = 3.00 \, \text{ft}$$

$$W_{C_8} := \gamma_c \cdot h_{C_8} \cdot L_{C_8}$$

$$W_{C_g} = 12.6 \, \text{klf}$$

$$h_{C_9} := \frac{L_{C_8}}{\text{slope}_{\text{basin}}}$$

$$h_{C_9} = 3.00 \, ft$$

$$L_{C_o} := L_{C_o}$$

$$L_{C_o} = 60 \,\mathrm{ft}$$

$$\mathbf{x}_{\mathbf{C}_9} \coloneqq \frac{2}{3} \cdot \mathbf{L}_{\mathbf{C}_9}$$

$$x_{C_9} = 4.0 \, ft$$

$$W_{C_9} := \gamma_c \cdot \frac{h_{C_9} \cdot L_{C_9}}{2}$$

$$W_{C_9} = 1.4 \, \text{klf}$$

$$h_{C_{\underline{10}}} = t_{basin}$$

$$h_{C_{10}} = 6.0 \, \text{ft}$$

$$L_{C_{10}} := L_{basin}$$

$$L_{C_{10}} = 55.0 \, ft$$

$$\mathbf{x}_{C_{10}} := \frac{-L_{C_{10}}}{2}$$

$$x_{C_{10}} = -27.5 \,\text{ft}$$

$$W_{C_{10}} := \gamma_c \ h_{C_{10}} \ L_{C_{10}}$$

$$W_{C_{10}} = 49.5 \, \text{klf}$$

$$h_{C_{11}} \coloneqq E_{sill} - E_{basin}$$

$$h_{C_{11}} = 40 \, ft$$

$$L_{C_{11}} := 3 \cdot ft$$

$$L_{C_{11}} = 3.0 \, ft$$

$$x_{C_{11}} := -L_{C_{10}} + \frac{L_{C_{11}}}{2}$$

$$x_{C_{11}} = -53.5 \, ft$$

$$W_{C_{11}} \coloneqq \gamma_c \cdot h_{C_{11}} \cdot L_{C_{11}}$$

$$W_{C_{11}} = 1.8 \, \text{klf}$$

$$h_{C_{12}} := E_{basin} - t_{basin} - E_{RCCd}$$

$$h_{C_{12}} = 0.0 \, ft$$

$$L_{C_{12}} = 2 \cdot ft$$

$$L_{C_{12}} = 2.0 \, ft$$

$$x_{C_{12}} := -L_{C_{10}} + \frac{L_{C_{12}}}{2}$$

$$x_{C_{12}} = -54.0 \text{ ft}$$

$$W_{C_{12}} = \gamma_c \cdot h_{C_{12}} \cdot L_{C_{12}}$$

$$W_{C_{12}} = 0.0 \, \text{klf}$$

CDM04188

Self weight of RCC

$$h_{RCC_1} \coloneqq E_{ramp} - t_c + h_{C_7} - E_{rock_base} \qquad h_{RCC_1} = 19.8 \ \mathrm{ft}$$

$$L_{RCC_1} := L_{C_7}$$

$$L_{RCC_1} = 6.0 \, ft$$

$$x_{RCC_1} := L_{C_4} + L_{C_5} + L_{C_6} - \frac{L_{RCC_1}}{2}$$

$$x_{RCC_1} = 910 \, ft$$

$$W_{RCC_1} := \gamma_{RCC} h_{RCC_1} \cdot L_{RCC_1}$$

$$W_{RCC_1} = 15.4 \, \text{klf}$$

$$h_{RCC_2} := E_{ramp} - t_c - E_{rock_base}$$

$$h_{RCC_2} = 29.3 \text{ ft}$$

$$L_{RCC_2} := L_{C_4} + L_{C_6} - L_{RCC_1}$$

$$L_{RCC_2} = 63.0 \, \mathrm{ft}$$

$$x_{RCC_2} := L_{C_5} + \frac{L_{RCC_2}}{2}$$

$$x_{RCC_2} = 56.5 \text{ ft}$$

$$W_{RCC_2} := \gamma_{RCC} h_{RCC_2} L_{RCC_2}$$

$$W_{RCC_2}=240.0\,\mathrm{klf}$$

$$h_{RCC_3} := \frac{L_{C_5} - L_{C_9}}{\text{slope}_{basin}}$$

$$h_{RCC_3} = 9.5 \, ft$$

$$\mathsf{L}_{\mathsf{RCC}_3} \coloneqq \mathsf{L}_{\mathsf{C}_5} - \mathsf{L}_{\mathsf{C}_9}$$

$$L_{RCC_3} = 19.0 \, ft$$

$$x_{RCC_3} := L_{C_9} + \frac{2}{3} L_{RCC_3}$$

$$x_{RCC_3} = 18.7 \, ft$$

$$W_{RCC_3} := \gamma_{RCC} \cdot \frac{h_{RCC_3} \ L_{RCC_3}}{2}$$

$$W_{RCC_3} = 11.7 \, \text{klf}$$

$$h_{RCC_4} \coloneqq E_{ramp} - t_c - h_{RCC_3} - E_{dkey}$$

$$h_{RCC_4}=17.0\,\mathrm{ft}$$

$$L_{RCC_4} := L_{RCC_3}$$

$$L_{RCC_3} = 19.0 \, ft$$

$$x_{RCC_4} := L_{C_9} + \frac{L_{RCC_4}}{2}$$

$$x_{RCC_4} = 15.5 \, ft$$

$$W_{RCC_4} := \gamma_{RCC} \cdot h_{RCC_4} \cdot L_{RCC_4}$$

$$W_{RCC_4} = 42.0 \, \text{klf}$$

$$h_{RCC_5} := h_{RCC_1}$$

$$h_{RCC_5} = 19.800 \, ft$$

$L_{RCC_5} := h_{RCC_5} \cdot slope_{RCCu}$	$L_{RCC_5} = 39.6 ft$
$x_{RCC_5} := L_{C_4} + L_{C_5} + L_{C_6} + \frac{L_{RCC_5}}{3}$	$x_{RCC_5} = 107.2 \text{ft}$
$W_{RCC_5} := \gamma_{RCC} - \frac{h_{RCC_5} - L_{RCC_5}}{2}$	$W_{RCC_5} = 51.0 \text{kH}$
$h_{RCC_6} := max(E_{dkey} - E_{rock_base}, 0 - ft)$	$h_{RCC_6} = 2.8 \text{ ft}$
$L_{RCC_6} = L_{C_8}$	$L_{RCC_6} = 6.0 \text{ft}$
$x_{RCC_6} := \frac{L_{RCC_6}}{2}$	$x_{RCC_6} = 3.0 \text{ft}$
$W_{RCC_6} := \gamma_{RCC} \cdot h_{RCC_6} \cdot L_{RCC_6}$	$W_{RCC_6} = 2.2 \text{ klf}$
h _{RCC₇} := E _{basin} - t _{basin} - E _{rock_base}	$h_{RCC_7} = 16.8 \text{ ft}$
$L_{RCC_7} := L_{basin} - L_{C_{12}}$	$L_{RCC_7} = 53.0 \text{ft}$
$x_{RCC_7} := -\frac{L_{RCC_7}}{2}$	$x_{RCC_7} = -26.5 \text{ ft}$
$W_{RCC_7} = \gamma_{RCC} h_{RCC_7} \cdot L_{RCC_7}$	$W_{RCC_7} = 115 \text{ 8klf}$
$h_{RCC_8} := E_{RCCd} - E_{rock_base}$	$h_{RCC_8} = 16.8 ft$
$L_{RCC_8} := L_{C_{12}}$	$L_{\mathrm{RCC}_8} = 2.0 \mathrm{ft}$
$x_{RCC_8} := -L_{basin} + \frac{L_{RCC_8}}{2}$	$x_{RCC_8} = -54.0 \text{ ft}$
$W_{RCC_8} := \gamma_{RCC} \cdot h_{RCC_8} \cdot L_{RCC_8}$	$W_{RCC_8} = 4.4 \text{klf}$
$h_{RCC_9} := E_{RCCd} - E_{rock_base}$	$h_{RCC_9} = 16.8 ft$
$L_{RCC_9} := h_{RCC_9} \cdot slope_{RCCd}$	$L_{RCC_9} = 16.8 ft$
$x_{RCC_9} := -L_{RCC_7} - L_{RCC_8} - \frac{L_{RCC_9}}{3}$	$x_{RCC_9} = -60.6 \text{ft}$
$W_{RCC_9} := \gamma_{RCC} \cdot \frac{h_{RCC_9} \cdot L_{RCC_9}}{2}$	$W_{RCC_9} = 18.3 \text{klf}$

CDM04188

Gravity loads on structure:

$$h_{HW_1} := E_{head} - E_{crest}$$

$$h_{HW_{1}} = 18.0 \text{ ft}$$

$$L_{\mbox{HW}_{\mbox{\scriptsize 1}}} = 3.5 \mbox{ ft}$$

$$L_{HW_1} = 3.5 \, ft$$

$$x_{HW_1} := L_{C_5} + L_{C_4} - \frac{L_{HW_1}}{2}$$

$$x_{HW_1} = 74.3 \text{ ft}$$

$$W_{HW_1} \coloneqq \gamma_{\mathbf{w}} \cdot h_{HW_1} \cdot L_{HW_1} \cdot \frac{\left(s_{pier} - w_{pier}\right)}{s_{pier}}$$

$$W_{HW_1} = 3.4 \, \text{klf}$$

$${h_{\mbox{\scriptsize HW}}}_2 := E_{\mbox{\scriptsize head}} - E_{\mbox{\scriptsize ramp}}$$

$$h_{HW_2} = 21.5 \text{ ft}$$

$$L_{HW_2} = L_{C_6}$$

$$L_{HW_2} = 18.0 \, ft$$

$$x_{HW_2} := x_{C_6}$$

$$x_{HW_2} = 85.0 \text{ ft}$$

$$W_{HW_2} \coloneqq \gamma_{\mathbf{w}} \cdot h_{HW_2} \cdot L_{HW_2}$$

$$W_{HW_2} = 24.2 \, \text{klf}$$

$$h_{HW_3} \coloneqq E_{head} - E_{ukey}$$

$$h_{HW_3} = 37.0 \text{ ft}$$

$$L_{HW_2} := L_{RCC_5}$$

$$L_{HW_3} = 39.6 \, ft$$

$$\begin{aligned} & L_{HW_3} \coloneqq L_{RCC_5} \\ & x_{HW_3} \coloneqq L_{C_4} + L_{C_5} + L_{C_6} + \frac{L_{HW_3}}{2} \end{aligned}$$

$$x_{HW_3} = 113.8 \, ft$$

$$W_{HW_3} = \gamma_W h_{HW_3} L_{HW_3}$$

$$W_{HW_3} = 91.6 \, \text{klf}$$

$$h_{\text{HW}_4} \coloneqq E_{\text{ukey}} - E_{\text{rock_base}}$$

$$h_{HW_4} = 19.8 \text{ ft}$$

$$L_{HW_4} := h_{HW_4} \cdot slope_{RCCu}$$

$$L_{HW_4} = 39.6 \, ft$$

$$x_{HW_4} := L_{C_4} + L_{C_5} + L_{C_6} + \frac{2}{3} L_{HW_4}$$

$$x_{HW_4} = 120.4 \, \text{ft}$$

$$W_{HW_4} := \gamma_w \cdot \frac{h_{HW_4} \cdot L_{HW_4}}{2}$$

$$W_{HW_4} = 24.5 \, \text{klf}$$

$$h_{TW_{1}} \coloneqq max \left(\begin{pmatrix} E_{tail_redux} - E_{ramp} \\ 0 \cdot ft \end{pmatrix} \right)$$

$$h_{\mathrm{TW}_{1}}=0.0\,\mathrm{ft}$$

$$L_{TW_1} := L_{RCC_9} + L_{basin} + L_{C_4} + L_{C_5} - L_{HW_1}$$
 $L_{TW_1} = 144.3 \text{ ft}$

$$x_{TW_1} := L_{C_4} + L_{C_5} - L_{HW_1} - \frac{L_{TW_1}}{2}$$
 $x_{TW_1} = 0.3 \text{ ft}$

$$W_{TW_{1}} \coloneqq \gamma_{\mathbf{W}} \cdot h_{TW_{1}} \cdot L_{TW_{1}} \qquad \qquad W_{TW_{1}} = 0.0 \, \text{klf}$$

$$h_{TW_2} := max \left[min \left(\begin{pmatrix} E_{tail_redux} - E_{basin} \\ E_{ramp} - E_{basin} \end{pmatrix} \right), 0 \cdot ft \right] \quad h_{TW_2} = 4.0 ft$$

$$\label{eq:LTW2} \text{L}_{\text{TW}_2} \coloneqq \text{h}_{\text{TW}_2} \cdot \text{slope}_{\text{basin}} \qquad \qquad \text{L}_{\text{TW}_2} = 8 \text{ 0 ft}$$

$$x_{TW_2} := \frac{L_{TW_2}}{3}$$
 $x_{TW_2} = 2.7 \, ft$

$$W_{TW_2} := \gamma_w \cdot \frac{h_{TW_2} \cdot L_{TW_2}}{2} \qquad W_{TW_2} = 1.0 \text{ klf}$$

$$h_{TW_3} := h_{TW_2}$$
 $h_{TW_3} = 4.0 \, ft$

$$L_{TW_3} := L_{basin} - L_{C_{11}}$$
 $L_{TW_3} = 52.0 \, ft$

$$x_{TW_3} := -\frac{L_{basin} - L_{C_{11}}}{2}$$
 $x_{TW_3} = -26.0 \text{ ft}$

$$W_{TW_3} := \gamma_w \cdot h_{TW_3} \cdot L_{TW_3}$$

$$W_{TW_3} = 13.0 \text{ klf}$$

$$h_{TW_4} := max \left[min \left(\begin{pmatrix} E_{tail_redux} - E_{sill} \\ E_{ramp} - E_{sill} \end{pmatrix} \right), 0 \cdot ft \right] \qquad h_{TW_4} = 0.0 \, ft$$

$$L_{TW_4} := L_{C_{11}}$$
 $L_{TW_4} = 3.0 \, \text{ft}$

$$x_{TW_4} := -L_{basin} + \frac{L_{TW_4}}{2}$$
 $x_{TW_4} = -53.5 \text{ ft}$

$$W_{TW_4} = \gamma_W h_{TW_4} \cdot L_{TW_4}$$
 $W_{TW_4} = 0.0 \, \text{klf}$

$$h_{TW_5} := max \left(E_{tail_redux} - E_{RCCd}, 0 \text{ ft} \right) \qquad \qquad h_{TW_5} = 10.0 \text{ ft}$$

$$L_{TW_5} := L_{RCC_9}$$

$$L_{TW_5} = 16.8 \, \mathrm{ft}$$

Freese and Nichols	
$x_{\text{TW}_5} := -L_{\text{basin}} - \frac{L_{\text{TW}_5}}{2}$	$x_{\text{TW}_5} = -63.4 \text{ft}$
$W_{TW_5} := \gamma_{\mathbf{w}} \cdot h_{TW_5} \cdot L_{TW_5}$	$W_{TW_5} = 10.5 \text{klf}$
$h_{TW_6} := E_{RCCd} - E_{rock_base}$	$h_{TW_6} = 16.8 \mathrm{ft}$
$L_{TW_6} := slope_{RCCd} \cdot h_{TW_6}$	$L_{TW_6} = 16.8 \text{ft}$
$x_{\text{TW}_6} := -L_{\text{basin}} - \frac{2}{3} L_{\text{TW}_6}$	$x_{\text{TW}_{6}} = -66.2 \text{ft}$
$W_{TW_6} := \gamma_W \cdot \frac{h_{TW_6} \cdot L_{TW_6}}{2}$	$W_{TW_6} = 8.8 \mathrm{klf}$
$h_{SW_1} := E_{approach} - E_{ukey}$	$h_{SW_1} = 120 ft$
$L_{SW_1} := L_{RCC_5}$	$L_{SW_1} = 39.6 ft$
$x_{SW_1} := L_{C_4} + L_{C_5} + L_{C_6} + \frac{L_{SW_1}}{2}$	$x_{SW_1} = 113.8 \text{ft}$
$W_{SW_1} := \gamma_{Su} \cdot h_{SW_1} \cdot L_{SW_1}$	$W_{SW_1} = 28.5 \mathrm{klf}$
$h_{SW_2} := E_{ukey} - E_{rock_base}$	$h_{SW_2} = 19.8 ft$
$L_{SW_2} := L_{SW_1}$	$L_{SW_2} = 39.6 \text{ft}$
$x_{SW_2} := x_{SW_1} + \frac{L_{SW_2}}{6}$	$x_{SW_2} = 120.4 \text{ft}$
$W_{SW_2} := \gamma_{Su} \cdot \frac{h_{SW_2} \cdot L_{SW_2}}{2}$	$W_{SW_2} = 23.5 \text{klf}$
$h_{SW_3} := E_{sill} - E_{RCCd}$	$h_{\mathrm{SW}_3} = 10.0\mathrm{ft}$
$L_{SW_3} := L_{RCC_9}$	$L_{SW_3} = 16.8 \text{ft}$
$x_{SW_3} := -L_{basin} - \frac{L_{SW_3}}{2}$	$x_{SW_3} = -63.4 \text{ft}$

CDM04188

$$W_{SW_3} \coloneqq \gamma_{Sd} \cdot h_{SW_3} \cdot L_{SW_3}$$

$$W_{SW_3} = 10.1 \, \text{klf}$$

$$h_{SW_4} := E_{RCCd} - E_{rock_base}$$

$$h_{SW_{\underline{4}}} = 16.8\,\mathrm{ft}$$

$$\mathsf{L}_{SW_4} \coloneqq \mathsf{L}_{SW_3}$$

$$L_{SW_4} = 16.8 \, ft$$

$$\mathbf{x}_{SW_4} \coloneqq -\mathbf{L}_{basin} - \frac{2}{3} \cdot \mathbf{L}_{SW_4}$$

$$x_{SW_4} = -66.2 \text{ ft}$$

$$W_{SW_4} = \gamma_{Sd} \cdot \frac{h_{SW_4} \cdot L_{SW_4}}{2}$$

$$W_{SW_A} = 8.5 \, \text{klf}$$

Uplift at base

$$u_{head} = \gamma_w \left(E_{head} - E_{rock base} \right)$$

$$u_{\text{head}} = 3.550 \, \text{ksf}$$

$$u_{tail} \coloneqq \gamma_{w} \cdot \left(E_{tail} - E_{rock_base} \right)$$

$$u_{tail} = 1.675 \, \text{ksf}$$

$$L_{U_1} := L_{RCC_9} + L_{basin} + L_{C_4} + L_{C_5} + L_{C_6} + L_{RCC_5}$$

$$L_{U_1} = 205.4 \, \text{ft}$$

$$x_{U_1} := -L_{basin} - L_{RCC_9} + \frac{L_{U_1}}{2}$$

$$x_{U_1} = 30.9 \, ft$$

$$\boldsymbol{U}_{l} \coloneqq \boldsymbol{u}_{tail} \cdot \boldsymbol{L}_{\boldsymbol{U}_{l}}$$

$$U_1 = 344.0 \, \text{klf}$$

$$L_{U_2} := L_{U_1}$$

$$L_{U_2} = 205.4 \, \text{ft}$$

$$\mathbf{x_{U_2}} \coloneqq -\mathbf{L_{basin}} - \mathbf{L_{RCC_9}} + \frac{2}{3} \cdot \mathbf{L_{U_2}}$$

$$x_{U_2} = 65.1 \text{ ft}$$

$$U_2 := \left(u_{\text{head}} - u_{\text{tail}}\right) \cdot \frac{L_{U_2}}{2}$$

$$\rm U_2=192.6\,klf$$

Lateral loads on dam:

$$\mathbf{h_{H}_{1}} = min \left(\begin{pmatrix} E_{gate} - E_{rock_base} \\ E_{head} - E_{rock_base} \end{pmatrix} \right)$$

$$h_{H_1} = 56 8 \, ft$$

$$\begin{split} h_{H_{1}} &:= min \!\! \left(\!\! \begin{pmatrix} E_{gate} - E_{rock_base} \\ E_{head} - E_{rock_base} \end{pmatrix} \!\! \right) \\ H_{H_{1}} &:= \gamma_{w} \cdot max \!\! \left(\!\! \begin{pmatrix} E_{head} - E_{gate} \\ 0 \cdot ft \end{pmatrix} \!\! \right) \cdot h_{H_{1}} \end{split}$$

$$H_{H_1} = 0.0 \, \text{klf}$$

$$y_{H_1} := \frac{h_{H_1}}{2}$$

$$y_{H_1} = 28.4 \, ft$$

hH.	:=	h _H
1-3		11

$$h_{\rm H_2} = 56.8 \, \rm ft$$

$$H_{H_2} := \gamma_w \cdot \frac{\left(h_{H_2}\right)^2}{2}$$

$$H_{H_2} = 100.8 \, \text{klf}$$

$$y_{\overset{}{H_2}} \coloneqq \frac{h_{\overset{}{H_2}}}{3}$$

$$y_{H_2} = 18.9 \, ft$$

$$h_{S_i} := E_{crest} - E_{rock base}$$

$$h_{S_1} = 38.8 \, ft$$

$$\begin{aligned} \mathbf{h_{S_1}} &\coloneqq \mathbf{E_{crest}} - \mathbf{E_{rock_base}} \\ \mathbf{H_{S_1}} &\coloneqq \mathbf{k_{Su}} \cdot \gamma_{Su} \cdot \frac{\left(\mathbf{h_{S_1}}\right)^2}{2} \end{aligned}$$

$$H_{S_1} = 22.6 \, \text{klf}$$

$$y_{S_1} := \frac{h_{S_1}}{3}$$

$$y_{S_1} = 12.9 \, ft$$

$$h_{S_2} = E_{sill} - E_{rock_base}$$

$$h_{S_2} = 26.8 \, ft$$

$$H_{S_2} := -k_{Sd} \cdot \gamma_{Sd} \cdot \frac{\left(h_{S_2}\right)^2}{2}$$

$$H_{S_2} = -10.8 \, \text{klf}$$

$$y_{S_2} := \frac{h_{S_2}}{3}$$

$$y_{S_2} = 8.9 \,\text{ft}$$

$$y_{S_1} = \frac{1}{3}$$

$$y_{S_1} = 12.9 \text{ ft}$$

$$h_{S_2} = E_{\text{sill}} - E_{\text{rock_base}}$$

$$h_{S_2} = 26.8 \text{ ft}$$

$$H_{S_2} = -k_{\text{Sd}} \cdot \gamma_{\text{Sd}} \cdot \frac{\left(h_{S_2}\right)^2}{2}$$

$$H_{S_2} = -10.8 \text{ klf}$$

$$y_{S_2} = \frac{h_{S_2}}{3}$$

$$y_{S_2} = 8.9 \text{ ft}$$

$$h_{T_1} := \max \left[\min \left(\frac{E_{\text{tail_redux}} - E_{\text{rock_base}}}{E_{\text{gate}} - E_{\text{rock_base}}} \right), 0 \cdot \text{ft} \right]$$

$$h_{T_1} = 26.8 \text{ ft}$$

$$H_{T_1} := \gamma_w \cdot \max \left(\frac{E_{\text{tail_redux}} - E_{\text{gate}}}{0 \cdot \text{ft}} \right)$$

$$h_{T_1} = H_{T_1} = 0.0 \text{ klf}$$

$$h_{T_1} = 26.8 \, ft$$

$$H_{T_1} := \gamma_w \cdot \max \left(\left(\frac{E_{tail_redux} - E_{gate}}{0 \cdot ft} \right) \right) \cdot h$$

$$H_{T_1}=0.0\,\mathrm{klf}$$

$$y_{T_1} \coloneqq \frac{h_{T_1}}{2}$$

$$y_{T_1} = 13.4 \, ft$$

$$h_{T_2} := h_{T_1}$$

$$h_{T_2} = 26.8 \, ft$$

$$H_{T_2} := \gamma_w \cdot \frac{\left(h_{T_2}\right)^2}{2}$$

$$H_{T_2} = 22.4 \, \text{klf}$$

$$y_{T_2} = \frac{h_{T_2}}{3}$$

$$y_{T_2} = 8.9 \, ft$$

Fronse and Nichols

Samuels Ave. Dam

CDM04188

Sum vertical forces

$$\Sigma V := \sum_{i=1}^{12} W_{C_i} + \sum_{i=1}^{9} W_{RCC_i} + \sum_{i=1}^{4} W_{HW_i} + \sum_{i=1}^{6} W_{TW_i} + \sum_{i=1}^{4} W_{SW_i} - \sum_{i=1}^{2} U_i \qquad \Sigma V = 390.1 \, \text{klf}$$

$$\Sigma H := \sum_{i=1}^{2} H_{H_{i}} + \sum_{i=1}^{2} H_{S_{i}} - \sum_{i=1}^{2} H_{T_{i}}$$

$$\Sigma H = 90.2 \text{ klf}$$

$$M_{grav} := \sum_{i=1}^{12} W_{C_i} \cdot x_{C_i} + \sum_{i=1}^{9} W_{RCC_i} \cdot x_{RCC_i} + \sum_{i=1}^{4} W_{HW_i} \cdot x_{HW_i} \dots M_{grav} = 17291 \text{ kip}$$

$$+ \sum_{i=1}^{6} W_{TW_i} \cdot x_{TW_i} + \sum_{i=1}^{4} W_{SW_i} \cdot x_{SW_i} - \sum_{i=1}^{2} U_i \cdot x_{U_i}$$

$$M_{\text{lat}} := \sum_{i=1}^{2} H_{H_i} \cdot y_{H_i} + \sum_{i=1}^{2} H_{S_i} \cdot y_{S_i} - \sum_{i=1}^{2} H_{T_i} \cdot y_{T_i}$$
 $M_{\text{lat}} = 1904 \, \text{kip}$

$$\Sigma M := \lfloor M_{grav} + \Sigma V \cdot \left(L_{basin} + L_{RCC_9} \right) \rfloor - M_{lat}$$
 $\Sigma M = 43399 \cdot \frac{ft \cdot kip}{ft}$

$$x_{res} := \frac{\Sigma M}{\Sigma V} \qquad x_{res} = 111.2 \, ft$$

$$L_{rock} := L_{RCC_5} + L_{C_4} + L_{C_5} + L_{C_6} + L_{basin} + L_{RCC_9}$$
 $L_{rock} = 205.4 \, ft$

frac =
$$\frac{x_{res}}{L_{rock}}$$
 frac = 0.542

frac_text := if
$$\left(\text{frac} > \frac{2}{3}, \text{"Over stable"}, \text{""} \right)$$

frac_text := if
$$\left(\text{frac} < \frac{2}{3} \land \text{frac} \ge \frac{1}{3}, \text{"Resultant in middle third. Okay normal case.", frac_text} \right)$$

frac_text := if
$$\left(\text{frac} < \frac{1}{3} \land \text{frac} \ge \frac{1}{4}, \text{"Resultant in middle half. Okay unusual case."}, \text{frac_text} \right)$$

frac_text := if
$$\left(\text{frac} < \frac{1}{4} \land \text{frac} \ge 0 \right)$$
, "Resultant within base. Okay extreme case.", frac_text

$$L_{contact} = min(3 \cdot x_{res}, L_{rock})$$
 $L_{contact} = 205.4 \, ft$

CDM04188

$$\nu_{ult} \coloneqq \Sigma V \cdot tan \! \left(\phi_{RCC_Rock} \right)$$

$$v_{ult} = 181.9 \text{klf}$$

$$\phi_{RCC\ Rock} = 25.0 deg$$

$$FS_{sliding} = \frac{v_{ult}}{\Sigma H}$$

$$FS_{sliding} = 2.02$$

$$ok := if(FS_{sliding} < FS_{sliding reqd}, "Sliding instability", ok)$$
 $ok = "Ok"$

$$ok = "Ok"$$

Base Pressures:

$$e_{dam} := \frac{L_{rock}}{2} - x_{res}$$

$$e_{dam} = -8.54 \, ft$$

(eccentricity with respect to dam block centroid)

$$e := \frac{L_{contact}}{2} - x_{res}$$

$$e = -8.54 \, ft$$

(eccentricity with respect to the compression area centroid)

$$\sigma_{toe} \coloneqq \frac{\Sigma V}{L_{contact}} + \frac{\Sigma V \cdot e}{L_{contact}}$$

$$\sigma_{toe} = 1.426 \, \text{ksf}$$

$$\sigma_{\text{toe}} := \frac{\Sigma V}{L_{\text{contact}}} + \frac{\Sigma V \cdot e}{\frac{L_{\text{contact}}}{6}}$$

$$\sigma_{\text{heel}} := \frac{\Sigma V}{L_{\text{contact}}} - \frac{\Sigma V \cdot e}{\frac{L_{\text{contact}}}{6}}$$

$$\sigma_{\text{heel}} := 2373 \text{ ksf}$$

$$\sigma_{\text{heel}} = 2\,373\,\text{ksf}$$

$$\frac{L_{contact}}{L_{rock}} = 100.0\%$$

Dam Stability Analysis: (left end at shallow rock)

Reference:T:\ST\CALCS\Common geometry.mcd(R)

$$k_{Su} = 0.5$$

$$E_{ramp} = 503.5 \, ft$$

$$\gamma_{Su} = 60.0 \, \text{pcf}$$

$$\phi_{conc_rock} = 20.0 \deg$$

$$\phi_{\text{shale}} = 20.0 \text{ deg}$$

$$\phi_{limestone} = 40.0 \deg$$

$$\phi_{1s_inc} = 50.0 \deg$$

$$eff_{drain} = 50\%$$

$$E_{\rm ukey} = 488.0\,{\rm ft}$$

$$E_{dkey} = 471.0 \, ft$$

$$t_c = 6.0 \, ft$$

Geometry:

$$E_{rock} := 503.5 \cdot ft - t_c$$

$$E_{rock} = 497.50 \, ft$$

Constants:

Pre-Definitions:

$$kip \equiv 1000 \cdot lbf$$

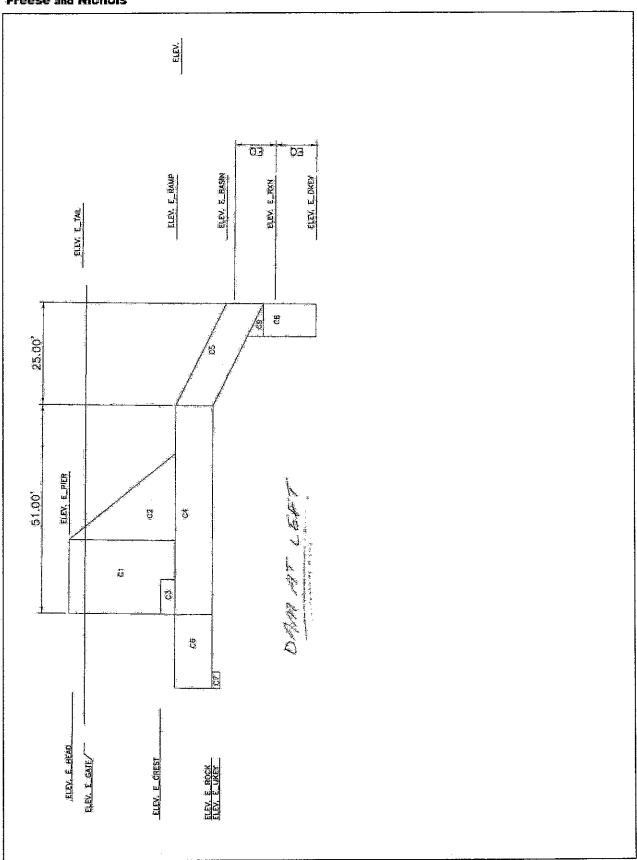
$$ksi \equiv 1000 \cdot psi$$

$$ok \equiv "Ok"$$

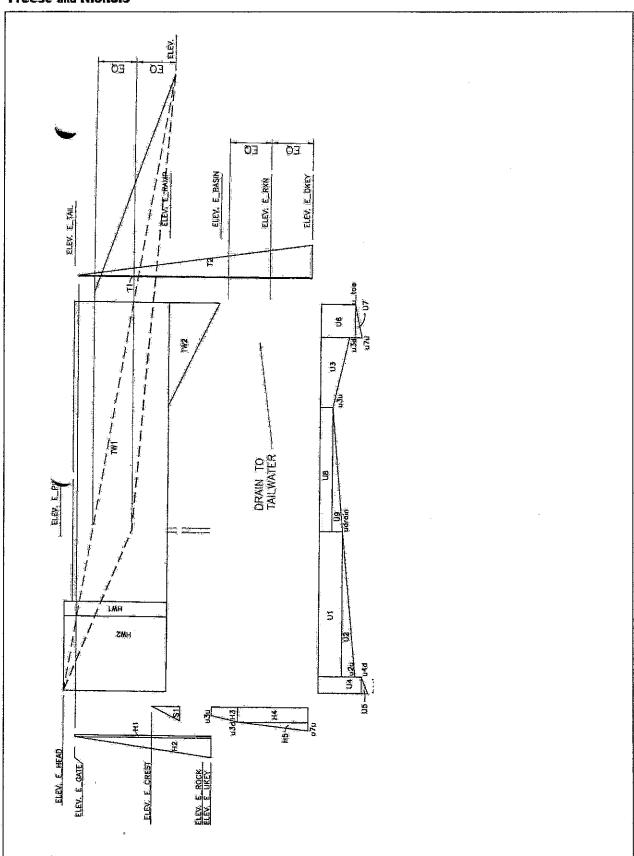
$$psf = \frac{lbf}{c^2}$$

$$\mathfrak{t}^2$$

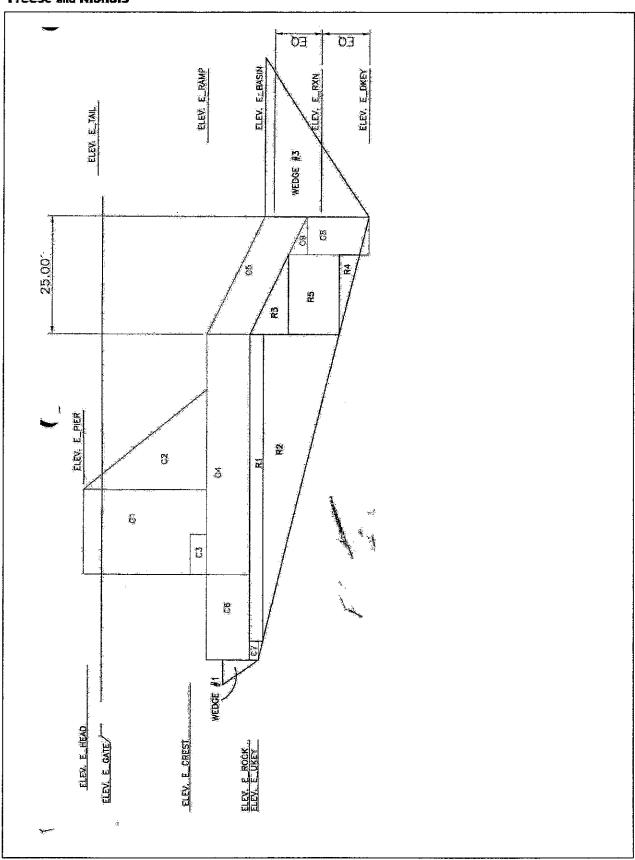
$$plf \equiv \frac{101}{ft}$$


$$ORIGIN = 1.0$$

$$pcf = \frac{lbt}{ft^3}$$


$$klf \equiv 1000 \cdot plf$$

$$ksf := \frac{1000 \cdot lbf}{ft^2}$$



CDM04188

Analysis:

Self-weight of stucture:

$$h_{C_5} := \frac{25 \cdot ft}{slope_{basin}}$$

$$h_{C_5} = 12.5 \, ft$$

$$L_{C_5} := h_{C_5} \cdot slope_{basin}$$

$$L_{C_5} = 25.0 \, \text{ft}$$

$$x_{C_5} := \frac{L_{C_5}}{2}$$

$$x_{C_5} = 12.5 \, \text{ft}$$

$$\mathbf{W_{C_5}} \coloneqq \gamma_{\mathbf{c}} \cdot \left[\left\lfloor \mathbf{h_{C_5}} + \left(\mathbf{E_{ramp}} - \mathbf{E_{rock}} \right) \right\rfloor \cdot \mathbf{L_{C_5}} - \mathbf{h_{C_5}} \cdot \mathbf{L_{C_5}} \right]$$

$$W_{C_5} = 22.5 \, \text{klf}$$

$$h_{C_4} := E_{ramp} - E_{rock}$$

$$h_{C_4} = 6.0 \, ft$$

$$L_{C_4} := 51 \cdot \text{ft}$$

$$x_{C_4} := L_{C_5} + \frac{L_{C_4}}{2}$$

$$x_{C_4} = 50.5 \, ft$$

$$W_{C_4} := \gamma_c \cdot h_{C_4} \cdot L_{C_4}$$

$$W_{C_4} = 45.9 \, \text{klf}$$

$$h_{C_1} := E_{pier} - E_{ramp}$$

$$h_{C_1} = 26.5 \, ft$$

$$L_{C_1} := 18 \cdot \text{ft}$$

$$x_{C_1} := L_{C_4} + L_{C_5} - \frac{L_{C_1}}{2}$$

$$x_{C_1} = 67.0 \, ft$$

$$W_{C_1} := \gamma_c \cdot h_{C_1} \cdot L_{C_1} \cdot \frac{w_{pier}}{s_{pier}}$$

$$W_{C_1} = 10.2 \, \text{klf}$$

$$h_{C_2} := h_{C_1}$$

$$h_{C_2} = 26.5 \, ft$$

$$L_{C_2} := h_{C_2} \frac{1.00}{1.25}$$

$$L_{C_2} = 21.2 \, \mathrm{ft}$$

$$x_{C_2} := L_{C_4} + L_{C_5} - L_{C_1} - \frac{L_{C_2}}{3}$$

$$x_{C_2} = 50.9 \, \text{ft}$$

$$W_{C_2} := \gamma_c \cdot \frac{h_{C_2} \cdot L_{C_2}}{2} \cdot \frac{w_{pier}}{s_{pier}}$$

$$W_{C_2} = 6.0 \, \text{klf}$$

LICESC AND MICHOIS	
$h_{C_3} := E_{crest} - E_{ramp}$	$h_{C_3} = 3.5 ft$
$L_{C_3} = 8.5 \text{ ft}$	
$x_{C_3} := L_{C_4} + L_{C_5} - \frac{L_{C_3}}{2}$	$x_{C_3} = 71.8 ft$

$$x_{C_3} := L_{C_4} + L_{C_5} - \frac{c_3}{2}$$
 $x_{C_3} = 71.8 \text{ ft}$

$$W_{C_3} := \gamma_c \cdot h_{C_3} \cdot L_{C_3} \cdot \frac{\left(s_{pier} - w_{pier}\right)}{s_{pier}}$$
 $W_{C_3} = 3.8 \text{ klf}$

$$h_{C_6} := h_{C_4}$$
 $h_{C_6} = 6.0 \,\text{ft}$

$$x_{C_6} := L_{C_4} + L_{C_5} + \frac{L_{C_6}}{2}$$
 $x_{C_6} = 85.0 \text{ ft}$

$$W_{C_6} := \gamma_c \cdot h_{C_6} \cdot L_{C_6}$$

$$W_{C_6} = 16.2 \text{ klf}$$

$$L_{dam} := L_{C_4} + L_{C_5} + L_{C_6}$$
 $L_{dam} = 94.0 \text{ ft}$ $h_{C_7} := E_{rock} - E_{ukey}$ $h_{C_7} = 9.5 \text{ ft}$

$$\mathbf{h_{C_7}} \coloneqq \mathbf{E_{rock}} - \mathbf{E_{ukey}} \qquad \qquad \mathbf{h_{C_7}} = 9.5 \, \mathrm{ft}$$

$$L_{C_7} := L_{ukey}$$
 $L_{C_7} = 6.0 \, ft$

$$x_{C_7} = L_{dam} - \frac{L_{C_7}}{2}$$
 $x_{C_7} = 91.0 \text{ ft}$

$$W_{C_7} := \gamma_c \cdot h_{C_7} \cdot L_{C_7}$$
 $W_{C_7} = 8.6 \text{ klf}$

$$h_{C_8} := E_{rock} - h_{C_5} - E_{dkey}$$
 $h_{C_8} = 14.0 \text{ ft}$

$$L_{C_8} := L_{dkey}$$
 $L_{C_8} = 6.0 \, ft$

$$x_{C_8} := \frac{L_{C_8}}{2}$$
 $x_{C_8} = 3.0 \, \text{ft}$

$$W_{C_8} = \gamma_c \cdot h_{C_8} \cdot L_{C_8}$$
 $W_{C_8} = 12.6 \text{ klf}$

$$h_{C_9} := \frac{L_{C_8}}{\text{slope}_{basin}}$$

$$h_{C_9} = 3.0 \, \mathrm{ft}$$

$$L_{C_9} = L_C$$

$$L_{C_9} = 6.0 \, \text{ft}$$

$$x_{C_9} := \frac{2}{3} \cdot L_{C_9}$$

$$x_{C_9} = 4.0 \, \text{ft}$$

$$W_{C_9} = \gamma_c \cdot \frac{h_{C_9} \cdot L_{C_9}}{2}$$

$$W_{C_9} = 1.4 \, \text{klf}$$

CDM04188

Gravity loads on structure:

$$h_{HW_1} := E_{head} - E_{crest}$$

$$h_{HW_1} = 18.0 \, ft$$

$$L_{HW_1} := 3.5 \cdot ft$$

$$L_{HW_1} = 3.5 \, ft$$

$$x_{HW_1} \coloneqq L_{dam} - L_{C_6} - \frac{L_{HW_1}}{2}$$

$$x_{HW_1} = 74.3 \text{ ft}$$

$$W_{HW_{1}} \coloneqq \gamma_{w} \cdot h_{HW_{1}} \cdot L_{HW_{1}} \cdot \frac{\left(s_{pier} - w_{pier}\right)}{s_{pier}}$$

$$W_{HW_1} = 3.4 \, \text{klf}$$

$$h_{HW_2} = E_{head} - E_{crest}$$

$$h_{HW_2} = 18.0 \text{ ft}$$

$$L_{HW_2} = L_{C_6}$$

$$L_{C_6} = 18.0 \, \text{ft}$$

$$x_{HW_2} = x_{C_6}$$

$$x_{HW_2} = 850 \text{ ft}$$

$$W_{HW_2} := \gamma_w \cdot h_{HW_2} \cdot L_{HW_2}$$

$$W_{HW_2} = 20.3 \text{ klf}$$

$$h_{TW_{\underline{1}}} \coloneqq max \left(\begin{pmatrix} E_{tail_redux} - E_{ramp} \\ 0 & ft \end{pmatrix} \right)$$

$$h_{TW_1} = 0.0 \, ft$$

$$L_{TW_1} := L_{dam} - L_{HW_1}$$

$$L_{TW_1} = 90.5 \, ft$$

$$x_{TW_1} := \frac{L_{TW_1}}{2}$$

$$x_{TW_{1}} = 45.3 \text{ ft}$$

$$W_{TW}_1 \coloneqq \gamma_w \cdot h_{TW}_1 \cdot L_{TW}_1$$

$$W_{TW_1} = 0.0 \, \text{klf}$$

$$\mathbf{h_{TW}}_2 := \max \left[\min \left(\begin{pmatrix} \mathbf{E_{tail_redux}} - \mathbf{E_{basin}} \\ \mathbf{E_{ramp}} - \mathbf{E_{basin}} \end{pmatrix} \right), 0 \quad \text{ft} \right] \mathbf{h_{TW}}_2 = 4.0 \, \text{ft}$$

$$L_{TW_2} = h_{TW_2} \cdot slope_{basin}$$

$$L_{TW_2} = 8.0 \, \mathrm{ft}$$

$$L_{TW_{2}} := h_{TW_{2}} \cdot slope_{basin}$$

$$x_{TW_{2}} := \frac{L_{TW_{2}}}{3}$$

$$x_{TW_2} = 2.7 \, ft$$

$$W_{TW_2} := \gamma_w \cdot \frac{h_{TW_2} \cdot L_{TW_2}}{2}$$

$$W_{TW_2} = 1.0 \, \text{klf}$$

CDM04188

Uplift at base

(no tailwater reduction taken for turbulence and aeration)

$$u_{heel} := \gamma_w \cdot (E_{head} - E_{ukey})$$

$$u_{heel} = 2.313 \, ksf$$

$$E_{drain} \coloneqq E_{tail} + \frac{\left(E_{bead} - E_{tail}\right) \cdot \left(L_{basin} + x_{drain}\right)}{L_{dam} + L_{basin}}$$

E_{drain} = 517.1 ft (assumed uplift driving head at drain w/out drain active)

$$\delta E_{drain} := eff_{drain} \ \left(E_{drain} - E_{tail} \right) \qquad \delta E_{drain} = 11.074 \ ft$$

$$\delta E_{\text{drain}} = 11.074 \, \text{ft}$$

(assumed head drop at upstream drain)

$$u_{drain} \coloneqq \gamma_{\mathbf{W}} \cdot \max \begin{bmatrix} E_{drain} - \delta E_{drain} - \left(E_{ramp} - t_{c} \right) \\ 0 \cdot ft \end{bmatrix}$$

$$u_{drain} = 0.536 \, \text{ksf}$$

$$\delta u_u := \frac{\gamma_w \left[E_{head} - \left(E_{drain} - \delta E_{drain} \right) \right]}{L_{dam} - x_{drain}}$$

$$\delta u_u = 0.03033041 \frac{ksf}{ft}$$

$$\delta u_d := \frac{\gamma_w \cdot \lfloor \left(E_{drain} - \delta E_{drain} \right) - E_{tail} \rfloor}{L_{basin} + x_{drain}}$$

$$\delta u_{d} = 0.00629195 \frac{ksf}{ft}$$

$$u2u := u_{drain} + \delta u_u \cdot (L_{dam} - x_{drain} - L_{ukey})$$

$$u2u = 1.537 \, ksf$$

$$u4d := u2u + \gamma_{\mathbf{W}} \cdot \left(h_{\mathbf{C}_{7}}\right)$$

$$u4d = 2 131 \, ksf$$

$$u_{heel} := u4d + \delta u_u \cdot L_{ukey}$$

$$u_{\text{heel}} = 2.313 \, \text{ksf}$$

$$\frac{u_{\text{heel}}}{\gamma_{\text{w}}} + E_{\text{ukey}} = 525.0 \,\text{ft}$$

$$\frac{----}{\gamma_{w}} + E_{ukey} = 525.0 \text{ ft}$$

ok := if
$$\left[\frac{u_{heel}}{\gamma_w} + E_{ukey} = E_{head} \right]$$
, ok, "Uplift pressures do not close."

$$u3u = u_{drain} - \delta u_{d} \left(x_{drain} - L_{C_{5}} \right)$$

$$u3u=0.347\,ksf$$

$$u3d := u3u + \gamma_W \cdot \left(h_{C_5} - h_{C_9}\right) - \delta u_d \cdot \left(L_{C_5} - L_{C_9}\right)$$

$$u3d=0.821\,ksf$$

$$u7u := u3d + \gamma_w \cdot \left(h_{C_8} + h_{C_9}\right)$$

$$u7u = 1.884 \, ksf$$

$$u_{toe} := u7u - \delta u_d \cdot L_{dkey}$$

$$u_{toe} = 1.846 \, \text{ksf}$$

$$\frac{u_{\text{toe}} - \delta u_{\text{d}} \cdot L_{\text{basin}}}{\gamma_{\text{W}}} + E_{\text{dkey}} = 495.0 \,\text{ft}$$

ok := if
$$\left[\frac{u_{\text{toe}} - \delta u_{\text{d}} \cdot L_{\text{basin}}}{\gamma_{\text{W}}} + E_{\text{dkey}} = E_{\text{tail}} \right]$$
, ok, "Uplift pressures do not close."

$L_{U_1} := L_{dam} - x_{drain} - L_{ukey}$	$L_{U_1} = 33.0 \text{ft}$
$x_{\mathbf{U}_1} \coloneqq x_{\text{drain}} + \frac{\mathbf{L}_{\mathbf{U}_1}}{2}$	$x_{U_1} = 71.5 ft$
$\mathbf{U}_1 \coloneqq \mathbf{u}_{\mathbf{drain}} \cdot \mathbf{L}_{\mathbf{U}_1}$	$\mathbf{U_{1}} = 17.7\mathrm{klf}$
$L_{U_2} \coloneqq L_{U_1}$	$L_{U_2} = 33.0 \text{ft}$
$x_{U_2} := x_{drain} + \frac{2}{3} \cdot L_{U_2}$	$x_{U_2} = 77.0 \text{ ft}$
$U_2 := \left(u2u - u_{\text{drain}}\right) \frac{L_{U_2}}{2}$	$U_2 = 16.5 \text{klf}$
$L_{U_3} := L_{C_5} - L_{dkey}$	$L_{U_3} = 19.0 \text{ft}$
$U_{rect} := L_{U_3} \cdot min(u3d, u3u)$ $U_{rect} = 0$	5595 klf
$U_{tri} := \frac{L_{U_3} - u3d - u3u }{2}$ $U_{tri} = 4$.	
$\frac{L_{U_3}}{U_{rect}} + \frac{L_{U_3}}{U_{tri}} U_{tri} if (u3d > u2u)$	1,2,1)
$x_{U_3} := \frac{2}{U_{rect} + U_{tri}}$	$+ L_{C_9}$ $x_{U_3} = 14.2 \text{ft}$
$x_{U_3} := \frac{\frac{L_{U_3}}{2} \cdot U_{rect} + \frac{L_{U_3}}{3} \cdot U_{tri} \cdot if(u3d > u2u)}{U_{rect} + U_{tri}}$ $U_3 := U_{rect} + U_{tri}$	$+ L_{C_9}$ $x_{U_3} = 14.2 \text{ft}$ $U_3 = 11.100 \text{klf}$
$U_{3} := U_{rect} + U_{tri}$ $L_{U_{4}} := L_{ukey}$	
$U_3 := U_{rect} + U_{tri}$	$U_3 = 11.100 \text{klf}$
$U_{3} := U_{rect} + U_{tri}$ $L_{U_{4}} := L_{ukey}$	$U_3 = 11.100 \text{klf}$ $L_{U_4} = 6.0 \text{ft}$
$U_{3} := U_{rect} + U_{tri}$ $L_{U_{4}} := L_{ukey}$ $x_{U_{4}} := L_{dam} - \frac{L_{U_{4}}}{2}$ $U_{4} := u4d L_{U_{4}}$ $L_{U_{5}} := L_{U_{4}}$	$U_3 = 11.100 \text{ klf}$ $L_{U_4} = 6.0 \text{ ft}$ $x_{U_4} = 91.0 \text{ ft}$
$U_{3} := U_{rect} + U_{tri}$ $L_{U_{4}} := L_{ukey}$ $x_{U_{4}} := L_{dam} - \frac{L_{U_{4}}}{2}$ $U_{4} := u4d L_{U_{4}}$ $L_{U_{5}} := L_{U_{4}}$ $x_{U_{5}} := L_{dam} - \frac{L_{U_{5}}}{3}$	$U_3 = 11.100 \text{ klf}$ $L_{U_4} = 6.0 \text{ ft}$ $x_{U_4} = 91.0 \text{ ft}$ $U_4 = 12.783 \text{ klf}$
$U_{3} := U_{rect} + U_{tri}$ $L_{U_{4}} := L_{ukey}$ $x_{U_{4}} := L_{dam} - \frac{L_{U_{4}}}{2}$ $U_{4} := u4d L_{U_{4}}$ $L_{U_{5}} := L_{U_{4}}$	$U_3 = 11.100 \text{klf}$ $L_{U_4} = 6.0 \text{ft}$ $x_{U_4} = 91.0 \text{ft}$ $U_4 = 12.783 \text{klf}$ $L_{U_5} = 6.0 \text{ft}$
$U_{3} := U_{rect} + U_{tri}$ $L_{U_{4}} := L_{ukey}$ $x_{U_{4}} := L_{dam} - \frac{L_{U_{4}}}{2}$ $U_{4} := u4d L_{U_{4}}$ $L_{U_{5}} := L_{U_{4}}$ $x_{U_{5}} := L_{dam} - \frac{L_{U_{5}}}{3}$	$U_3 = 11.100 \text{ klf}$ $L_{U_4} = 6.0 \text{ ft}$ $x_{U_4} = 91.0 \text{ ft}$ $U_4 = 12.783 \text{ klf}$ $L_{U_5} = 6.0 \text{ ft}$ $x_{U_5} = 92.0 \text{ ft}$

$U_6 = u_{toe} \cdot L_{U_6} \qquad \qquad U_6 = 11.0$
--

$$L_{U_7} := L_{dkey}$$
 $L_{U_7} = 6.0 \, ft$

$$x_{U_7} := \frac{2}{3} \cdot L_{U_7}$$
 $x_{U_7} = 4.0 \,\text{ft}$

$$U_7 := \frac{(u^7u - u_{toe}) \cdot L_{U_7}}{2}$$
 $U_7 = 0.113 \text{ klf}$

$$L_{U_8} = x_{drain} - L_{C_5}$$
 $L_{U_8} = 30.0 \text{ ft}$

$$x_{U_8} := L_{C_5} + \frac{L_{U_8}}{2}$$
 $x_{U_8} = 40.0 \text{ ft}$

$$U_8 := u3u \quad L_{U_8}$$
 $U_8 = 10.4 \text{ klf}$

$$L_{U_9} := L_{U_8}$$
 $L_{U_9} = 30.0 \, \text{ft}$

$$x_{U_9} := L_{C_5} + \frac{2}{3} L_{U_9}$$
 $x_{U_9} = 450 \,\text{ft}$

$$U_9 := \frac{(u_{drain} - u_3u) \cdot L_{C_9}}{2}$$
 $U_9 = 0.566 \text{ klf}$

CDM04188

Lateral loads on dam:

$$E_{rxn} := \frac{E_{basin} - 2 \cdot ft + E_{dkey}}{2}$$

$$E_{rxn} = 480.0\,\mathrm{ft}$$

$$h_{H_1} \coloneqq \text{min}\!\!\left(\!\!\left(\begin{matrix} E_{gate} - E_{ukey} \\ E_{head} - E_{ukey} \end{matrix} \right)\!\!\right)$$

$$h_{H_{1}} = 37.0 \, ft$$

$$\begin{split} h_{H_1} &:= min \!\! \left(\!\! \begin{pmatrix} E_{gate} - E_{ukey} \\ E_{head} - E_{ukey} \end{pmatrix} \!\! \right) \\ H_{H_1} &:= \gamma_w \cdot max \!\! \left(\!\! \begin{pmatrix} E_{head} - E_{gate} \\ 0 \cdot ft \end{pmatrix} \!\! \right) \cdot h_{H_1} \end{split}$$

$$H_{H_1} = 0.0 \, \text{klf}$$

$$y_{H_1} := \frac{h_{H_1}}{2} + \left(E_{rock} - E_{rxn}\right)$$

$$y_{H_1} = 36.0 \, ft$$

$$h_{H_2} := h_{H_1}$$

$$h_{H_2} = 370 \, ft$$

$$H_{H_2} := \gamma_{\mathbf{w}} \cdot \frac{\left(h_{H_2}\right)^2}{2}$$

$$H_{H_2} = 42.8 \, \text{klf}$$

$$h_{H_2} := h_{H_1}$$

$$H_{H_2} := \gamma_w \cdot \frac{\left(h_{H_2}\right)^2}{2}$$

$$y_{H_2} := \frac{h_{H_2}}{3} + \left(E_{rock} - E_{rxn}\right)$$

$$h_{H_3} := E_{ukey} - \left(E_{dkey} + h_{C_8} + h_{C_9}\right)$$

$$H_{rect} := h_{H_1} \cdot min(u_3d, u_3u)$$

$$y_{H_2} = 29.8 \, ft$$

$$h_{H_3} := E_{ukey} - \left(E_{dkey} + h_{C_8} + h_{C_9}\right)$$

$$h_{H_3} = 0.00 \, ft$$

$$H_{rect} := h_{H_3} \cdot min(u3d, u3u)$$

$$H_{rect} = 0.00\,\mathrm{klf}$$

$$H_{tri} := \frac{h_{\text{H}_3} \left| u3d - u3u \right|}{2}$$

$$H_{tri} = 0.00 \, klf$$

$$H_{H_3} \coloneqq H_{rect} + H_{tri}$$

$$H_{H_3} = 0.00 \, \text{klf}$$

$$y_{H_{3}} := \frac{H_{rect} \cdot \frac{h_{H_{3}}}{2} + H_{tri} \cdot \frac{h_{H_{3}}}{3} \cdot if(u3d > u3u, 1, 2)}{H_{H_{3}}} + h_{C_{8}} + E_{dkey} - E_{rxn}$$

$$y_{H_3} = 5.00 \, ft$$

$$h_{H_4} := h_{C_8} + h_{C_9}$$

$$h_{\rm H_4} = 17.0 \ {\rm ft}$$

$$H_{H_{\underbrace{4}}} \coloneqq \mathtt{u3d} \cdot \mathtt{h}_{H_{\underbrace{4}}}$$

$$\mathrm{H_{H_4}} = 14.0\,\mathrm{klf}$$

$$h_{H_4} := h_{C_8} + h_{C_9}$$
 $H_{H_4} := u3d \cdot h_{H_4}$
 $y_{H_4} := \frac{h_{H_4}}{2} - (E_{rxn} - E_{dkey})$

$$y_{H_4} = -0.5 \, ft$$

$$h_{H_5} := h_{H_4}$$

$$h_{H_5} = 17.0 \, ft$$

$$H_{H_5} := \frac{(u7u - u3d) \cdot h_{H_5}}{2}$$
 $H_{H_5} = 9.0 \text{ klf}$

$$y_{H_5} := \frac{h_{H_5}}{3} + (E_{dkey} - E_{rxn})$$
 $y_{H_5} = -3.3 \text{ ft}$

$$h_{S1} := E_{crest} - E_{approach}$$
 $h_{S1} = 7.0 \, ft$

$$H_{S1} := k_{Su} \cdot \gamma_{Su} \cdot \frac{h_{S1}^2}{2}$$
 $H_{S1} = 0.7 \text{ klf}$

$$y_{S1} := \frac{h_{S1}}{3} + (E_{approach} - E_{rxn})$$
 $y_{S1} = 22.3 \text{ ft}$

$$h_{T_1} := max \left[min \left(\left(\frac{E_{tail_redux} - E_{dkey}}{E_{gate} - E_{dkey}} \right) \right), 0 \cdot ft \right] \quad h_{T_1} = 24.0 \text{ ft}$$

$$H_{T_1} = \gamma_w + \max \left(\begin{pmatrix} E_{tail_redux} + E_{gate} \\ 0 - ft \end{pmatrix} \right) + h_{T_1} \qquad H_{T_1} = 0.0 \text{ klf}$$

$$y_{T_1} := \frac{h_{T_1}}{2} + (E_{dkey} - E_{rxn})$$
 $y_{T_1} = 3.0 \,ft$

$$h_{T_2} := h_{T_1}$$
 $h_{T_2} = 24.0 \, \text{ft}$

$$H_{T_2} := \gamma_w \cdot \frac{\left(h_{T_2}\right)^2}{2}$$
 $H_{T_2} = 18.0 \text{ klf}$

$$y_{T_2} := \frac{h_{T_2}}{3} + (E_{dkey} - E_{rxn})$$
 $y_{T_2} = -1.0 \,ft$

CDM04188

Sum vertical forces:

$$\Sigma V := \sum_{i=1}^{9} W_{C_i} + \sum_{i=1}^{2} W_{HW_i} + \sum_{i=1}^{2} W_{TW_i} - \sum_{i=1}^{9} U_i$$

$$\Sigma V = 71.0 \, \text{klf}$$

$$M_{grav} := \sum_{i=1}^{9} W_{C_i} \cdot x_{C_i} + \sum_{i=1}^{2} W_{HW_i} x_{HW_i} + \sum_{i=1}^{2} W_{TW_i} \cdot x_{TW_i} - \sum_{i=1}^{9} U_i \cdot x_{U_i} \qquad M_{grav} = 3654 \ 8 \text{ kip}$$

$$M_{grav} = 3654 8 \text{ kip}$$

$$\Sigma H := \sum_{i=1}^{5} H_{H_i} + H_{S1} - \sum_{i=1}^{2} H_{T_i}$$

$$\Sigma H = 48.5 \, \text{klf}$$

$$M_{lat} := \sum_{i=1}^{5} H_{H_{i}} \cdot y_{H_{i}} + H_{S1} \cdot y_{S1} - \sum_{i=1}^{2} H_{T_{i}} \cdot y_{T_{i}}$$

$$M_{lat} = 1273.6 \, kip$$

$$\Sigma M = M_{grav} - M_{lat}$$

$$\Sigma M = 2381.2 \frac{\text{ft} \cdot \text{kip}}{\text{ft}}$$

$$x_{res} = \frac{\Sigma M}{\Sigma V}$$

$$x_{res} = 33.5 \, ft$$

$$frac := \frac{x_{res}}{L_{dam}} \qquad frac = 0.357$$

frac_text := if
$$\left(\text{frac} > \frac{2}{3}, \text{"Over stable"}, \text{""} \right)$$

frac_text := if
$$\left(\text{frac} < \frac{2}{3} \land \text{frac} \ge \frac{1}{3}, \text{"Resultant in middle third. Okay normal case."}, \text{frac_text} \right)$$

frac_text := if
$$\left(\text{frac} < \frac{1}{3} \land \text{frac} \ge \frac{1}{4}, \text{"Resultant in middle half. Unusual case only.", frac_text} \right)$$

frac_text := if
$$\left(\text{frac} < \frac{1}{4} \land \text{frac} \ge 0, \text{"Resultant within base. Extreme case only.", frac_text} \right)$$

$$frac_text \coloneqq if(frac < 0, "Unstable", frac_text)$$

frac_text = "Resultant in middle third. Okay normal case."

$$L_{contact} := min(3 \cdot x_{res}, L_{dam})$$

$$L_{contact} = 94.0 \, ft$$

$$\sum_{i=1}^{9} W_{C_i} = 127.2 \,\text{klf} \qquad \text{frac} = 0.357$$

frac text = "Resultant in middle third. Okay normal case."

Base Pressures:

$$e_{dam} \coloneqq \frac{L_{dam}}{2} - x_{res}$$

 $e_{dam} = 13.46 \, ft$

(eccentricity with respect to dam centroid)

$$e := \frac{L_{contact}}{2} - x_{res}$$

 $e = 13.46 \, ft$

(eccentricity with respect to compression area centroid)

$$\sigma_{toe} := \frac{\Sigma V}{L_{contact}} + \frac{\Sigma V \cdot e}{\frac{L_{contact}}{2}}$$

 $\sigma_{toe} = 1.404 \, ksf$

$$\sigma_{\text{heel}} := \frac{\Sigma V}{L_{\text{contact}}} - \frac{\Sigma V \cdot e}{\frac{L_{\text{contact}}}{6}}$$

 $\sigma_{heel} = 0.106 \, ksf$

$$\frac{L_{contact}}{L_{dam}} = 100.0\,\%$$

$$x_{res} = 33.5 \, ft$$

$$\Sigma V = 71.0 \, klf$$

$$\Sigma H = 48.5 \, \text{klf}$$

CDM04188

Sliding Stability Analysis: Failure plane from key-to-key.

Compute driving wedge properties: (1st wedge)

$$\phi_1 := \phi_{1s_inc}$$

$$\phi_1 = 50.0 \, deg$$

$$c_1 := 0 \cdot ksf$$

$$\phi_{d_1} := \operatorname{atan}\left(\frac{\tan(\phi_1)}{\operatorname{FS}_1}\right)$$

$$\phi_{d_1} = 29.4 \deg$$

$$\phi_{d_1} := \operatorname{atan}\left(\frac{1}{\operatorname{FS}_1}\right)$$

$$\alpha_1 := -\left(45 \operatorname{deg} + \frac{\phi_{d_1}}{2}\right)$$

$$L_{v_1} := \operatorname{E}_{\operatorname{approach}} - \operatorname{E}_{\operatorname{ukey}}$$

$$L_{h_1} := \frac{L_{v_1}}{\tan(-\alpha_1)}$$

$$L_1 := \sqrt{\left(L_{v_1}\right)^2 + \left(L_{h_1}\right)^2}$$

$$W_1 := \gamma_{\operatorname{rock}} \cdot \frac{L_{h_1} \cdot L_{v_1}}{2}$$

$$\alpha_1 = -59.7 \deg$$

$$L_{v} := E_{approach} - E_{ukev}$$

$$L_{V_1} = 12.0 \, ft$$

$$L_{h_1} := \frac{L_{v_1}}{\tan(-\alpha_1)}$$

$$L_{h_1} = 7.0 \, ft$$

$$L_1 := \sqrt{\left(L_{v_1}\right)^2 + \left(L_{h_1}\right)^2}$$

$$L_1 = 13.9 \, ft$$

$$W_1 := \gamma_{rock} \cdot \frac{L_{h_1} \cdot L_{v_1}}{2}$$

$$W_1 = 5.5 \, klf$$

$$V_1 := \gamma_w \left(E_{head} - E_{approach} \right) L_{h_1}$$

$$HL_1 := 0 \text{ klf}$$

$$V_1 = 11.0 \, \text{klf}$$

$$HL_1 := 0$$
 klf

$$HR_1 := 0$$
 klf

$$\begin{aligned} & \text{HR}_1 \coloneqq 0 \quad \text{klf} \\ & \text{U}_1 \coloneqq \gamma_{\text{w}} \cdot \left(\text{E}_{\text{head}} - \frac{\text{E}_{\text{approach}} + \text{E}_{\text{ukey}}}{2} \right) \quad \text{L}_1 \quad \quad \text{U}_1 = 26.9 \, \text{klf} \end{aligned}$$

CDM04188

Compute structural wedge properties: (2nd wedge)

$$\phi_2 \coloneqq \phi_{1s_inc}$$

$$\phi_2 = 50.0 \deg$$

$$c_2 := 0 \text{ ksf}$$

$$\alpha_2 := -atan \left(\frac{E_{ukey} - E_{dkey}}{L_{dam}} \right)$$

$$\alpha_2 = -10.25\,\text{deg}$$

$$L_{R_1} := L_{C_4} + L_{C_6} - L_{C_7}$$

$$L_{R_1} = 63.0 \text{ ft}$$

$$h_{R_1} := L_{C_7} \cdot tan(\alpha_2) + h_{C_7}$$

$$h_{R_1} = 8.41 \, ft$$

$$x_{R_1} := L_{C_5} + \frac{L_{R_1}}{2}$$

$$x_{R_1} = 56.5 \, ft$$

$$R_1 := \gamma_{rock} \cdot h_{R_1} \cdot L_{R_1}$$

$$R_1 = 68.9 \, \text{klf}$$

$$L_{R_2} := L_{R_1}$$

$$L_{R_2} = 63.0 \, \text{ft}$$

$$h_{R_2} = L_{R_2} \tan(|\alpha_2|)$$

$$h_{R_2} = 11.39 \, ft$$

$$x_{R_2} := L_{C_5} + \frac{L_{R_2}}{3}$$

$$x_{R_2} = 46.00 \, \text{ft}$$

$$R_2 := \gamma_{\text{rock}} \cdot \frac{h_{R_2} \cdot L_{R_2}}{2}$$

$$R_2^{}=46.7\,\mathrm{klf}$$

$$L_{R_3} \coloneqq \left(h_{C_5} - h_{C_9}\right) \cdot slope_{basin}$$

$$L_{R_3} = 19.0 \, \text{ft}$$

$$h_{R_3} \coloneqq h_{C_5} - h_{C_9}$$

$$h_{R_3} = 9.5 \, ft$$

$$x_{R_3} = L_{C_5} - \frac{L_{R_3}}{3}$$

$$x_{R_2} = 18.7 \, \text{ft}$$

$$R_3 := \gamma_{\text{rock}} \frac{h_{R_3} \cdot L_{R_3}}{2}$$

$$R_3 = 11.7 \, \text{klf}$$

$$L_{R_4} = L_{C_5} - L_{C_9}$$

$$L_{R_4} = 19.0 \, ft$$

$$h_{R_4} := L_{R_4} \cdot tan(|\alpha_2|)$$

$$h_{R_4} = 3.4 \, ft$$

$$\mathbf{x}_{\mathbf{R}_4} \coloneqq \mathbf{L}_{\mathbf{C}_9} + \frac{\mathbf{L}_{\mathbf{R}_4}}{3}$$

$$x_{R_4} = 12.3 \text{ ft}$$

$$R_4 = \gamma_{rock} \cdot \frac{h_{R_4} \cdot L_{R_4}}{2}$$

$$R_{\Delta} = 4.2 \, \text{klf}$$

$$L_{R_5} := L_{R_2}$$

$$L_{R_{s}} = 19.0 \, \text{ft}$$

$$L_{R_5} := L_{R_4}$$

$$L_{R_5} = 19.0 \, \text{ft}$$

$$h_{R_5} := h_{C_8} + h_{C_9} - L_{C_5} \tan(\alpha_2)$$

$$h_{R_5} = 21.52 \, \text{ft}$$

$$h_{R_{5}} = 21.52 \, \text{ft}$$

$$R_5 := \gamma_{rock} \cdot h_{R_5} \cdot L_{R_5}$$

$$R_5 = 53.2 \text{ klf}$$

$$x_{R_5} := L_{C_9} + \frac{L_{R_5}}{2}$$

$$x_{R_s} = 15.5 \, ft$$

$$R_{5} := \gamma_{rock} \cdot h_{R_{5}} \cdot L_{R_{5}}$$

$$x_{R_{5}} := L_{C_{9}} + \frac{L_{R_{5}}}{2}$$

$$x_{R_{5}} := 15.5$$

$$W_{2} := \sum_{i=1}^{9} W_{C_{i}} + \sum_{i=1}^{2} W_{HW_{i}} + \sum_{i=1}^{2} W_{TW_{i}} + \sum_{i=1}^{5} R_{i}$$

$$W_2 = 336.5 \, \text{klf}$$

$$L_2 := \frac{L_{dam}}{\cos(\alpha_2)}$$

$$L_2 = 95.5 \, ft$$

$$HL_2 := \gamma_W \cdot \frac{\left(E_{\text{head}} - E_{\text{approach}}\right)^2}{\frac{2}{2}}$$

$$HL_2 = 19.5 \,\mathrm{klf}$$

$$L_{2} := \frac{L_{dam}}{\cos(\alpha_{2})}$$

$$HL_{2} := \gamma_{w} \cdot \frac{\left(E_{head} - E_{approach}\right)^{2}}{\left[\max\left(\frac{E_{tail_redux} - E_{basin}}{0 \cdot ft}\right)\right]^{2}}$$

$$V_{2} := 0 \quad klf$$

$$HR_2 = 0.5 \, \text{klf}$$

$$V_2 := 0$$
 klf

$$U_2 := \gamma_w \frac{\left[\left(E_{head} - E_{ukey}\right) + \left(E_{tail_redux} - E_{dkey}\right)\right]}{2} \cdot L_2$$

$$U_2 = 182.1 \, \text{klf}$$

Note: This assumes full compression.

<--- Verify

CDM04188

Compute resisting wedge properties:

$$\phi_3 := \phi_{1s_inc}$$

$$\phi_3 = 50.0 \deg$$

$$c_3 = 0 \cdot ksf$$

$$\phi_{d_3} := \operatorname{atan}\left(\frac{\tan(\phi_3)}{FS_1}\right)$$

$$\phi_{d_2} = 29.4 \deg$$

$$\alpha_3 := 45 \cdot \deg - \frac{\phi_{d_3}}{2}$$

$$\alpha_3 = 30.3 \text{ deg}$$

$$L_{v_3} := E_{basin} - E_{dkey}$$

$$L_{V_3} = 200 ft$$

$$L_{h_3} := \frac{L_{v_3}}{\tan(\alpha_3)}$$

$$L_{h_2} = 34.2 \, ft$$

$$L_3 := \sqrt{(L_{v_3})^2 + (L_{h_3})^2}$$

$$L_3 = 39.6 \, ft$$

$$W_3 = \gamma_{\text{rock}} \cdot \frac{L_{h_3} L_{v_3}}{2}$$

$$W_3 = 44.5 \, \text{klf}$$

$$V_3 := \gamma_w \cdot (E_{tail} - E_{basin}) \cdot L_{h_3}$$

$$V_3 = 8.6 \, \text{klf}$$

$$HL_3 := 0$$
 klf

$$HR_3 := 0 \cdot klf$$

$$U_3 := \gamma_w \cdot \left(E_{tail} - \frac{E_{basin} + E_{dkey}}{2}\right) \cdot L_3$$

$$U_3 = 34.7 \, \text{klf}$$

$$i = 1...3$$

$$\left\lfloor \left(W_i + V_i\right) \cdot \cos(\alpha_i) - U_i + \left(HL_i - HR_i\right) \cdot \sin(\alpha_i) \right\rfloor \cdot \frac{\tan(\phi_i)}{FS_1} \dots$$

$$\Delta P_i := \frac{ + - \left(HL_i - HR_i \right) \cdot \cos(\alpha_i) + \left(W_i + V_i \right) \cdot \sin(\alpha_i) + \frac{c_i}{FS_1} \cdot L_i}{\left(\cos(\alpha_i) - \sin(\alpha_i) \cdot \frac{\tan(\phi_i)}{FS_1} \right)}$$

$$\Delta P = \begin{pmatrix} -24.9 \\ 3.2 \\ 57.1 \end{pmatrix} \text{klf}$$

$$\Sigma P := \sum_{i} \Delta P_{i}$$
 $\Sigma P = 35.376 \text{ klf}$ $FS_{1} \equiv 2 11386$

CDM04188

Sliding Stability Analysis: Failure plane level with downstream key.

Compute driving wedge properties: (1st wedge)

$$\phi_1 := \phi_{ls_inc}$$

$$\phi_1 = 50.0 \deg$$

$$c_1 := 0$$
 ksf

$$\phi_{d_1} := \operatorname{atan}\left(\frac{\tan(\phi_1)}{\operatorname{FS}_2}\right)$$

$$\phi_{d_1} = 29.2 \deg$$

$$\alpha_1 := -\left(45 \cdot \deg + \frac{\dot{\phi}_{d_1}}{2}\right)$$

$$\alpha_1 = -59.6 \deg$$

$$L_{v_1} := E_{approach} - E_{dkey}$$

$$L_{V_1} = 29.0 \, ft$$

$$L_{h_1} := \frac{L_{v_1}}{\tan(-\alpha_1)}$$

$$L_{h_1} = 17.0 \, ft$$

$$\boldsymbol{L}_1 := \sqrt{\left(\boldsymbol{L}_{\boldsymbol{v}_1}\right)^2 + \left(\boldsymbol{L}_{\boldsymbol{h}_1}\right)^2}$$

$$L_1 = 33.6 \, ft$$

$$W_1 := \gamma_{rock} \cdot \frac{L_{h_1} \cdot L_{v_1}}{2}$$

$$W_1 = 32 1 \, klf$$

$$V_1 := \gamma_w \cdot (E_{head} - E_{approach}) \cdot L_{h_1}$$

$$V_1 = 26.6 \, \text{klf}$$

$$HL_1 := 0 \cdot klf$$

$$HR_1 = 0 \cdot klf$$

$$U_1 := \gamma_W \cdot \left(E_{head} - \frac{E_{approach} + E_{dkey}}{2}\right) \cdot L_1 \quad U_1 = 83.0 \text{ kdf}$$

CDM04188

Compute structural wedge properties: (2nd wedge)

$$\phi_2 := \phi_{\text{shale}}$$

$$\phi_2 = 20.0 \deg$$

$$c_2 := 0 \text{ ksf}$$

$$\alpha_2 := atan \left(\frac{E_{dkey} - E_{dkey}}{L_{dam}} \right)$$

$$\alpha_2=0.00\,deg$$

$$L_{R_1} := L_{C_2}$$

$$L_{R_1} = 6.0 \, \text{ft}$$

$$h_{R_1} := E_{ukey} - E_{dkey}$$

$$h_{R_1} = 17.00 \, ft$$

$$x_{R_1} := L_{dam} - \frac{L_{C_7}}{2}$$

$$x_{R_1} = 91.00 \, ft$$

$$R_1 := \gamma_{rock} \cdot h_{R_1} \cdot L_{R_1}$$

$$R_1 = 13.3 \, \text{klf}$$

$$L_{R_2} := L_{C_4} + L_{C_6} - L_{C_7}$$

$$L_{R_2} = 63.00 \, ft$$

$$h_{R_2} := E_{rock} - E_{dkey}$$

$$h_{R_2} = 26.50 \, \text{ft}$$

$$x_{R_2} := L_{C_5} + \frac{L_{R_2}}{2}$$

$$x_{R_2} = 56.50 \, \text{ft}$$

$$R_2 \coloneqq \gamma_{rock} \cdot h_{R_2} \cdot L_{R_2}$$

$$R_2=217.0\,\mathrm{klf}$$

$$L_{R_3} := L_{C_5} - L_{C_9}$$

$$L_{R_3} = 19.00 \, \mathrm{ft}$$

$$h_{R_3} := h_{R_2} - (h_{C_8} + h_{C_9})$$

$$h_{R_3} = 950 \, ft$$

$$x_{R_3} := L_{C_5} - \frac{L_{R_3}}{3}$$

$$x_{R_3} = 18.7 \, \text{ft}$$

$$R_3 = \gamma_{rock} \frac{h_{R_3} L_{R_3}}{2}$$

$$R_3 = 11.7 \, \text{klf}$$

$$L_{R_4} := L_{C_5} - L_{C_9}$$

$$L_{R_4} = 19.00 \, \text{ft}$$

$$h_{R_4} := h_{C_8} + h_{C_9}$$

$$h_{R_4} = 17.00 \, ft$$

$$x_{R_4} := L_{C_9} + \frac{L_{R_4}}{2}$$

$$x_{R_4} = 15.50 \, ft$$

$$R_4 := \gamma_{rock} h_{R_4} L_{R_4}$$

$$R_4 = 42.0 \, \text{klf}$$

CDM04188

$$W_{2} := \sum_{i=1}^{9} W_{C_{i}} + \sum_{i=1}^{2} W_{HW_{i}} + \sum_{i=1}^{2} W_{TW_{i}} + \sum_{i=1}^{4} R_{i}$$

$$W_2 = 435.8 \, \text{klf}$$

$$L_2 := \frac{L_{dam}}{\cos(\alpha_2)}$$

$$L_2 = 94.0 \, ft$$

$$\operatorname{HL}_2 \coloneqq \gamma_{\mathbf{W}} \cdot \frac{\left(E_{head} - E_{approach}\right)^2}{2}$$

$$HL_2 = 19.5 \, \text{klf}$$

$$\mathrm{HR}_2 \coloneqq \gamma_w \cdot \frac{\left[\max \left(\begin{bmatrix} \mathrm{E}_{tail_redux} - \mathrm{E}_{basin} \\ 0 \cdot \mathrm{ft} \end{bmatrix} \right) \right]^2}{2}$$

$$HR_2 = 0.5 \, \text{klf}$$

$$V_2 := 0 \cdot klf$$

$$U_2 := \gamma_w \cdot \frac{\lfloor \left(E_{head} - E_{ukey}\right) + \left(E_{tail} - E_{dkey}\right)\rfloor}{2} \quad L_2$$

$$U_2 = 179.2 \, \text{klf}$$

Note: This assumes full compression

<--- Verify

CDM04188

Compute resisting wedge properties:

$$\phi_3 := \phi_{1s_inc}$$

$$\phi_3 = 50.0 \deg$$

$$c_2 := 0 \cdot ksf$$

$$\phi_{d_3} := \operatorname{atan}\left(\frac{\tan(\phi_3)}{FS_2}\right)$$

$$\phi_{d_3} = 29.2 \deg$$

$$\alpha_3 := 45 \quad \deg - \frac{\phi_{d_3}}{2}$$

$$\alpha_3 = 30.4 \deg$$

$$L_{V_3} := E_{basin} - E_{dkey}$$

$$L_{V_3} = 20.0 \, \text{ft}$$

$$L_{h_3} := \frac{L_{V_3}}{\tan(\alpha_3)}$$

$$L_{h_3} = 34.1 \text{ ft}$$

$$L_3 := \sqrt{\left(L_{\mathbf{v}_3}\right)^2 + \left(L_{\mathbf{h}_3}\right)^2}$$

$$L_3 = 39.5 \, ft$$

$$W_3 := \gamma_{rock} \cdot \frac{L_{h_3} \cdot L_{v_3}}{2}$$

$$W_3 = 44.3 \, \text{klf}$$

$$\boldsymbol{V}_{3} \coloneqq \boldsymbol{\gamma}_{\mathbf{W}} \ \left(\boldsymbol{E}_{tail} - \boldsymbol{E}_{basin} \right) \cdot \boldsymbol{L}_{\boldsymbol{h}_{3}}$$

$$V_3 = 8.5 \,\mathrm{klf}$$

$$HL_3 := 0 \cdot klf$$

$$HR_3 := 0 \cdot klf$$

$$U_3 := \gamma_w \cdot \left(E_{tail} - \frac{E_{basin} + E_{dkey}}{2} \right) \cdot L_3$$

$$U_3 = 34.6 \, \text{klf}$$

$$\left\lfloor \left(W_{i} + V_{i}\right) \cos\left(\alpha_{i}\right) - U_{i} + \left(HL_{i} - HR_{i}\right) \sin\left(\alpha_{i}\right)\right\rfloor \cdot \frac{\tan(\phi_{i})}{FS_{2}} .$$

$$\Delta P_i := \frac{ + - \left(HL_i - HR_i \right) \cdot \cos(\alpha_i) + \left(W_i + V_i \right) \cdot \sin(\alpha_i) + \frac{c_i}{FS_2} \cdot L_i}{\left(\cos(\alpha_i) - \sin(\alpha_i) \cdot \frac{\tan(\phi_i)}{FS_2} \right)}$$

$$\Delta P = \begin{pmatrix} -81.38 \\ 24.71 \\ 56.67 \end{pmatrix} \text{klf}$$

$$\begin{array}{c} -81.38 \\ 24.71 \\ 56.67 \end{array} \right) klf \qquad \Sigma P = \sum_{i} \Delta P_{i} \qquad \Sigma P = 0.000 \, klf \qquad FS_{2} \equiv 2.13534 \\ L_{C_{c}} \equiv 18 \ \, \text{ft} \\ \end{array}$$

$$FS_2 = 2.13534$$