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Abstract 
 
A testbed waterway model (SIMOPT) that combines simulation and optimization has 
been developed at the University of Maryland. It employs genetic algorithms to solve the 
problem of evaluating, selecting, sequencing and scheduling waterway improvement 
projects. Its promising demonstration of simulation-based optimization has been 
discussed in the previous phase. 
 
The improved optimization model is intended to work with the next generation NaSS 
waterway simulation model which is being developed under the NETS program of the 
Corps of Engineers. In this phase some improvements in investment optimization 
methods are developed and tested on SIMOPT. These include additional constraints on 
project precedence and regional budgets as well as pre-screening rules to avoid expensive 
simulation of unpromising or infeasible solutions. (“Solutions” consist here of project 
implementation schedules.) A simplified evaluator is also proposed as a substitute for 
microsimulation testing of the optimization algorithms. 
 

Introduction 
 
A problem of great concern to the U. S. Army Corps of Engineers (USACE) is the 
selection, sequencing and scheduling of the waterway improvement projects, which 
include chamber construction, expansion, rehabilitation, or maintenance. If numerous 
projects are considered, a massive combinatorial optimization problem results. This 
problem is very difficult to solve with conventional optimization approaches. Thus, an 
investment optimization model based on genetic search algorithms is proposed to solve 
this large and complex combinatorial problem.  
 
Solving an optimization problem requires evaluation as well as optimization. As a 
complex and probabilistic system, a waterway network can be analyzed through a 
detailed simulation model. Thus a simulation-based optimization model is explored for 
selecting and scheduling waterway projects. 
 
Since the developments of simulation and optimization components are largely separable, 
SIMOPT can be used to quickly test optimization improvements without running more 
detailed and longer-running simulations. In the previous phase (Wang and Schonfeld, 
2006 NETS Report), project construction time and capacity reductions during 
construction were considered in the SIMOPT model. Constraints specifying mutually 
exclusive projects at any locks were also included in the search process. The avoidance of 
duplicate evaluations during the genetic search is helpful in saving the computation time. 
 
The following sections focus on the enhancements to the optimization model which 
consider precedence relations and regional budget limitations. Those constraints are also 
included among prescreening rules designed to avoid simulating infeasible solutions. A 
procedure for avoiding duplicate simulation runs by prescreening newly generated 
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solutions against the stored previously simulated solutions had already been proposed in 
the previous phase. The computational advantages of this prescreening process are further 
explored and assessed here. In order to compare the performance of various mutation and 
crossover operators, a simplified evaluator is proposed to evaluate the system 
performance with some of original simulation inputs. Instead of running the simulation 
models, the proposed evaluator computes the fitness value of any generated project 
sequences during the genetic search. By substituting for evaluation through simulation, it 
greatly reduces computation time needed for testing the optimization algorithms. 
 

Improvements to Genetic Algorithms 
 
According to the Scope of Work drafted for GA enhancement (see Appendix), several 
tasks are included in the current phase, including developing prescreening rules to avoid 
simulating solutions, considering precedence relations, considering regional budget 
constraints, and comparing the performance of various mutation and crossover operators. 
For comparing several GA operators, a simple evaluator is proposed as a substitute for 
simulation during the testing process. 
 

Precedence Relations 
 
Based on technical, political or geographical considerations, some precedence relations 
among projects or locations may be imposed on the scheduling process. As in resource-
constrained project scheduling problems (RCPS), it may be necessary or preferable to 
schedule some particular projects ahead of some others. Since construction time may 
overlap, the precedence relations considered restrict the sequence of project 
implementation, rather than project completion times. That is, they restrain the project 
funding sequence rather than completion sequence. 
 
In order to determine the sequence of predecessor/successor projects, precedence 
constraints define precedence relations among various projects and are represented by an 
arrow between any two projects with precedence relations. If two projects iP  and jP  are 
related by a precedence constraint ji PP → , project jP  can only be started when iP  is 
funded, or later. Given an array of integers { }ix  where i = 1, 2, 3, …, n, n is the number 
of projects, each element of array represents the scheduled order of one project. The 
precedence constraint can be formulated as ji xx < . Similarly, for the case which 
multiple projects alternatives are considered at one lock location, if projects at two locks 

iL  and jL  are related by a precedence constraint ji LL → , a project at lock iL can only 
be started when a project at lock jL  is funded, or later. 
 
Since precedence constraints define an order of succession among projects, it is important 
to note that some solutions (i.e., project sequences) would be infeasible and should be 
prescreened and discarded before being simulated. To impose the precedence constraints, 
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infeasible solutions which violate any one of the precedence relations should be very 
unlikely to be selected to reproduce offspring in the next generation. Thus, if a sequence 
violates the precedence constraints, instead of running the simulation to evaluate its 
performance, its fitness value is assigned a large number (i.e., 1015) which represents the 
penalty (Tao 2006) in a minimization problem. In a maximization problem, a number 
close to 0 (i.e., 10-15) is assigned as the fitness value for a sequence violating the 
precedence constraints. Let a binary variable ip  denote the relevant precedence 
constraints, i = 1,2,…, k, if 1=kp , the kth precedence constraint is satisfied; if 0=kp , 
the kth precedence constraint is violated. Since k denotes the any given precedence 
constraint, then the objective function is multiplied by a factor of ∏

k
kp . In a 

minimization problem, when 0=∏
k

kp , the fitness value ends with a large number, i.e., 

1015. Otherwise when 1=∏
k

kp , the fitness value is the simulated total system cost. 

 

Regional Budget Constraints 
 
The large U.S. inland navigation system with numerous rivers and branches is operated 
by different geographic divisions which may have separate budgets. If there are mutually 
exclusive projects at some locations, although the number of project combinations 
increases, some combinations are infeasible due to limited regional budgets. 
 
If funds are limited (i.e., always insufficient for all worthwhile projects), funds should be 
used as soon as they become available to complete as soon as possible each project in a 
sequence. That is, as funds become available over time, and assuming that funding is 
never (anytime throughout the simulated analysis period) sufficient to implement all 
justifiable projects, then, a sequence of projects uniquely determines the schedule (i.e., 
the implementation time of each project). Thus each project in the sequence is 
implemented as soon as the funding stream allows it. Hence, with a constrained budget 
over time, the optimal project sequence uniquely determines the optimal project 
schedules. Only those projects with implementation times before the end of analysis 
period are selected. The others are implicitly rejected, thus, determining the project 
selection. 
 
As shown in Figure 1, for a given project sequence, the time at which each project is 
finished can be obtained by comparing the cumulative budgets and cumulative project 
costs. Then let oi denote the ith project to be implemented in chronological order and o

it  
denote the time at which oi is finished. Then o

it  can be determined by solving the 

equation ∫∑ =
=

o
iti

j
o
j dttbc

01
)( , where o

jc  is the capital cost of the jth project to be 

implemented. 
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Figure 1 Relations of Budget Flow, Cumulative Cost, Project Sequence, and Project Schedule 
 
The relation and formulation of regional budget constraints is similar to Figure 1 and 
equation for regional budget constraints is: 
 

( ) ∫∑ =
=

o
it

k
i

j k
o
j dttbc

01
)(  

 
where ( )

k
o
jc  is the capital cost of the jth project to be implemented, and )(tbk is the annual 

budget in region k. If regional budgets are independent, the budget constraint for the 
problem is easily divided into several regional budget constraints. That is, projects are 
funded one by one in each region. Funds in one region cannot be used in other regions. 
Therefore, it is possible that projects from different regions are funded at the same time. 
The overall implementation sequence is then composed of the implementation sequences 
in each region. 
 
As shown in Figure 2, a sequence containing only one project at each lock location is 
refined from the constraint of mutually exclusive projects. If there are different regions 
and each region has its own improvement projects and budget constraints, three regional 
implementation sequences are then generated with their own implementation schedules. 
With regional budget constraints, an overall implementation sequence to be evaluated by 
the simulation model is rearranged chronologically. 
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Figure 2 Implementation Sequence with Regional Budget Constraints 

 

Performance of Genetic Operators 
 
In general, there are two types of genetic operators: mutation operators and crossover 
operators. Currently, seven operators are equally used often in SIMOPT: partial-mapped 
crossover (PMX), order crossover (OX), position-based crossover (PBX), order-based 
crossover (OBX), insertion mutation (IM), exchange mutation (EX), and inversion 
mutation (VM). Those operators are used to provide population diversities in each 
generation. Since the mutation/crossover rates and the selection and combination of 
operators do affect the GA search performance, a question arises about how the 
population diversity helps locate the optimized solution.  
 
Those seven GA operators are presented below: 
 

Crossover Operators 
• Partial-Mapped Crossover (PMX) 
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(avoid redundancy)

Select substring at random
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• Order Crossover (OX) 

two random crossover points

1 437256

7 32 1465

5 137246

Parent 1

Parent 2

Offspring 1

two random crossover points

1 437256

7 32 1465

1 346572

Parent 1

Parent 2

Offspring 2

 
• Position-Based Crossover (PBX) 

randomly selected positions

1 437256

7 32 1465

1 436257

Parent 1

Parent 2

Offspring 1

1 437256

7 32 1465

7 342561

Parent 1

Parent 2

Offspring 2

randomly selected positions
 

• Order-Based Crossover (OBX) 
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randomly selected positions

1 437256

7 32 1465

7 346521

Parent 1

Parent 2

Offspring 1

1 437256

7 32 1465

1 435276

Parent 1

Parent 2

Offspring 2

randomly selected positions
 

 

Mutation Operators 
• Insertion Mutation (IM) 
• Exchange Mutation (EM) 
• Inversion Mutation (VM) 

Randomly select a substring
and then invert the substring

1 437256

1 36 4527

(c) VM

Randomly select two projects
and then swap their positions

1 437256

1 36 4572

(b) EM

Randomly select a project and
insert it into a random position

1 437256

1 36 4725

(a) IM
 

 

Simplified Evaluator 
 
A detailed waterway simulation model can evaluate the system performance by 
considering trip variations in demand, type, size and commodity, complex lock features 
and locking operations, and effects of system closures or project improvements. As 
discussed above, optimization based on evaluating objective functions with simulation is 
becoming feasible, but the computation time is a crucial factor. Since the optimization 
method can be fully separated from the simulation model, the development efforts for 
these two processes can proceed concurrently. A simplified evaluator is used to 
approximately estimate the system performance by bypassing some of the detailed factors 
(as shown in Figure 3). While developing the optimization model, it is faster to use a 
simple algebraic evaluator rather than a long-running simulation model. It substitutes for 
the simulation model only while the optimization methods are tested. 
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Figure 3 Optimization Model with Simple Evaluation 

 
The simple evaluator proposed here is expected to temporarily replace the waterway 
simulation model but still use some similar inputs. The simulation model used within 
SIMOPT can be applied generally to different waterway networks. Therefore, it is 
desirable that the proposed evaluator can also work on different waterway networks.  
 
In using simple queuing theory to estimate the system performance, i.e., lock delays, the 
required parameters used in the simple evaluator should include traffic volumes at locks 
and lock capacities. In considering lock interdependence, we know that as the link 
distance between locks increases, the lock interdependence decreases. Hence, the 
distances between locks should be considered in the evaluator. 
 

Model Parameters 
 
Three basic parameters are required to estimate the network system performance: traffic 
volumes, lock capacities and link distances. It is preferable to extract those data from 
inputs of the simulation model.  
 
Since the developed simulation model is generally applicable to different networks, 
network configuration data provide information on network characteristics, including the 
locks, ports, links, junctions and their relative relation.  Lock capacity is determined by 
the lock service time. Service time distributions are based on the lock and chamber 
characteristics, number, and movement directions. Network statistical data used in the 
simulation model provide such data on service times. 
 
Traffic volume through any lock can be simply determined from the O/D 
(origin/destination) matrix as long there are no alternate paths through the network. 
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Figure 4 (a) shows an example of waterway network and its O/D flow volume matrix. 
Figure 4 (b) shows the O/C paths composed by directional links.  

Port

Lock

Junction

1 3

2

A B

C

D

J

A B C D

B

A

D

C

2 3 1

2 1 2

3 1 3

1 2 3

 
(a) 

 
Links 

A↔B B↔J J↔C J↔D Trips 
A→B B→A B→J J→B J→C C→J J→D D→J 

A B 2        
A C 3  3  3    
A D 1  1    1  
B A  2       
B C   1  1    
B D   2    2  
C A  3  3  3   
C B    1  1   
C D      3 3  
D A  1  1    1 
D B    2    2 
D C     3   3 

(b) 
Figure 4 Example of O/D Matrix and O/D Path 

 
As locks are the “stations” on the links, the traffic volumes at locks are the summations 
of link volumes from different O/D paths (as shown in Table 1). Since two-way traffic 
shares the same chambers at locks, total volume at locks is the summation of volumes 
from two directions, upstream and downstream. 
 

Table 1 Calculation of Traffic Volumes at Locks 
∑(A―B)volume ∑(B―J)volume ∑(J―C)volume ∑(J―D)volume  
upstr. dnstr. upstr. dnstr. upstr. dnstr. upstr. dnstr. 

Lock#1 - - 7 7 - - - - 
Lock#2 - - - - 7 7 - - 
Lock#3 - - - - - - 6 6 

 

Delay Estimation with Lock Improvement Projects 
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Due to the time required in applying simulation-based genetic search, the sensitivity 
analysis for problem size vs. GA search time is difficult with our current restricted 
computation resources. However, for exploring the efficiency of the algorithm used in 
solving the project scheduling problem, an approximate analytical model may be 
substituted for the simulation model. 
 
The simplified evaluator is based on simple queuing theory. If each lock is assumed to 
have Poisson arrivals (with arrival rateλ ) and exponentially distributed service times 
(with service rate μ ), each lock can be independently analyzed as an M/M/1 queuing 
system with its average tow delay d   estimated as: 

μλμ
11

−
−

=d  

An M/D/1 queuing system, a simple case of an M/G/1 queuing system, has Poisson 
arrivals, constant service time and a single server. Its average delay per tow is: 

μρμ
ρ 1

)1(2
−

−
=d  

 
where  μ

λρ =  

 
In the current SIMOPT model, service time is estimated with regression models as a 
function of tow size and number of lockage cuts. Thus an M/D/1 queue can be 
appropriately applied. For lock series, if locks are far apart, the delay estimates at locks 
are additive. For two-way balanced traffic, the analytical solution for the average time 
spent by a tow in this system with n locks can be derived as 

∑∑
== −⋅

==
n

i ii

i
n

i
idD

11 )1(2 ρμ
ρ

 

where 
 D average time in the system (hours/tow) 
 n number of locks in series 
 di average time at lock i (hours/tow) 

 ρi 
i

i
λ

μ
⋅2  

λi arrival rate for each direction at lock i (tows/hour) 
μi service rate at lock i (tows/hour) 

 
However, unless link distances between locks are quite long, lock delays are not 
independent, i.e. do not add up in a simple way. In order to factor in the interdependence, 
the average time spent at lock i is adjusted with a simple interdependency factor which is 
related to the average time spent at the previous locks i-1 (upstream lock) and 
i+1(downstream lock): 
 

1,

1

1,

1*

+

+

−

− ⋅
−

⋅
−=

ii

ii

ii

ii
ii l

dd
l

dd
dd  
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where 
    id  average time at lock i 
    *

id  average time at lock i if lock interdependence exists 
    l  link length between two adjacent locks 
 
If locks are close to the junction node in a tree network, the adjustment of lock 
interdependence is factored by m and n adjacent locks from upstream and downstream of 
the branches: 

∑ ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
−=

+

+

−

−

m n nii

nii

mii

mii
ii l

dd
l

dd
dd

)(
)(

)(
)(

1,

1

1,

1*  

 
As shown in Figure 5, if expansion projects are considered at locks, the service rate at 
lock i will increase from μi to μi’ at its scheduled completion time. Given any project 
sequence, the implementation schedule is determined from the project construction cost 
and available budget. Then, according to the chronological order, at time Tj, there is one 
and only one expansion project at lock i, where i is the order of lock series (i = 1, 2, …, 
p) and j is the order of project sequence (j = 1, 2, …, q). After time Tj, the new service 
rate μi’ is applied immediately at lock i and will maintain the same value of μi’ until the 
end of the planning period. 

Given Project Sequence:      4 -- 5 -- 1 -- 7 -- 3 -- 6 -- 2

Service Rate
(Before Project)

Service Rate
(After Project)

μ1 μ7μ6μ5μ4μ3μ2

2 3 541 76

μ1' μ7'μ6'μ5'μ4'μ3'μ2'

λ λ

T1 T7T6T5T4T3T20 Time

μ5→ μ5' μ7→μ7' μ6→μ6'

μ2→ μ2'μ3→μ3'μ1→μ1'μ4→ μ4'
 

Figure 5 Project Implementation Schedule 
 
Thus, assuming that during construction the new project does not reduce the old project’s 
capacity, with the specified project schedule Tj, j = 1, 2, …, n along the time axis, the 
total time in the system for all generated tows would be estimated as follows: 
 

∑ ∑ ∑ ∑
= = +

+

−

−
− ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
−

⋅
−⋅−⋅=

q

j

p
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))(()(
)()(2λ  

where 
  W total time in system (hours) 
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  Tj the jth timing position in project schedule 
  λi arrival rate for each direction (tows/hour) 

di(t) if lock i is expanded with the jth priority (tows/hour) 
⎧ di, 0 ≤  t <Tj 

   ⎩ di’, t ≥ Tj 
 

Model Test (Enhanced SIMOPT) 
 

Test Network 
 

A simple test network is used here for testing proposed simulation-based 
optimization model (as shown in Figure 6). There are 3 rivers, 5 ports, and 7 locks (4 
single-chamber locks and 3 double-chamber locks). Locks are numbered with ID 0, 1, 2, 
3, 4, 6, 7. Lock #5 and #8 are dummy locks (network configuration is from Wang, 2002). 
Not all locks require improvement projects, but all improvement projects are located at 
real locks. The lock congestion level from baseline simulation is 7 1 6 0 2 4 3, 
which is ranked from the highest V/C (volume capacity ratio) to lowest V/C. 

Port

Two-Chamber Lock

One-Chamber Lock

Junction

0 1 2 3 4

6

7

5

8

 
 

Figure 6 Test Network for SIMOPT Extension 
 

Model Inputs 
 
Simulation inputs include network statistics (O/D trip generation rates, tow size 
distributions, chamber service time distributions and speed distributions), lock operation 
(FIFO control, towboats priority, lockage cuts, chamber assignment and chamber bias), 
demand variables (baseline O/D travel time, annual growth rates), and system variables 
(simulation period, warm-up period, number of replications) (Wang, 2005). The project 
relevant inputs include budget rate, project IDs, locations, costs, capacity expansion 
ratios, regional budget, and precedence relations (as shown in Table 2). The precedence 
constraints limit the sequence of locks receiving improvement projects. For example, the 
alternative projects at lock #6 should be funded before the alternative projects at lock #2 
and #3. The regional budget constraints restrain the project fund in each region: $40 ×106, 
$70 ×106, $40 ×106 annually for regions 1, 2, and 3, respectively. For example, the 
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alternative projects at lock #7, #2, and #6 are funded annually by the 2nd regional budget, 
70 ×106, which is uniformly distributed within each year. The termination rule for GA 
search is set at 20 generations without further improvement. Mutation and crossover rates 
are 0.07 and 0.3, respectively. All the tests are run on a Pentium III processor with 3.6 
GHz CPU and 1GB memory.  
 

Table 2 Project Information 

Project 
ID 

Lock 
ID 

Region 
Code 

Capacity 
Expansion 

Ratio 

Cost 
(×106) 

Precedence 
Relations 

1 7 2 1.2 17  
2 7 2 1.5 20  
3 7 2 1.8 23  
4 7 2 2.0 27  
5 1 1 1.2 16  
6 1 1 1.5 20  
7 1 1 2.0 26  
8 6 2 1.5 27 
9 6 2 2.0 33 

6 3, 6 2 

10 0 1 1.2 20  
11 0 1 1.5 12  
12 0 1 2.0 29  
13 2 2 1.1 32 
14 2 2 1.2 35 

6 2 

15 4 3 1.1 25  
16 4 3 1.2 27  
17 4 3 1.3 31  
18 3 3 1.1 35 6 3 

 
In this test, multiple projects are considered at some lock locations. However, at most one 
of the alternative projects for each location will be selected in any implementation 
sequence. There are 18 projects: 4 alternatives at lock #7, 3 alternatives at lock #1, 2 
alternatives at lock #6, 3 alternatives at lock #0, 2 alternatives at lock #2, 3 alternatives at 
lock #4, and 1 alternative at lock #3. With these mutual exclusivity constraints for 
projects at some locks, the solution space is 7! × (4 × 3 × 2 × 3 × 2 × 3 × 1) = 2,177,280. 
That is much less than 18! = 6,402,373,705,728,000. Additionally, with 2 precedence 
constraints, the solution space is further reduced to ( 7

4C × 4! × 2!) × (4 × 3 × 2 × 3 × 2 × 3 
× 1) = 725,760. 
 
In order to accelerate the analysis, a high budget flow is assessed. 10 replications are 
required to complete one simulation evaluation of any candidate solution (i.e., generated 
project sequence and resulting schedule). The population size in this test is set at 20. An 
interest rate of 4% is used to compute the discounted present value of cost, assuming that 
the average time value is $450/tow-hour. In the evolution process, if the generated 
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sequence violates the constraint, its fitness value is assigned a large cost and has nearly 
no chance being selected as a rents for next generation. 
 

Test Results 
 

Adding Constraints (Precedence Relations and Regional Budget 
Limitations) 
 
Since the proposed optimization search is probabilistic and requires random numbers in 
the evolution process, 20 GA search processes for the same problem but with different 
random seeds are presented in Table 3. Based on 20 search processes, the results show 
that most searches (15 out of 20 replications) converge to the similar optimized solutions, 
with optimal total cost of $594,187,215, when 20 unchanged solutions are found in 
search process. Searches #2 and #9 even converge to lower optimized solutions 
($593,965,950). The best solution in most searches has project sequence of 
2 6 8 16 11 13 18. On average, approximately 566 solutions are generated in 
each of the 20 search processes, of which 447 are new. (The other 135 are screened out if 
they exactly match previously generated solutions.) Among the 447 new solutions 23 
(=5%) are infeasible her (i.e., they violate some constraints) and are screened out before 
being simulated. Thus, on average only 424 solutions are simulated for this problem 
before an optimized solution is identified and the search stops. 
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Table 3 Optimized Results 

GA 
Search 

# of 
Gen. 

# of 
Generated 
Sequences 

# of Infeasible Solutions / 
# of New Solutions  

(% of Infeasible Solutions) 

Optimal 
Total Cost 

($) 
1 44 659  25 / 524 (4.8) 594,187,215
2 34 529 19 / 417 (4.6) 593,965,950
3 25 384 12 / 313 (3.8) 594,187,215
4 47 673 37 / 543 (6.8) 594,187,215
5 48 728 21 / 525 (4.0) 594,187,215
6 41 626 28 / 492 (5.7) 594,187,215
7 38 598 8 / 471 (1.7) 594,187,215
8 33 501 39 / 410 (9.5) 601,896,915
9 27 440 14 / 368 (3.8) 593,965,950
10 32 487 16 / 388 (4.1) 594,187,215
11 33 502 25 / 411 (6.1) 594,187,215
12 31 481 17 / 391 (4.3) 594,187,215
13 40 586 28 / 445 (6.3) 594,187,215
14 29 456 19 / 356 (5.3) 601,550,790
15 29 448 22 / 365 (6.0) 594,187,215
16 29 466 20 / 363 (5.5) 594,187,215
17 39 576 21 / 465 (4.5) 601,833,750
18 41 625 22 / 484 (4.5) 594,187,215
19 47 730 28 / 580 (4.8) 594,187,215
20 55 829 41 / 637 (6.4) 594,187,215

Avg. 37 566 23 / 447 (5.1) - 
 
In such a complex combinatorial problem, it is difficult to find the exact globally optimal 
solution. No existing methods can guarantee finding that global optimum when the 
problem is realistically large. An experiment is designed to evaluate 25,000 randomly 
generated solutions to the problem with a sampling process. 
 
The solution space for this test case contains 7! × (4 × 3 × 2 × 3 × 2 × 3 × 1) = 2,177,280 
solutions. 25,000 solutions cover approximately 1.1% of the solution space. 12,454 out of 
our 25,000 randomly generated solutions are infeasible ones which violate precedence 
constraints. Among the 12,546 feasible solutions, the best fitness value in this sample is 
593,965,950, while the worst one is 769,730,300. The sample mean is 678,628,766 and 
the standard deviation is 31,650,572. 
 
Since the sample is randomly generated, the fitted distribution should approximate the 
actual distribution of fitness values for all possible solutions in the search space. 
Excluding the infeasible solutions, the distribution for those remaining 12,546 sampled 
solutions is shown in Figure 7. Based on the plotted histograms, the best fitting 
distributions for a somewhat uneven bell shape might be the normal or the lognormal 
distributions. Figure 7 shows those 12,546 sample solutions fitted with normal 
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distribution, normal (μ, σ2), in which μ and σ2 are sample mean variance. The values of μ 
and σ for fitted normal distribution are 678,629,000 and 31,650,600, respectively. 
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Figure 7 Fitted Normal Distributions 

 
Among the randomly generated solutions, only one among 25,000 (.004%) has a fitness 
value of 593,965,950 and six among 25,000 (.024%)  have a fitness value of 594,187,215, 
which are the values found in two and fifteen, respectively, of the twenty GA searches. 
These optimized solutions are located at the extreme low end of the distribution. We can 
fit various standard distributions (such as the normal distribution shown in Fig. 7) to the 
actually observed results, but all of them overestimate the probability of finding better 
solutions, since they have long tails on their left side implying at least some minute 
probability of finding solutions with very low or even negative costs. Thus, very 
conservatively, based on the fitted normal distribution with a mean of 678,629,000 and 
standard deviation of 31,650,600, we would estimate that the probability of finding a 
solution better than 593,965,950 at .0035 and better than 571,019,000 at .0003. In 
practice further investigation of the finite lower bounds of the distribution of random 
solutions, may confirm that no solutions significantly better than 593,965,950 can be 
obtained for this problem, It should also be remembered that estimation errors in the 
input information regarding demand, project costs, lock reliability and tow characteristics, 
limit the usefulness of further searching for mathematical solutions that are globally 
optimal but limited in accuracy by the input data. 
 
Hence, the solutions optimized through GA searches, although not necessarily globally 
optimal, are still extremely good when compared with other random solutions in the 
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solution space and leave only a very small probability that significant improvements 
might still be found by letting the GA search run further. That practically shows the 
reliability and validity of the proposed search algorithm. 
 
Compared with random search, which might search though most of the solution space to 
find an optimized solution, the above GA search only takes only 2% as much effort to 
locate a near-optimal solution. That is, with random search, the possibility of finding such 
a well-optimized solution in 500 evaluations is 0.02. We would expect that such relative 
advantage of genetic search over a random search would increase as the problem gets 
larger (i.e., as the number of project permutations considered increases). 
 
Since all the evaluated solutions are recorded in order to avoid duplicate simulation runs, 
the number of generated sequences is always larger than the number of evaluated 
solutions. With our prescreening procedure, whenever the generated sequence is found in 
the recorded solution list, the sequence will not be evaluated again, thus saving the 
simulation evaluation times. As the number of search generations increases, the 
discrepancy between the number of evaluated solutions and number of generated 
sequences also increases. Approximately 46 seconds are required to evaluate one solution, 
which is averaged from 10 simulation replications. The prescreening process, however, 
takes less than 1 second to determine if the generated sequence has been evaluated. 
Therefore, it is worth prescreening any new solution against the recorded solutions 
whenever a sequence is generated to avoid the duplication of simulation. As can be seen 
in this example, approximately one fourth of generated sequences result in duplicate 
solutions. We  thus save one fourth of simulation runs by avoiding duplicated evaluations. 
 
With random generation, some infeasible solutions are generated during the search. Since 
a large penalty cost is assigned to the infeasible solutions, those solutions have only a tiny 
chance of being selected as parents producing offspring, Thus, the largest fraction of 
infeasible solutions is found in the initial population. Very few reproduced offspring are 
infeasible since their parents are mostly feasible solutions. In the above GA search 
processes, approximately 5% of solutions are infeasible among all generated solutions. 
The proposed GA search method does bypass most infeasible solutions in the solution 
space while infeasible solutions are very unlikely generated in search process. 
 
Table 4 shows the optimized solutions and four project implementation schedules for four 
of the searches which produce 4 different optimized solutions in 20 search replications. It 
indicates that the objective function for this complex combinatorial problem does have 
several local optima. As can be seen, with independent regional budget constraints, more 
than one project from different regions may be funded at the same time (e.g., project #11 
at lock #0 in region #1 and project #13 at lock #2 in region #2). The evolution of 
objective values from those 2 replications is plotted in Figure 8. The optimized solutions 
step down relatively quickly in early generations and converge at the end of genetic 
search when the best solution in the previous generation is always saved in the current 
generation. 
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Table 4 Optimized Solutions 

GA Search 1 
Total Cost ($594,187,215) 

GA Search 2 
Total Cost ($593,965,950) 

Project # Lock # Region # Time Project # Lock # Region # Time 
2 7 2 0.29 8 6 2 0.39 
6 1 1 0.50 6 1 1 0.50 
8 6 2 0.67 2 7 2 0.67 
16 4 3 0.68 16 4 3 0.68 
11 0 1 1.13 11 0 1 1.13 
13 2 2 1.13 13 2 2 1.13 
18 3 3 1.55 18 3 3 1.55 

GA Search 8 
Total Cost ($601,896,915) 

GA Search 14 
Total Cost ($601,550,790) 

Project # Lock # Region # Time Project # Lock # Region # Time 
2 7 2 0.29 2 7 2 0.29 
6 1 1 0.50 11 0 1 0.63 
8 6 2 0.67 8 6 2 0.67 
16 4 3 0.68 16 4 3 0.68 
11 0 1 1.13 6 1 1 1.13 
14 2 2 1.17 13 2 2 1.13 
18 3 3 1.55 18 3 3 1.55 
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Figure 8 GA Search Performance 
 
In this test example, the optimized solution (with an objective value of $594,187,215) 
located in most search processes (15 out of 20) is slightly inferior to the best one (with an 
objective value of $593,965,950) found in two other search processes. The discrepancy 
between these two final objective values is due to the sequence rather than choice of 
projects. That is, most local optimal solutions contain the same projects (projects #2, #6, 
#8, #11, #13, #16, #18), but different implementation sequences 
(2 6 8 16 11 13 18, or 8 6 2 16 11 13 18). Therefore, increasing the 
mutation rate or the number of search generations might be helpful in finding the globally 
optimal solution. 
 
Using the 3rd, 10th, 11th, 12th, 15th, 16th search processes as an example, Table 5 shows 
how the parameters specifying mutation rate or the number of search generations affect 
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the optimization results. Scenarios with “-2”, “-3” and “-4”are presented with different 
GA parameters, mutation rate (0.07 or 0.7) and termination conditions (20 or 50 
unchanged solutions). Scenarios “-1” are taken from the original searches in Table 3, 
with 0.07 for mutation rate and 20 for number of unchanged solutions. 
 

Table 5 Search Scenarios with Different GA Parameters 

 
As can be seen, the scenarios with increasing mutation rate do increase the number of 
offspring, i.e., the number of generated sequences. Convergence in fewer generations is 
also shown in those scenarios. When increasing the search time, i.e., by allowing 50 
rather than 20 generations without any improvement, more generations are required in 
GA search but better solutions may be found. Changing either or both of those GA 
parameters does help in finding lower optimized solutions in most cases (except scenarios 
3-2 and 3-4). 
 

GA Parameters Search Results 

Scenario Mutation 
Rate 

# of 
Unchanged 
Solutions 

# of 
Gen.

# of 
Generated 
Sequences 

# of 
Evaluated 
Solutions 

Optimal 
Total Cost 

($) 
3-1 0.07 20 25 384 313 594,187,215
15-1 0.07 20 29 448 365 594,187,215
16-1 0.07 20 29 466 363 594,187,215
12-1 0.07 20 31 481 391 594,187,215
10-1 0.07 20 32 487 388 594,187,215
11-1 0.07 20 33 502 411 594,187,215

       
3-2 0.7 20 21 609 357 594,187,215
15-2 0.7 20 32 905 515 593,965,950
16-2 0.7 20 44 1191 667 593,965,950
12-2 0.7 20 38 1073 622 593,965,950
10-2 0.7 20 54 1491 793 593,965,950
11-2 0.7 20 41 1149 662 593,965,950

       
3-3 0.07 50 92 1393 932 593,965,950
15-3 0.07 50 95 1393 969 593,965,950
16-3 0.07 50 85 1271 895 593,965,950
12-3 0.07 50 99 1474 973 593,965,950
10-3 0.07 50 92 1378 932 593,965,950
11-3 0.07 50 88 1318 947 593,965,950

       
3-4 0.7 50 51 1408 706 594,187,215
15-4 0.7 50 62 1721 869 593,965,950
16-4 0.7 50 74 1991 1018 593,965,950
12-4 0.7 50 68 1916 936 593,965,950
10-4 0.7 50 84 2282 1099 593,965,950
11-4 0.7 50 71 1987 991 593,965,950
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Performance Comparison of GA Operators 
 
The proposed simple evaluator is used for testing the performance of different GA 
operators. Seven test scenarios are first designed to test 7 different operators. 30 search 
processes are conducted to show the effects of the GA’s probabilistic nature.. The 
mutation rate and crossover rate are set as 0.5 for all test scenarios. All searches are 
terminated after 100 generations without any improvement. 
 
Table 6 shows the number of generations needed with different GA operators to find the 
optimized solution. 30 GA searches are run for each operator. Each search finds the same 
optimized solution. On average, all GA crossover operators perform similarly based on 
the number of generations required for finding an optimized solution. However, in each 
individual search, the OX operator outperforms the other operators by a factor of 12 
among 30 GA searches. The VM operator also outperforms the other two mutation 
operators. 
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Table 6 Number of Generations for GA Operators 

GA Search IM SM VM OX PMX PBX OBX 
1 126 138 142 132 151 176 135 
2 109 105 105 106 106 125 103 
3 115 158 111 109 106 104 111 
4 110 108 113 106 109 113 113 
5 143 153 185 121 115 106 161 
6 104 106 105 104 116 106 102 
7 121 134 155 105 114 126 118 
8 114 135 142 105 120 123 141 
9 149 135 106 130 133 113 122 
10 125 112 108 139 133 127 130 
11 110 102 181 114 108 101 117 
12 155 155 114 118 100 110 127 
13 141 126 104 164 119 107 143 
14 131 131 131 111 131 118 196 
15 126 161 161 102 102 113 109 
16 152 174 133 110 126 113 130 
17 132 117 114 109 109 109 109 
18 117 117 117 178 120 137 140 
19 111 111 195 127 135 126 127 
20 135 114 196 110 105 113 109 
21 115 193 152 105 105 115 114 
22 134 110 148 120 203 117 105 
23 118 110 136 235 134 111 111 
24 112 119 119 100 100 122 116 
25 116 116 124 141 122 123 110 
26 137 124 137 109 126 120 108 
27 118 114 118 110 145 130 114 
28 120 146 173 115 123 124 107 
29 137 107 131 131 108 117 117 
30 137 137 129 120 120 112 131 

Avg. 125.67 128.93 133.67 122.87 121.47 118.57 122.53 
Outperform 

times 3 4 7 12 8 4 4 

 

Conclusions  
 
In general, when solving an optimization problem, introducing more constraints makes 
problems more specific but also more complex for modeling. With more constraints, the 
solution space of an optimization problem is reduced, which may then decrease the 
required search efforts. The performance of a GA is also related to its operators that help 
create diversities among search solutions. Since the optimization method can be fully 
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separated from the simulation model, the efficiency of different GA operators can be 
tested with a simple evaluator function that temporarily substitutes for microsimualtion.  
 
When considering precedence relations, the precedence constraints are specified as 
project information inputs. There could be multiple relevant precedence relations at lock 
locations. Whenever a project sequence is generated, all the precedence constraints are 
checked before starting simulation evaluation. If any one of the precedence constraints is 
violated, the objective value of this generated sequence is assigned a large cost as penalty. 
With penalties, those sequences that violate the precedence constraints are very unlikely 
selected to reproduce offspring. The solution space is greatly reduced after considering 
precedence constraints. With our designed GA search, the largest fraction of infeasible 
solutions is found in the initial population since those infeasible solutions have only a 
very slight chance of being selected as parents for future solutions. 
 
When considering regional budget constraints, all the projects are labeled with a regional 
code based on their lock locations. Independent regional budgets which cannot be shared 
among regions fund projects within their regions. Similarly to the overall budget 
constraint, the regional budget constraints are applied in determining the project 
implementation schedule. Those regional project implementation schedules then 
determine the overall project implementation schedule, which is evaluated through 
simulation. With regional budget constraints, projects are not necessarily funded one at a 
time and may be funded simultaneously in different regions. The modified SIMOPT is 
able to consider regional budget constraints while solving the problem of sequencing and 
scheduling mutually exclusive projects. 
 
To reduce running time in a simulation-based optimization model, any newly evaluated 
solution is recorded in a “solution list”. Whenever a new sequence is produced from 
mutation or crossover operations, a pre-screening process is first performed to check 
throughout the solution list. If that solution is also found in the list, its simulation is 
omitted and its fitness value is directly assigned from the saved records. The search 
scenarios show discrepancies between the number of generated sequences and the 
number of actually evaluated solutions, due to avoiding duplicate simulations of the same 
solutions. The search time saved from not simulating those duplicated sequences (i.e., 
unevaluated solutions) is even larger if the number of generations is increased. 
 
In comparing the search performance of designed GA operators (mutation and crossover 
operators), it is faster to use a simple evaluator rather than a long-running simulation 
model. The required parameters used in the simple evaluator include traffic volumes at 
locks and lock capacities. To consider lock interdependence, the distances between locks 
are included in the evaluator. The performance of different GA operators is then 
compared by using the simple evaluator in GA optimization. The results show that OX 
operator slightly outperforms the other operators and the VM operator outperforms the 
other two mutation operators. 
 
According to previous plans, it seems desirable at this stage to proceed with further 
improvements in the optimization algorithms, including (1) smarter problem-specific 
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operators, (2) multiple alternatives at given locations that may be implemented at 
different times, (3) ability to consider tradeoffs between construction times and costs, (4) 
adaptations for network-level maintenance planning and scheduling, (5) adaptations for 
lock-component-level maintenance planning and scheduling, and (6) distributed 
processing of the optimization on multiple parallel computers. 
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Appendix 

GA Phase 2 Scope of Work 
 
In the Design Document development phase, a “testbed” simulation-optimization model 
was used to demonstrate the feasibility of using simulation and GA optimization to 
determine optimal solutions to problems requiring simulation as the objective function 
evaluation tool.  During that demonstration, several needed enhancements to the GA 
optimization capabilities were identified.  The following tasks describe those activities 
which are related to enhancing the capabilities of the GA optimization model. 
 
Task 1 Genetic algorithm 
 

1.1 Compare the performance of various mutation and crossover operators 
 

1.2 Add prescreening rules to avoid simulating solutions that are unpromising or 
violate constraints 

 
Task 2  Evaluation / Simulation model 
 

2.1   provide simple evaluator for testing optimization algorithms 
 

Task 3  Project selection / sequencing / scheduling 
 
3.1 Consider precedence relations 
 
3.2 Consider more budget constraints (e.g. regional limits, new construction vs. 
matintenance) 
 

Task 4   Continued participation on NaSS team 
 

4.1 Continue to participate in teleconferences and face-to-face meetings.  At the 
time of scope development it is anticipated that bi-weekly teleconferences will 
continue throughout the period of this scope.  In addition, at least one face-to-face 
meeting between team members is anticipated. 
 
4.2 Specific assignments.  It is anticipated issues and activities will arise during 
the period of this scope for which CEE-UMD will be tasked.  If the level of effort 
involved requires significant additional time and resources, this scope may be 
modified to provide additional funds and time to CEE-UMD.     





The NETS research program is developing a series of 
practical tools and techniques that can be used by 
Corps navigation planners across the country to 
develop consistent, accurate, useful and comparable 
information regarding the likely impact of proposed 
changes to navigation infrastructure or systems. 

 
 

The centerpiece of these efforts will be a suite of simulation models. This suite will include: 
 

• A model for forecasting international and domestic traffic flows and how they may be 
affected by project improvements. 

• A regional traffic routing model that will identify the annual quantities of commodities 
coming from various origin points and the routes used to satisfy forecasted demand at 
each destination. 

• A microscopic event model that will generate routes for individual shipments from 
commodity origin to destination in order to evaluate non-structural and reliability 
measures. 

 
 

As these models and other tools are finalized they will be available on the NETS web site: 
 
    http://www.corpsnets.us/toolbox.cfm 
 
 

The NETS bookshelf contains the NETS body of knowledge in the form of final reports, 
models, and policy guidance. Documents are posted as they become available and can be 
accessed here: 

 
    http://www.corpsnets.us/bookshelf.cfm  
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