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Abstract. In this paper we present a method for measuring profiles of turbulence 
quantities using a broadband acoustic doppler current profiler (ADCP). The method 
follows previous work on the continental shelf and extends the analysis to  develop 
estimates of the errors associated with the estimation methods. ADCP data was 
collected in a n  unstratified channel and the results of the analysis are compared 
to  theory. This comparison shows that the method provides an estimate of the 
Reynolds stresses, which is unbiased by Doppler noise, and an estimate of the 
turbulent kinetic energy (TKE) which is biased by an amount proportional to  the 
Doppler noise. The noise in each of these quantities as well as the bias in the 
TKE match well with the theoretical values produced by the error analysis. The 
quantification of profiles of Reynolds stresses simultaneous with the measurement 
of mean velocity profiles allows for extensive analysis of the turbulence of the flow. 
In this paper, we examine the relation between the turbulence and the mean flow 
through the calculation of u*, the friction velocity, and c d ,  the coefficient of drag. 
Finally, we calculate quantities of particular interest in turbulence modeling and 
analysis, the characteristic lengthscales, including a lengthscale which represents 
the stream-wise scale of the eddies which dominate the Reynolds stresses. 

1. Introduction 
Turbulence in the presence of stratification and shear 

plays an important role in the dynamics of shallow tidal 
flows like those found in estuaries. It can play an inte- 
gral role in regulating barotropic and baroclinic shear 
flows [Peters, 1997; Stacey, 19961 and can affect b i e  
logical processes as well (Koseff et al., 1993). Mod- 
els of turbulence have been developed with varying de- 
grees of sophistication and success [Mellor and Yamada, 
1982; Lehfeldt and Bloss, 1988; Nunes- V u  and Simp- 
son, 19941. Our ability to fully evaluate these'models 
has been limited by a lack of comprehensive turbulence 
data sets from estuarine flows. 

Until the last decade, field measurements in estuar- 
ies were done using current and salinity meters moored 
at points around the estuary [Dyer, 1980; Bowden and 
Howe, 19631. These studies provided excellent time res- 
olution, but were unable to capture spatial structures in 
the flows. S c h d e r  and Siedler [1989] deployed a h e d  
tripod on the bed to measure small-scale velocity fluctu- 
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ations and profiled the water column every 30 min with 
a sonde to measure mean velocity and salinity. In each 
of these studies, turbulence measurements were limited 
to a couple of points near the bed or near the surface. 

More recently, profiling instruments have been used 
to capture vertical variability in both the velocity and 
salinity fields. Acoustic Doppler current profilers (AD- 
CPs) were used by Burau et al. [1993] to study the 
residual flow fields in northern San Francisco Bay. An- 
other study using the profiling ability of the ADCPs was 
done by Geyer [1993], who looked at three-dimensional 
flows around a headland. In general, acoustic Doppler 
current profilers have allowed researchers to gather com- 
prehensive data sets on the evolution of a water column. 
These data sets typically resolve only the mean quanti- 
ties and do not address turbulent fluctuations. 

A comprehensive look at vertical mixing in an estu- 
ary was given by Farmer and Smith [1980] who used 
acoustic backscatter to resolve the displacement of a 
sharp density interface in Knight Inlet. Profiles of the 
small-scale shear (along with an assumption of isotropy 
at those scales) provide estimates of the dissipation in 
the flow [Seim and Gregg, 19951. Measurements with 
a microstructure shear probe were also used by Peters, 
[1997] in combination with profiles of the mean veloc- 
ity to estimate eddy viscosity and diffusivity [Bwch, 
19771. Similar measurements have been performed by 
Imberger [Imberger and Head, 19941 in a variety of con- 
ditions in lakes around the world. 

Gagett  and Moum [1995] measured mixing efficiency 
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in tidal fronts and compared direct measurement of 
buoyancy flux using a towed conductivity-temperature 
depth profiler (CTD) and ADCP to values inferred from 
a microscale profiler. Gargett [1994] has also devel- 
oped a method of estimating dissipation from the large 
scales. She used a single-beam acoustic current profiler 
temeasure the instantaneous fluctuating vertical veloc- 
ities and defined an estimator of the dissipation based 
on the variance of these measurements. 

A similar method to &tract turbulence statistics di- 
rectly from the large scales was used by Lohmann et al. 
[1990] on the continental shelf. Using a pulse-to-pulse 
coherent acoustic Doppler current profiler, they devel- 
oped ensemble profiles of Reynolds stress and eddy vis- 
cosity. In a similar experiment, van Haren et al. [1994] 
used a 1.2 MHz narrowband ADCP to measure eddy 
fluxes above a sloping bottom on the Scotian Shelf; they 
attributed the measured fluxes to internal wave inst+ 
bility. We should note here, however, a difficulty in 
using the narrowband ADCP for these types of mea- 
surements which arises due to biases in the noise lev- 
els between beams. Also using an ADCP, Plueddemann 
(19871 examined Reynolds stresses due to internal waves 
in the upper ocean. Finally, Lu [1997] used an ADCP in 
the Cordova Channel near Vancouver Island to measure 
Reynolds stresses and turbulent kinetic energy. 

The technique used to resolve turbulence statistics in 
these last studies was similar to the one developed in 
this paper. One of the great beneiits of this method 
for measuring turbulent mixing (besides being noninv+ 
sive) is that it measures the time evolution of Reynolds 
stresses and mixing coefficients throughout the entire 
water column. In this paper, the analysis is extended 
to include a quantification of the error associated with 
the measurements. Measurements from an unstrati- 
bed channel flow will be used to both test the method 
(through comparison with theory) and to examine the 
turbulent characteristics of an unstratified tidal flow. 
The Reynolds stress profiles will be extrapolated to the 
bed in order to estimate values of the friction velocity. 
These values will then be compared to those calculated 
by assuming a log-layer profile for the mean velocities. 
Profiles of relevant turbulent lengthscales will be cal- 
culated from both the Reynolds stress profiles and the 
autocorrelations of the instantaneous velocity measure- 
ments. Finally, we will discuss the generalization of this 
approach to other flows and conditions. 

2. Turbulence Measurements 
The data set we will discuss was collected with a 1200 

kHz broadband acoustic Doppler current profiler (BB- 
ADCP) from RD Instruments. The BB-ADCP uses a 
pair of broadband encoded pulses to measure velocity 
throughout a water column. The pulses are transmitted 
from a transducer, which then functions as a receiver 
to collect the signal that is reflected off particles which 

create a Doppler-shifted reflected signal in which the 
relative phase shift between the’ two reflected signals 
is proportional to the velocity of the reflector. Velocity 
measurements are done along each of four beams, which 
are arrayed in a Janus configuration (Figure 1). In this 
configuration, calculation of the two horizontal velocity 
components is possible as 

Figure 1. Experiment configurations. (a) Janus con- 
figuration of ADCP beams. For the instrument de- 
ployed at Three Mile Slough, 6 = 20°. (b) Configura- 
tion of boat and ADCP deployed at Three Mile Slough. 
Twepoint anchoring was from the bow and the port- 
side stern (dotted lines). Channel walls (solid lines) not 1 

move with the currents. The motions of the reflectors to scale. 
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(u3 - 214) 
U =  

2sin9 
(u1- u2) 

V =  
2sin9 

where u1 and u2 are the beams into and out of the plane 
of Figure la. 

The method used to calculate the turbulence statis- 
tics was outlined by fiopea [1981] for use with a one- 
dimensional laser Doppler anemometer and applied to 
ADCP data by Lohrmann et d. [1990]. The technique 
relies on the along-beam variances of the velocity mea- 
surements and, as such, will be referred to as the vari- 
ance technique for resolving turbulent quantities. 

The direct calculation of correlations between the 
along-beam velocities will not be used to resolve the 
Reynolds stresses due to inhomogeneity in the instan- 
taneous velocity fields. As will be discussed further be- 
low, opposite beams sample the flow at locations that 
are separated by several meters. In the instantaneous 
velocity fields, there will be variations in the flow on 
scales defined by the turbulent eddies. Therefore, at 
an instant in time, it is possible (in fact, likely) that 
one beam will be sampling one eddy while the oppc- 
site beam will be sampling a merent eddy entirely, 
rendering direct calculation of the correlation meaning- 
less. The variance technique relies only on combining 
the statistics (mean and variance) of opposite beams. 
Therefore we require homogeneity between the beams 
only in the mean and variance of the velocity signal, an 
assumption that will be discussed below. 

3. Definition of Method 
The ADCP has two pairs of opposite beams, each 

inclined at 20 degrees to the vertical (other units may 
have 30 degree beams). As a result, as shown in Figure 
la, each beam measures a velocity which is actually a 
weighted sum of the local horizontal and vertical veloc- 
ity. For beam 3 (as numbered in Figure la), the velocity 
measured, 213, is given bx 

u3 =usine+wcosB ( 2 4  
where u is the horizontal velocity in the plane formed 
by beams 3 and 4, w is the vertical velocity, and 9 is the 
angle the beams make with the vertical. Similarly, we 
can see that the velocity measured by beam 4 (opposite 
beam 3) is given by 

u4 = -using + wcose (2b) 
Separating each velocity into a mean, where the mean 

is t&en over some chosen averaging period, and a fluc- 
tuating quantity as 

u = i i + u t  (34 

w=?i7+wt (3b) 

u3 = G + U 3 I  ( 4 4  

u4 = T4+uqt (4b) 

allows us to calculate the variance of the along-beam 
velocities as 

~- - 
u4I2 = uf2sin29 + wf2cos29 - 2&7sin9cos9 (5b) 

with the only difference between the two expressions 
being the sign on the term containing d w f .  

Finally, by taking the difference of the variance of 
opposite beams, we can calculate the Reynolds stress 
exactly as 

- 

- -  
- U3t2 - u4t2 ulw' = 

4 sin 9 cos 9 
Similarly, the cross-stream Reynolds stress is given by 

- -  
- u1f2 - u2t2 
vfw' = 

4 sin 9 cos 9 

Using the variances as defined in (5a) and (5b), we can 
also eliminate the cross terms by summing the vari- 
ances: 

Using the anisotropy in the turbulent kinetic energy 
field (as given below, (12a) and (12b), for an unstrat- 
ified channel flow), we can calculate q2 or any of its 
components, using the quantities in (7a) and (7b). 

4. Observations and Comparison to 
Theory 

The observations presented in this paper were col- 
lected in Three Mile Slough, a straight, narrow channel 
in the Sacramento-San Joaquin Delta which is tidally 
active but contains fresh water through most of the 
year. The channel is oriented directly north-south and 
is 3 miles long (4.8 km) and about 100 m wide [ h i ,  
19881. The channel actually connects the Sacramento 
and San Joaquin Rivers, making it unique due to the 
tidal forcing occurring at both ends (the tide propa- 
gates up both the Sacramento and San Joaquin Rivers). 
The prevailing winds in the summer months are east- 
west and therefore there is very little wave activity on 
the slough. For these reasons, it provided a good en- 
vironment to examine unstratified tidal flow using the 
analysis technique shown above. 

The data collection took place for 2 hours starting 
just after the maximum of an ebb tide (flow to the 

scribed above) was deployed in the downwards-looking 
mode from an anchored whaler (Figure lb) and col- 
lected every ping with a frequency of about 1 Hz. The 
instrument was used in "mode 4" [RD Instruments, 
19951, which provided a data set in which the noise 

south) in August 1994. A 1200 ~ H Z  BB-ADCP (de  
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characteristics are independent of the velocities being 
measured (see below, section 4.1.1 for additional dis- 
cussion). Although there were no wind waves to create 
boat motion, there were occasional boat wakes which 
would be reflected in some portions of the data. The 
channel was approximately 9 m deep (noted from the 
boat's depth sounder; its data were not logged through- 
but the experiment) which allowed for the resolution of 
twenty-nine 25 cm depth cells. Although no salinity 
data were collected during this experiment, the channel 
was most likely fresh, and there should have been no 

.effects of stratification, allowing the measurements to 
be compared to theory. 

At its simplest, estuarine flow is an open-channel flow. 
The theory of turbulence in open channels is well de- 
veloped for the case of steady, unstratified flow [Nezu 
and Nakagawa, 19931. For this type of flow (with a log- 
arithmic mean velocity profile), the total shear stress 
(the sum of the Reynolds and viscous stresses) in the 
flow can be derived analytically as 

where T / p  is the total shear stress, Y is the molecular 
viscosity, and u. is a quantity known as the friction ve- 
locity and is defined by the above equation (at J = 0). 
The fiiction velocity is the fundamental turbulent v e  
locity scale for channel flow. It is usually scaled by the 
depth-averaged mean velocity using a constant coeffi- 
cient cd as 

with a typical value of c d  being 0.0025 and angle brack- 
ets indicating a depth-averaged quantity. 

The vertical distributions of other turbulence statis- 
tics have been analyzed by Nezu and Nakagawa [1993]. 
Assuming a local balance of production and dissipation, 
they give 

ut2 = 5.29~: exp (-2-) 

(9) ?d!*=cd 1/2 < z >  

(104 
J - 

H 
(lob) 

% - 
vt2 = 2.66~: exp (-2-) H 

(W 

(11) 

- %  - 
wt2 = 1.61~: exp (-2-) H 

From which it follows that 
J 

q2 = 9.56~: exp (-2-) 

Using these expressions, we can define the anisotropy 
ratios of the turbulent field as 

H 

, . . . ... ,,.. . ' . .  . .  

2 5  

0 
cm/S Time (houn) 

Figure 2. Along-channel mean velocity profiles. Entire 
Three Mile Slough data set is displayed. 

Three Mile Slough. Because Three Mile Slough is an 
unstratified, prismatic channel, we would expect the 
theoretical profiles to be reproduced by the data col- 
lected there. 

Using a 10-min window, mean velocities and Reynolds 
stresses were calculated using (6). A plot of the mean 
velocities (Figure 2) shows that we were sampling dur- 
ing a slightly decelerating phase of the tide. The nor- 
malized profiles of turbulence statistics display the b e  
havior expected in unstratified channel flow. First of 
all, the Reynolds stresses profiles from various times in 
the collection track the theoretical value quite well (Fig- 
ure 3). In normalizing the Reynolds stresses, a linear 
extrapolation of each profile has been extended to the 
bed to define the friction velocity squared. An alternate 

I 1 

I \ - 
(W Wt2 

Ut2 
i = 0.50 

The expressions presented above will serve as a base- 
line with which to compare the measurements from curve. 

0' I I 
0 0.5 1 

Figure 3. Reynolds stress profiles, normalized by ue2, 
for Three Mile Slough data. Solid line is theoretical 

Normalized Reynolds Stress 
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estimate of u. is available from the mean velocities; this 
approach is discussed further below in section 5. 

The turbulent kinetic energy can be calculated by as- 
suming the anistropy of the components is represented 
by the unstratified values reported by Nezu and Naka- 
gawa [1993, equations 12a and 12b] and using the ex- 
pressions for <: and 6", (equations (7a) and (7b)). Be- 
fore calculating the turbulent kinetic energy, the bias in 
the values of d", and d: must be estimated. This bias 
can be estimated in two ways, which'will be discussed 
below when analyzing the bias (section 4.1.1). Once the 
bias is removed, 4 and 6", can each be used to calculate 
q2 (giving two independent estimates). These values are 
then normalized by u:, resulting in excellent agreement 
with theory throughout the profile (Figure 4). This 
result lends further support to the validity of our ap- 
proach because (consistent with (11)) the turbulent ki- 
netic energy (q2)  has been scaled by the fiiction velocity 
(ue2),which was based on the measured Reynolds stress 
profiles, indicating consistency within our method. Ad- 
ditionally, the consistency between the profiles of q2 cal- 
culated using d", and 6", indicates a consistency between 
the four beams of our instrument. 

In Figures 4a and 4b, there are two profiles which lie 
above the rest (these are most clear in Figure 4b), indi- 
cating increased bias of these measurements. This bias 
is due to boat motion, an issue that will be addressed 
further in the discussion of errors, section 4.2. 

4.1. Error Analysis 

Generally, the error in an individual ADCP estimate 
is considered to be Gaussian white noise which is quan- 
tified as a per-ping uncertainty (or a standard d e v b  
tion of the noise). Referring to Figure la, the Reynolds 

O! I 
0 5 10 15 

Normalized TKE 

5541 A :+ + 

1/ +%+ +H+ + +:+++ CC 
* 1 

"0 5 10 15 
Normalized TKE 

Figure 4. Tu.&ulent kinetic energy profiles, normal- 
ized by u , ~  (as extrapolated from Reynolds stress pr* 
file), for Three Mile Slough data. Noise bias has been 
removed. Solid line is theoretical curve. Calculation 

on (a) d", and (b) 4. 

stresses are given exactly by (6a) and (6b). When we 
use the measured data to calculate these quantities, we 
need to consider the effect of noise. To be specific, de- 
fine the measured signal from beam i as 

~j = Li + N (13) 

where N is a Gaussian white noise random variable and 
ui is the actual velocity along beam i. 

Each of these quantities will be modeled as a random 
variable for the purpose of this analysis. The actual 
equations used to calculate the turbulence quantities, 
however, will be based on the sample mean and vari- 
ance. That is, the mean value of the velocity along 
beam i, K ,  will be estimated as 

where we have used the convention that a "hat" indi- 
cates an estimator of the mean of a quantity and we 
have assumed an ensemble of M realizations (i.e., M is 
the number of samples during the 10-min window used 
to calculate means and variances). 

Similarly, the variance along beam i, q, will be es- 
timated as 

1 
= z c (.i(rn) - q2 

m=O 

, M  

m=O 

In other words, the velocity variance will be estimated 
as the sample mean of the square of the fluctuating 
component of the velocity measurements. 

With these conventions, our estimators of the turbu- 
lence quantities described above become 

The errors that result when using these estimators 
are of two types: bias and spread. A bias in the esti- 
mator means that the quantity that you are calculating 
is shifted from the true value, such that even averaging 
an infinite number of observations wil result in an error 
in the estimate. A spread in the estimator is what is 
typically considered noise and represents a widening of 
the distribution of the estimator. In this case, averag- 
ing of the observations can help to reduce the error in 
the estimator. 
4.1.1. Calculation of bias. The bias of an esti- 
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mator is the dxerence between the expected value of 
the estimator and the quantity it is attempting to mea- 
sure. To be specific, the bias in an estimator of the 
variable y is given by E(@) - E(y), where we have d e  
fined E(z)  to be the expected value of the variable z 
[Bendat and Piersol, 19861. 

Taking the expected value of (16) and (17) gives 
, 

E(u‘w’) = 1 [E(u2) - E(u?)] (18) 4cos8sin8. 

E ( Z )  = $ E ( G )  + E ( Z ) ]  

Examining (15), we see that the expected value of 
u? is equivalent to the variance in the measurements of 
velocity. That is, 

n 

E(UT) = var (Zj) 

= var ( U i )  + var ( N )  

+ 2 cov (Ui ,N) (20) 

where we have applied (13). When operating in mode 
4, the BB-ADCP produces velocity measurements for 
which the error is dominated by Doppler “self-noise,” 
not flow-dependent components. The flow-dependent 
errors are very small relative to the self-noise, and the 
noise can be assumed to be independent of the velocities 
being measured. This should be contrasted with modes 
5 and 8, where flow-dependent errors are comparable to 
the self-noise and indepedence between flow parameters 
(such as turbulent fluctuations) and noise can not be 
assumed. Because our data were collected in mode 4, 
we can safely assume that Cov (u i ,N)  = 0. Thus we 
have that 

E(u?) = ui2 + ON 
or, the estimate of velocity variance is biased from its 
true value by an amount equal to the noise variance 

Substituting (21) into (18) and (191, we get the fol- 
lowing expressions for the expected values of our esti- 
mators: 

(21) 2 
n -  

U N 2 .  

- - -  
[@ - u 3  = u‘w’ (22) 

1 
4cos8sin8 

E(u&?) = 

= 2L’2sh2 8 + z c o s 2  8 + ON2 (23) 

Thus the estimator of the Reynoldsstress is unbiased 
by Doppler noise, but estimators which are related to 
the kinetic energy (4, 4) are biased by an amount 
equal to the variance of the noise (ON’). Returning 
to Figure 3, we note that although the method of nor- 
malizing the Reynolds stresses constrains the profiles 
to approach 1 at the bed, the surface values are not 

proach zero (within the expected noise level, see below) 
is consistent with the Reynolds stress estimator being 
unbiased by Doppler noise. To estimate the bias in 
the kinetic energy variables (e, G), we examine his- 
tograms of values of d% and d”, (Figure 5). There are no 
values of 4 or d: which are less than 28.8cm2/s2 and 
only two values less than 34cm2/s2. We therefore select 
a value of 34cm2/s2 to be representative of the noise 
variance, U N ~ .  This is equivalent to a per-ping error of 
5.8?, which is consistent with the value reported by 
RD Instruments [1995]. 

As an additional check on this bias estimate, we note 
that this bias has been removed in calculating the tur- 
bulent kinetic energy as displayed in Figures 4a and 4b. 
Comparing these profiles with theory show no persis- 
tent bias (other than that due to boat motion, which 
is discussed below), suggesting that we have correctly 
removed the bias due to instrument noise. Additionally, 
the consistency between the distributions of d”, and d”, 
provides evidence that all four beams of the instrument 
have similar noise characteristics, as we would expect. 
4.1.2. Calculation of spread. In analyzing the 

bias of the estimators we took the expected values of 
(16) and (17). Analogously, the spread in the estima- 
tors will be defined by the variance of those same equa- 
tions. The errors in using (16) and (17) to estimate the 
turbulence quantities will be defined by the standard 
deviation (or variance) of those equations. From (16) 
and (17) we have: 

[var (2) 1 
16 sin2 6 cos2 6 

var (u‘w’) = 

1 n 

-[Var (u?) +var  (u?) 

0.2 I 1 

“0 10 20 30 40 50 60 
d: (cm2/s2) 

dt (cm2/s2) 

Figure 5. Histogram of frequency of values of d: and 
n 3 constrained. The fact that the near surface values a p  a,. 3 
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In all of these expressions, two fundamental quanti- 
ties appear: the variance and the covariance of the esti- 
mated along-beam velocities squared. Following nopea 
[1981], we will assume that the instantaneous velocity 
measurements horn a beam are independent of those of 
another beam. This assumption is equivalent to assum- 
ing that the beams are, a t  a given time, sampling from 
different eddies, or, that the characteristic size of the ed- 
dies is less than the beam spread (see section 4.2). From 
the Three Mile Slough data set we calculated the co- 
variance between the velocity signals in opposite beams 
and found that this assumption was justified: although 
nonzero, the covariance between beams was more than 
an order of magnitude smaller than the variance of the 
individual beams. The assumption of independence al- 
lows us to  eliminate the covariances from the above ex- 
pressions, leaving only the variances of the measured 
along beam velocities squared as a source of error. 

A second assumption due to nopea [1981] is that the 
error in the along-beam measurements is the same for 
all beams. This assumption is equivalent to saying that 
d beams have the same noise characteristics and simi- 
lar turbulence statistics. Again, the Three Mile Slough 
data demonstrate the validity of this assumption, as was 
shown in the calculation of the noise variance in the pre- 
vious section. There the noise variance calculated using 
beams 3 and 4 was equivalent to that calculated using 
beams 1 and 2, demonstrating the consistent nature of 
the noise between beams. Incorporating this assump 
tion allows us to consider the variances along a selected 
beam xi instead of along all four beams independently. 

With these assumptions the above expressions for the 
variance in the estimators become 

n 

Var (ur)  (26) 
1 

8 sin2 8 cos2 8 
var (u’w‘) = 

n 

(27) 
- 1  

2 
We now need to define the variance ofihe estimator of 
the along-beam velocity fluctuations uT. Returning to 
the definition of u? (15); we see that we can write 

var (4) = - var (Ui2) 

h 

1 
M 

M 1 
M 

Var (3) = Var (- C xf((m)) = - Var (z:’) (28) 
m=O 

The calculations to  define the variance of the along- 
beam velocity measurements squared (i.e., Var(zi2)) are 
given in the appendix. The result (given in terms of 
the kurtoses of the variables ui and N, K,, and KN, 
respectively) is 

Substituting this expression into (28), we have 

Up to this point we have assumed that each measure- 
ment of the along-beam velocity has been independent 
of every other measurement. However, as we will see 
below (section 5), there is a correlation between one 
measurement of the ve1oci;ty and the measurements at 
later times (as defined by (43)). The effects of this cor- 
relation on the error in a sample mean estimator have 
been analyzed by Heathershaw and Simpson [1978], who 
found that the sample mean of M measurements of a 
variable x ,  with variance Var ( x )  is defined as 

M Var ( x )  

m=l 

where p,(m) is the correlation of the series of measure- 
ments with itself shifted by m measurements. This cal- 
culation has been done using the auto-correlation func: 
tions discussed in section 5 (and displayed below in Fig- 
ure 11) and the sum of the autocorrelations was found 
to have a mean value of about 1. Using (31), this would 
suggest a multiplicative factor on our estimates of the 
standard errors in ui2, and hence u%’ and 4, of 1.7 (or 
a factor of 3 in the variance). 

This factor, along with (30), (26), and (27) com- 
pletely define the random errors present in the calcula- 
tion of the turbulence characteristics. For completeness, 
they are 

h n 

[(KUi - 1)(T)’  
3 

8M sin2 8 cos2 8 
h 

var (u’w’) = 

3 
-[(Ku, - 1)($)’ 2M 

n 

var (6”) = 

+ 4 T a N 2  + (KN - l)QN4] (33) 

Assuming that both the velocity and noise distribu- 
tions have a “peakedness” similar to a Gaussian distri- 
bution, we can choose the kurtoses to be the Gaussian 
value (K,,, = KN = 3). Using UN’ = 34cm2/s2 as d e  
termined from the bias in d”, and d i ,  the configuration 
used to collect the Three Mile Slough data would be ex- 
pected to have a standard error in the Reynolds stress 
of approximately 5.3cm2/s2. 

The theoretical profile of the Reynolds stress is the 
linear function given by (8). As discussed further below, 
we calculated u* based on the Reynolds stress profiles. 
The residuals of these data are then given by 

- 
(34) 

2 u’w’tes = ” - u*2(1- -) H 
where H is assumed to be 9 m. A histogram of these 
residuals is displayed in Figure 6. The distribution is 
seen to be biased slightly to the negative, with a mean 
value of -0.27cm2/s2. The standard deviation of the 
distribution, however, is 5.04cm2/s2, so the population 
is consistent with one drawn from a zero mean popul& 
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try in the sequence is less than an earlier entry [Bendat 
and Piersol, 19861. Again, this quantity is used to ac- 
cept or reject the hypothesis of stationarity at the 95% 
coddence level. Applying this analysis to this data set 
[see Stacey 19961 shows that the flow being examined is 
statistically stationary at  the 20-30 min timescale to the 
95% confidence level in all four beams. Therefore over a 
10-min window the assumption of temporal stationarity 
is justified. 

A second assumption is the spatial homogeneity of 
the flow. Spatial homogeneity requires that, at a given 
depth, opposite beams are sampling turbulence fields 
that have the same statistics (because we use oppo- 
site beams to resolve a single turbulence statistic). The 
maximum spread of the beams Zf, is given by 

Reynolds stress error 

Figure 6. Histogram of errors in Reynolds stress 
estimates (difference between measured value and the- 
oretical value), for Three Mile Slough data set. Solid 
line (with asterisks) is equivalent Gaussian (see text for 
discussion). 

tion. The equivalent Gaussian distribution (with mean 
of -0.27cm2/s2 and standard deviation of 5.04cm2/s2) 
is also displayed and a slight negative skewness of the 
errors might be evident, but more samples would be nec- 
essary to fully analyze these higher moments. The stan- 
dard deviation of the error distribution is also consistent 
with the value predicted by error analysis of 5.3cm2/s2, 
which suggests that our understanding of the noise char- 
acteristics of the Reynolds stress estimates is correct. 

4.2. Other  Sources of Error 

Inherent in the calculations of the turbulent statistics 
is the assumption of temporal stationarity over the 10- 
min window used to define the velocity variances. Vi- 
olation of this assumption would provide an additional 
source of error. The condition of stationarity requires 
that both the mean and the variance of the along-beam 
velocities be stationary for the period of time used in 
calculating the turbulent quantities (i.e., the flow is not 
evolving on a timescale shorter than that used to cal- 
culate the turbulence information). 

In order to test the temporal assumption, the mean 
and variance of the along-beam velocities were calcu- 
lated every 30 s. Then, following Sovlsby [1980], both a 
run test and a reversals test were applied to the series of 
30 s moments. The run test for stationarity counts the 
number of sequences (or runs) within a series which re- 
main on one side of the median value (or, alternatively, 
it counts the number of times the series crosses the me- 
dian value) [Shanmugan and BreipohZ, 19881. The num- 
ber of runs (along with the sequence length) determines 
the statistical certainty with which you can accept or 
reject the hypothesis of stationarity. For our analysis, 
a 95% coddence threshold was used. The reverse ar- 
rangements test counts the number of times that an en- 

X C ~  = 2HsinB (35) 
where H is the depth of the water column (or range of 
data collection if less than the depth). For the Three 
Mile Slough data set, this results in a maximum beam 
spread of 6.2 m. The lengthscale for variations in the 
mean velocity fields, and hence turbulence statistics, is 
set by bathymetric variations. At this site, this length- 
scale is of the order of hundreds of meters, providing 
suEcient homogeneity for our calculations. 

An additional bias may be due to the vertical res- 
olution of the ADCP. The ADCP performs some spa- 
tial averaging within its bins, thus limiting the range 
of eddies for which it wilI retain information. In the 
case of 25 cm bins, eddies of size smaller than (approx- 
imately) 50 cm will not be well resolved by the ADCP 
and the variance in the velocity field will be reduced. 
As a result, the turbulence quantities, both the -turbu- 
lent kinetic energy (TKE) and the Reynolds stress, wil l  
be biased downwards by an amount equal to the sub- 
depth-cell contributions to these quantities. Because 
both of these quantities (the TKE and the Reynolds 
stress) are dominated by the large eddies, this error is 
believed to be small. However, this bias may be a factor 
in the downwards bias of the friction velocity based on 
the Reynolds stresses in the first portion of the current 
data set; as a result, this bias is an area of on-going 
research. 

Finally, the profiles which lie above the expected 
curve in Figure 4 represent additional noise introduced 
into the system by the motion of the boat on which the 
ADCP was mounted. This additional variance was not 
represented in the Reynolds stress profiles because the 
estimator of the Reynolds stress is unbiased (however, 
it coincided with the profiles for which low values of the 
friction velocity were estimated). The variance which 
is induced by the rocking of the boat is quantifiable 
given information about the motion of the boat. For 
the Three Mile Slough data set, we have time series of 
pitch, roll, and heading from the ADCP itself. 

The effects of nonzero pitch and roll on this type of 
analysis were analyzed by uan Haren et al. [1994]. They 
considered the biases that are induced if pitch and roll 
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were off from the expected angles slightly. However, 
when calculating the variance of the velocity variances, 
it is also important to examine the variance induced by 
the motions of the sensor. These variances will be pro- 
duced by two types of motion: rotation and translation. 

The variance induced by rotation of the vessel will 
be dependent on the time derivative of the pitch angle 
(A) and roll angle (4,) and on the moment arms of 
the instrument from the centers of pitch and roll (Ip 
and I,, respectively). With these v&iables, the induced 
variance will be proportional to the quantity 

For the Three Mile Slough deployment, the time s e  
ries of (dp)2 and (d,)2 are displayed in Figure 7. The 
primary motion is clearly in the roll component of the 
motion, which had a small (but unmeasured) moment 
arm. In fact, the TKE profile from hour 2 was not one 
of the ones exhibiting bias, as would be expected based 
on the pitch and roll measurements. The two most bi- 
ased profiles in Figures 4a and 4b are at times 0.3333 
hour and 0.66667 hour into the deployment, a period 
in which there is very small variability in the pitch and 
roll. 

These data indicate that translational motion due to 
vertical movements of the boat could be more impor- 
tant in setting the level of bias in the velocity measure 
ments. Such motion will bias all four beams equally, 
which is consistent with what is seen in the data at 
hours 0.3333 and 0.6667. It is also possible that such 
motion (contaminating all beams equally) would over- 
whelm the variance due to turbulent motions and lead 
to a downwards bias in the Reynolds stresses (because 
the stresses are based on the differences in the vari- 
ances), which is consistent with the low values of the 
friction velocity discussed below. Vertical translation 
of the boat is a difticult quantity to measure, as it does 

- - 

Figure 7. Time series of variance in time derivatives 
of Pitch (dashed line) and roll (solid line). 

not necessarily correlate with either pitch or roll. As 
will be discussed further below (section 6), the quan- 
tification of these motions could be critical in future 
studies using shipmounted ADCPs. 

5. Analysis of Turbulence 
As discussed above, the fundamental velocity scale in 

open channel flow is the friction velocity u,. With the 
data from Three Mile Slough, we were able to estimate 
this quantity in two independent ways: the fist us- 
ing the mean velocities, the second using the Reynolds 
stresses. The expression for mean velocity in an un- 
stratified open channel follows the well-known logarith- 
mic law: . .  

(37) 

where u. ( t )  is the time series of the friction velocity, zoa 
is an o&et in the vertical position and z, is the rough- 
ness lengthscale. We have assumed that the roughness 
lengthscale is independent of time, which is valid for the 
timescales under consideration. 

The parameters u,(t), zoa and z, were adjusted to 
provide the best fit to the data in the least squares 
sense; most of the resulting proiiles are displayed in 
Figure 8. A similar approach was applied by h e c k  and 
Lu [1997] to a tidal channel in near Vancouver Island. 
They fit the logarithmic profile to the bottom portion 
of the water column, where the water column was u11- 
stratified. Because the Three Mile Slough water column 
was unstratified, we used the entire profile to fit the log 
profile. 

The values of u, will be discussed below; the rough- 
ness lengthscale (2,) converged to a value of 8.2 cm and 
the vertical offset placed the first measurement 1.1 m 
above the bed, consistent with our expectations. The 
high value of .tr may indicate the presence of some small  
sand waves. 

In order to quantify the errors on u,, zoa and .z;, we 
applied parametric bootstrapping to the data set [Efron 
and Tibshimni, 1993, pp. 53-56]. The mean velocity 
data were resampled with the addition of noise, which 
was assumed to be Gaussian, and the curve fit was re- 
peated, resulting in distributions of each of the fitted 
parameters. The standard deviation of the Gaussian 
noise was determined from (31), using ug = 34 cma/sa, 
M = 480 samples and, as discussed above, a factor 
of 1.7 to account for the autocorrelation of the veloc- 
ity measurements. The result of this calculation was a 
standard error in the mean velocities of uu = 0.46 cm/s. 
The resulting distributions of U. are shown on the graph 
of friction velocity (discussed below; Figure 9). The 
standard errors of the o&et (z,a) and the roughness 
length (+) were 3 and 0.4 cm, respectively. 

The Reynolds stresses were used to estimate u, by 
extrapolating linearly to  the bottom (using the best 
linear fit in the least squares sense). This is a fun- 
damentally different approach to using logarithmic fits 
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Figure 8. Samples of log fits to nine profiles. All horizontal axes are cm/s; all vertical axes are 
height above bottom in meters. 

to mean velocity profiles to get u.. Here we rely ody 
on the shear stress itself. In addition to the value of 
u., the curve fit also adjusts the location of the surface, 
or “zero point” of the Reynolds stress profiles. Once 
again, to quantify the errors on each of these estimates, 
parametric bootstrapping was applied to the data. For 
the Reynolds stresses, a standard error of 5.3 cm2/s2 
was chosen, consistent with the above error analysis. 

The values of the friction velocity are discussed be- 
low; the estimates of the surface position had a mean 
value of 8.33 m with a standard error of 0.67 m. This 
result is consistent with the estimate of water column 
depth from the depth sounder of 9 m (there is no error 
estimate for the depth sounder measurement). Only 
3 of the 13 profiles resulted in curve-& which were 
nonphysical due to negative values of either the friction 
velocity squared or the position of the surface. These 
profiles (numbers 1, 6, and 8) have been discarded for 
the continued discdon.  

Each estimate of the time development of the friction 
velocity is shown in Figure 9. The time development of 
the estimates based on the mean velocities shows the ef- 
fects of the slight deceleration, as the friction velocities 
also decrease slightly. The d u e s  based on the Reynolds 
stress profiles show more scatter than the ones based on 
mean velocities, but the magnitude is similar. The in- 
crease in friction velocity (based on the Reynolds stress 
profiles) over the 2 hour period may be an effect of 
the deceleration of the flow, which has been seen to be 
associated with an increase in Reynolds stress activity 
[Gross and Nowell 19851. 

During the first hour of the study, several of the val- 
ues of u. predicted by the Reynolds stress profiles fall 
below those from the mean velocities. Even account- 
ing for the variation in these estimates (denoted by the 
triangles in Figure 9), the two estimates of the friction 
velocity appear to be somewhat inconsistent. Over the 
first hour of the deployment, in particular at times 0.333 
and 0.667, the friction velocity based on the Reynolds 
stresses appears to be biased low relative to the values 

7.4- 1 

I 
0.5 1 1.5 2 2.5 - 

Time (hours) 
3t!l 

Figure 9. Time series of U. based on Reynolds stress 

(triangles) based on bootstrapping; and logarithmic fits 
to mean velocity measurements (solid line), plus and 
minus 2a limits (dashed line) based on bootstrapping. 

: 
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3 

profiles: mean values (asterisks) and plus and minus 2a .. .t; 
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based on the mean profile, which may indicate an un- 
known source of bias, perhaps due to boat motion (see 
additional discussion below). For the last hour and a 
half of the deployment, however, the agreement between 
the two values is encouraging. 

Another way of looking at the friction velocity uses 
the drag coefficient c d  which is defined as the square of 
the ratio of the friction velocity to the depth-averaged 
mean velocitv: 

where angle brackets indicate a depth average. The 
values of c d  calculated using each of the estimates of 
U. are shown in Figure 10. Just as above, bootstrapping 
has been applied to estimate the error in each estimate 

Apparently, the values of u. calculated are slightly 
higher than would be expected in steady channel flow, 
and, as a result, c d  is significantly above the expected 
value of 0.0025 for both estimates of u.. This is due 
to the high value of the roughness length; as mentioned 
above, this roughness scale indicates the presence of bed 
forms, which would elevate the d u e  of c d  required. 
The relationship between the values of c d  calculated 
using the two methods of defining u, is, by necessity, 
the same as was discussed with regards to U. itself. 

Finally, the measurements allow us to examine some 
of the structures of the turbulence. A turbulent quan- 
tity of particular interest in modeling turbulent flows is 
a characteristic lengthscale, or the typical size of a tur- 
bulent overturn.' Fkequently, in unstratified channels 

Of c d .  
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Figure 10. Drag coefficient c d  calculated as the 
Square of the ratio of the fiictiqn velocity u. and the 

are estimates 

minus 20. (triangles) 
u. based on the mean veloci- 
minus 2u from bootstrapping 

value, cd = 0.0025 

this lengthscale is considered to vary parabolically and 
be proportional to the total depth H: 

2 I 
I0 = ~ - ( l -  -)H 

H H  (39) 

which has a maximum of K H / ~  at z = H/2. Note that 
for the Three Mile Slough data set, H M 9 m, so the 
lengthscale would be expected to have a maximum of 
about 1 m at mid-depth ( z  = 4.5 m). 

Dillon [1982] discussed different lengthscales of the 
turbulence but compared them all to what we wil l  refer 
to as the mixing lengthscale: 

where S2 is the mean shear of the flow (8U/&)2. Notice 
that if we define the shear production P = zl"S, then 
the mixing lengthscale becomes: 

A related lengthscale in stratified flows would be (see 
Stecey et al., [1999] for further discussion) 

p 1/2 IN = (-) 
N3 

which is analogous to the Ozmidov lengthscale (which 
substitutes the dissipation for the shear production). 
For the Three Mile Slough data set the flow was un- 
stratsed, so the lengthscale of interest was the mixing 
lengthscale, defined by (40). Figure 12 (see below) dis- 
plays the m k h g  lengthscale and the parabolic length- 
scale defined by (39) (the other lengthscales in Figure 
12 are discussed below). The agreement between these 
two lengthscales is quite good, suggesting that in an 
unstratified tidal flow, (39) is an appropriate model for 
the mixing length I, .  

Another common lengthscale is the integral length- 
scale, which is typically defined as the spatial integral 
of the autocorrelation function of a velocity component 
[Tennekes and Lumley, 19721. Using the ADCP data, 
we have defined the temporal autocorrelation function 
for each depth cell and each beam. The definition of 
this function for the ith beam is 

This function is displayed in Figure 11 for each of the 
four beams and for all depths. In general, we can see 
that the velocities are correlated over longer periods 
near the bed than at the surface. Further, asymmetries 
are seen between beams, particularly between beams 
3 and 4, which will be exploited below to calculate a 
lengthscales associated with the Reynolds stresses. 

To calculate the integral lengthscale, we must inte- 
grate the autocorrelation function over time and then 
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Figure 11. 
the autocorrelation at a given depth and lag time. Calculations based on measurements from (a) 
beam 1, (b) beam 2, (c) beam 3 and (d) beam 4. 

Autocorrelation function for each of the four beams. Each plot shows contours of . 

apply Taylor’s hypothesis of frozen turbulence [Kundu, 
19901 to define the integral lengthscale in the x direction 

W 
as 

&(%) = u(X) 1 &(%T)dT (44) 
0 

where i indicates the beam being used, and the s u b  
script x is used to specify that it is the lengthscale in 
the x direction. 

In Figure 12, a l l  of the above described lengthscales 
are displayed. All four integral lengthscales increase 
away from the bed as expected, and, as mentioned 
above, the mixing lengthscale ( I , )  matches the parabolic 
lengthscale ( lo )  remarkably well. In general, we can say 
that all four integral lengthscales are larger in magni- 
tude than either the mixing lengthscale or the parabolic 
lengthscale. This is not unexpected, however, based on 
direct numerical simulation of sheared turbulence. The 
database of Holt et al., [1992] has been used to quan- 
tify both an average integral lengthscale and the mixing 
lengthscale calculated using (40). These data were cre- 
ated in unstratsed conditions and also demonstrates 
an integral lengthscale which is larger than the mixing 
lengthscale. In the Holt data, the ratio of the average 
integral lengthscale to the mixing lengthscale is about 2, 
very similar to the ratio seen in the Three Mile Slough 
data set. 

Examining the definition of the autocorrelation of the 
along-beam velocities (equation (43)), we can write for 
beam 3, 

Expanding U: using (2a) gives 

U i ( t ) U h ( t  + 7) = U2U’(t)U’(t + T )  

+ b 2 d ( t ) d ( t  + 7) 
+ ah’(t)w‘(t + 7 )  . _  . 
+ ahu’(t)u’(t + 7) (46) 

I 
50 1’00 150 200 250 

crn 
o: 

Figure 12. Profiles of lengthscales - based on entire 
data set, mixing lengthscale, 2 ,  = ( -u’w’ /S~) ’ /~  (solid 
h e ) ,  Integral lengthscales based on integration of aut* 
correlation function of beam 1 (line with pluses), beam 2 
line with circles), beam 3 (line with asterisks), beam 4 
line with triangles), and the traditional parabolic pro- 

file, 20 = d a / H ( l -  z / H )  (dashed line). 
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where a = sin9 and b = cos9, and we have dropped 
the I from the argument of each velocity component 
for brevity. 

The symmetry of the correlation function requires 
that 

which allows us to rewrite (46) as 

U‘(t)W’(t + T )  = U’(t + T)W’(t) (47) 

ui(t)ui(t  + T )  = a2u’(t)u‘(t + T )  

+ Pwl(t)w’(t + T )  

+ 2abu’(t)w‘(t + T )  (48) 

Performing the same analysis on the velocity fluctua- 
tions along beam 4 results in 

ui(t)ui(t  + T )  = a2u‘(t)u’(t + T )  

+ b2w’(t)w’(t + T) 
- 2 a ~ ( t ) w ’ ( t  + T )  (49) 

where, just as when calculating the Reynolds stresses, 
the difference between these two expressions is in the 
sign on the cross-correlation term. 

Because these autocorrelations are statisical quanti- 
ties, we can again involce the spatial homogeneity ol  the 
turbulence statistics and combine these two quantities 
to isolate the cross correlation: ’ 

u;(t)ui(t + T )  - ui(t)ui(t + T )  = 

4abu’(t)w’(t + 7) (50) 

Returning now to the definition of the integral length- 
scales &,= and Ad,, (equation (44)) and the definition 
of the autocorrelation function (equation (43)), we can 
write 

U L=(ui( t )ui( t  + T )  - ui(t)u:(t + T ) ) ~ T  (51) 

The integrand in this expression can be replaced using 
(50) to give 

00 - 
- uj2X4,, = 4abU 1 u’(t)w‘(t + T ) ~ T  (52) 

We can now define a new lengthscale bded on this 
cross correlation, which will represent the longitudi- 
nal scale of the eddies which dominate the Reynolds 
stresses. This lengthscale will be defined by 

u o 0  xu,,, = = Jd u’(t)w’(t + 7)dT (53) u’w’ 

W h i c h  can be substituted into (52) to give 

we rearrange (54) to completely define this new 
lengthscale in terms of known quantities: 

(55) 

where we have substituted sin9 and cos9 for a and b, 
respectively. 

This lengthscale (Auw;z) represents the longitudinal 
extent of the eddies which contribute to the Reynolds 
stresses. The variation of this lengthscale with depth 
is shown in Figure 13, along with the profiles of the 
mixing length and the parabolic lengthscale. It is clear 
from this figure (note that the z axis is on a logarith- 
mic scale) that the integral lengthscale of the Reynolds 
stresses is much larger than the mixing lengthscale. It is 
also slightly larger than the integral lengthscale calcu- 
lated using beam 3 (the largest of the integral length- 
scales). In fact, the magnitude of this lengthscale in- 
dicates there should be a nonzero covariance between 
beams 3 and 4 due to the presence of at least some ed- 
dies which have a streamwise scale comparable to the 
beam spread. As discussed earlier, there is a nonzero 
(but small) covariance, which is consistent with this es- 
timate of a streamwise eddy size. 

Referring to the definition of ui,  we can see that this 
result is not entirely unexpected. The integral length- 
scale calculated from beam 3, if broken into components 
on the Cartesian grid, will have contributions from 
A,,,,, Xww,21 and Xuur,z. Because the ADCP beams are 
preferentially measuring the vertical components of the 
velocity (i.e., cos2O0 > sin20°), the integral lengthscale 
of the velocity along each beam will be preferentially 
weighted towards XWw,,: 

The behavior of the correlation functions which these 
lengthscales are based on has been examined by 
T o m e n d  [1976] (note that Townsend’s notation is 
slightly different; &j(r,  0,O) is the correlation of veloc- 
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Figure 13. Profiles of lengthscales from Three Mile 
Slough data set. Mixing lengthscale, I ,  (line with aster- 
isks); theoretical parabolic profile (dashed line); length- 
scale of Reynolds stresses, A,, (solid line). See text for 
definitions. 
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ity component i with component j in the x direction). 
For channel flow, Townsend tabulates the distance at 
which the correlation is reduced to 0.05; this distance 
is 6.8 times larger for Rll(r,O,O) than for R33(7-,0,0) 
(proportional to A,,,, in our notation). Therefore the 
longitudinal scales of velocity components which in- 
volve u’ (such as &,,) would be expected to be larger 

s than those measured fiom the individual beams (such 

These lengthscales have been estimated in a tidal 
boundary layer by Gross and Nowell [1985]. Using cur- 

. rent meter triplets, estimates of Reynolds stress cospec- 
tra showed peaks at a wavelength of approximately 10 
m, which are of the same order as the scales estimated 
here. Gross and Nowell also noted that this scale ex- 
ceeded the depth of their flow and argued that this sug- 
gested that the eddies which dominated the Reynolds 
stress measurements were “flattened out,” again consis- 
tent with the conclusions here. 

We also note that the assumption that the largest 
turbulent eddies dominate the transfer of momentum 
is also supported by this distribution of the Reynolds 
stress length scale. Additionally, because the mixing 
lengthscale is meant to represent the vertical extent of 
the mixing events, the two scales together define the 
anisotropy of the eddies which dominate the vertical 
transport of momentum. From Figure 13, we estimate 
the horizontal scale to be 5-6 times larger than the ver- 
tical scale for the large eddies which are actively mixing 
the flow. 

as As,,). 

6. Application to Other Conditions 
The technique applied to this unstratified flow is a 

powerful one, which holds a great deal of promise in 
the exploration of turbulent mixing in a variety of es- 
tuarine and coastal flows. However, in moving from an 
unstratified environment to a stratified one, additional 
factors need to be considered. 

First of all, in stratified conditions, the stratification 
limits the size of the eddies to be less than the Ozmi- 
dov scale (lo= = ( E / N ~ ) ~ / ~ ) ,  which is analogous to the 
stratification lengthscale defined above (equation (42)). 
This places a limit on the ability of the ADCP to re- 
solve turbulent motions due to the inherent averaging 
within each depth cell. Therefore an important con- 
sideration is the limit on the size of the eddies (which 
can be estimated by either the Ozmidov or stratifica- 
tion lengthscale) relative to the spatial average of the 
ADCP within each bin. 

In addition to stratification imposing a limit on eddy 
size, presence of a boundary, such as the bed or the 
surface, wil l  also constrain the size of the turbulent ed- 
dies. The effects of the ADCP bin size relative to this 
constraint may be evident in the near-surface region 
of the Three Mile Slough data set. In the upper me- 
ter of the water column, several quantities (particularly 
the lengthscales) exhibit huge variations in their mag- 

nitudes. This is also the region where the lengthscale 
limitation of the surface would approach the bin size 
of the ADCP, resulting in a reduction in the ability to 
resolve the actual turbulent motions. In practice there- 
fore the ability of an ADCP to resolve turbulent m& 
tions may be reduced in the near-bed and near-surface 
regions, depending on the bin size being used. 

An additional effect of stratification is an increase in 
the anisotropy of the turbulence. Using the anisotropy 
values assumed here (equations (12a) and (12b), which 
are the unstratified values) will therefore introduce a 
bias into the calculation of q2. Because the ADCP mea- 
sures a larger component of the vertical velocity than 
the horizontal, and stratification reduces the vertical 
motions, as anisotropy increases, our estimate of q2 will 
be below the actual value. The maximum error in these 
calculations has been estimated using the Holt et d., 
[1992] database and was found to be about 30% (see 
Stacey et al., [1999] for further discussion). 

Finally, as was discussed above, boat motion, and the 
associated motion of the ADCP induces a variance in 
the data which could overwhelm the quantities being 
measured. The data from Three Mile Slough indicates 
that the bias in the turbulent kinetic energy may be 
most influenced by vertical translation of the sensor, 
rather than typical pitch and roll motions. However, 
pitch and roll motions will also induce variance into the 
measurements, in a manner proportional to equation 
(36). Therefore, it will be critical in making-these mea- 
surements that a stable platform be used which wil l  
minimize the effects of pitch, roll and vertical trans- 
lation. Other successful ship-mounted measurements 
have been performed in estuarine flows (see Staced et 
al., 1999); in those cases, boat motion was completely 
negligible. 

7. Conclusions 
Acoustic Doppler current profilers are beginning to be 

used more and more widely in estuarine hydrodynamic 
studies. As a result , the teihnique presented here could 
be a valuable method for increasing the availability of 
information on turbulent mixing in stratified tidal flows. 

The results from Three Mile Slough demonstrate that 
the noise levels associated with the ADCP are not p r e  
hibitively high when trying to resolve profiles of tur- 
bulence statistics. In fact, the agreement with theory 
was quite good in both the Reynolds stresses and the 
turbulent kinetic energy. Further, the errors that were 
seen in that data set, both in the biases and spreads, 
were consistent with those predicted by the application 
of statistical error analysis. The one exception was a 
potential downwards bias in the estimates of friction 
velocity based on the Reynolds stress profiles during 
the first hour of the deployment. This bias could have 
been due to either boat motion or the spatial averaging 
inherent in the ADCP system. If the downwards bias 
were due to the averaging of the ADCP, then during 
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the second hour of the data set, the friction velocity 
based on the Reynolds stresses would actually exceed 
that based on the mean velocities, a result which would 
be consistent with an increase in Reynolds stress activ- 
ity during the deceleration phase of the tide. 

The measurements in Three Mile Slough show a fric- 
tion velocity which is somewhat higher than would be 
expected in'steady channel flow. However, high values 
of u. resulted from estimates using both logarithmic fits 
to the mean data and linear fits to the turbulence data. 
The logarithmic fits resulted in a roughness lengthscale 
of about 8.2 cm, which is suggestive of bed forms such 
as sand waves oriented across the channel. These bed 
forms would explain both the high values of U .  and c d  
which were seen in the data. 

The mixing lengthscale based on the Reynolds stress 
measurements and mean shear was parabolically dis- 
tributed, increasing away from the bed with very sim- 
ilar magnitude to the typically assumed parabolic pro- 
file. The distributions of additional integral lengthscales 
were also consistent with the mixing length, with mag- 
nitude approximately 2 times larger. This factor was 
consistent with the value from direct numerical simula- 
tion (DNS) of unstratified, sheared turbulence. Finally, 
the longitudinal lengthscale of the eddies which domi- 
nate the Reynolds stress measurements was found to be 
somewhat larger than the other lengthscales of the flow. 
This &ding reinforces the assumption that the largest 
eddies dominate the transport of momentum. 

Based on these results in an unstratified channel, the 
variance technique presented here seems to hold promise 
in quantifying turbulent mixing over the entire water 
column of tidal flows. In stratified conditions [Stocey 
e t  d., 19991 this technique allows for the simultaneous 
measurement of shear, stratification and turbulent mix- 
ing throughout the water column and tidal cycle. Such 
data sets will permit a much more in-depth examination 
of the balance of forces that determine the evolution of 
an estuarine water column. 

Appendix: Error -Analysis Calculations 
In section 4.1.2 an important calculation was the vari- 

ance of the quantity xi2, the square of the fluctuating 
component of the along-beam velocity measurements. 
In this appendix we give the details of the analysis which 
d h e s  (29) .  

First of all, the definition of variance allows us to 
write 

(A21 E(#) = q + 0; 

which can be substituted into ( A l )  to give 

var (xi') = E[(U: + N)4 - 2 , 7 ( q  + 0 N 2 )  _ .  
(ui2 + a N 2 ) 2 ]  (A31 

Evaluating the second and third terms gives 

Var ($) = E[(u: + N)4]  - (q + 0 ~ ' ) '  (A4) 

The first term c& be expanded to give 

E[(u: + N)4]  = E[ui* + ~ u : ~ N  + 6ufN2 
+ 4u:N3+N4] (A5) 

We now note that the expected values of an odd power 
of a zero-mean Gaussian are zero, which requires E ( N )  = 
E ( N 3 )  = 0. Further, the fact that the noise is in- 
dependent of the velocities requires that E[u$N2] = 
E(u:')E(N2) = $UN' so we can simplify (A5) to de- 
fine 

E[(u: + N ) 4 ]  = E ( u ; ~ )  + 6 $ 0 ~ '  + E ( N 4 )  (A6) 

Finally, if we define the kurtosis of the variables Q 

and N .  

we can substitute back into (A4) to give the variance of 
the measured velocities squared as 

- 
var ( Z f )  = Ku,(ui2)2 + ~$UN' + K N U N ~  - 

- (T)2 - 2u:2UN2 - ON (A81 
This expression can be further simplified to 

Var (x?) = (Kui - l)(T)' 
4- 4$0N2 (KN - l)Ulv4 (A9) 

which defines the quantity needed in the analysis of the 
variance in the turbulence estimates. 

Notation 

total along-channel velocity. 
total vertical velocity. 
total velocity along ADCP beam i. 
angle ADCP beam makes with the vertical. 
white noise random variable. 
friction velocity. 
coefficient of drag. 
total depth of the water column. 
vertical coordinate. 
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Z 
x’ 
P 

< x > 
u, 
K, kurtosis of variable x. 

Reynolds average (expected value) of variable x. 
fluctuations of variable x (x - Z). 
estimator of the mean of variable x. 
depth average of variable x. 
standard deviation of variable x. 
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