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Abstract : Spectral reflectance of differentially-managed rice canopies was measured over an entire growing season and
analyzed with special attention to linking remotely sensed information with a simple growth model. The fraction of
absorbed photosynthetically active radiation (fAPAR), which is often used as a key variable in simple process models,
was well correlated with spectral vegetation indices (VI). VIs, such as NDVI and SAV], were derived from the ratioc
of reflectance at two wavelengths (R660 nm and R830 nm) and a new VI, termed the normalized difference ND
[R1100 nm, R660 nm], was derived from the difference of R1100 nm and R660 nm divided by their sum. These close
relations between fAPAR and VIs were expressed by exponential formulae with different parameters for the periods
before and after heading. These indices became less sensitive to fAPAR when fAPAR was larger than 0.4. The use
of R1100 nm and R1650 nm with R660 nm and R830 nm in multiple regression significantly improved the prediction
accuracy of fAPAR. A close linear relation was found between a spectral ratio R830 nm/R550 nm and leaf nitrogen
content during the ripening period -although it was not the case before heading. Results suggested that R830 nm/R550
nm was effective for estimation of leaf nitrogen content when the paddy field was regarded as a big leaf. The total
amount of leaf nitrogen was well correlated with ND [R1100 nm, R660 nm] ; nevertheless, the sensitivity was lost when
the total amount of leaf nitrogen was greater than 3 g m~2. Multiple regression analysis showed that a combination
of four spectral bands R550 nm, R830 nm, R1650 nm and R2200 nm was useful for estimation of the total amount of
leaf nitrogen. Remotely-sensed nitrogen variables would be a potential model parameters in a simple model. A real-time
recalibration module based on a simplex algorithm was developed and proved effective in linking the remotely-sensed
fAPAR with a simple model. This approach was also useful for inferring the physiological parameters such as radiation
use efficiency for each rice canopy without destructive sampling. The re-parameterization and/or re-initialization with
remotely-sensed information was demonstrated to be a practical and effective approach, especially for operational

purposes.
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measurement, Yield prediction.

Crop growth modeling is a potentially useful tool in noted that large process models' composed of hundreds

agriculture for yield prediction, diagnosis and manage- ~ of algorithms, each containing a set of empirically deter-

ment decision making as well as environmental assess- mined constants, are too complex to be tested and even

ment (Whisler et al., 1986 ; Penning de Vries et al., 1989, fail to give scientific insight to their developers (Passioura,
Horie et al., 1995). A great deal of effort has been made 1996 ; Monteith, 1996). From a practical point of view as
to develop detailed and complex simulation models to well, complicated process models usually require too

describe crop and environmental dynamics from both many input variables and/or parameters. It is tedious or

scientific and practical viewpoints. However, it has been sometimes impossible to collect all the necessary data.
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Abbreviations : DM, dry matter ; DVI, developmental index ; DVR, developmental rate ; ET, evapotranspiration ; FAPAR, fraction of
absorbed photosynthetically active radiation by a canopy; LAD, leaf-angle distribution ; LAIL, leal area index; LNG, leal nitrogen
content ; NDVI, normalized difference vegetation index ; PAR, photosynthetically active radiation ; RUE, radiation use efficiency ; SAVI,
soil adjusted vegetation index ; TLN, total amount of leaf nitrogen ; VI, vegetation index.

T A “process (-based) model” is founded on some underlying biological mechanisms and is sometimes called a “mechanistic model”,
while a “statistical model” is based on apparent correlations between growth/development and input variables. Nevertheless, a “process
model” is not always deterministic since empirical approaches are often used to express the model structure or to determine the
parameters for the model. Complexity of a model is usually associated with the number of factors incorporated into the model.
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Hence, especially for operational purposes, simple proc-
ess models that require fewer input variables are feasible
provided that they are based on sound and robust
principles and are used within the range of their calibra-
tion data set (Monteith, 1996).

~ Several simple process models (e.g., Charles-Edwards
et al., 1986 ; Horie, 1987 ; Maas, 1988 ; Kiniry et al.,
1989) have been developed. Most of them are based on
the proportional relationship between crop dry matter
production and photosynthetically active radiation
(PAR) absorbed by the crop canopy (Shibles and
Weber, 1966 ; Monteith, 1977 ; Gallagher and Biscoe,
1978) . They have been used to simulate crop growth and
yield based on routinely available weather data such as
solar radiation, mean air temperature and daylength. For
example, a rice model developed by Horie (1987) has
been successfully used to compare the potential rice yield
in pan-Pacific countries, and to estimate rice growth
under assumed climate conditions such as doubled
atmospheric CO, and elevated air temperature (Horie,
1993 ; Horie et al., 1995). Nevertheless, such simulation
models provide information on only normal growth
patterns under given weather conditions with an assump-
tion that all other conditions are optimal (such as with-
out weed, insect, disease and water/nutrient stresses).
Hence, realistic and accurate estimates for each paddy
field can not be obtained by the model simulation. It is
recognized that the nitrogen status of a rice canopy is a
major potential parameter to be incorporated to the
simple model as a next step (Horie, 1993).

A possible solution to this limitation is to recalibrate
the simple model with some measured data for each field.
Maas (1993) demonstrated the need for within-season
calibration of a simulation model. The within-season
calibration is an effective approach to reduce the model
complexity, to simplify input requirements, and to make
the model more operational (Maas, 1993). Since most
simple models are based on biological foundations and
give robust patterns of growth and development, they
can be effectively tuned up with some relevant measure-
ments such as leaf area index (LAI), dry matter (DM)
and evapotranspiration (ET). Remote sensing has been
proved useful for providing information on the actual
status of individual canopies over a wide area (e.g,
Steven and Clark, 1990; Asrar et al, 1989). Maas
(1988) also proposed the use of remotely sensed data as
calibration data for a simulation model. This approach
may be the most practical and effective method to link
instantaneous remote-sensing data with continuous
growth simulation. It is an improvement over the direct
use of remotely-sensed data as model inputs because the
model can be driven only when remote sensing data are
available. It is also an improvement over the use of the
correlation between accumulated remotely sensed index
(e.g, SNDVI) and productivity because this also
requires frequent remote sensing observations (Wiegand
et al., 1989 ; Christensen and Goudriaan, 1993).

R

As shown in some pioneering studies on this approach
i.e., recalibration of simulation models with remotely-
sensed data (Maas, 1988 ; Bouman, 1992 ; Clevers et al.
1994), there are two major methods in linking remote
sensing and crop models. 1) Outputs of a crop growth
model such as leaf area index (LAI) and leaf-angle
distribution (LAD) are used to calculate the radiative
features (e.g., spectral reflectance and microwave backs:
catter) of the crop canopy using some radiation transfer
model such as SAIL (Verhoef, 1984). Then, simulated
and measured radiative features are compared to recali-
brate the crop growth model (Bouman, 1992 ; Clevers et
al., 1994). 2) Remote sensing data are used to estimate
a fewer number of key crop variables (e.g., LAl and ET)
and they are used to recalibrate the model (Maas, 1988 ;
Moran et al., 1995). The first approach would be most
attractive provided that a crop model is able to output a
number of geometrical and spectral variables required
by radiation transfer models for a canopy, and that the
spectral model is well-calibrated to give the accurate
spectral feature of the canopy. However, considering the
recent status of the crop modeling approach (Passioura,
1996 ; Monteith, 1996) as mentioned above, such
requirements may not be feasible, especially for simple
process models.

In the second approach, a wide range of vegetation
indices, regression models, and model inversions can be
applied to estimate crop variables such as LAI and
above-ground biomass (e.g., Asrar et al., 1989 ; Steven
and Clark, 1990 ; Akiyama, 1996), which may be used
for recalibration of simulation models. As for a rice
canopy as well, it has been shown that LA, biomass, and
nitrogen status may be estimated from spectral measure-
ments (e.g., Shibayama and Akiyama, 1989 ; Shibayama
and Akiyama, 1986). These crop variables themselves
may be useful for diagnosis of crop status ; however, for
the calibration purpose of a simple model, fractional
absorptance of the photosynthetically active radiation
(fAPAR) for the canopy may be one of the most appro-
priate state variables because most simple crop models
calculate fAPAR as a key variable during each simula-
tion cycle. Furthermore, it is well-known that the spectral
reflectance of a canopy is more directly related to fAPAR
than to other plant variables such as LAI, biomass,
chlorophyll, and geometry, because both canopy re-
flectance and fAPAR are the components of the radia-
tion budget of a canopy (e.g., Asrar et al.,, 1989 ; Baret
and Guyot, 1991). Therefore, it can be assumed that the
fAPAR of a canopy may be a more direct variable to be
estimated from spectral measurements for recalibration
of a simple model. However, these studies have been
limited to the use of two-bands (red and near-infrared)
VIs and such investigation for paddy rice is still limited
considering the unique flooded conditions {Leblon et al.,
1991).

On the other hand, it is guite useful if the nitrogen
status of rice plants can be estimated and incorporated
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into the simple model. Since nitrogen status of rice plants
is closely related to physiological activity and yield,
development of new fertilizer application methods
(amount, timing and positioning in a root system etc.)
has been a major issue in Japanese rice cultivation (e.g.,
Matsuzaki et al, 1974). Because the relationship
between nitrogen content and physiological activity in
rice plants has been intensively studied (e.g., Ishihara et
al., 1979), information on leaf nitrogen content or total
leaf nitrogen of a canopy may be operationally incorpo-
rated into the model, and further used for recalibration
of physiological parameters. The radiation use efficiency,
for instance, may be expressed as a function of leaf
nitrogen status.

Thus, the objective of this paper is to investigate the
following points with special attention to linking remotely
sensed information with a simple growth model; 1) the
relationship between fAPAR and spectral reflectance in
paddy rice for vegetative and ripening periods, 2) pos-
sible fAPAR estimation from remotely sensed visible,
near- and short wave infrared spectral regions, 3) rela-
tionship between nitrogen status and spectral indices for
vegetative and ripening periods, and possible estimation
of nitrogen status from remotely sensed visible, near- and
short wave infrared spectral regions, and 4) re-
calibration procedure of a rice simulation model with
remotely-estimated fAPAR.

Materials and Method

1. Spectral and growth measurements for rice can-

opies

An experiment was conducted at the National Insti-
tute of Agro-Environmental Sciences (NIAES : Tsukuba,
Japan ; 36.0 degrees North, 140.1 degrees East, and 25 m
above the sea level) in 1994. Seedlings of rice (Oryza
sativa L., cv. Nipponbare) were transplanted in four
plots at two planting densities (D0 : 13.3 plant m~? and
‘D1:26.7 plant m~?) and two levels of nitrogen applica-
tion (NO:0-0-0-0gm=2 and NI1:5-2-2-3gm~2). The
top-dressing was made on June 25, July 20, and August
20, respectively for N1 plots. Sowing and transplanting
were on May 11 and June 3, respectively for all plots.
The dates of heading were August 16 for plot NIDI,
August 17 for plots NOD1 and N1DO0, and August 18 for
plot NODO, respectively. The date of physiological matu-
rity were September 30 for NODI and NODO, and
October 3 for plots N1D1 and N1DO. The size of each
plot was 10 m X 10 m, respectively. Plant parameters
such as fresh and dry weights, LAI, and nitrogen concen-
tration of each plant part were determined by weekly
sampling during the entire growing season. Iive hills per
plot were taken each time and separated into stems,
green leaves, heads, roots, and dead parts. The green leaf
area was measured with an area-meter (Hayashi-
denkoh, AAMS). The water content of each part was
determined after desiccation in an oven at 80°C for 48 hr,
and used to calculate dry weights. Each dried sample

was powdered with a mill (Fritsch, P-14) and the nitro-
gen concentration for each plant part was measured with
a nitrogen-carbon analyzer (Sumigraph, NC-800).

Spectral reflectance measurements over paddy fields
were made using a handheld radiometer designed for
field use (Shibayama et al., 1993) two to three times a
week during the entire growing period. The portable
spectroradiometer was equipped with seven bands from
visible to short wave infrared wavelength regions. The
central wavelength for each band was 560, 660, 830,
1100, 1200, 1650 and 2200 nm, respectively and the field
of view was 10 degrees. Observations were made from a
height of 2m above the canopy at the nadir looking
angle. Reflectance factor (designated by R ### for ###
nm) was calculated as a relative value to the reflectance
of a BaSO, standard panel. The panel was coated with
Kodak Analytical Standard White Reflectance Coating
(# 6080) to about 1.0 mm thickness. This type of refer-
ence panel has been widely used in spectral studies to
ensure the comparability of measurement results. How-
ever, any artificial panel can not be a perfect reference
mainly because of non-lambertian properties ; thus the
bidirectional characteristics of a panel and diffuse radi-
ance effect cause some errors (Gu and Guyot, 1993). As
for the directional effect of sun elevation on the reference
panel, a simple correction was made using regression
equations in which the relative reflectance was expressed
as a function of solar zenith angle (Jackson et al., 1987 ;
Jackson et al., 1992). The looking angle of the sensor at
the panel was consistently kept nadir during the entire
season to reduce directional error. Care should also be
taken for changes in spectral property with aging and
stains as well. The panel used in this experiment was
coated before the experimental season in 1994 and in-
stalled in a box to avoid dust and exposure to the sun
and open air, i.e., exposure to the sun and open air was
limited to a few seconds for each measurement. As for
the solar directional effect on the measurements of rice
canopies, no correction was made. Simulation results
using a simple spectral model SAIL (Verhoef, 1984) at
several LAI values showed that the influence of the sun
elevation during the experiment was small (about 297 in
visible and 0.2%, in near-infrared at most, respectively) .
Weather data including solar radiation, air and soil
temperatures, humidity and windspeed were collected at
the weather station of NIAES.

2. A growth simulation model for rice used in this

study

The model used here was a simple process model
which simulated the growth and yield of irrigated rice
based on weather data (Horie, 1987). It was developed
from a rational simplification of the underlying physio-
logical . and physical processes of the rice plant.
Phenological stages such as heading and maturity were
expressed by a developmental index (DVI) which is the
sum of the daily developmental rate (DVR). The DVR

I —
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was calculated from the daily mean temperature and
daylength. Dry matter production was expressed as a
function of absorbed solar radiation by a canopy and the
radiation use efficiency (RUE ; the conversion efficiency
of radiation to plant dry mass). The absorbed radiation
was determined by the incident solar radiation and
fAPAR which was a function of LAL Finally, the grain
yield was estimated as a specific proportion (harvest
index) of the total dry matter. The. harvest index was
consistent in a wide range of weather conditions, except
extremely cool or hot conditions which affected the
formation of reproductive organs. The model took into
account the effect of such extreme temperatures (steril-
ity) using the harvest index equation.

The model required five initial inputs (date of trans-
planting, global coordinates of the location, and initial
values of dry matter DMi, leaf area index LAI and
developmental index DVIi), and two daily input vari-
ables (daily values of incident solar radiation and mean
air temperature). Because of this simple input-
requirement, it was easily applied where such common
weather data are available (Horie, 1993). This model
also required twenty five parameters such as varlety-
specific information (critical daylength for photoperiod-
sensitivity, radiation use efficiency, extinction coefficient,
asymptotic value of LAI when temperature is non-
limiting, maximum harvest index, critical temperature
for cooling damage, etc.) and some empirical constants
for each equation. All parameters were determined for
cach variety and location based on a large number of
field experiments and destructive sampling. The most
sensitive crop parameters were found to be those related
to phenology, radiation use efficiency, and two initial
values (DVIi and LAIi), so that careful specification was
needed for the values of those parameters. Details of the
model were presented by Hortie et al. (1995).

3. Real-time calibration module for recalibration
of the simple model based on remotely sensed
data
The model requires variety-specific parameters, initial

observation data, and calendar-day information such as

planting date. Three initial values at the planting date

(DMi, LAIi and DVIi) strongly affect the simulation

results and tedious to be properly collected for each

Cultivar parameters

Fig. 1.

Real-time Calibration Module
Re-parameterization
Re-initialization

Simulation MODEL

Scheme of the real-time calibration system (after Maas, 1993).

paddy field. Values of the light use efficiency (RUE)
and asymptotic leal area index (LAIx) were strongly
affected by nitrogen availability, air temperature and
other stress factors. The latter two parameters Were
especially important in the estimation of biomass produc-
tivity. All other parameters were consistent and/or spe-
cific to each variety.

Recalibration of the model with remotely sensed data
was accomplished by optimization of these five parame-
ters. Based on the concept proposed by Maas (1988), a
real-time calibration module was developed and linked
with the simulation model (Fig. 1). The process of
optimization was based on a simplex method {Spendley
et al., 1962) which is an algorithm to determine the
parameters of a non-linear formula so as to minimize the
residual error between modeled and actual data. The
real-time calibration module performs both re-
initialization of DMi, LAIi and DVI, and re-
parameterization of RUE and LAIx by an automated
iteration procedure. Upon reaching a certain minimum
and stable value of residual error, the module determines
a set of parameters, and thereafter they are used for
subsequent growth simulation. In the present study,
based on the considerations in the Introduction section,
the fAPAR was used as a key variable for the recalibra-
tion procedure.

Results and Discussion

1. Experimental analysis of the relationship
between fAPAR and spectral reflectance in paddy
field
Time course changes in LAL dry matter and fAPAR

for the four rice plots are shown in Fig. 2. Under the

same weather conditions, the rice growth showed a great
variation. For example, at the middle growth stage,
values of LAI and dry matter in the minimurn plot were
only 609, and 739, of those in the maximum plot,
respectively. This great difference in the actual growth
was mainly caused by the difference in fertilizer applica-
tion (NO vs. N1). Dry matter growth and yield in NO
plots was not extremely low presumably because of high
soil fertility and nutritious irrigation water.

In this study, fAPAR was estimated from the mea-
sured green LAI because there is a well-established
relationship between green leaf area index and fAPAR.

[Output]

Simulated Growth

Remotely Sensed Growth | /Tnput]

S—
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Based on the radiation balance for a canopy, fAPAR
was expressed as;

fAPAR=1—r—(1—r, exp[— (I—~m)k LAI]) ---(1)
where r and r, are the reflectance of canopy and soil
background, respectively, and m is the scattering coeffi-
cient, and k is the extinction coefficient of the canopy to
shortwave radiation. On the other hand, the reflectance
of shortwave radiation by a rice canopy was given by the
following equation (Research group of evapotranspira-
tion, 1967) ; :

r:rf—(rf—ro)exp(m()ﬁ LAI) ........................ (2)
where r, is the reflectance when the surface is completely
covered by the vegetation. The value of fAPAR shown in
Fig. 2c was calculated from green LAI based on Egs. 1
and 2.

The relationship between vegetation indices and
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Fig. 2. Secasonal change of leaf area index, dry matter production
and fAPAR in four differentially-managed rice canopies.

fAPAR has been reported for various crops (e.g.,
Daughtry et al., 1983 ; Hatfield et al., 1984 ; Gallo et al.,
1985 ; Asrar et al.,, 1989 ; Christensen and Goudriaan,
1993 ; Leblon et al., 1991). They all showed that vegeta-
tior: indices based on reflectance at red and near-infrared
wavelengths which had been developed to infer biomass
or LAI had a close relation with fAPAR. Asrar et al.
(1989) showed that there was a curvilinear relationship
between the VI and fAPAR based on a theoretical
analysis using a simple radiative transfer model by
Goudriaan (1977) ; however, he reported a close linear
relationship between them using experimental data for
wheat canopies. To investigate these relationships for rice
canopies, three spectral vegetation indices were calcu-
lated using our experimental data (Fig. 3). These indices
are defined as,
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NDVI= (R830—R660) / (RB30+RE60) oo (3)
SAVI=1.5(R830—R660)/(R830+R660+0.5) ---(4)
ND[1100, 660] = (R1100—R660) / (R1100+R660)
...... (5)
The SAVI was proposed by Huete (1988) to reduce
the effect of soil background. We confirmed that these
three indices resulted in the least scatter of all similar
combinations of two different spectral bands. The use of
R1100 was comparable to or better than that of R830
while R1200 was not. The relationship between spectral
indices and fAPAR could not be approximated with a
linear fit, and rather, fit an exponential curve which was
suggested by the simulation analysis (Asrar et al., 1989 ;
Christensen and Goudriaan, 1993). Although an
exponential formula could be applied to the entire sea-
son, the function parameters differed before and after
heading. The higher fAPAR during the maturity stage
may be attributed to the absorption by the dead parts
and heads. The two-band spectral indices (Egs. 3-5)
became less sensitive to fAPAR when fAPAR was larger
than 0.4. As has been indicated (e.g., Baret and Guyot,
1991) it is clear that there is a limitation for two-band
vegetation indices because they are strongly affected by
the background while the vegetation cover is low and
become saturated when the vegetation cover is high.
Hence, we attempted to derive a better correlation
model which could be applied both before and after
heading. As a result of multiple regression analysis using
more than three spectral wavelengths, we obtained the
most significant regression equation using four spectral
bands, i.e., R660, R830, R1100 and R1650. The relative
significance of R660 and R1100 as a predictor variable
was especially high as suggested by the results presented
in Fig. 3. To test the statistical stability, all data were
divided into two data sets each of which consisted of data
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from different days and conditions, and then an equa-
tion derived from a data set was applied to the other data
set. Figure 4 shows the results of statistical validation of
an equation derived from one data set and applied to the
other data set. The predictability was much improved by
using these four wavelengths than the simple vegetation
indices based on two spectral wavelengths. This close
and linear relation between predicted and measured data
suggests that the usefulness of these four wavelengths
was robust, although this particular regression equation
may not be applied beyond the range of calibration data,
as'is the case for all empirical indices and models. Since
the present attempt is based on multiple regression
analysis the underlying mechanism of the contribution of
these wavelengths is not clear. More systematic use of
these wavelengths such as a multiple-band vegetation
index awaits further investigations.

2. Relationship between nitrogen status of a rice
canopy and spectral measurements for a simple
growth model
A close correlation has been found between chloro-

phyll or nitrogen content and spectral transmittance of
plant leaves (Inada, 1965). A handheld chlorophyli
meter (SPAD502, Minolta or its former models) was
developed based on these findings. On the basis of
detailed laboratory analysis, Inada (1985) concluded
that the spectral reflectance ratio R800/R550 was the
most effective index in estimation of leaf chlorophyll
content. An attempt to apply a similar relation to a rice
canopy was made by Takebe et al. (1990). Their results
showed a linear correlation between leaf nitrogen content
and R800/R550 for the vegetative stage of rice ; how-
ever, it worked only when measurements were made at
an oblique viewing angle so that the field of view was
completely covered with rice leaves, and only under
cloudy (scattered light) conditions.

Figure 5 shows the relationship between the spectral
ratio R830/R550 and leaf nitrogen content (LNGC) in
our experiment. There was a poor correlation between
them during the period before heading, but on the other
hand, a very close correlation was found for post-heading
period. It appeared that the relation was negative before
heading and positive after heading. The close relation for
the ripening stage agrees well with that found for single
leaves by Inada (1985). This relation for the ripening
period may be due to the fact that rice canopies lose
greenness while maintaining a consistent amount of
biomass during the senescence stage. These results in-
dicated that the spectral ratio R830/R550 was effective
for estimation of leaf nitrogen content when a paddy

Fig. 4. Spectral estimation of fAPAR in rice canopies for entire
growing season based on multiple regression analysis. An
equation ; fAPAR=0.479-0.0451R660—0.0343R830+
0.05R1100—0.0187R 1650 derived from a data set is validated
with a different data set.

T ——

tield wasregarded as a big leal. No other spectral indices
performed as well for the entire growing season. An
attempt at multiple regression of several spectral bands
also resulted in a poor solution (R?=0.68 using all seven
wavelengths). Results imply that the close relation on a
single leaf basis is not applicable to a field scale except at
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Fig. 5. Relationship between spectral ratio R830/R550 and leaf
nitrogen content in rice canopies. Open and closed circles
indicate data before and after heading, respectively.

the mature stage.

Estimation of the total amount of leaf nitrogen (TLN)
from remotely sensed data, instead, may be useful for the
growth model since TLN can be combined with some
physiological state-variables in the model such as LAI,
DM and RUE, and further used for recalibration of
physiological parameters. An attempt to estimate the
total nitrogen of a rice canopy (Shibayama and
Akiyama, 1986) suggested that the best-correlated single
band to TLN was around 620660 nm (r=0.68), and
that the TLN might be estimated by a multiple regres-
sion of R480, R620 and R840 (R?=0.53). Since the
range of wavelengths for their study was limited to 400 —
980 nm, we re-examined the relationship between TLN
and spectral indices of two different wavelengths such as
SAVI for our data set. The fit with least scatter was
obtained between ND [1100, 660] and TLN (Fig. 6) ;
nevertheless, the sensitivity was lost when TLN was
greater than 3 gm~* Hence, we attempted to use all
visible, near- and short wave infrared wavelength bands
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Fig. 6. Relationship between total leaf nitrogen for a canopy and
a spectral index ND[1100, 660] in rice canopies.
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Fig. 7. Spectral estimation of leaf nitrogen content for a canopy
based on multiple regression analysis. An equation ; LNC
=3.96—0.679R550+ 0.193R830 — 0.341R 1650 + 0.36 1R 2200
derived from a data set is validated with another data set.

related to chlorophyll content and R2200 to content of
lignin, cellulose and protein (enzyme), respectively
(Elvidge, 1990). This enzyme is the most abundant
nitrogen-bearing compound in green leaves and has a
critical role in photosynthesis (Elvidge, 1990). Yoder et
al. (1995) reported a significant contribution of R2132
nm in the estimation of nitrogen of maple seedlings, and
suggested that the spectral region between 2000 nm and
2200 nm would be useful for this purpose though the
reason remains unclear especially on a canopy scale. The
contribution of this region is probably attributed to the
fact that synthesis and decomposition of the enzyme
and/or relative increase in lignin and cellulese-are cou

T ——

based on a regression approach. A combination of four
spectral bands R550, R830, R1650 and R2200 was
selected by the multiple regression analysis. The equa-
tion derived from one data set was statistically validated
with the other data set (Fig. 5). The R550 and R2200
were selectively included presumably because R550 was

pled with plant growth, nitrogen supply and senescence,
but further detailed analyses based on hyperspectral
measurements are be needed.

As shown in Fig. 4, these two wavelengths were not
used for the estimation of fAPAR. The coefficient of
determination was R?=0.91 (RMSE=0.55) for the equa-

s



hyperspectral measurements over visible, near- and
shortwave-infrared spectral regions would be needed for
better accuracy. New statistical approaches such as PCR
(principal component regression) and PLSR (partial
least squares regression) that utilize all hyperspectral
data may also be useful for better estimation of chemical
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ciency, still more accurate estimation would be required A
for operational use. Hence, exploratory studies based on =i A

Fig. 10. Prediction and parameterization based on the re:
calibration system with. all available (ten) remote s
data. Abbreviations are the same as in Fig. 9. Estimated

of initial and state variables are as follows ;

components {Brown, 1993 ; Cloutis, 1996) . DV  LAL  DWi LAIx RU
S U250, 0T00, 2000, 550, 1.0
3. Recalibration of the growth simulation model Sim+RS:  0.133, 0.039, 1354, 342, 1.7¢

using the real-time calibration module
The time courses of LAI and DM simulated by the
model are shown with the actual ones for four experi-

mental plots (Fig. 8). Since the model simulation

assumes standard management practices, the simul
results (dotted lines) are unable to predict these
variations in the actual growth patterns without r
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bration. The model responded to a wide range of initial
inputs and crop-specific parameters ; however, this
implied that very careful and accurate estimates of those
values were required.

The performance of the real-time calibration module
was tested using remotely-sensed fAPAR values. Predic-
tion results by the simulation model with and without
remote sensing inputs are shown in Fig. 9. In this exam-
ple, remotely-sensed data on two dates were used for
recalibration. The approach of within-season calibration
was undoubtedly effective since a model can be modified
to fit reality with the data from the real object no matter
what kind of data are used (e.g., estimated by destruc-
tive sampling or from remote sensing). However, errors
in the estimation of fAPAR are to propagate to the
calibration results. Hence, the major problems may be
the accuracy and stability of estimation and the efficient
use of such data. The timing and number of applied data
also affect the error in simulation. Nevertheless, the
greater number of remotely sensed measurements will
more closely simulate reality, as shown by the example in
Figs. 9 and 10. With an increasing number of remote
sensing measurements, the simulation curve approached
to the results in Fig. 10, where all ten available data were
used for recalibration. The use of fAPAR may be rather
unique for remote sensing because fAPAR is more
closely linked with remotely sensed spectral reflectance
than such as LAI and biomass, and a direct measure-
ment of fAPAR is not easy, especially during the ripen-
ing period (Inoue and Iwasaki, 1991). Another useful
aspect of the within-season calibration of a model with
remotely-sensed data is that it can provide realistic
estimates of physiological parameters incorporated in the
model without any direct measurements. For instance,
recalibration can be performed with all available
remotely-sensed data to give physiological state-variables
such as maximum LAI and radiation use efficiency for
each canopy. Figure 10 shows the modified simulation
pattern and subsequently determined physiological vari-
ables based on recalibration with ten remotely-sensed
values. The asymptotic LAT and radiation use efficiency
were lowered from 5.50 and 1.95 under optimal condi-
tions to 3.42 and 1.79, respectively, for the particular
canopy. These physiological parameters may be used for
field-to-field comparison of productivity or variety-
screening. Basically, a large number of field experiments
and destructive measurements have been required to
determine those model parameters under normal condi-
tions for each variety and/or region. However, some of
those parameters such as RUE may be determined by
applying the present approach to such canopies. The

Concluding Remarks

The fAPAR for a canopy may be a useful and unique
variable for linking remote sensing to simple crop models
because it is a key variable in most simple crop models
and because the spectral measurements by remote sens-
ing can be directly related to fAPAR in principle. The
fAPAR was well correlated with vegetation indices der-
ived from two wavelengths such as NDVI, SAVI and ND
[1100, 660]. The relationship between them was not
linear but exponential, which was inferred from a theo-
retical consideration (Goudriaan, 1977). This exponen-
tial relation was also applied to the ripening stage but
with different function parameters. The results suggested
that the use of R1100 and R1650 significantly improved
the prediction accuracy of fAPAR.

The real-time recalibration module developed in the
present study proved effective in linking the remotely-
sensed data with a simple crop model. This approach
was also useful in inferring physiological parameters such
as light use efficiency for each rice canopy without any
destructive sampling. This module may be applicable to
various types of optimization of a crop growth models
with actual data.

The nitrogen status of rice plants is expected to be
incorporated in a simple process model of rice since the
fertilizer application method is still one of the major
issues in Japanese rice cultivation. There was a close
linear relation between a spectral ratio R830/R550 and
leaf nitrogen content in the ripening period although it
was not the case before heading. The results suggested
that R830/R550 is effective for estimation of leaf nitro-
gen content when a paddy field can be regarded as a big
leaf. However, no spectral indices were found applicable
to a canopy for the entire growing season. Hyperspectral
measurements are expected to provide more accurate
information on leaf nitrogen content. The total amount
of leaf nitrogen, instead, was well correlated with ND
[1100, 660] ; nevertheless, the sensitivity was lost when
the total amount of leaf nitrogen was greater than 3 g
m~2. The results of multiple regression analysis showed
that a combination of four spectral bands R550, R830,
R 1650 and R2200 was most effective. This relation was
statistically significant (R?=0.91), and the use of R550
and R2200 was effective for improving accuracy ; never-
theless, still more accurate estimation may be needed for
operational predictability.

Both remote sensing and crop simulation modeling
have great potential for information-based precision
agriculture ; however, each method has limitations. The
remote sensing can provide spectral information on

| ——
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combination of remotely-sensed data and a simple
growth model may be useful in improving the accuracy
of model prediction and in providing physiological
parameters without tedious sampling.

wide-area and non-destructive bases, but measurements
are usually instantaneous and intermittent. Crop models
can simulate robust growth patterns and final yields, but
can account for only limited factors and thus can simu-
late only normal growth under given conditions. Hence,
the combination of a crop simulation model and remote

U
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— T Troduct
sensing data is a promising, complementary approach.
Among several methods in assimilation of remotely-
sensed data in crop meodels, the re-parameterization
and/or re-initialization method with remotely-sensed
data is the most practical and effective approach, espe-
cially for operational purposes. The major challenge in
future studies will be to improve the accuracy and
consistency of remotely sensed information with an in-
sight into the accuracy requirements for operational
purposes.
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-stract : Lodging is a major cause of yield loss in the rice production systems using direct seeding. In this study,
eral characteristics of 80 F, breeding lines and 10 check cultivars were examined in connection with lodging
'stance to establish a technique suitable for screening a large number of lines efficiently for breeding rice for direct
ling. Experiments were conducted over a 2-year period in puddled wet-fields and in seed pack growth pouches
GP). Among the root parameters of SPGP seedlings, only root thickness had a significant positive correlation (r
-4957*) with pushing resistance, which is the force to bend rice culm to a designated angle and is correlated with
ging resistance. The root thickness of SPGP seedlings was also positively correlated with root thickness in the field
{8 (r=0.346"*) and 30 (r=0.512**) days after seeding. For selected lines and check cultivars, positive correlations
re found between pushing resistance and culm thickness in the field (r=0.809**), between pushing resistance and
ot thickness in SPGP (r=0.694**). Culm length and panicle number were negatively correlated with pushing
sistance (r= —0.454**% r= —0.563** respectively). Among the characteristics related to lodging, root and culm
ickness were higher in selected breeding lines than in check cultivars. Grain yield was positively correlated with
sanicle weight (r=0.601**) and harvest index (r=0.586**) but not with panicle number (r=—0.007ns). Thus the
sw-tillering, panicle-weight type plants with thick roots and culms seem to be suitable for direct seeding. Some
‘omising lines and candidate parental lines for the next crossing cycle for direct seeding were identified..

ey words : Direct seeding, Rice, Root thickness, Seed pack growth pouch, Selection.

lging has received considerable attention in water
¢-seeded rice (Oryza sativa L.) (Seko, 1962 ; Lim et
991 ; Ogata, 1996a). Because rice seeds are sown
-<tly onto the surface of paddy soil and some roots of
¢ plant are exposed to the air, the incidence of lodging
increased. Lee et al. (1991) reported that lodging of
s € plants at the milky stage decreased grain yield by
3-% in Korea. The development of rice cultivars with
Figh lodging resistance and high yield capacity is urgent
«d essential for direct sceding. The establishment of
ethods to select promising lines quickly and efficiently
s early stages of development in the laboratory would be
+ ¢ .eficial. Studies on lodging of rice plants have revealed
¢ rlationship between lodging and root system (Seko,
* ;Ogata, 1996a). Resistance to lodging of direct
s¢ - red rice is affected by thickness, distribution and dry
v 1t of roots (Miyasaka, 1970 ; Ogata and Matsue,
t- >b; Terashima et al, 1995). Ogata and Matsue
(1846a) reported that highly lodging-resistant cultivars
ade oted to direct seeding can be selected by accurate
me surement of pushing resistance, which is the pushing
force at 10 cm above the soil surface to bend the culm to
an ingle of 45 degrees in transplanting culture.
Cravois and McNew (1993) reported a positive
genetic correlation between panicle weight and rice yield,

and negative correlation between panicle number and
yield, in long-grain rice from southern U.S. Kim and
Vegara (1990) reported that close-spacing adaptability
was higher in low-tillering cultivars than in high-tillering
cultivars. Excessive plant stands or tillers can lead to
taller plants and weaker culms, increasing the potential
for crop losses due to lodging and more severe disease
pressure (Gravois and Helms, 1996). Therefore, a low-
tillering cultivar with large panicles may be an ideotype
for the direct-seeded rice plant.

The objectives of this study are; (1) to clarify the
relationship between root size in SPGP and pushing
resistance in the field, (2) to develop a selection
method for improving lodging resistance using seedlings
in SPGP and- (3) to select promising lines or candidates
for parental lines for use in direct-seeded rice tmprove-

ment programs.

Materials and Methods

Eighty F, breeding lines, which were developed from
crossings aimed at direct seeding by Fukuoka Agr. Res,
Center, and six check cultivars were used in both the
seed pack growth pouch (SPGP) and field experiments
in 1996. Lines No. 1~50 were derived from the cross of
Aoinokaze//Lemont/ Hinohikari. Lines No. 51~80
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