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T his review addresses the potential of image-based 
renwte sensing to provide spatially and temporally dis- 
tributed information for precision crop management 
(PCM). PCM is an agricultural management system de- 
signed to target crop Ad .soil inputs according to within- 
jield requirements to optimize projitability and protect 
the environment. Progress in PCM has been hampered 
by a lack of timely, distributed information on crop and 
soil conditions. Based on a revieu! of the inf&mation re- 
quirenlents of PCM, eight areas were identi$ed in which 
image-based remote sensing technology could provide in- 

formation that is crcrrently lacking or inadequate. Recorn- 
mendations were made for applications with potential j)r 
near-term implementation with available remote sensing 
technology and instrumentation. We found tllat both air- 
cra& and satellite-based remote sensing could provide 
valuable information for PCM applications. Images from 
aircrft-based SensorS have a unique role for m&oring 
.seasonally variable crop/soil conditions and for time-spe- 
ci$c and time-critical crop management; current satellite- 
based sensor,s have limited, but important, applications; 
and upcoming commercial Earth observation satellites 
may provide the resolution, timelinesss, and high quality 
required for many PCM operations. The current limita- 
tions for image-bu.ped remote sensing applications are 
mainly due to Sensor attributes, such as restricted spec- 
tral range, coarse spatial resolution, ,slow turnaround 
tirw, and inadequate repeat coverage. According to ex- 
perf.s in PCM, the potential market j& remote serlsing 
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proc1uct.s in PCM is good. Future work ~sl~dd he focused 
on assimilating remotely .sensed inf&-ma- tion into ex- 
isting decision support systems (DSS), and condncting 
economic ant1 technical analysis of remote sensing appli- 
cations with season-long pilot projects. OEl.qevier Sci- 
ence Inc., 1997 

INTRODUCTION 

In the late 1970s and early I98Os, a great research effort 
was focused on the use of multispectral images for crop 
inventory and crop production. The Large Area Crop In- 
ventory Experiment (LACIE) demonstrated the feasibil- 
ity of utilizing satellite-based multispectral data for esti- 
mation of wheat production (MacDonald and Hall, 1980) 
based on techniques that are still in use today by crop 
production forecasters in the USDA Foreign Agricultural 
Senice. The AgRISTARS program conducted by the 
USDA, NASA, and NOAA extended this methodology to 
include other crops and regions and expanded the re- 
search to encompass larger agricultural issues. The LA- 
CIE and AgRISTARS programs not only produced ro- 
bust methods for regional crop identification and cond- 
tion assessment, but also defined the physics of relations 
between spectral measurements and biophysical proper- 
ties of crop canopies and soils. It was widely recognized 
that this basic scientific and technical knowledge had 
great potential to be used by farmers for making day-to- 
day management decisions. 

Aauer (1985) summarized the underlying premise of 
using optical remote sensing for crop condition assess- 
ment. That is, multispectral reflectances and tempera- 
tures of crop canopies relate to two basic physiological 
processes: photosynthesis and evapotranspiration. In both 
processes, LAI, the ratio of leaf surface area to ground 
area, is the fundamental canopy parameter, and crop de- 
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v+mlent stage is another crop paranleter of’ major in- 
portance. IIc identified an emerging conceptual f~-iiiii~~- 

work in which spectral data were used in coillbinatioir 
with meteorological, soils, and other crop data to 1i10&1 
crop growth, condition, and ,yield. Jackson (1984) pre- 
sented a similar view and evaluated current and future 
remote sensing systems for use within sl~ch a framework 
for farm management. His %)-year vision for an ideal sys- 
tem included a fleet of autonomous satellites providing 
frequent, high-resolution data with quick turnaround and 
delivery to users. This \&ion may soon become reality 
with the planned launch (1997-1998) of several commer- 
cial satellites that are designed to provide multispectral 
images with 3-day repeat coverage, l-4 m spatial resolu- 
tion, and delivery to users within 15 min from the time 
of acquisition (Fritz, 1996). The synergy of such an im- 
aging system with the scientific algorithms and models 
developed over the past 30 years could provide detailed 
crop aiid soil information to farm managers and crop 
consultants at a finer temporal and spatial scale than 
ever before. 

Not coincidentally, this pending increase in informa- 
tion supply coincides with advances in farm management 
technology that will result in an acute demand for crop 
and soil information. Recent advances in technoloc fol 
variable-rate production input applications, with concur- 
rent advances in global positioning systems (GPS) and 
geographic information systems (GIS), have provided 
powerful analysis tools for farm management. This has 
been termed “precision crop management (PCM)“, de- 
fined as an inf&mutior~- and technology-based agrkxl- 
tui-al marzagevwnt system to identify, nnalyx: anti maw 
age site-soil spatial and tenqmral vam’ahilit~y within jelds 
for q~tivnum projitability, sustainability anal protectiorr of 
the erwironment (Robert et al., 1995). 

Variable rate technology (VRT), probably the best 
developed part of the PCM system (Searcy, 1995), ap- 
plies production inputs at rates appropriate to soil and 
plant conditions within fields. Variable rate systems have 
been demonstrated for several materials, including herhi- 

tide (Mortensen et al., 1995), fertilizer (Fergusen et al., 
1995; Schueller, 1992), insecticide (Fleischer et al., 
199(i), and seeds. Concurrent advances in GPS technol- 
o&y have provided the moderately priced, accurate posi- 
tioning system necessary for fikld implementation of 
VRT (Palmer, 1995). These advances in location technol- 
OQ have been combined with the ubiquitous use of GIS 
by PCM workers (Usery et al., 1995) in the most ad- 
vmced systems for PCM. For example, Hanson et al. 
(1995) described a herbicide application system mounted 
on a tractor with a GPS guidance system which was 
linked to a digital weed map, allowing only weed-infested 
areas of the field to he sprayed. The weak link in many 
PCM systems is the availability of such maps of weeds, 
insect infestations, crop nutrient deficiencies, and other 
crop and soil conditions. Remotelv sensed images oh- 

taincd with aircraft and satellite-l)asrcl wisor5 Ira\ CL t IIC’ 

potelltial to proviclr sllcll lllil~)S for the \v~lolc~ lieltl. 1101 
jllst sanipltl sites, within the tilne and space’ rc,clui retircllts 
of PCM applications. 

It is this convergence of technological atl\~~ic~~ that 
inspired this review of the potential for image-leased r(‘- 
mote sensing to provide spatially and temporally distrib- 
utecl information for PCM. In the next sectioll. we IX- 
viewed the current and proposed methods for obtaining 
information for PCM, with particular wfererw to the 

published results of the 1994 International (:onference 
on Site Specific Management for 14gricultural Systems 
(Robert et al., 199.5). Based on that review, we identified 
eight areas in which remote sensing teclinolo~~. could 
provide information that is currently inadequate or COIII- 

pletely imavailable. We provided a review 01’ recent ad- 
vances in KS related to these eight areas. [For a general 
review of remote sensing for assessing crop conditiolls, 
readers should refer to reviews by Jackson (1984). Baucr 
(1985). and more recently, Hatfield and Pinter ( IYw).] 
With consideration of the technical limitations of c‘ur- 
rently available sensors and advances in image processing 
techniques, recommendations were made for applica- 
tions with potential for near-term iniplernel~tation and 
applications that deservt2 flu&r research. An economic 

analysis of these applications was not attempted, hut it 
should be considered in selecting the applications that 
are most promising for commercial development. 

REVIEW OF CURRENT METHODS FOR 
OBTAINING INFORMATION FOR PCM 

There are three basic types of information required for 
PCM: 

information on seasonally stable conditions 
information on seasonally variable conditions 
information required to diagnose the cause of 
the crop yield variability and develop a manage- 
ment stratea 

Since the designations of “seasonally stable” arid “season- 
ally variable” are not conventional PCM terminolo~, we 
will define them here. Seasonally stable conditions are 
those that are relatively constant through the crop grow- 
ing season, such as yield-based or soil-based manage- 
ment units, and only need to be determined preseason 
and simply updated, when and if necessary. Seasonally 
variable conditions are those that change continually 
within the season, such as soil moisture, weed or insect 
infestations, and crop disease, and need to be drter- 
mined numerous times during the season ti)r proper 
management. The first two categories are based on the 
assumption that the condition of interest (such as soil 
physical properties, nutrient availability, or weed popula- 
tion) is already defined, and information is needed to 
spatially quantify the condition. The third category can 



encompass both seasonally stable and seasonally variable 
conditions where the source of variability in crop produc- 
tion is unknown. These three types of information have 
potential for use of image-based remote sensing and will 
be addressed individually in the following sub-sections. 

One approach to meet some of the information re- 
quirements of PCM has been through the use of nonin- 
vasive tractor-based sensors which control variable rate 
applicators in near-real time. Several such sensors have 
been developed for measuring soil organic matter (Tyler, 
1994), soil nitrate levels (Adsett and Zoerb, 1991), and 
soil clay content and thickness (Sudduth et al., 1995). 
For real-time crop monitoring, there has been research 
into the development of weed sensors to discriminate 
weeds from standing crops (Thompson et al., 1990; Gu- 
yer et al., 1993), a tractor-based charged couple device 
(CCD) camera to discriminate plants from soil and trash 
for guiding most-beneficial chemical applications (Cai 
and Palmer, 1994), and a sensor for assessing crop nitro- 
gen status based on an in-field reference of known nitro- 
gen status (Blackmer et al., 1996). Daughtry et al. (1995) 
proposed a fluorescence technique that allowed discrimi- 
nation of residue from bare soil, and a commercial proto- 
type that could be mounted on a trailer is currently be- 
ing built. These vehicle-mounted sensors are mentioned 
briefly here due to their critical role in PCM; however, 
this review and further discussion will be limited to satel- 
lite- or airborne-based spectral observations, and those 
PCM applications that seem most promising at the pres- 
ent time. 

Mapping Seasonally Stable Management Units 

Grain Yield Monitors 
One of the more dramatic advances in acquiring spatially 
variable data for PCM has been the commercial develop- 
ment of combine-mounted grain yield monitors. The 
data from the monitor are georeferenced using a Differ- 
ential GPS (DGPS) receiver onboard the harvesting 
equipment to produce yield maps. Yield maps collected 
for several growing seasons can provide an integrated ex- 
pression of relative productivity that is a property of the 
field and unchanging from year-to-year and from crop- 
to-crop (Kitchen et al., 1995). Yield maps have been 
used directly for management of fertilizer application 
(Schueller and Bae, 1987; Eliason et al., 1995). water ap- 
plication (King et al., 1995), and planting and soil engag- 
ing operations (Schueller, 1988), and have important in- 
direct applications in management of weeds, insects, and 
crop diseases. On the other hand, yield monitors can re- 
sult in significant errors in yield estimation due to coarse 
resolution, time lags in moving the grain from the crop 
to the point of measurement, variations in combine 
speed, and noise induced by the machine vibration and 
varying terrain (Lamb et al., 1995). 

The production of grain yield maps generally re- 

quires that instantaneous grain yields acquired at coarse 
and/or variant resolutions with DGPS positioning be in- 
terpolated to obtain average yields at a given, finer reso- 
lution. Generally, geostatistical analysis is used for this 
interpolation, based on kriging or the simpler inverse dis- 
tance technique (Murphy et al., 1995). The drawbacks of 
geostatistical analysis include the need for a large num- 
ber of samples at close intervals and the assumption of 
stationarity (i.e., random, not systematic, data variation) 
which is often untrue for soil and crop properties (Tomer 
et al., 1995). Consequently, other means for interpolating 
instantaneous yield measurements to produce a map 
product have been suggested. Tomer et al. (1995) used 
digitized aerial infrared photographs and point-based 
harvest samples with regression analysis to map crop 
grain yields. Long et al. (1995) compared four methods 
for deriving yield maps from combine-based vield mea- 
surements-interpreting soil survey maps, interpreting 
aerial photographs, and two kriging-based methods-and 
found that the aerial method was significantly more accu- 
rate than the other three methods for their dryland 
cropped site. In any case, there is general agreement on 
the need for improvements in all types of’ yield mapping 
methodoloh? for PCM. 

Soil Fertility Properties 
Farm managers have long known that soil variability in- 
fluences the productive potential of agricultural lands. 
Maps of soil fertility and physical attributes are being 
used in PCM to determine the responsive and nonre- 
sponsive parts of fields (Wolkowski and Wollenhaupt, 
1995). Nielsen et al. (1995) identified several of the most 
important soil fertility attributes that could be mapped 
and managed for improved yield: available soil nitrogen 
or some other macro or micro plant nutrient, relative po- 
sition and slope of the terrain, and soil organic matter 
content. Soil organic matter content has been directly re- 
lated to the efficacy and rate of fertilizer applications, as 
well as to crop yield and other soil variables such as 
phosphorus. Pierce et al. (1995) suggested that soil phys- 
ical properties or landscape (particularly in their effect 
on \vater relations) may be even more important than 
soil fertility in explaining yield variations. Bell et al. 
(1995) olltlined three approaches for mapping soil vari- 
abilitv for PCM. These were based on 1) count\: soil sur- i 
veys at 1:12,000 to 1:24,000 scales, 2) geostatistical inter- 
polation techniques (e.g., kriging) to map soil properties 
from a grid of point samples, and 3) use of soil/landscape 
models with input from either remote sensing or a digital 
elevation map (DEM). 

County soil surveys have two limitations for use in 
PCM. First, the typical scales of greater than 1:12,000 
cannot be used to delineate within-field soil variability. 
Spangrud et al. (1995) suggest that scales of I:6000 to 
1:8000 are needed to guide soil specific crop manage- 
ment. Second, soil attributes from countv s~u-v~vs are too 



imprt~ciselv nieasurcd to adecptrly rrpselit soil attri- 
I )ute varia~ioii that can affect crop yield at the f&Id scale 
(Moore et al., 1993). 

In most cases, information for soil-specific crop 
management has been obtained through soil sampling in 
large grids that overlq- a field, at optimal grid spacings 
ranging from 60 to 100 m (Franzen and Peck, 1995). 
These discrete samples are converted to continuous map 
format through the statistical technique of kriging, for 
which the limitations were discussed in the previous sub- 
section. Nielsen et al. (1995) suggested several alternatives 
to conventional kriging for making soils maps for P(IM, 
inchiding use of spectral and cospectral analysis, state>- 
space analysis, spatial covariarice, and fuzzy set analysis. 

Another approach for mapping soil management 
units is based on soil/landscape models, generally com- 
bined with DEM information. Verhagen et al. (1995) de- 
scribed a deterministic, mechanistic simulation model 
that combined soil physical measurements with a water 
balancf~ irwclu16 and a crop growth model to distinguish 
soil horizons with equivalent hydrologic properties and 

map spatial arid temporal variations. Another simulation 
model, proposed by Roy&erg and Chaplin (1995), w;1s 
used to describe the variability in soil physical condition 
during tillagr based on the soil resistaricr force, which 
could be measured with tractor-based tillage tralisducers. 
Models based solelv on relief and landscape position 
have been used to Lip spatial variahilit!, of several soil 
chemical and physical properties (c.g., organic C, pH, 
soil moisture, depth of A horizon, depth to free carbon- 
ates in glaciated landscapes) (Wang et al., 1995; Bell et 
al., 199s) arid have proven useful for managing ftartilizrr 
applications (Nolan et al., 1995). On61 disadvantage of 
these approaches for PCM is the dependence upon 
DEM data which are generally acquired from USGS 
contour maps at 30 m ~30 m spatial resolution on which 
elevation data are rounded to the nearest meter. Such 
data arc‘ too coarse for most precision tarming applica- 
tions. Bell et al. (1995) note that the optimal scale for 
describing landscape characteristics is unknown and 
probably depends on climatic conditions; however, a 10 
m X 10 m grid with submeter elevation accuracy is pre- 
ferred for many PCM applications. Spangrud ct al. 
(1995) explored the possibility of mapping field eleva- 
tions with a GPS and evaluated the number and pattern 
of such measurements needed for PCM. 

Mapping Seasonally Variable Management Units 

Though many PCM decisions can be made based on sea- 
sonally stable management units defined by maps of soil 
fertility or yield, there are other management decisions 
that could benefit from seasonally variable information 
on such conditions as weed or insects infestation, crop 
stress (due to water or nitrogen), crop disease, or soil 
moisture. For example, information on within-field soil 

moisture \7iriation throrq&orrt thra s~son ILLS IKY~I she\\ ii 
to he relcvaiit to decisions made aboitt tillagcs acti\-itirss 
(Lindstrom ct al., 199s) and nitrogen applicatioiis (1 Iiig- 
gins a11d Alderfer, 199Fj: Sadler et al.. 1 W5i. 

Cherdly, commonly IIS& P(:M inforirl~ttioir-gatll(,r- 
ing techniques (e.g., yield monitors or gricl sampling) 
cannot providr the quick, large-area covcrugc~ required 
for mapping seasonally variablt~ management units. Trch- 
niques that have herri spccificallv designed to obtain sc’a- 
sonally variable information for PCM arc generally based 
on evaluation of aerial imagery. For t~xarr~pl~~, Hlackmcr 
et al. (19951 used aerial images obtain4 at a wavc~length 
that was particularly seiisiti\rcl to canopy N Iwels (055 
pm) to map iiitrogen-tlrfici~,iit areas within fields of corn. 
Similar techniques have shown promise for tletcrmiiiing 
nitrogen levels of wheat (Stanhill ct al.. 1972; Hinzrnan 
et al., 1986) and rice (Takebr c-t al., 1990). In atteinpts 
to use geostatistics with point measurements to arraly~e 
weed aggregations, Morte~iser~ et al. (1995) cited the 
benefits of using “sellsing” technoloq to provide\ spatial 
maps of’ we4 infestations or guide real-tinit> spr;i\‘-ilo- 
spray decisions. Hanson c+ al. (1995) identified th& ad- 
vantages of ilsiiig aerial imagery for mapping wc~d infes- 
tation (r.g.. cost. timing, and accuracy) and dernoristratr~d 
a feasible technique for mapping wild oats iri wllvat 
fields. These applications will bc explored ~I~-c tidl\~ in 
the next main section. 

Determining Cause of Yield Variability and 

Management Strategy 

Once information on yield variability is available, it must 
be analyzed for making management and application de- 
cisions. The challenges arc to distinguish deterministic 
sources of yield variability from stochastic sources 
(Searcy, 1995), to develop VRT decision criteria (Kitchen 
et al., 1995) in the form of decision support systems 
(DSS), and to understand the relation between crop and 
soil variability and management strategies (Calvin et al., 
199s). Tcvis’ ( 1995) suggested several options ranging 
from simply applying a threshold function to a specified 
attribute layer (Tevis and Searcy, 1991) to using an ex- 
pert system with several agronomic attribute layers (He 
et al., 1992). Managing crop and soil conditions that vary 
in both the spatial and temporal domain will require t‘x- 
pert systems to analyze data (determine cause/effect) and 
make integrated management decisions (Fixrn and 
Reetz. 199S). 

McGrath et al. (1995) describe a packaged system 
for fertility management that includes automated data 
collection and analysis, an expert system for evaluating 
data in combination with other information to suggest 
management options, and automated applicators to carry 
out the management program. This package has individ- 
ual submodels for phosphorus, potassium. organic mat- 
ter, and soil moisture, where static and dynamic informa- 



tion is required for each. This modular approach in a 
GIS environment appears to be the norm for develop- 
ment of expert systems and decision support systems for 
PCM (Brown and Steckler, 1995). Griffith (1995) fore- 
sees a merging of many models to define specialized por- 
tions of the behavior of the total production process. 
Other decision aid models have been developed for man- 
aging specific crops such as sorghum (SORKAM, Vand- 
erlip et al., 1995), and cereals (CERES with DSSAT, 
Hoogenboom et al., 1994; Booltink and Verhagen, 1996). 

OPPORTUNITIES FOR IMAGE-BASED 
RS IN PCM 

In the previous section, the state of PCM was reviewed 
and several opportunities for remote observations were 
identified. Each of the next subsections relate an issue of 
PCM information acquisition identified in the previous 
section to the status of remote sensing technoloa and 
theory for that issue. This is not meant to be an exhaus- 
tive review of the progress of RS, but rather examples 
that illustrate some of the more common approaches re- 
lated to each issue. At the end of each subsection, oppor- 
tunities are identified wherein RS data could be used to 
identi$ or analyze site-soil spatial and temporal variabil- 
ity for PCM. 

Discussion was limited to the most commonly used 
wavelength regions at spatial resolutions of 1 km or less: 
reflected radiance in the visible, NIR and shortwave in- 
frared (SWIR) wavelengths (0.4-2.6 pm), emitted radi- 
ance (Z-16 pm), and backscatter of synthetic aperture ra- 
dar (0.9-2.5 cm referred to as SAR). Reference is made 
to some of the more commonly used concepts in KS; these 
will be defined here, with an appropriate citation for fur- 
ther reading. Spectral vegetation indices (VI) are a ratio 
or linear combination of reflectances in the red and NIR 
wavebands that is particularly sensitive to vegetation 
amount (Jackson and Huete, 1991), or the amount of 
photosynthetically active plant tissue in the plant canopy 
(Wiegand et al., 1991); a comlnonly used VI is normal- 
ized difference L’I (NDVI) which is the difference of the 
red and NIR measurements divided by their sum. Hyp- 
erspectral RS is the measurement of spectral “signatures” 
using data of high spectral resolution (e.g., O.O~ pm) 
within the range of 0.4-2.6 pn (Price, 1990). The “red 
t:d’@‘ in h>perspectral RS refers to the transition from 
low reflectance in the visible region of the sprctrum to 
high NIR reflectance that is particularly sensitive to chlo- 
rosis and crop stress (Demetriades-Shah et al., 1990). 

Converting Point Samples to Field Maps 

Images of surface reflectance, temperature, or radar back- 
scatter may provide a solution to the problems identified 
in converting point-based samples to continuous soil or 
yield maps usink r grostatistics and other conventional 

methods. This will be termed “indirect” mapping be- 
cause some in situ data (such as soil or yield samples) is 
required to relate the spectral data to the physical pa- 
rameter of interest. In many cases, the best results in 
applying remote sensing techniques to identi[v manage- 
ment units will be obtained when the crop is present. 
Crop plants integrate the effects of the climatic em-iron- 
ment, stress (disease, nutrient, and water). and soil prop- 
erties. These effects are often expressed in the crop can- 
opy achieved (Wiegand and Richardson, 1984). Two 
techniques show some promise here: image classification 
(supervised or unsupervised), and cokriging. 

Collventional image classification, whether super- 
vised or unsupenised, utilizes a statistical routine (e.g., 
maximum likelihood) to sort an image into discrete spec- 
tral categories. In supervised image classification, on-site 
measurements of soil or crop conditions are used to 
“train” the classifier and the product is a u~ap of the de- 
sired surface parameter. Unsupervised image classifica- 
tion circumvents the need for training sets by using the 
image spectral data to define “clusters” that are used to 
produce a map of spectrally similar classes. The spectral 
data from sample sites can be extracted and then be re- 
lated to measured variables at the same sites (vield, avail- 
able water, salinih, soil nitrogen. etc.) to tlrtinr the un- 
supervised class map in the variable of inttsrcst (Wiegand 
et al., 1996). 11nagc~ classification techniques run quickly 
ant1 rrisily on many personal computers, ;lIl( 1 are under- 
utilized in PCM. Furthermore, recent advanccas in super- 
visetl image classification have decreased the large 
ground data sets required for accurate map-making. Al- 
ternative classifiers, such as artificial IKWI-al network or 
genetic algorithnrs, require fewer saiiiples than conven- 
tional classifiers, though care must still 11~ taken in se- 
lectillg the composition of the samplps I Foodv et al., 
199s; Clark and Cafias, 1995). There 11ave beer; sugges- 
tions that a filmy logic classifier would worh best fbr ag- 
riclJtura1 fields of high lieterogeneit) (Blonda (tit al., 1991). 

The limitations of conventional krigillg techniques 
for prodiicing maps of crop and soil conditiolis from on- 
site san~pl~s have been addressed in the prwiolls section. 
The use of “cokriging,” which links nrultiplr measure- 
ments through regression analvsis (tcrl11ec1 coregionaliza- 
tion). has been suggested as an altrrnati\~c~. Atkinson et 
al. ( IW9) found that cokriging with oil-sit<, ~neasure- 
incuts of reflectance and vegetation co\xlr resulted in 
maps of cover with three times the prcacision achievable 
with univariate kriging for a given amount of c,ffort. The 
use of remotely sensed images with statistical techniques 
has been suggested to improve map accllrac.\, reduce the 
numbcar of soil samples needed, and circlurn~ent the need 
for annual grid sampling of soil nitrogen k&s (Ferguson 
et al., 1995). Fuzz\- set analvsis within a GIS emiron- 
ment is particularh, conducive to incorporatioir of aerial 
imagrs (McBratnri- and Whelan, 199Fj). 



Thus, WC‘ suggest the following:’ 

1. Measurements of’ soil and crop properties at siull- 
ple sites combined with multispectral image?. 
could produce accurate, timely maps of soil and 
crop characteristics for defining precision manage- 
ment units. 

Mapping Crop Yield 

Remote sensing has been used operationally for prehar- 
vest forecasting of yield. In the simplest approach, final 
grain yield has been correlated with a single observation 
of the normalized difference vegetation index (NDVI) or 
an NDVI time integral at specific times during the sea- 
son (Tucker et al., 1980; Rasmussen, 1992; Yang and An- 
derson, 1996). In other applications, NDVI has been 
used to determine yields (e.g, corn, soybean, or grain) by 
computing the areas under the predicted growth profile 
for some selected time periods (Boatwright et al., I988), 
monitoring the postanthesis senescence rate (Idso et al., 
1980: Potdar, 1990; 1993), and measuring the length of 
the grain-filling period (Quarmby et al., 1993). Most 
studies suggest that NDVI can be effective for providing 
information on germination and vegetative stages, but 
this information must be combined with input frorn an 
agrometeorological model to accurately determine crop 
yields (Pate1 et al., 1991; Rudorff and Batista, 1991). 

Integrated with models, RS data are generally used 
to estimate model inputs related to light interception, 
such as leaf area index (LAI) or percent vegetation cover. 
The rate of crop growth is then calculated from meteoro- 
logical data based on an efficiency factor for conversion 
of radiant energy to biomass (Wiegand et al., 1986a). 
This information is used to predict yield as a function 
of biomass growth rates, like those listed in the previous 
paragraph. In another approach, remotely sensed inputs 
of instantaneous LA1 or evaporation rates are used for 
within-season model calibration to reinitialize or repa- 
rameterize the model and improve yield prediction 
(Maas, 19X8; Moran et al., 1995: Bouman, 1992). The 
latter approach has the advantage of requiring fewer re- 
motely sensed inputs since the calibrated model is used 
to estimate crop growth when remotely sensed data are 
not available. 

Thus, we suggest the following: 

2a. Multispectral images obtained late in the crop 
growing season could be used to map crop yields 
with approaches as simple as regression. 

2b. Remote sensing information could be combined 
with crop growth or agrometeorological models 
to predict final yield. 

Mapping Soil Variability 

Mapping soils of naturall\i q&ted areas with RS is ot- 
ten bawd on the association of vegetation tvpe with soil 
(Korolyuk and Shclrerbcnko. 1994); this is- not i&ble 
for agricultural sites where crops simply increase thr 
complexity of image interpretation. A more appropriate 
method for agricultural applications woi~ld bc to extract 
information about soil surface conditions directly from 
radiornettic measurements of bare soils. Surtacc reflcc- 
tance information has been related directly to variabilit) 
in loess thickness (Milfred and Kiefer, 1976). soil organic 
matter (Robert, 1993; Zheng and Schreier, 1988; Bamn- 
gardner rt al., 19X)), soil calcium carbonatt~ content (1,~ 
one et al., 1995), soil nutrients (paiticularl~ those associ- 
ated with soil texture and drainage) (Thompson and 
Robert, 199fj), iron oxide content (Coleman and Mont- 
gomeT, 1987). and soil texttIre classes (with similar I‘?‘- 
sponses to water and fertilizer) (King et al., 1995). Soil 
thermal information has been linked with variations in 
soil moisture content (Ids0 et al.. 1975) and soil compac- 
tion (Burrough et al., 1985). 

Despite the relations among soil reflectance and soil 
properties, remotely sensed images are not currently be- 
ing used to map soil characteristics on a routinc basis 
(with the exception of high and mediurn altitude aerial 
photographs that serve as base maps in county level soil 
surveys). This is because the reflectance characteristics 
of the desired soil properties (e.g., organic matter, tex- 
ture, iron content) are often confused by variability in 
soil moisture content, surface roughness, climate factors, 
solar zenith angle, and view angle. This is particularly 
true for mapping agricultural soils with varying cultiva- 
tion practices. In fact, Leek and Solberg (1995) showed 
that images of surface reflectance acquired during times 
of greatest plowing activity could be used to map tillagr 
and assist in erosion control. 

Kimes et al. (1993) proposed to overcome this con- 
fusion by using an expert system to analyze hverspectral 
images based on spectral signatures of some soil proper- 
ties. It worked well for In-oad classes (e.g., fine versus 
coarse texture) and was most successful in distinguishing 
high and low organic matter content soils. In another ap- 
proach, Muller and James (1994) suggested that the em- 
certainty in mapping soil particle size caused by differ- 
ences in soil roughness, moisture, and vegetation cover 
could be minimized by using a set of multitemporal im- 
ages for soil classification. S&bury and D-Aria (1992) 
reported that thermal infrared band ratios from the II~- 
coming EOS ASTER sensor (range X-14 ,~uln, resolution 
90 in) would bt~ used to discriminate such soil properties 
as particle size, soil moisture, soil organic content, and 
the presence of abundant minerals other than quartz. 

Remote sensing may also prove usefill for mapping 
more transitory conditions, Sikh as salt-affec+ed soils. 
There is evidence that salt-affected soils in grneral show 



Thus, we suggest the following: 

3a. 

3b. 

Multispectral images obtained when soils are 
bare could be used to map soil types relevant to 
PCM with approaches based on models and/or 
on analysis of single or multiple image acquisi- 
tions 

Maps of spectral variability (obtained under con- 
ditions of either bare soil or full crop cover) 
may prove useful for revision of maps of manage- 
ment units 

relatively higher spectral response in the visible and 
near-IR regions than normal cultivated soils, and strongly 
saline-sodic soils were found to have higher spectral re- 
sponse than moderately saline-sodic soils (Rao et al., 
1995). Verma et al. (1994) found that better results (par- 
ticularly for discrimination of the similar reflectance 
properties of salt-affected soils and normal sandy soils) 
could be obtained by combining reflectance and temper- 
ature information. Further, Sreenivas et al. (1995) re- 
ported that a combination of optical and SAR data 
showed potential for detecting saline areas and separat- 
ing saline soils from sodic soils, particularly under moist 
soil conditions. Wiegand et al. (1996) have used soil and 
plant samples, videography or SPOT HRV spectral ob- 
servations, and unsupervised classification to map soil sa- 
linity and yield at salt-affected cropped fields. 

For both crop and soil mapping, remotely sensed 
images should also be considered for revision of maps of 
“seasonally-stable” management units. By comparing 
such maps acquired at optimum times within the season 
(when soils are bare or when crops cover or phenology 
is optimum), it may be possible to revise management 
units midseason in response to unexpected changes. The 
revision process could be as simple as displaying the re- 
mote sensing data as a backdrop to a vector map of man- 
agement units within a GIS and visually assessing differ- 
ences (Chagarlamudi and Plunkett, 1993) or could be 
based on automated technology for change detection 
(Hallum, 1993). 

Monitoring Seasonally Variable Soil and Crop 
Characteristics 

In the previous main section, we identified several sea- 
sonally variable soil and crop conditions for which infor- 
mation on variability would be useful for PCM; these in- 
cluded soil moisture content, crop phenology, crop 
growth, crop evaporation rate, crop nutrient deficiency, 
crop disease, weed infestation, and insect infestation. RS 
techniques for monitoring these eight parameters will be 
discussed in the next paragraphs. 

Soil Moisture Content 
Attempts have been made to map soil moisture content 
of agricultural fields based on a simple linear correlation 
with the backscatter of the SAR signal in long wave- 

lengths (e.g., C-band at 5.7 cm or L-band at 21 cm). This 
direct relation can be strong for bare soil conditions, but 
there is considerable scatter when fields of variable crop 
biomass are included in the regression (Benallegue et al., 
1994). Thus, most recent works in mapping within-field 
soil moisture conditions are based on the use of dual- 
frequency SAR where the combination of long and short 
(e.g., Ku-band at 2 cm or X-band at 3 cm) wavelengths 
is used to determine the vegetation-induced attenuation 
of the long-wavelength signal to improve estimates of soil 
moisture (Taconet et al., 1994; Prevot et al., 1993; Pa- 
loscia et al., 1993; Moran et al., 1997a). There are other 
issues that must be considered in the. use of SAR for 
mapping soil moisture content for PCM applications. 
Studies have found that SAR measurement depth is only 
0.1-0.2 times the wavelength, and it decreases with 
moisture content; this translates to about 10 cm mea- 
surement depth for the L-band at moderate moisture 
content (Engman and Chauhan, 1995). Furthermore, the 
SAR signal is sensitive not only to soil moisture but also 
to surface roughness (like that associated with differen- 
tially tilled agricultural soils) and topography. Engman 
and Chauhan (1995) suggested that the best application 
of existing, unifrequency SAR sensors may be for moni- 
toring the temporal change of soil moisture to minimize 
the influence of variability in roughness, Lrgetation and 
topography. Others have suggested that SAR radiative 
transfer models could be used, with ancillar]i data pro- 
vided by remote sensing of non-SAR wavelengths or 
other sources, to reduce the surface-induwd “noise” in 
the SAR signal and improve soil moisture estimates 
(Moran et al., 1997b; Wingeron et al.. 1995). 

Knowledge of the stage of the crop development is useful 
for tifrle-specific crop management (TSCM), such as min- 
imizing or maximizing crop stress during crucial periods 
(e.g., grain filling in wheat, anthesis of corn, or sugar de- 
velopment in cantaloupe). For example, the vegetative, re- 
productive and senescing phases of wheat crops have been 
discriminated based on seasonal shifts in the red edge 
(Railyan and Korobov, 1993), bidirectional reflectance 
measurements (Zipoli and Grifoni, 1994), measurements 
of reflected polarized light (Ghosh et al., 1993). and tem- 
poral monitoring of NDVI (Boissard et al., 1993). 

The most common approach in remote sensing for mea- 
suring or monitoring crop growth is the empirical corre- 
lation of VI with such crop variables as LAI, percent veg- 
etation cover, vegetation phytomass and fraction of 
absorbed photosynthetically active radiance (J,PAR) (e.g., 
Pinter. 1993). The basic theory of this approach is well 
understood (Jackson and Huete, 1991) and the field vali- 
dation studies for a variety of crops, locations, and mete- 
orological conditions are endless. Recent improvements 
to this approach include developing VIs are that insensi- 



tiws to soiVatrnospllere/serlsor noisc~ (cg, Hiietta, 1988: 
Malthus et al., 1993) and developing cwyirical relations 
that arc robust for application to ;t varietv of’ crops, 10~~ 
tions, and wuditions (Richardson rt al., I-)92; lW3: WY- 
gand et al., 1992). Because of the inherent advantages of 
SAR data acquisition (cloud penetration and night acqui- 
sition), there have been some suggestions that SAR I)ack- 
scatter in short wavelengths could be used to monitor 
crop cover and relative growth (Bouman and Hoeknran. 
3993: Moran et al., 1997a). Other approaches are based 
on the premise that remote sensing alone is not sufficient 
for producing accurate \;egetation information. Such q- 
proaches are generally based on crop growth models or 
canopy radiative transfer models (RTM). An example of 
the former was presented by Clevers et al. (1994) using 
optical reflectance measurements to calibrate the 
SUCROS crop growth model and improve cstimatcs of 
crop yield. An example of the latter was presented 1,) 
Kimes et al. (1991) in the development of a knowledge- 
based system (VEG) to infer reflectances of a vegetation 
target, or inversely, to derive vegetation characteristics 
from multiband or multiview reflectance measurements. 
The use of canopy RTMs has been particularly successflll 
with off-nadir reflectance measurements since the\. can 
use the multidirectional measurements iis an additional 
source of information about the canopy structure (Qi et 
al., 1995a). The conclusion of a review by Mvneni et al. 
(199-5) was a good siunmation of the state-c~~-the-~~rt in 
remote sensing of vegetation: 

In spite of obvious limitations, spectral vege;etation in- 
dices are still preferable in the analysis of large spatial 
data sets. The promise of remote sensing, however, 
lies in those methods that utilize physical models and 
advances in computer science and technology. 

Crop stress, due to crop disease, water deficiency, some 
insect infestations, and other problems, is often mani- 
fested by a decrease in the transpiration rate of the crop. 
As such, much work has been conducted to use remote 
sensing for monitoring crop evapotranspiration rates. 
One of the more promising approaches for operational 
application is the use of remotely sensed crop coeffi- 
cients (the ratio of actual crop evapotranspiration and 
that of a reference crop) for estimation of actual, site- 
specific crop evapotranspiration rate from readily avail- 
able meteorological information (e.g., Bausch, 1993). 
This approach requires only a measure of spectral vege- 
tation index (e.g., NDVI) and is simply an improvement 
of an approach already accepted and in use by farmers 
to manage crops, where such improvements inch& ill- 
creases in accuracy of the evaporation estimates and, 
with use of images, the ability to map within-field and 
between-field variations. Another approach that has ob- 
tained commercial success is the crop water stress index 
(CWSI), which p rovides a measure of crop stress from 

0 to 1 basd on the tliffert7lcc bdwec71 sllrt&.~~ and air 

temperatlirc~ with referencr~ to the. \qor prossur~~ deficit 
and a crop-spc>cific baselint> t jacksolr c>t al.. 1981). ‘~Jrr 

commercial applicabilit\~ of‘ (i\VSI is c\idoncc~cl II\ thr 
commercial productior 1~ 01‘ a handhcltl instrliliient tk- 
signed to nwisur~~ (X&l. s(+~pral conim~~rcial imaging 
companies that arc providing (:W%I to fariners, and tlir, 
multitude of examples of application of this theon. with 
ail 10171~ -1 and satellite-based thermal sensors coiiibint)rl 
with ground-based Ineteorologic~tl information [see r(‘- 
views by Moran and Jackson ( 1991) and Nornlan c‘t al. 
(1995)]. Other approaclips arc2 being explored to IISC I 
near-linear relations betwrrii spcutrd vegetatiou iii&cc3 
allc 1 canopy st0111ata1 wlltlllctancr ad photosynthesis 
with respect to photosyntlleticalll~ active radiation (PAK) 
(Sellers, 1987: Verma et ~11.. 1993). The locdiorr of thr 

red edge determined wit11 hyperspectral ilit’ilslir(‘ili~~‘rits 
also shows promise for c2rlv detection of water stress 

’ (Shibavama ct al., 1993). 

Plant nitrogen content and canopy nitrogen deficits have 
been related to reflectance measurements in tht‘ green 
(0.545 ,~m). red (0.66 pm), and NIR (0.80 ,um) spectrum 
(Fen&&z ct al., 1994: Buschmann ard Nagel, 1993). 
However, most such relations are sensitive to variations 
in soil reflectance , mcl the best bandwidths are narrow 
and unavailable with satellite-based wide-band sensors. 
Blackmer c>t al. (199Fj) proposed the images of cmopy 

ref~ectancr centered at 0.X pm acquired late in the 
growing season could bc used to detect portions of the 
field that were nitrogen deficient. Such informatioii 
could be obtained earlier in the season by ratioing crop 

reflectance spectra with :t reference spectruui from thtl 

same crop to define absorption maxima ant1 ininilrra that 
wei-r r&ted to nitrogru lrvds (Chappellc tbt al.. 1992). 

Remote sensing has some potential for detecting and 
identifying crop diseases. T&r et al. (1981) 11setl f&c 
color IR photography to detect Phyrnatotricll11111 root rot 
of cotton and wheat stem rust. In fungal and mildew in- 
fected leaves, changes in remotely sensed reflectance have 
been detected lwfore symptoms werr visible to the humus 
eye (Malthus and Madeira, 1993; Lorenzen and Jensen, 
l&39), Though wide visible and near-infrared bands nq~ 
be helpf~ll for discriminating healthy and diseased crops 
(due to changes in foliage density, leaf area, lraf angles, 
or canopy structure), the best results for identifying dis- 
eases were obtained wivith hyperspectral information in 
the visible and near-infiared spedruin. Discrimination of 
diseasrs may he possible with knowledge of the physio- 
logical effect of the disease on leaf and canopy elements. 
For example, necrotic diseases can c;IlIsr a darkening of 
leaves ill the visible spectrum ant1 a cell collapse that 
would decrease near-infrared reflectance. (%lorosis in- 
ducing diseases (mildews and som(’ virlls) cause marked 



changes in the visible reflectance (similar to N defi- 
ciency) and other diseases may be detected by their ef- 
fects on canopy geometry (wilting or decreases in LAI). 

Weed In&station 
Herbicides are generally applied both prior to planting 
and post-emergence. For precision management of pre- 
plant applications, the information requirement is simply 
determination of presence or absence of plants, and the 
remote sensors should be comparably simple, such as the 
tractor-based sensors previously described in the preti- 
ous main section or interpretation of digital images based 
on VI or supervised classification (e.g., Richardson et al., 
1985). In fact, since perennial weeds tend to remain in 
the same location each year, there is even the possibility 
of using the previous year’s weed map for preplant con- 
trol decisions (Brown and Steckler, 1995). Management 
of postemergence herbicide applications poses more dif- 
ficulty because it requires discrimination between weeds 
and crops. This is generally accomplished based on the 
differences in the visible/NIR spectral signatures of crops 
and specific weeds (Brown et al., 1994) or by acquiring 
images at specific times during the season when weed 
coloring is particularly distinctive (i.e., during flowering). 
An example of an integrated system for management of 
weeds with remote sensing input was presented by 
Brown and Steckler (1995). Their system combined im- 
age-deri\,ed weed maps with a GIS-based decision model 
to determine optimum herbicide mix and application 
rates for no-till corn and resulted in reductions of herb 
tide use bv more than 40%. 

Insect In&station 
Few studies have been reported on the use of remote 
sensing for directly assessing insect infestation. Indi- 
rectly, insect damage to plants has been detected 
through remote sensing of insect habitat (Hugh-Jones et 
al., 1992), growth and yield of plants (Vogelmann and 
Rock, 1989), or changes in plant chemistry. Pefiuelas et 
al. (1995) found that increasing infestations of mites in 
apple trees caused a decrease in the leaf chlorophyll con- 
centration and an increase in the carotenoid/chlorophyll 
c1 ratio. These chemical changes were detected with re- 
flectance measurements made in narrow bandwidths in 
the visible and NIR spectrum. 

There is considerable evidence that multispectral 
images can be used for identifying and monitoring the 
following seasonally variable soil and crop conditions: 

4a. Soil moisture content, 
41~. Crop phenologic stage, 
4~‘. Crop biomass and yield production, 
4d. Crop evapotranspiration rate, 
4e. Crop nutrient deficiencies, 
4f. Crop disease, 
4g. Weed infestation, and 
4h. Insect infestation. 

Determining the Cause of the Variability in 

Crop Production 

Remote sensing has a variety of roles in determining the 
cause of spatial and temporal crop and soil variability. 
The most obvious role, which has been advanced 
throughout this review, is the use of remote sensing in- 
formation to improve the capacity and accuracy of DSS 
and agronomic models by providing accurate input infor- 
mation or as a means of model calibration or validation. 
Another role is the use of hyperspectral imagers for di- 
rect crop diagnosis. Issues related to these two indepen- 
dent functions of remote sensing in PCM will be the 
topic of this subsection. 

The link between remote sensing and simulation 
modeling has been illustrated through examples of the 
use of remote sensing for parameterization of models 
(Wiegand et al., 1986b), within-season model calibration 
(Maas, 1993), and model validation (Fischer. 1994). An- 
other option, which is receiving less attention. was articu- 
lated by Bouma (1995). His option is based on the prem- 
ise that the most useful models will be those in which 
the degree of complexity is in equilibrium with the avail- 
able data. Bouma laments the examples of complicated 
deterministic models being used without adequate basic 
data, yielding irrelevant results. In terms of the synern 
between remote sensing and models, this premise could 
be interpreted in two ways. Either emphasis must be put 
on the relation of remote sensing measurements with 
common model inputs or models must bc refined to re- 
late flxisting remote sensing information to the unavail- 
able data needed for the model. The lattcbr option holds 
the most promise. 

In this review we have cited examples where hyper- 
spectral data in the visible and NIR wavelengths have 
beet1 used successfully for discrimination of crop stress 
callsed by N deficiency, crop disease, water stress, chlo- 
rosis, and more. Carter (1994) reported that narrow 
wavebands derived from hyperspectral data could be 
used to discriminate the cause of plant stress in six plant 
species due to eight stress agents: competition, herbicide, 
pathogen, ozone, mychorrhizae, island. senescence, and 
dehydration. At this time, there are no hyperspectral in- 
struments available on satellite platforms and few avail- 
able on aircraft; fllrthermore, processing. analysis, and 
interpretation of hyperspectral images is time-consuming 
for both thrl computer and computer-user. The vision of 
remote sensing for analysis of yield \~ariability in PCM 
mav include the use of airborne sensors with wide-bands 
to map crop stress variability and the subsequent deploy- 
ment of h,yperspectral sensors for determination of the 
cause of the stress for making application nlanagement 
decisions. 

Thus, we suggest the following: 

5a. Remote observations could provide accurate input 
information for agricultural DSS. 



l&note sensing information could he combed 
with Negro-nl~trorolt,gic iilodels to determine the 
cause of’ soil and crop variability-. 
Hyperspectral sensors conld he used to deteruiiur 
tlic cause of soil and crop variabiliti. 

Mapping Spatially Distributed Information on 
Meteorological/Climate Conditions 

In nearly every application of PCM and in every agro- 
meteorological model, knowledge of spatial variations in 
meteorological conditions is crucial. Yet, most applica- 
tions are based on output from a single meteorological 
station that may be many kilometers distant from the 
field, and the instruments are generally located over a 
grassy plot that is not indicative of field conditions. There 
are mnnerous examples of the use of satellite spectral 
images for estimation of insolation (e.g., Pinker and Ew- 
ing, lY%), PAR (e.g., Frouin and Pinker, 1995), net long- 
wave radiation (Ellingson, 1995), rainfall (Petty, 1995), 
and other meteorological variables. Further work has fo- 
cused on combining remote sensing with mesoscale me- 
teorological models to make regional estimates of such 
variables as air temperature, wind speed, and vapor pres- 
sure deficit (Toth et al., 1996). These studies are possible 
because of geostationary satellite sensors that can pro- 
vide coarse-resolution multispectral data with twice/day 
coverage and near-instantaneous turnaround times. These 
sensor characteristics are suitable for PCM applications. 

Thus, we suggest the following: 

6. Multispectral images of coarse spatial resolution 
and fine temporal resolution should be used to 
produce local or regional maps of meteorological 
parameters such as insolation, PAR, rainfall, and 
others. 

Producing Fine-Resolution Digital Elevation Data 

Today, it is possible to generate DEMs from stereopairs 
of aerial or satellite images using software available for 
personal computers (Gagnon et al., 1990). Automated 
stereo correlation procedures are available to derive 
DEM information from stereo images without the need 
of the user to view the images and/or conduct measure- 
ments (Chagarlamudi and Plunkett, 1993). Thus, we sug- 
gest the following: 

7. DEMs could be produced from stereopairs of ae- 
rial or satellite images with the spatial resolution 
and accuracy required for PCM applications. 

Addressing Time-Critical Crop Management 
(TCCM) Applications 

In a previous subsection (Monitoring Seasonally Variable 
Soil and Crop Characteristics) we recognized that crop 
damage can be caused by many agents, such as insects, 

diseaw, iiisiifficieiit or excess water aw.1 iilltrir-nts, IIICX- 
clianical. and &mica1 damage. In uia~ I\ (~;ws, crop 
damigc is niwnif&cd in climges in al)o\~r-::I-0Iind fo- 
liage. such as tollc* or color of lcww, IA’ conditioii (wilt- 
ing or distortion). leaf art2 (inchiding d~t;~li;itiori). illl( 1 
leaf or strni orientation (such as lodging). Airborne i II I- 
aging sensors can record these effects and prw itle iui ac’- 
curate, timely means of’ assessing the c&wt of‘ the dairi- 
age and identifying management units for time-critical 
material applications. This approach has 1)een 11~1 cx- 
tensively and successfldly with aerial photographs (Toler 
et al., 1981; Rlakeman, 1990) for determining the spread 
of crop disease and insect infestation, and tlw efficacy 
of applications of herbicide, defoliant, and watt,r. Nut& 
(1989) fourld that he could track disease gradients in 
peanuts bv quantifying leaflet defoliation wit11 measurc- 
ments of NIR crop canopy rrflectanw. Currently avail- 
able airborne sensors ha\,e the capacity to provide digital 
images within a few hours of acquisition to allow proper 
management of these tinwcritical problems. 

Thus, we suggest the Wowing: 

8. For TCCM, multispectral images from aircraft-sen- 
sors could be used as a quick means of assessing 
the extent of the damage and identifying manage- 
ment units for damage control. 

TECHNICAL LIMITATIONS OF 
REMOTE SENSING 

Aircraft and Satellite Image Processing 

Most of the remote sensing applications recommended 
for PCM in this review are “quantitative”; that is, they 
are based on measurements of surface physical proper- 
ties such as reflectance, temperature, or SAR backscat- 
ter, not on an uncalibrated, uncorrected digital number 
(DN). Thus, a significant harrier to implementation of 
most remote sensing techniques is the conversion of digi- 
tal images to information on surface properties that is 
temporally comparable and geometrically correct. Tflis 
conversion generally involves instrument calibration, t a - 
mospheric correction, normalization for off-nadir viewing 
effects. cloud screening (for satellite-base images), and 
such procedures as vignetting correction, line-shift cor- 
rection, l~and-to-band registration, and frame mosticing 
(for video- or digital-camera multispectral images). For 
use in a GIS, the images must subsequently be regis- 
tered to map coordinates (e.g., UTM). For most applica- 
tions of RS in PCM, these procedures must be auto- 
mated for quick turnaround, yet accurate for minimizing 
iilanagelIIent-related risk. Some promising options for 
processing images for PCM applications are discussed in 
this section. 

Instrument calibration is no longer a serious impediment 
to the 11s~ of satellite-based sensors because most or- 
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biting sensors have on-board calibration instrumentation 
and some are regularly calibrated with in-flight proce- 
dures (e.g., Slater et al., 1987). This is not the case for 
video and digital cameras aboard small aircraft. For such 
sensors, calibration has been attempted in preflight, labo- 
ratory settings (Crowther, I992), but this approach is of- 
ten not appropriate since the conditions aboard the air- 
craft differ significantly from those in the laboratory and 
some sensors cannot be calibrated due to automatic gain 
compensation. On the other hand, there are viable op- 
tions for in-flight calibration based on intercalibration of 
side-by-side mounted uncalibrated video systems and cal- 
ibrated radiometers (Neale et al., 1995) and (for re- 
flected data) conversion of digital number to apparent 
reflectance based on side-by-side mounted up-looking 
and down-looking sensors (Piekotowski et al., 1996). The 
latter approach has additional merit since it provides a 
partial atmospheric correction by accounting for within- 
flight variations in insolation; however, the output is ap- 
parent reflectance, not surface reflectance. Commercially 
available thermal video systems generally provide a digi- 
tal number to apparent temperature (i.e., at-sensor tem- 
perature without atmospheric correction) conversion for 
each frame. 

Atmospheric Correction 
Great strides have been made in simplification and speed 
of atmospheric correction of optical images through de- 
velopment and refinement of radiative transfer models 
(RTM). For most satellite-based sensors, existing RTMs 
have been used to develop simple lookup tables (LUT) 
that compute relations between at-satellite radiance and 
surface reflectance and/or temperature based on a mini- 
mum number of atmospheric inputs (Rahman and De- 
(lieu, 1994) or on input from the image itself (Teillet, 
1992; Gonima, 1993). With these tools, digital images 
from calibrated satellite-based sensors can be converted 
quickly to images of surface reflectance or temperature 
with considerable accuracy. Again, these tools are not 
suitable for aircraft-based sensors that are flown at vari- 
able altitudes within the atmosphere, that have spectral 
response functions different from those of orbiting sen- 
sors, and that are generally not calibrated. Thus, alterna- 
tive approaches that circumvent the need for RTM have 
been used for airborne sensors in the optical region. 
Some based on simple linear regression with such 
ground-based targets as pseudo-invariant objects (Muller 
and James, I994), reflectance tarps of a constant reflec- 
tance over a spectral region (Moran et al., 1996a), and 
painted plywood (Richardson et al., 1993). Such methods 
have two disadvantages: 1) They require that a pseudoin- 
variant object be available within the image or that a ref- 
erence target be deployed during flight, and 2) they do 
not account for spatially or temporally variable atmo- 
spheric conditions (such as variable cirrus clouds) during 
flight. Rekutioe correction procedures have been pro- 

posed based on image processing techniques such as his- 
togram equalization and dark object subtraction (Chavez, 

1988). Though these methods are useful for temporal 
comparison of images, they do not provide absolute re- 
flectance and temperature information, and, in some 
cases, the result is greater error than no correction at all 
(Moran et al., 1992). In-flight SAR calibrations are gen- 
erally based on comer reflectors deployed on the ground 
at strategic locations during the flight. 

Atmospheric correction of single-band thermal im- 
ages is generally accomplished through the use of RTMs 
based on estimates or measurements of atmospheric wa- 
ter vapor (Kaufman, 1989). However, there is repeated 
evidence that, for clear sky conditions (high Lisibility and 
low water vapor content), the correction of thermal im- 
ages over land surfaces may not be necessary because 
the atmospheric absorption is approximately compen- 
sated by the path radiance emitted by the atmospheric 
constituents (Sugita and Brutsaert, 1993; Bartolucci et 
al., 1988). Another concern in the use of thermal data is 
the conversion from radiometric temperature (measured 
by the sensor) to kinetic temperature (true surface tem- 
perature corrected for emissivity). A recent issue of Re- 
mofc Sensing Encironnwnt (Vol. 42, 1992) was dedicated 
to measurement and separation of kinetic temperature 
and spectral emissivity. An approach that has promise for 
operational mapping of thermal emissitit;c, and thus re- 
trieval of kinetic temperature from radiometric tempera- 
ture, was based on the relation between emissivity and 
NDVI (\‘an de Griend and Owe. 1993). 

Normalization of Of-Nadir Eflect,s on Optical Data 
Off-nadir viewing, due to either pointable sensors (e.g., 
SPOT HRV) or the wide-angle field-of-view of the sen- 
sors (e.g., NOAA AVHRR or airborne video svstems) has 
two major effects on optical images: 1) the i&luence of 
the atmosphere is increased due to a longer path from 
sensor to ground (relative to a nadir view at the same 
altitude) and 2) the measured surface reflectance or tem- 
perature varies with the nonlambertian characteristics of 
the surface. The first effect can be adequately corrected 
with appropriate atmospheric correction procedures, as 
discussed by Martonchik (1994). The second effect re- 
quires some knowledge of surface conditions ti)r normal- 
ization, where normalization consists of con\,erted off- 
nadir measurements to those that would be measured 
with a nadir-looking sensor or to a hemispherical spectral 
albedo. Attempts to normalize bidirectional effects 
through band ratioing, such as NDVI, have been unsuc- 
cessflll since the bidirectional response varirs in the \iisi- 
ble and NIR spectrum (Qi et al., 199:3); in fact, band 
ratioing could worsen the problem (Cihlar ct al.. 1994). 
In a simple approach, Moran et al. (1990) proposed that 
the bidirectional reflectance distribution fimction 
(BRDF) along a single azimuthal plane was similar for 
several rough agricultural surfaces and a correction based 



on a single algorithm could be applied. For greater accu- 
racy, canopy RRDF models have been proposed based 
on either information about the canopy~ geometry 01 

measurements of ilmltiple off-nadir views from which in- 

formation about the canopv can be deri4. The use ot 
HRDF models to normal& off-nadir viewing effects has 
been successfully applied with either ~nultiple acquisi- 
tions from pointable sensors or with the overlapping 
multidirectional views provided by airborne video or dig- 
ital cameras (Qi et al., 1995b: Pickup et al., 19953 and 
represents a viable option for correction of surfkce-re- 
lated bidirectional effects on reflectance measurements. 
Another approach, as mentioned earlier, is to circumvent 

the normalization process and, instead, use the additional 
information provided by bidirectional measurements to 
compute biophysical parameters such as L,AI ant1 per- 
cent vegetation cover (Qi et al., 1995a: Myneni et al., 
1995). This approach has great promise for application 
with pointable sensors or overlapping video frames. 
There is also evidence that view angle has a significant 
cf’frct on temperature measurements; Lagouarde and 
Kerr (1993) stressed the need for directional thermal in- 
frared models. 

One characteristic of SAR data that makes it desirable 
f;)r agricultural applications is the ability to penetrate 
clouds and obtain imagery regardless of cloudy condi- 
tions. Unfortunately, optical wavelengths are absorbed or 
reflected by clouds, resulting in either degraded images 
that must be screened for clouds or no image at all. Gen- 
erally, cloud screening is accomplished using statistical 
methods with histogram analysis (Phulpin et al., 198S), 
threshold tests applied to different combinations of chan- 
nels (Saunders and Kreibel, 1988), or pattern recognition 
based on spatial (Ebert, 1987) or temporal (Gutman et 
al., 1987) analysis. The most successfill methods are gen- 
erally based on the combined analysis of both visible and 
thermal infrared data (Derrien et al., 1993; Gutman et 
al.. I994), though adequate screening can be obtained 
based on either wavelength region separately (Franca 
and Cracknell, 1995). The other concern related to 
clouds is the ability to obtain an image at a given time 
of year or a time series of high-quality images. Marshall 
rt al. (1994) concluded that for study of relatively stable 
features, the l&day repeat cycle of Landsat would suf- 
fice; but for monitoring short-term events or obtaining 
time-critical acquisitions, it may be necessary to combine 
images obtained with both optical and SAR sensors. 
They found that frequency of imagery “with little cloud 
cover” within the European Arctic sector was between 
7 and 54% of the total possible acquisitions, depending 
upon region. 

Processing Images from Airborne Video und 
Digital Cnnwras 
There is no question about the usefulness of airborne 
cameras for agricultural applications. The desirable char- 

acteristics include low c,ost, real-tillie iirragr:?, flexible 
spectral bands a11d band widths, and data redundancy 

due to overlapping f’xrws (Mausel (St al., 1992). The dis- 
advantages are also wrll tlociinic~ntetl. iiic4iding line- 

shifting in video tiames, \ignc+ting eflrcts. l~idirc~ctional 

reflectance variations due to wide fields-of-vie\v. baritl-to- 
band misregistration, and difficulties in tiarilt~ rc@stration 

and mosaicing. However, as the popularit!, of’ siicli sys- 

terns increases. advancements in automated image pro- 

cessing have lwrn proposed. Vignetting effects are gerr- 

orally corrected with a sensor-specific filtering function 

(Neale et al., 1995). There are several proctbtlures that 

show promise for automatc~tl correction 01’ \ idea linrl- 

shifting and band-to-band registration (Pickup et al., 

1995; Mitchell cat al., 1995) and correction of bidirec- 

tional rlffects based on the overlap of \icl<lo ti-uuic~ 

(Pickup et al., 1995; Qi et al., I995bj. Howe\,rr. th(lre 

has been little progress in automated frame rc@stration 

an d mosaicing to produce seamless regional images. Un- 

like images obtained with satellite-based sensors tbr 

which it single geometric registration proc&irc caii be 

used fiw ii hrge region. aircraft-basetl s~5tcws generally 

result in a inultitude of frames that nlust 1~1 registered 

separately and mosaiced for local or regional coverage. 

Current manual procedures produce highaccuracy regis- 

tration but are based on time-corisuniiiig, tedious regis- 

tration of ground control points with indi\itlual franicy 

automated mosaicing can br achieved with in-flight tag- 

g’ m o m 1~ ud g f’ d’ 1 1 f rames with information on v;~v~ pitch, 

and roll of the aircraft and GPS location coordinates, but 

the accuracy of the mosaiced imaps is 011 the order of 

20 pixels. Methods for obtaining timely, gromc+rically ac- 

curate maps from video or digital fiiarncs obtaiiietl with 

airborne cameras are not vet available. This is a serious 

limitation for operational ;,se of such imagery fill- PCM 

applications where the 20 pixel accuracy provided b\. ;n- 

tomated mcthotls is not sufficient. 

Instrument Design 

One of the greatest obstacles to incorporation of KS 

images in PCM will be the inherent limitations of cur- 

rently available sensors. Satellite-based sensors have the 

advantages of good geometric and radiometric integrity; 
the disadvantages include fixed spectral bands that may 

be inappropriate for a given application, spatial resolu- 

tions too coarse for within-field analysis, inadequate re- 
peat coverage for intensive agricultural management, and 

long time periods between image acquisition and deliv- 

ery to llser. A varieti of image processing techniques 
have been proposed to remedy these shortcomings, in- 
cluding techniques to merge images of differing spatial 
and spectral resolutions to improve the spatial resolution 
of the coarser image (Moran, 1989), attempts to “urlmix” 
coarse spectral- and spatial-resolution reflwtanw and 

thermal data (Caselles et al., 1992), proposals to iise 



modeling to supplement intermittent image acquisitions 
(Moran et al., 1995), and attempts to combine images of 
differing sensors and different spectral and spatial resolu- 
tions to increase the number of acquisitions during a 
specific time period (Moran, 1994). Delivery times for 
most satellite-based sensors has recently improved, and 
images are now available (at a significant additional cost 
to the buyer) within 48 h of acquisition. Though sensors 
aboard airplanes, helicopters, and zeppelins will be able 
to meet the requirements for fine spatial resohltion, flex- 
ible and narrow spectral bands, frequent repeat cover- 
age, and quick turnaround times, the previously dis- 
cussed difficulties in calibration and geometric correction 
may preclude such data from many applications. The 
flew digital cameras will allow larger area coverage in 
each frame (up to 1024x 1024 pixels) and there is hope 
that the upcoming launch of commercial satellites (de- 
scribed in the next section) will meet some of the strin- 
gent time, space, and spectral needs of PCM applications 
j see review by Fritz (1996)]. 

SYNTHESIS 

In this section, we propose an approach for evahlation of 
the usefulness of current and proposed aircraft- and sat- 
ellite-based sensors for PCM applications (tractor-based 
sensors are not considered here). This approach is based 
on the concept that each PCM application has require- 
ments for management unit size, turnaround time from 
image acquisition to map product, image coverage and 
repeat acquisitions, and optimal spectral regions. Corre- 
spondingly, each sensor has defined pixel resolution, im- 
age delivery and processing times, repeat cycle, and 
spectral wavelengths. These application requirements 
and sensor attributes need only be matched to see if a 
certain application can be implemented with a given sen- 
sor. We applied this concept to the applications identi- 
fied in two sections before and some current aircraft- 
and satellite-based sensors. 

Synthesis Approach 

The first step was to evaluate the attributes of current 
aircraft- and satellite-based sensors (Table 1) relative to 
requirements for PCM applications listed two sections 
before. Such evaluation was based on the following crite- 
ria developed to determine appropriate pixel resolution, 
image turnaround time, and sensor repeat cycle. 

Pixel He.solution 
The relation between the size of the management units 
for each application and the appropriate sensor pixel res- 
olution must account for sensor optics, atmospheric in- 
terference, image registration accuracy, and detector sig- 
nal/noise ratio. That is, the sensor pixel resolution (PR, 

m) needed for the PCM management unit (MU, m) is a 
function of the sensor signal-to-noise ratio jf&) and the 
geometric registration accuracy (fHJ, where 

PR=MUl(f,,,+f,,). (1) 

where the functions fslK and f Ki are factors that must be 
considered when determining the PR that can best dis- 
cern information about the MU (note the dimension of 
111 for PR and MU in the equation refer to the side of 
a square area). fs,, is a function of the sensor signal-to- 
noise ratio related to sensor optics and atJTlOSpheJk in- 
terference. For optical sensors, a nuntber of pixels are 
contaminated by edge effects of the MU due to atmo- 
spheric scattering (often termed “adjacency (affect”) and 
sensor modulation transfer function (MTF) (Slater, 
1980). For SAR data, low sensor S/N results in “speckle” 
which must be filtered, resulting in a degradation of PR. 
For aircraft-based video cameras flown at 2300 m, 
Moran et al. (1996a) found that fSfu= 10 (c1.g.. PR must 
be 1 III to manage an MU of 10 m) based on analysis of 
Imiform targets. f,(% is a function of the image registration 
accuracy (RA); thus, assuming the accuracl’ of registra- 
tion is to within 1 pixel, fnh= 1; othenvisr, &,> 1. 

There are other considerations in determination of 
PR for PCM applications. In SOIW cases, th objective 
of using KS is not to characterize an MU, bllt rather to 
determine the rdgc of an anomaly, such as a weed infes- 
tation. In that case, Eq. (1) could still be used to deter- 
mine PR but the left side of the equation \\~11d be the 
“edge width” a~id .fSjr\ would be smaller than the valrie 
needed to characterize an entirr MU. One must also 
consider the unique case in which the objective is e&y 
ckrtc~tiot~ of ii seasonally variable anomalv [rx.g.. insect in- 
festation) to a\roid extreme economic damage. In such 
cases, PR must 1,~ fine enough to detect ;I \-can. small MU. 

The turnaround time (Tr) is the total time the user can 
afford to postpone treatment while waiting for the de- 
sired, processed information. Thus, TT inchldes both the 
delivery time from acquisition to user a~id the processing 
time for conversion of raw data to information. The rela- 
tion between T.,., image delivery time (T,,) an~d processing 
time (?r) is 

T+Tll+Tp. (2) 

The estimates of image T,, from acquisition to user for 
the st’nsors listed in Table 1 are the best timrs quoted 
by the companies responsible for deliverll;. Expedition 
comes at a cost. For example, s-day deliverv of Landsat 
TM scenes from EOSAT Corp. will result iJ; image costs 
of three times the normal price. Regarding processing 
time, estimates had to be made of the time it would take 
to process the aircraft- or satellite-based data. For air- 
craft-based data, we assumed that all preprocessing 
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Figure 1. Estimated requirements for manage- 
ment unit size and image turn-around time for 
PCM applications identified in the third section 
(summarized in Table 2). Also included arc the 
sensor specifications [according to Eqs. (l)-(3)] 
for the Landsat Thematic Mapper sensor for 
measurements of surface reflectance and tem- 
perature (L5R and LZT, respectively) and the 
SPOT High Resolution Visible (HRV) sensor 
for multispectral and panchromatic bandwidths 
(SMS and SP, respectively). The black dashed 
lines delineate nonexclusive regions that might 
be best for tractor-based, handheld, small-air- 
craft-based. or current satellite-based sensors. 
Note that both axes are based on a logarithmic 
scale (also in Figs. 2 and :3). 
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(frame grabbing, correcting for vignetting, line-shifting, 
and band-to-band registration) would be automated and 
would take 4 11. We took into account two types of geo- 
metric registration and mosaicing. Manual registration, 
based on ground control points, would take 30 min per 
frame and we limited the time to 8 h, allowing only 16 
frames to be registered to an accuracy of 1 pixel (fRA=l). 

Automated registration, based on a GPS and information 
about pitch, yaw and roll, would take 4 h for up to 100 
frames and would result in registration accuracy of 20 
pixels (fHA=20). For satellite images, we estimated that 
cloud screening and manual geometric registration 
(&,=l) would take 8 h total. For all optical images, at- 
mospheric correction would be accomplished in 4 h; it 
would be accomplished using an LUT-based RTM for 
satellite-based data, and deployment of reference targets 
during flight for aircraft-based data Correction for bidi- 
rectional effects would be accomplished with a modeling 
approach and would take another 4 h. Thus, the follow- 
ing are estimates of processing time (under best condi- 
tions) 

. 

. 

. 

for aircraft- and satellite-based images: 

Processing aircraft-based frames with manual reg- 
istration: 24 11, JK,$==l, 16 frames 
Processing aircraft-based frames with automatic 
registration: 20 h, &=20, 100 frames 
Processing optical satellite-based images: 16 h, 

f&= 1 

The revisit period (RP) is the user’s requirement for re- 
peat image acquisitions for the specific farm manage- 
ment application. To meet PCM revisit requirements, 
one must account for cloud interference in optical image 
acquisition and scheduling conflicts with pointable sen- 
sors. There is evidence that in many locations three out 
of every four possible satellite acquisitions will have ex- 

I : 
Ihr 8 12hr ldy 2dy I wk I mo 

Turn-Around Time 

cessive cloud interference (Marshall et al., 1994). 

Though the flexibility of pointable satellite-based sensors 

allows a greater chance of acquiring cloud-free images, 

Moran (1994) found that up to three fourths of the re- 
quested images were usurped bv the requests of other 
users. Thus, RP for sensors on a’ fixed repeat cycle (RC) 
should be a function of the probability (0 to 1) of cloud 
interference ($) and of scheduling conflicts with other 
users (fs), where 

R(:=RPLl-6.+f\-fh!l> (3) 

and both f( and f5 can be as large as 0.75 for satellite- 
based sensors. Aircraft-based systems will have more 
flexibilit): 

In some cases, the RP required by the application is 
coarse (e.g., requests every 6 months) but the timing of 
the request is crucial and inflexible (e.g., linked to crop 
phenology or the time of other sampling). In such cases, 
the use of orbiting, pointable sensors may be cost pro- 
hibitive. For example, SPOT Image Corp. charges an ex- 
tra $2000 (nearly twice the normal cost) for requests of 

image acquisitions guaranteed on a certain date or in a 
narrow time interval. 

Synthesis Demonstration 

For each PCM application, we made estimates of the 
logical size of the management unit (ranging from 1 m 
to 1 km), the turnaround time from image acquisition to 
map product, the requirements for image coverage and 
repeat acquisitions, and the potential spectral region. 
Based on Eqs. (l)-(3) and these estimates of MU, Tr, 
and RP, it was possible to make a tentative synthesis of 
opportunities and limitations for each PCM application 
with existing sensors. As an example, the specified appli- 
cation requirements were plotted by attributes of the 
Landsat TM and SPOT3 HRV sensors. In each case, 
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--. Figure 2. Estimated requirements for sensor 

lhr 8 12hr Idy 2dy 1 wk Imo revisit period and image turn-around time for 
PCM applications idenfified in the third section 
(with same internal labeling as Fig. 1). Turn-Around Time 

we assumed fSIN=lO, &=l, T,=48 h, T,=16 h, and 
RC= 16 days for TM and 3 days for HRV. It is apparent 
from the results presented in Figures 1-3 that such satel- 
lite-based sensors have limited application for seasonally 
variable conditions in PCM, mainly because they are 
constrained by infrequent repeat cycles and coarse 
pixel resolution. 

Dashed lines were drawn on Figures l-3 to delin- 
eate the PCM applications that might have greatest po- 
tential for current satellite-based sensors or sensors 
mounted on small aircraft. These delineations are not ex- 
clusive since many applications could be accomplished 
with both aircraft- and satellite-based sensors or ground- 
and aircraft-based sensors. Potential for use of upcoming 
satellite sensors and sensors aboard large aircraft are dis- 
cussed in the next section. 

RECOMMENDATIONS 

The following general recommendations for the use of 
RS in PCM are based on our estimates of PCM applica- 
tion requirements and an assessment of current RS tech- 
nology (Figs. 1-3). Considering that both RS and PCM 
technology and methodology are rapidly improving, these 
recommendations may quickly be obsolete. Nonetheless, 
recommendations for feasibility were made in Table 2 
and organized into four groups for discussion: images 
from current satellite-based sensors, raw and calibrated 
images from aircraft-based sensors, and images from fu- 
ture satellite-based sensors. 

Though currently orbiting pointable sensors can pro- 
vide the pixel resolution and frequent revisit required for 
many applications, it is still difficult to obtain images for 

SP SMS 

Figure 3. Estimated requirements for sensor re- 
visit period and management unit size for PCM 

Management Unit (m) 
applications identified in the third section (with 
same internal labeling as Fig. 1). 



Tubk 2. Evaluation of KS as a Source of Information for PCM Applications Using Sensors Aboard Small Aircrafts. Stansors 
Aboard Currently Orbiting Satellites, and Sensors Planned for Future Commercial Satellites.” 

Ar cs FS 
_ 

Converting Point Samples to Field Maps 
I, On-site measurements of soil and crop propcrtirs could be combined with tnultisprctral inlager) to produce 

accuratt~, timely 111aps of soil and crop characteristics for defining precision management lmits 
Mapping Crop Yield 

JL J 

2a. Multispectral images obtained late in the crop growing scas~n could be used to map crop +lds with 
approaches as simple as regression or ill combination with agro-mt~teorolo~dcal models 

2b. Helnotr sensing information could be combined with crop growth m&lh to predict final \icld 
Mapping Soil Variability 

JL J 
/L J 

30. Multispectral images obtained when soils are bare could be used to map wil types rrle\.ant to PCM with 
approaches bawl on models and/or on analysis of singlr or multiple image acquisition 

31,. Maps of spectral variabih5 (obtained under conditions of either bare soil or fill1 crop co\ rr) may pro\r 
usefill for revision of maps of management units 

Monitorirlg Seasonally Variable Soil and Crop Charactrlistics 
3a. Soil moisture col&cnt 
4b. (Zrop phenologic stage 
4~. <:rop biomass and yield production 
4tl. (:rop rvaporatioll rate 
4~2. (hop Iilbicd tk&%3rcirs 

If.. (:rop discasr, 
4g. 12’cwl infestation 
411. Insect irrfestatimI 

Determinillg the Gust of the Soil/( Zrop Variabili~ 
5a. KS could pro\idiii g accurate input information for agricultural decision support systems (DSS) 
51). RS information could I)c combined with ago-meteorologic models to determine cause of soil/crop variahilit\. 
5c. i~)rlwrspectral sensors could hr used to determine cause of soil and crop wriabiliti 

Mapping SpatialI!- Distributed Information on MeteorologicaVClim,e Conditions 
6. ~fdtispwtral image of coarse spatial resolution and fine temporal resolution should be used to produce local 

or wgional maps of meteorological parameters such as insolation. PAR. rainf~lll, and others 
Yrothwing Fine-Hrsohition Digital Elevation Data 

JL J 

JI, J 

J 
J 

J 

J 
J 

J 
J 
J 

J 

7. Accllt-atr. fine-resolution DEMs could be produced from stereopairs of aerial or satellite images 
.4ddressing Tilnc-(:ritical Crop Management (TCCM) Applications 

J 

8. For ‘KXZM, multiqxvtral images from aircraft-sensors could be used as a qllick mwns of assessing the extent 
of the tlamage ,mtl identifying management units for damage control 

.Zr 

J 

J 
J 

J 

J 

J 
J 
J 
J 
J 
J 
J 
J 

J 
J 
J 

J 

- 
” A: data from wnsors aboard small aircrafts, where Ar: raw image data and Ac: calibrated data converted to values of reflectance, temperature or 

SAH backscatter: CS: data from sensors aboard currently orbiting satellites: FS: data from sensors planned for future commercial satellites. The check 
mark (J) indicates that the application is appropriate for the designated sensor; JL indicates that the application is appropriate, however the fields 
must bc large; and J\1’ indicates applications which are onlv appropriate “within fields” hecause the data are not calibrated and cannot be reliably 

specific dates (due to conflict with other users and exces- 
sive costs). Thus, many applications may not be feasible 
with currently orbiting, pointable sensors. There is more 
flexibility in applications that require an image during 
bare soil conditions than in those requiring images during 
specific crop phenologic stages. Another big limitation of 
currently orbiting satellite sensors for PCM is revisit 
time. If you can only expect to obtain one of four acqui- 
sitions, then even coverage with a pointable sensor may 
be available only every 12 days (Moran, 1994). The most 
promising approaches to overcome this limitation may be 
synergy of data from multiple sources and use of physical 
models to supplement intermittent RS information. 

sors could have limited utility in converting point sam- 
ples to field maps of soil and crop properties, mapping 
seasonally stable crop or soil variability, and predicting 
final field-scale vield. 

Regarding &craft-based images, difficulties in cali- 
bration and geometric correction may preclude data 
from small aircraft for use in many applications. Only 
those applications that requirr single field coverage are 
suitable for single frame video applications. Whole-farm 
applications will require some frame mosaicing but may 
be feasible with manual registration. Applications cov- 
ering the local area will likely require an automated reg- 
istration procedure. 

On the whole, current satellite-based sensors have The options best suited for raw data from aircraft- 
little potential for most PCM applications due to coarse based sensors (uncalibrated and not atmospherically cor- 
spatial resolution and long repeat cycles. However, they rected) include converting point samples to field maps 
may be useful for mapping local or regional meteorologi- of soil/crop properties, mapping crop/soil conditions with 
cal parameters and producing high-resolution, accurate regression equations, revising maps of management units 
DEMs. For vc~ry large> fields, cllrrent satellite-based sen- within season, and mapping damage based on on-site 
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Advanwd Solicl-Sk& Array Spc+ 
tronwter (ASAS) 

Airborne Visible-Infrared Imaging 
Spectrometer (AVIHIS) 

Thermal Infrared Multispectral 
Scanner (TIMS) 

Thematic Mapper Simulator 
(TMS-NSOOl) 

Thnatic Mapper Simldator 
(TM9 Daedalns 

Airborne MultiPod System 
Hhedalus, CASI, SAH) 

Multisensor 

0.35-1x3 

0.38-14.0 

Ihrdalns: 
CASI: 
SAR: 

knowledge of crop conditions. The options increase for 
aircraft-based data that has been converted to values of 
surface reflectance, temperature or SAR backscatter. 
These include predicting final yield with models and an- 
cillary data, monitoring seasonally variable crop and soil 
conditions, and determining the cause of crop/soil spatial 
variations (with ancillary data). 

Another sensor system that is currently not being 
used to its potential for PCM is the fleet of large aircraft- 
based systems flown by NASA and some defense con- 
tractors (Table 4). These systems can provide high qual- 
ity, calibrated data at fine resolutions (depending upon 
flight altitude) at wavelengths including hyperspectral, 
wide-band multispectral, and SAR. These systems are 
not suited for general crop monitoring purposes because 
of the excessive cost of deployment and the lengthy turn- 
around time for raw data delivery (generally 1 month to 
6 months); however, they should be considered for re- 
search related to PCM, and for PCM applications with 
long turn-around times and infrequent revisit require- 
ments, such as determining management units based on 
soil or yield variability. 

Since many of the applications identified here re- 
quire information at pixel resolutions from 1 m to 100 
m and revisit times of 1 day to 1 week (Fig. 3), the up- 
coming launches of the EOS-AM and ADEOS satellites 
will not hold much potential for use in many PCM appli- 
cations (see specifications in Table 3). However, the up- 
coming launches of commercial earth observation satel- 
lites (Table 3) will meet many of the PCM requirements. 
Data will potentially be available in panchromatic and 
multispectral visible and NIR wavelengths at l-1,5 m 
pixel resolutions, respectively. The sensor repeat cycle 
will be every 3 days and the raw data turnaround time 
could be as quick as I5 min. With these sensor specifi- 
cations, the biggest deterrents to use in PCM will be 
data management (Allan, 1990) and the effects of bidi- 

rectional sensor viewing. However, since none of the 
planned commercial satellites will support thermal or 
SAR sensors, many promising RS applications for PCM 
discussed in previous sections will still not be possible. 

CONCLUDING REMARKS 

Image-based RS can provide information for many PCM 
applications for which information is now lacking. Some 
opportunities are possible for currently orbiting satellites, 
and many more opportunities are possible with currently 
available sensors aboard small aircrafts. Image-based re- 
mote sensing has a unique role for monitoring seasonally 
variable crop and soil conditions, and providing crop de- 
velopment stage information for time-specific crop man- 
agement (TSCM) and near-real-time information for 
time-critical crop management (TCCM). 

The limitations for image-based applications arr 
mainly due to instrument design. Current satellite-based 
sensors have fixed spectral bands that may be inappropri- 
ate for a given application, spatial resolutions too coarse 
for within-field analysis, inadequate repeat coverage for 
intensive agricultural management, and long time peri- 
ods between image acquisition and delivery to user. Air- 
craft-based sensors avoid these limitations, but are diffi- 
cult to calibrate and the frame-based output is hard to 
register to map coordinates for large area coverage. 
There is hope that such limitations till be overcome by 
the upcoming launches of commercial satellite-based 
sensors, rapid advancements in digital camera trchnol- 
ogy, and the cooperative deployment of defense-related 
aircraft-based sensors for agricultural applications. 

The potential market for RS products in PCM is 
good. Holt and Sonka (1995) envision that PCM will suc- 
ceed with the collective knowledge and experience of 
specialists, assembled and integrated through team cf- 
forts. They foresee a long sequenccl of intermediate 
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Figure 4. An infrastructure that may lead to 
widespread adoption of image-based remote 
sensing for precision crop management. 

products, where each item of information and technology 
will fit in the PCM system and each “value-added” prod- 
uct will have a market. Some team members will simply 
purchase components and services from specialized sup- 
pliers and merely assemble the final product. Searcy 
(1995) predicted that much of the collection of spatial 
data for PCM will be done by contract, on a fee-for-ser- 
vice basis. This scenario bodes well for use of RS in 
PCM since the acquisition and processing of spectral 
data is a specialized science with a defined product. 

An infrastructure that may have promise for incorpo- 
rating aircraft- or satellite-based RS technology into 
PCM is illustrated in Figure 4. There appear to be three 
stages of image processing that could lead to a useful 
product for farm managers. In stage one, the images are 
acquired and processed to values of surface reflectance, 
temperature or SAR backscatter and registered to farm 
coordinates. This requires engineering skills for instru- 
ment development, knowledge of optics (possibly atmo- 
spheric science), understanding of remote sensing, and 
expertise with computers. In the next stage, these images 
are converted to physical crop and soil information, such 
as images of weed infestations, insect infestations, crop 
water stress, etc. This requires a background in agron- 
omy, knowledge of physics and remote sensing, and ex- 
perience in computer modeling. In the third stage, this 
distributed information about crop and soil conditions is 
interpreted with the assistance of a DSS to produce 
maps of management units for variable rate material ap- 
plication. This requires experience with DSS and GIS, 
understanding of modeling and farm management and a 

1 GPS 

background in agronomy. These maps are provided to 
the farm manager for support in farm management deci- 
sions. The farm manager should have variable rate appli- 
cators and a tractor-mounted GPS system and should be 
able to determine the proper management strategy for 
the farm. The four “entities” portrayed in Figure 4 illus- 
trate the four requirements for skills and knowledge nec- 
essary to produce the three intermediate products; actu- 
ally, a single company could encompass the skills of the 
first three entities and provide the final product to the 
farmer. However, until such an infrastructure is in place, 
there is little hope for widespread adoption of image- 
based remote sensing for PCM. 

Future work should be focused on determining 
which RS applications listed in Table 2 are most eco- 
nomically beneficial and technically feasible. Season-long 
pilot projects with aircraft-based or satellite-based sen- 
sors designed specifically to investigate the economic and 
scientific viability of RS products for PCM applications 
should be given high priority (e.g., Moran et al., 1996b; 
Hough, 1993). These projects should be designed with 
input from the end user (farmers and consultants), and 
the potential commercial provider. Such validation will 
provide the confidence in RS that is required for tech- 
nology transfer and eventual commercial development. 

Thanks go to TCJI~L Mitchell for the innocativc design of the 
color figures thaf so aptly summarized the inf&-matior~ in Ta- 
bles 1 and 2. We haw many reviewers to thank, especially Go- 
len Hart, Ma&n Bawr, Tom Clarke, Paul Pinter, and Char&-a 
Hol@eld IV{> wnrk~ like to thank all the s&nti.ct.~ rcho shared 
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