

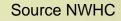
DOI Avian Influenza surveillance

Hon S. Ip

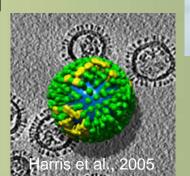
National Wildlife Health Center

U.S. Department of the Interior

U.S. Geological Survey

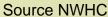

2006 Department of Interior Surveillance

- 27, 116 birds tested
- 176 species
- 11 orders and 36 families
 Anseriformes: 37 species


Charadriiformes: 29 species

- 2.7% positive
- 392 viruses isolated
- 156 viruses are subtyped

2007 Department of Interior Surveillance



- 16, 732 birds tested (21,054)
- 113 species

412 Al matrix RT-PCR positive 2.5% positive

292 viruses isolated77 viruses are partially subtyped

Laboratory Testing Update

Egg isolation

1803 birds have completed virus isolation testing (10.7%)

292 are HA-positive (16.2%)

3132 VI performed (equiv to 2/3 target numbers)

RT-PCR vs. Egg Isolation

188 birds are both PS and VI positive

185 are PS Positive, but VI Negative

29 are PS Negative, but VI Positive **

Testing Methods Continued

Pooled swabs	15	samples are H5 Pos
	6	also VI H5 Pos
PS VI	10	samples are H5 Pos
	6	also PS H5 Pos
Pooled swabs	4	samples are H7 Pos
	2	H5 Pos are VI H7 Pos
PS VI	5	samples are H7 Pos
PS VI		
	2	also PS H7 Pos

Subtypes Identified So Far

Subtype Combinations Identified

H2N3	H2N5	H2N7
H3N2	H3N6	H3N8
H4N6	H4N7	
H5N3	H5N9	
H6N2	H6N4	H6N5
H7N6	H7N7	H7N8
H10N3	H10N7	H10N8
H11N3	H11N9	
H12N5	H12N8	H12N9
	H3N2 H4N6 H5N3 H6N2 H7N6	H3N2 H3N6 H4N6 H4N7 H5N3 H5N9 H6N2 H6N4 H7N6 H7N7 H10N3 H10N7 H11N3 H11N9

H6N8

H7N9

11 suspected co-infections n=246

Source NWHC

H16N3

Subtypes isolated in 2007

Subtype Combinations Identified

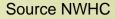
H1N2 H2N7

H3N3 H3N6 H3N8

H4N6

H5N2 H5N3 H5N9

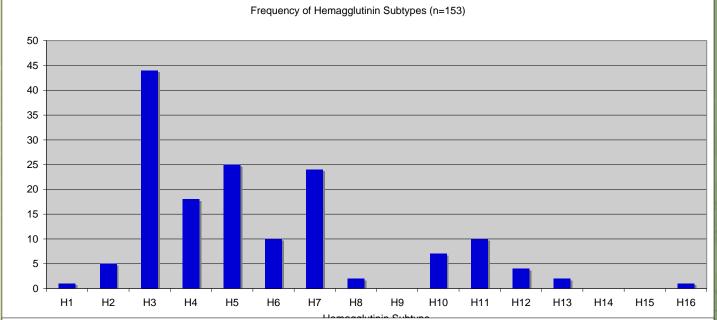
H6N1 H6N5

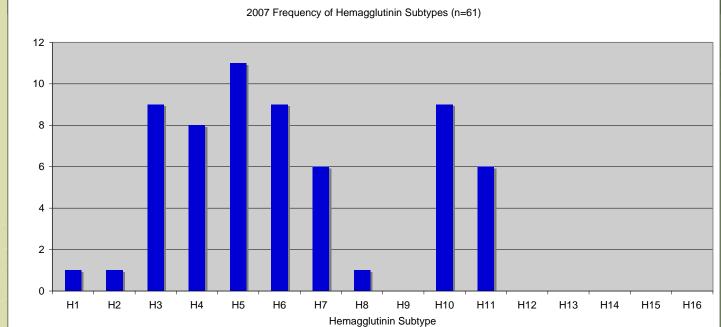

H7N3 H7N4

H8N4

H10N2 H10N3 H10N7

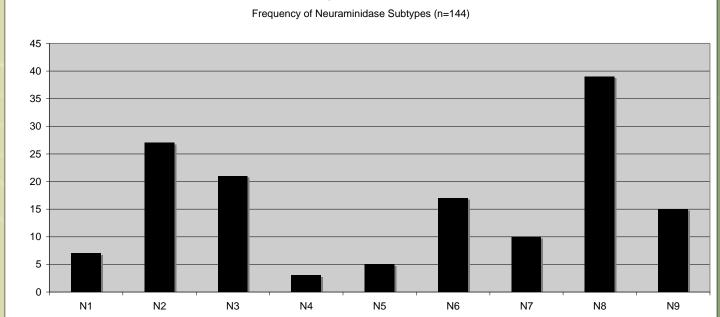
H11N3 H11N9

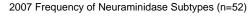

4 suspected co-infections n=67

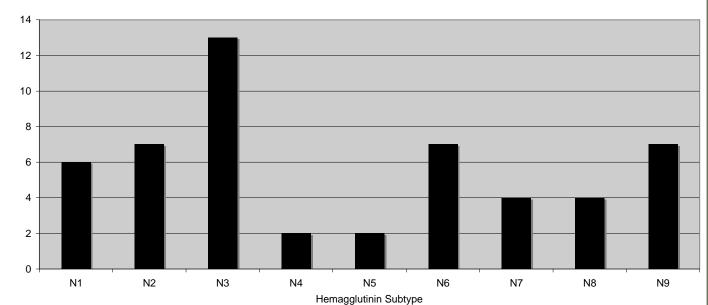


1

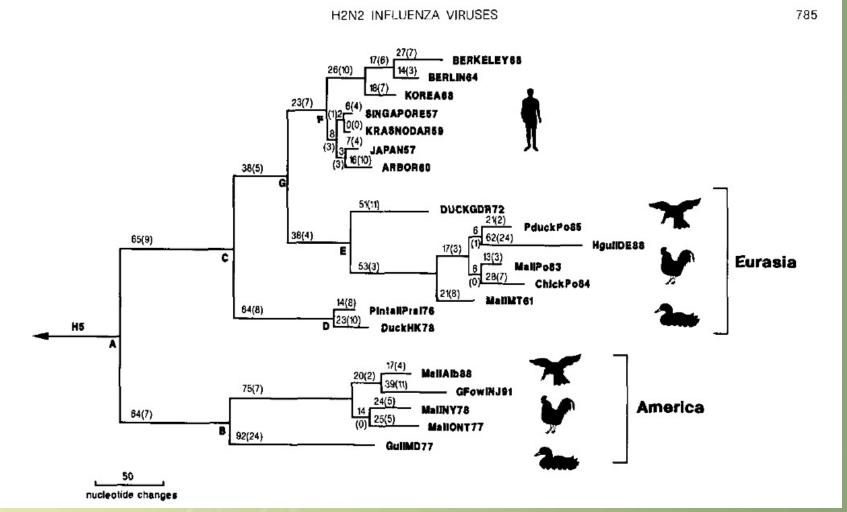
Distribution of HA subtypes







Distribution of NA subtypes



Influenza Lineages

H2 viruses. Schafer et al., 1993. Virology.

Limited Mixing of AIV between Continents

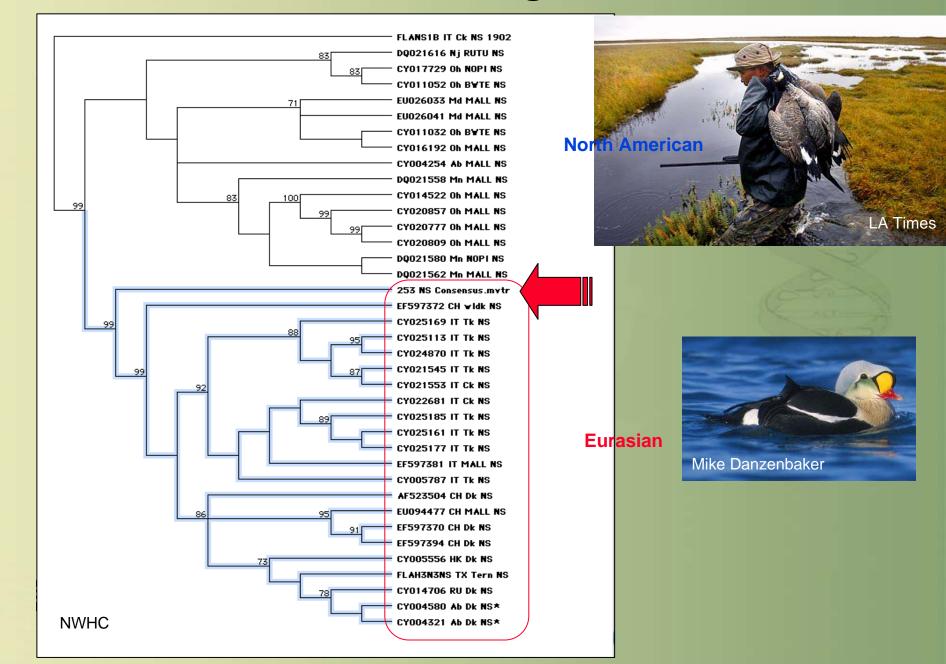
OPEN @ ACCESS Freely available online

PLOS PATHOGENS

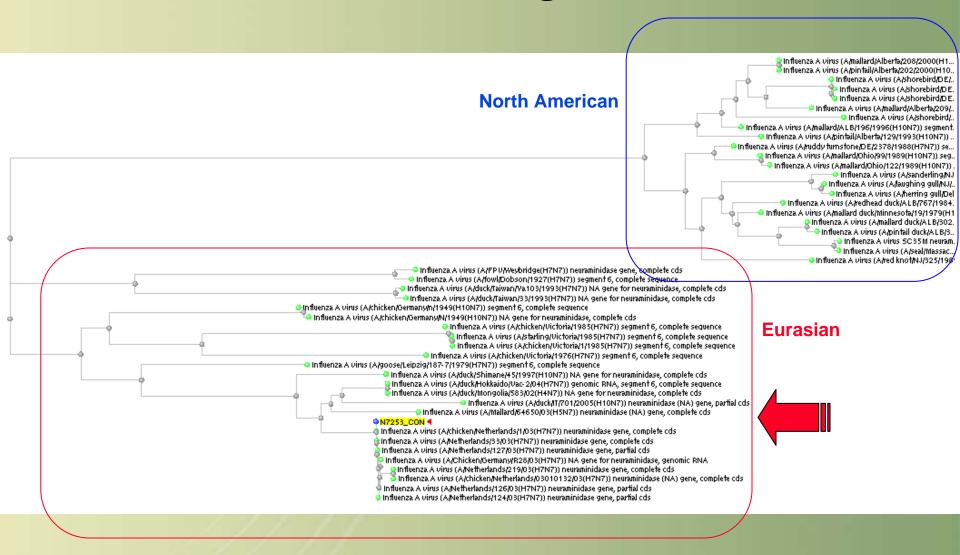
Influenza in Migratory Birds and Evidence of Limited Intercontinental Virus Exchange

Scott Krauss¹, Caroline A. Obert², John Franks¹, David Walker¹, Kelly Jones¹, Patrick Seiler¹, Larry Niles³, S. Paul Pryor⁴, John C. Obenauer², Clayton W. Naeve², Linda Widjaja⁵, Richard J. Webby¹, Robert G. Webster^{1*}

Table 3. Frequency of Detection of Outsider Events


<u> </u>	PB1	PB2	PA	на	NP	NA	М	NS	Total Events	Frequency of Outsider Events by Region (Events/Segment)
American events in Eurasian clades	7	5	2	8	0	3	3	4	32	1.05%
Eurasian events in American clades	0	0	3	10	3	8	0	0	24	0.64%
Total outsider events	7	5	5	18	3	11	3	4	56	
Frequency of outsider events (events/segment)	1.25%	0.85%	0.85%	1.77%	0.44%	1.24%	0.25%	0.32%	0.83%	
Total American segments	281	299	280	328	323	367	543	619	3,040	
Total Eurasian segments	279	287	305	686	362	516	644	648	3,727	
Total segments analyzed	560	586	585	1,014	685	883	1,187	1,269	6,767	

Between 0.64-1.05% of the genes show exchange



Evidence of Eurasian Lineage in Alaskan Virus

Evidence of Eurasian Lineage in Virus 253

Neuraminidase gene from 253

Proportion of Eurasian Lineage Genes (2006)

	Alaska					
	Viruses RNA Segmen					
# Eurasian	17	76				
# Total	90	496				
Percentage	18.9%	15.3%				

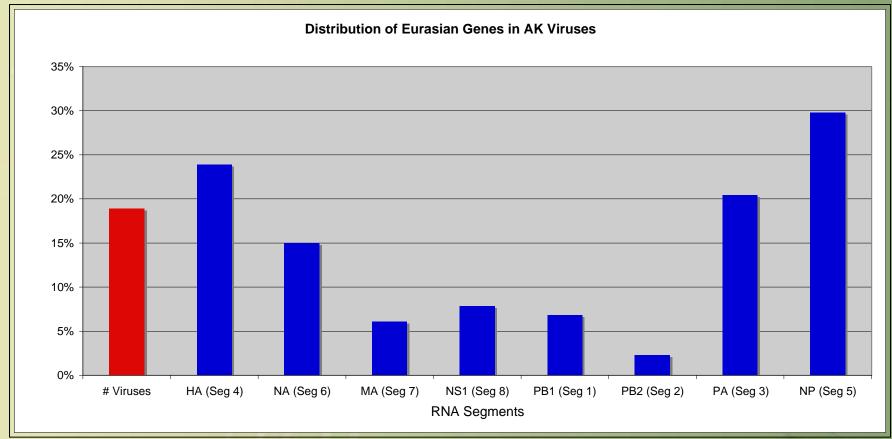
Lower 48						
Viruses	RNA Segment	S				
5	14					
62	338					
8.1%	4.1%					

Twice as many viruses isolated in Alaska in 2006 contains RNA segments pf Eurasian lineage that those in the lower 48 states.

Different Distribution of EA genes in Genome

Alaska

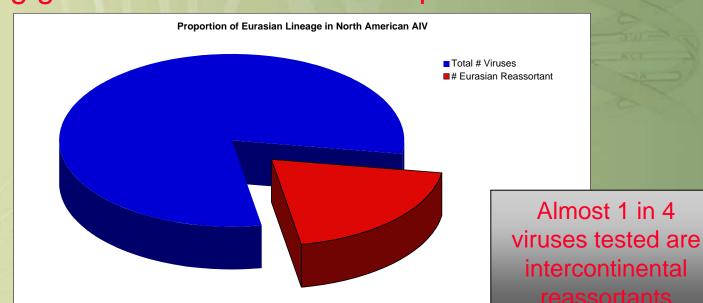
	HA	NA	MA	NS1	PB1	PB2	PA	NP
# Eur	16	9	3	4	3	1	9	14
Total	67	60	49	51	44	44	44	47
% Eur	23.9%	15.0%	6.1%	7.8%	6.8%	2.3%	20.5%	29.8%


Lower 48

	HA	NA	MA	NS1	PB1	PB2	PA	NP
# Eur	3	3	0	0	0	0	1	2
Total	39	37	34	36	32	34	32	32
% Eur	7.7%	8.1%	0.0%	0.0%	0.0%	0.0%	3.1%	6.3%

Distribution of Eurasian RNAs

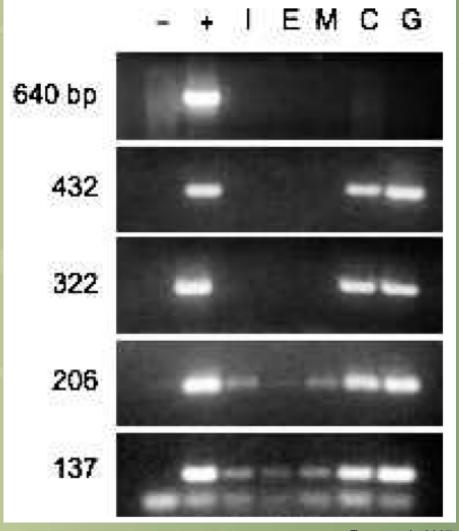
The distribution is uneven across the 8 RNA segments Lower in some internal genes Lowest in PB1



Intercontinental Connections

- 903 RNA segments have been sequenced
- 69 have Eurasian viruses as closest relative
- 171 viruses have been at least partially characterized
- 38 viruses have genes from the Eurasian lineage

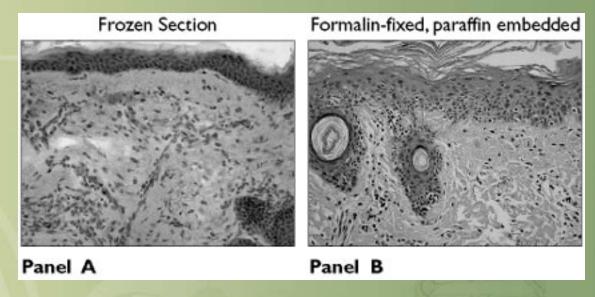
22 % of the viruses examined to date are reassortants containing genes of viruses from Europe and Asia

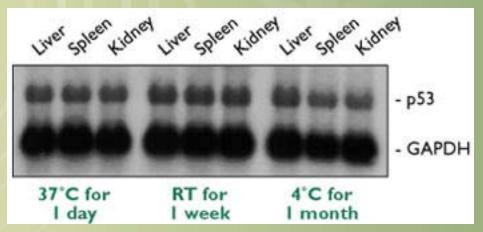


Influenza RNA Preservation

Isopropanol, ethanol and methanol are not as effective in the preservation of influenza RNA at RT than a commercial product (Ambion) or with guanidium thiocyanate.

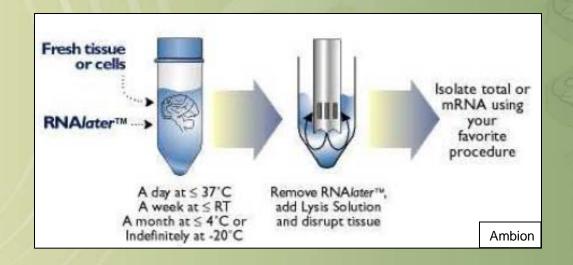
Evers et al., 2007. Avian Dis 51:965–968.




Evers et al., 2007.

Ambion RNALater

Used to preserve tissue architecture and RNA from field sites with no refrigeration



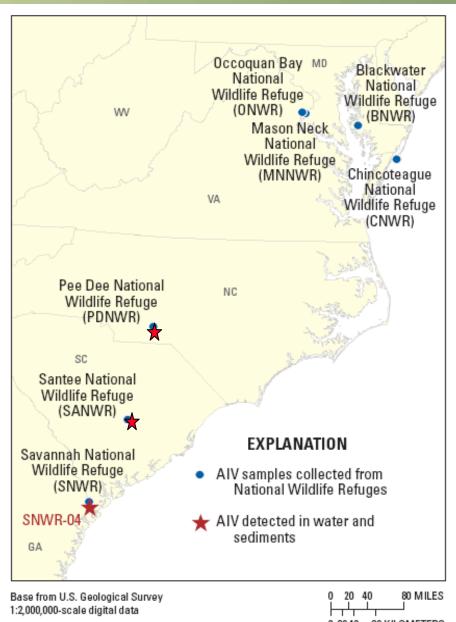
RNALater

Treatment	Media	Temperature	MA RT-PCR	Virus Isolation
Feces + H5N2	VTM	-80 C	14.63	Yes
Feces + H5N2	VTM	4 C	21.71	Yes
Feces + H5N2	RNALater	RT	33.11	No
Feces	RNALater	RT	0	No

USGS Environmental AI Sampling

 Preliminary project with Lisa Stewart

Source: USGS Georgia Water Science Center



Locations of Sampling Sites

- Seven locations in five states examined
- Three have resulted in positive AI isolation
- H3N1 and 2 H3N8 viruses identified

Source: USGS Georgia Water Science Center

Features of Water Quality

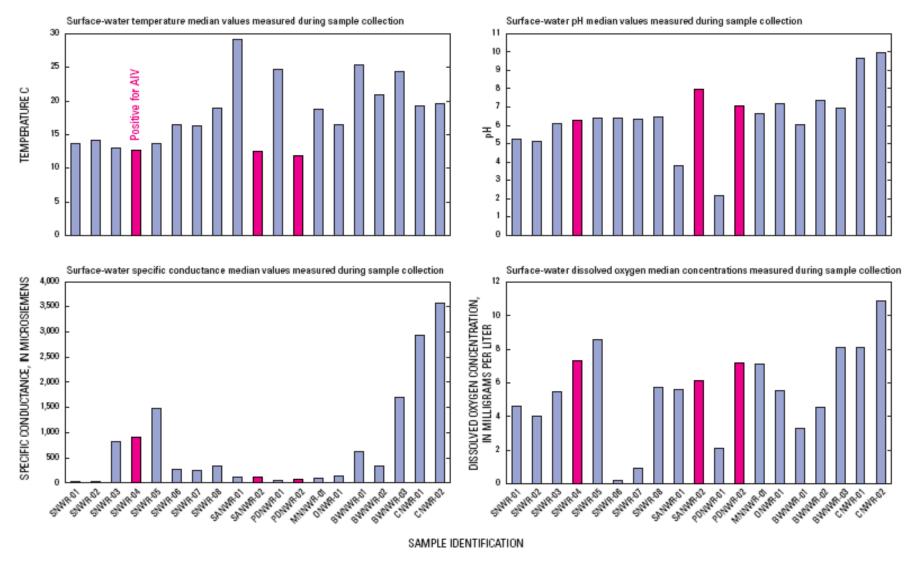


Figure 3. Bar graph showing median values for temperature, pH, specific conductance, and dissolved oxygen for benthic zone samples collected for avian influenza viruses, Feburary and May 2006, and January 2007.

Source: USGS Georgia Water Science Center

Acknowledgements

Aaron Wells Adam Ahonen Adam Ray Adrian Riegen Alexandria Hauser Alexis Will Allison Sayer Amy Leist Amy Miyamoto Andrew Brissette Anson Koehler Anthony Boyscout Archer Larned Audrey Taylor Ayme Johnson Ben Haase Beverly Schmitt Bill Larned Bill Schaff Blake Trask Bob Dusek Bob Gill Bob Leedy Brad Andres Brad Scotton Brad Winn Brian Harrington Brundaban Panigrahy Caleb Ashling Chi Yeung Choi Chris Dau Chris Franson Chuck Steffen Chuck Redd Chung-yu Chiang Cory Gregory Craig Ely Dan Ruthrauff Daniel Coster Daniel Fontaine Daniel Rizzolo Dave Krueper David Irons David Melville Deb Nigro Deb Rocque Deb Rocque Dennis Marks Dennis Senne Devin Taylor Dirk Derksen Donna Dewhurst Ed Mallek **Evan Sorley** Evonne Phillips Fabrice Lebouard Fred Broerman Greg Norwood Heather Gates Heather Wilson Hilger Lemke James Lawoon Jan van de Kam Janice C. Pedersen Jen Selvidge Jennifer DeGroot Jennifer Spake Jennifer Steffen Jennifer Tuscher Jesse Conklin Jessica Montez Jim Johnson Joe Liebezeit John Pearce John Pepe John Terenzi John Wells Josh Boadway Julian Dowdall Julian Fischer Julie Reinsch Julie St. Louis Karen Bollinger Karen Brenneman Karen Laing Katherine Pavlis Katy Griffin Kelly Ramster Ken Wright Kent Wohl Kentissha Franklin Kevin Pietrzak Kim Kooiman Kristen Sowl Kristin DeGroot Larry Larrivee Laura Ganis Laura Kepler Lee Tibbitts Liliana Coelho Naves Lucky Karwal Maks Dementyev Margaret Petersen Mary Lea Killian Mat Sorum Matt Sexson Matt Wilson Megan Jones Melanie Mossing Mellisa Houfe Metta McGarvey Michael Wege Michael Petrula Mike Spindler Naomi Bargmann Nate Olson Nathan Coutsoubos Nathan Senner Nichole Hines Nils Warnock Nora Rojek Paul Anderson Paul Flint Pavel Tomkovich Peter Ladell Rachel Reddington Randy Cone Renee Long Rick Lanctot Rob MacDonald Robert Dusek Robert Rankin Robin Corcoran Robin Hunnewell Rod King Russ Oates Ryan Bradley Samantha Scott Sandra Talbot Sarah Jamieson Sarah McCloskey Scott Dieni Shawn Hawks Stephanie Rieger Stephen Brown Steve Kovach Steve Matsuoka Steve Zach Susan Savage Susan Savage Terry Kowalczyk Tess Ely Thierry Work Thomas Fondell Tim Bowman Tina Egstad Tina Moran Tom Rothe Ty Donnelly Umair Igbal Will Meeks Yvette Gillies

An "Arctic Effect"- Low Al Prevalence in AK

EMERGING INFECTIOUS DISEASES

Research

Volume 13, Number 4-April 2007

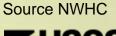
Movements of Birds and Avian Influenza from Asia into Alaska

Kevin Winker,* ☑ Kevin G. McCracken,*† Daniel D. Gibson,* Christin L. Pruett,*† Rose Meier,* Falk Huettmann,† Michael Wege,‡ Irina V. Kulikova,§ Yuri N. Zhuravlev,§ Michael L. Perdue,¶ Erica Spackman,# David L. Suarez,# and David E. Swayne#

- **1998-2004**
- 5 Al viruses identified from 8,254 samples (0.06%)
- Only 1 of 3,703 northern pintails infected (0.03%)

"An "Arctic effect" on viral ecology, caused perhaps by low ecosystem productivity and low host densities relative to available water."

DOI Results - Northern Pintail (Anas acuta)


- 1426 animals collected in 2006
- 87 Positive by RT-PCR test

 6.1% of NOPI are positive for avian influenza virus by RT-PCR

(9.5% Amer Green-winged teal (*Anas crecca*), n=539) (9.2% mallard (Anas platyrhynchos), n=273)

Bailey Aros

Al detected in a majority of targeted species

	Species	Name	MA Pos	Percent Pos
\star	ALTE	Aleutian Tern, Onychoprion aleuticus	1	0.3%
	AMWI	American Wigeon, Anas americana	15	6.1%
	BARG	Bar-tailed Godwit, Limosa lapponica	3	1.4%
	BLBR	Black Brant, <i>Branta bernicla</i>	9	0.4%
	CACG	Cackling Goose, Branta hutchinsii	22	2.0%
	CAGO	Canada Goose, Branta canadensis	9	3.4%
\star	COEI	Common Eider, Somateria mollissima	1	0.3%
	COMU	Common Murre, <i>Uria aalge</i>	1	1.3%
	DUNL	Dunlin, Calidris alpine	5	0.4%
	EMGO	Emperor Goose, Chen canagica	11	1.6%
*	GLGU	Glaucous Gull, Larus hyperboreus	5	3.6%
GV	GWFG	Greater White-fronted Goose, Anser albifrons	40	3.7%
	GWTE	Green-winged teal, Anas crecca	91	5.0%
\star	KIEI	King Eider, Somateria spectabilis	6	0.9%
	LSGO	Lesser Snow Goose, Chen caerulescens	10	0.8%
	LTDU	Long-tailed Duck, Clangula hyemalis	11	1.0%
	MALL	Mallard, Anas platyrhynchos	134	9.2%
	MASA	Marsh Sandpiper, Limosa fedoa	1	25.0%
	NOPI	Northern Pintail, Anas acuta	225	6.3%
	NSHO	Northern Shoveler, Anas clypeata	78	18.8%
	PAGP	Pacific Golden-Plover, Pluvialis fulva	1	0.1%
	SPEI	Spectacled Eider, Somateria fischeri	2	0.6%
*	STEI	Steller's Eider, <i>Polysticta stelleri</i>	6	0.8%
	TBMU	Thick-billed Murre, <i>Uria lomvia</i>	7	3.0%
ZUSGS	TUSW	Tundra Swan, <i>Cygnus columbianus</i>	7	1.2%
20303	WESA	Western Sandpiper, Calidris mauri	1	0.1%

Priority Species - Now

Gulls and Terns Aleutian Tern Glaucous Gull

Landbirds
Arctic Warbler
Eastern Yellow Wagtail
Gray-cheeked Thrush
Lesser Sandhill Crane

Waterfowl

Aleutian Cackling Geese
Black Brant
Emperor Goose
King Eider
Lesser Snow Goose

Long-tailed Duck Northern Pintail Pacific Common Spectacled Eider Steller's Eider Tundra Swan

Spectacled Eider: Harteman

Title

Text

Subtypes isolated in 2005

Subtype Combinations Identified

H3N1 H3N6 H3N8

H3N H4N6

H5N2 H9N5

n=26

Source NWHC

Subtypes isolated in 2006

Subtype Combinations Identified

H2N3	H2N5		
H3N6	H3N8		
H4N6	H4N7		
H5N3	H5N9		
H6N2	H6N4	H6N8	
H7N6	H7N7	H7N8	
H10N3	H10N7	H10N8	
H11N9			
H12N5	H12N8	H12N9	
	H3N6 H4N6 H5N3 H6N2 H7N6 H10N3 H11N9	H3N6 H4N6 H4N7 H5N3 H6N2 H6N4 H7N6 H10N3 H10N7	H3N6 H4N6 H4N7 H5N3 H6N2 H6N4 H7N6 H7N7 H10N8 H10N3 H10N7 H10N8

H7N9

7 suspected co-infections n=150

Source NWHC

Previous literature on Lineage Mixing

H2N2. Duck. Hokkaido. Liu et al., 2004. PA.

H2N3. Duck. Hokkaido. Liu et al., 2004. PB2.

H6N2. Guliiemot Sweden. Wallensten et al., 2005.

Title

Text

