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T he potential for th e combined use of microwave and 
optical data for crop management is explored with the 
use of images acquired in the visible, near-infrared, and 
thermal .spectrum and the synthetic aperture radar (SAR) 
wavelengths in the Ku (14.85 GHz) and C (5.3 GHz) 
bands. The images were obtained during June 1994 and 
covered an agricultural site composed of large fields of 
partial-cover cotton, near-full-cover alfalfa, and bare soil 
fields of varying roughness. Results showed that the SAR 
Ku backscatter coeficient (Ku-band d’) was sensitive to 
soil roughness and insensitive to soil moisture conditions 
when vegetation was present. When soil roughness condi- 
tions were relatively similar (e.g., for cottonJields of .simi- 
lar row direction and for all alfalfa fields), Ku-band a” 
was <sensitive to the fraction of the surface covered by 
vegetation. Under these conditions, the Ku-band 0” and 
the optical normalized difference vegetation index (NDVl) 
were generally correlated. The SAR C backscatter coef- 
ficient (C-band aa) was found to be sensitive to soil mois- 
ture conditions for cotton fields with green leaf area in- 
dex (GLAI) less than 1 .O and avalfa fields with GLAI 
nearly 2.0. For both low-GLAI cotton and alfdfa, C-band 
a<’ w>as correlated with measurements of surfnce tempera- 
ture (T,). A theoretical basis for the relations between 
Ku-band 8 and NDVI and between C-band 0” and T, 
was presented and supported with on-site measurements. 
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On the basis of these $ndings, some combined optical 
and radar approaches are suggested for crop manage- 
ment applications. OElsevier Science Inc., 1997 

INTRODUCTION 

The potential of optical remote sensing for crop manage- 
ment has been established through a multitude of studies 
in the past 25 years. Measurements of reflected and 
emitted energy from vegetated surfaces have been used 
for such important farm applications as scheduling irriga- 
tions, predicting crop yields, and detecting certain plant 
diseases and insect infestations (Jackson, 1984). The ba- 
sic physics behind these successful applications is well 
known. 

In the reflective region of the optical spectrum, dis- 
crimination of crop growth and plant status is generally 
accomplished by computing a ratio or linear combination 
of visible and near-infrared reflectances, termed a vege- 
tation index (VI). One of the more commonly used ~IS 
is the normalized difference vegetation index (NDVI) 
(Rouse et al., 1974): 

NDVI=(p,,,-y,,,i)l(y,,,+p,,,i!, (1) 

where pNIK and pRrCl are the reflectance of the surface in 
the near-infrared (NIR) and red spectrum, respectively. 
NDVI has been found to be sensitive to such vegetation 
parameters as the green leaf area index (CLAI), the frac- 
tion absorbed photosynthetically active radiation, and the 
percentage of the ground surface covered by vegetation 
(V,). This sensitivity is attributed to the absorption of in- 
cident red radiation by plant chlorophyll and scattering 
of incident NIR radiation by plant leaf structure (Jackson 
and Huete, 1991). For surfaces only partially covered b> 
vegetation, the NDVI can be perturbed by differences in 
soil brightness due to variations in soil roughness or 
moisture content (Huete, 1988). 
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Figure 1. The trapezoidal shape of the vegetation index- 
temperature relation for cotton at Maricopa Agricultural Cen- 
ter (MAC) on day-of-year 165, based on meteorological condi- 
tions and theoretical considerations outlined by Moran et al. 
(1994). The water deficit index is equal to the ratio of AC/ 
AB and ranges from 0 for a well-water crop to 1 for a crop 
under extreme water stress. 

In the thermal region, remotely sensed measure- 
ments of soil and foliage temperature have been linked 
to soil moisture content, plant water stress, and plant 
transpiration rate (Jackson, 1982; Tanner 1963). Algo- 
rithms based on remotely sensed surface temperature 
(T,) have been developed to assess soil salinity, soil wa- 
terlogging, plant water potential, and photosynthesis, as 
well as final crop yield [see historical reviews by Jackson 
(1987) and Idso et al., (1986)]. The sensitivity of surface 
temperature to plant and soil moisture conditions is re- 
lated primarily to the heat loss associated with evapora- 
tion and transpiration. As such, the thermal signal is re- 
lated to the percentage of the site covered by vegetation 
and the water status of the vegetation and soil (i.e., 
evapotranspiration, or ET). The thermal signal is gener- 
ally interpreted in relation to such meteorological condi- 
tions as air temperature (I’$,), incoming solar radiation 
(R,,), vapor pressure deficit (VPD) and wind speed (U). 

Even when T,, R,l, VPD, and U are constant (e.g., 
for a local area at one time of day), the sensitivity of the 
thermal signal to ET rate is still confounded by variations 
in 17,. Thus, attempts have been made to combine NDVI 
and T, in a single index related to the water status of 
the plants and soil in the field (Hope, 1988; Nemani and 
Running, 1989; Price, 1990). As the NDVI increases, the 
range of possible T,-T, values for a given range of ET 
rates decreases, resulting in a trapezoidal vegetation in- 
dex-temperature (VIT) shape (Fig. 1). With the use of 
theoretical methods to define the edges of the VIT trape- 
zoid (Carlson et al., 1994; Moran et al., 1994), it is possi- 
ble to compute a single water deficit index (WDI) de- 
fined by the ratio of AC/AB in Figure 1. The WDI has 
been found to be useful for such farm management ap- 

plications as irrigation scheduling (Moran, 1994) and for- 
est fire prediction (Vidal and Devaux-Ros, 1995). 

Although optical remote sensing provides a powerful 
farm management tool, there are some serious limita- 
tions that have restricted farm management applications. 
Because energy in the optical region cannot penetrate 
clouds, the acquisition of optical images for farm man- 
agement is limited to periods of cloud-free sky condi- 
tions. Even when clouds are absent, the optical signal is 
highly sensitive to atmospheric scattering and absorption 
and requires correction for atmospheric effects for multi- 
temporal applications. Furthermore, care must be taken 
regarding the time of acquisition because both surface 
reflectance and temperature are a function of the solar 
illumination angle (Lagouarde et al., 1995; Qi et al., 
1995). These limitations are serious for farm manage- 
ment applications in which quantitative information is 
needed on a daily basis with a turnaround time of hours. 

An alternative to the use of optical remote sensing 
for farm management is the use of radar backscattering 
data. The radar backscatter signal (a’) is expressed as the 
sum of the contribution of the vegetation layer (e) and 
the contribution of the soil (G-Y), the latter attenuated 
through the vegetation (Attema and Ulaby, 1978). That is, 

o”=o~+r%~ (mUIn*), (2) 

where ? is the two-way attenuation through the vegeta- 
tion. The scattering behavior of the radar signal is gov- 
erned by both the dielectric properties of the soil and 
vegetation and the geometric configuration of the scat- 
tering elements (soil roughness, leaves, stalk, and fruit) 
with respect to the wavelength, direction, and polariza- 
tion of the incident wave. Synthetic aperture radar (SAR) 
systems have the advantages of cloud penetration and 
high spatial resolution (on the order of 30 m from cur- 
rent satellite systems). Because the SAR sensor provides 
its own illumination source, acquisitions may be obtained 
during the day and night, and the signal is independent 
of the solar illumination angle. On the other hand, a” is 
a function of the wavelength, polarization. and incidence 
angle of the illumination source (Brisco et al., 1990; 
Brown et al., 1992; Fung and Ghen, 1992; Poirier et 
al., 1988). 

There is some evidence that the radar signal at high 
frequencies is particularly sensitive to such plant parame- 
ters as GLAI, plant biomass, and percentage of vegeta- 
tion cover (Bouman, 1991; Prevot et al., 1993). Ulaby et 
al. (1984) reported that the temporal variations in 0; at 
13 GHz could be accounted for through variations in 
green leaf area alone, for GLAI vahies greater than 0.5. 
However, they also found that the Ku signal was very 
sensitive to soil roughness (particularly at scales of ~2 
cm) and, for GLAIcO.5, the backscatter could be af- 
fected by soil moisture conditions. Furthermore, for 
GLAI>2.0, c$’ at Ku frequency remained relatively con- 
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stant, though the GLAI increased to values as high as 5 
and 6 for corn and sorghum. 

At lower frequencies, there is evidence that the 
backscatter signal is very sensitive to soil moisture (Be- 
nallegue et al., 1994; Bertuzzi et al., 1992; Dabrowska- 
Zielinska et al., 1994; Lin et al., 1994; Schmullius and 
Furrer, 1992a). The soil backscatter coefficient is domi- 
nated by the dielectric properties of the surface. Because 
the dielectric constant of water (below 10 GHz) is about 
80 and that of dry vegetation or soil is about 23, the 
backscatter signal of low-frequency radar is highly sensi- 
tive to the amount of soil moisture. However, it is appar- 
ent from Eq. (2) that the low frequency signal can be 
attenuated by increasing vegetation cover, thus decreas- 
ing its sensitivity to soil moisture conditions (Schmullius 
and Furrer, 1992b). These complications have restricted 
the use of radar data for mapping soil moisture condi- 
tions of heterogeneous, natural landscapes. However, 
these complications are less restrictive for farm manage- 
ment applications where field conditions are generally 
well known (e.g., planting date, crop type, soil cultivation 
practices, etc.). 

On the basis of the results of previous studies, it 
would appear that the high-frequency radar data (~13 
GHz) and the optical vegetation index are both sensitive 
to GLAI and percentage of vegetation cover and could 
possibly be used interchangeably (Benallegue et al., 
1994; Daughtry et al., 1991; Prevot et al., 1993). It also 
appears that low-frequency (-5 GHz) radar backscatter 
and surface temperature are both sensitive to soil mois- 
ture for sparsely vegetated fields and to plant transpira- 
tion rates for dense vegetation (Soares et al., 1987; 
Troufleau et al., 1996). Just as the interpretation of 
T,-T, is confounded by variations V, (Fig. l), so also the 
sensitivity of C-band a” to soil moisture is diminished 
with increasing vegetation [Eq. 21. A preliminary analysis 
of this hypothesis was made by combining high- and low- 
frequency radar data sets with a modeling approach (Pre- 
vot et al., 1993) to construct a mesh graph, whose 
Cartesian coordinates were related to soil water and crop 
growth conditions, respectively (Fig. 2) (Moran et al., 
1996c). The striking similarities between the graphs in 
Figures 1 (optical data) and 2 (SAR data) illustrate the 
potential for interchanging optical and SAR data for farm 
management. However, the physical mechanisms that 
underlie these relations are very different for the optical 
and microwave spectrum, and the sensitivity of the signal 
to the surface conditions and the limitations of the appli- 
cation also differ (Engman, 1991). 

In this study, we explored the potential information 
and limitations of radars operating in two microwave 
bands (Ku band at 14.85 GHz, W, incidence angle 55”; 
C band at 5.3 GHz, W, incidence angle 23”) for farm 
management applications. These radar configurations 
were chosen owing to the availability of such data, using 
existing instruments aboard aircraft or satellite (Table 1). 
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Figure 2. The mesh graph of Ku- and C-band hackscatter 
based on the multispectral-airborne-demonstration-at-MAC 
measurements and simulation modeling of a cotton crop 
with east-west (EW) rows at MAC (Moran et al., 1996c). 
The solid lines define modeled backscatter for values of 
GLAI (listed at the right) and volumetric soil moisture 
(listed at the top). 

The sensitivity of these data to field characteristics was 
compared with that of optical data (surface reflectance 
and temperature) for the same fields and dates. An em- 
pirical analysis and a theoretical justification are pre- 
sented. 

DATA SETS 

The multispectral airborne demonstration at Maricopa 
Agricultural Center (MADMAC) experiment was con- 
ducted during the cotton growing season from April 
through October 1994 (Moran et al., 1996a). The site for 
the experiment was MAC, a 77O-ha research and demon- 
stration farm located about 48 km south of Phoenix, 
owned and operated by the University of Arizona. The 
demonstration farm is composed of large fields (up to 
0.27X1.6 km) used for demonstrating new farming tech- 
niques on a production scale. Alfalfa is grown year-round 
with about seven or eight harvests per year; cotton is 
grown during the summer, and wheat during the winter. 
A data management system is in place to archive planting 
and harvesting information, as well as the times and 
amounts of water, herbicide, and pesticide applications. 
Because the predominant irrigation method for the MAC 
demonstration farm is flooding, each field is dissected 
into level-basin “borders.” During a single irrigation, the 
borders are sequentially flooded with a 3-4 day progres- 
sion from one end of a 1.6-km field to the other. 

The objective of MADMAC was to investigate the 
utility of multispectral remotely sensed data for day-to- 
day farm management. Images of MAC were acquired 
in four spectral wavelength bands (green, red, NIR and 
thermal) about every 2 weeks by using airborne cameras 
flown at two altitudes (I200 and 2300 m) above ground 
level (AGL) (Neale and Crowther, 1994). During each 
overpass, a survey of the farm was conducted to record 
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Table 1. Optical and Radar Sensors and Sensor Specifications and Details about Deployment at MAC during June 1994 

Sensor Platjonn Speczjications Overflight 

Utah State University Piper Seneca II 
1200 m AGL 
2400 m AGL 

Daedalus Lockheed P-3A 
1500 ft AGL 

SAR ERS-1 in orbit 

SAR Lockheed P-3A 
15,000 ft AGL 

24 June 1994, DOY 175, about 1190 A.M. 

15 June 1994, DOY 165, about 11:00 A.M. 

15 June 1994, DOY 165, about 10:00 P.M. 

24 June 1994, DOY 175, about 11:00 A.M. 

2-m pixel (reflective bands) 
4-m pixel (thermal band) 
4 bands: (10 nm wide) 
Green: 0.55 pm 
Red: 0.65 pm 
NIR: 0.85 pm 
TIR: 8-12 pm 
l-m pixel 
6 bands: 
Green 0.52-0.60 pm 
Red O.W.69 lrn 
NIR 0.760.90 pm 
NIR 0.91-1.05 pm 
MIR 3.05.5 pm 
TIR 8.5-12.5 pm 
6-looks format from CCRS 
Spatial resolution: 35 m 
Pixel spacing: 12.5 m 
C band: 5.3 GHz 
Polarization: VV 
Incidence angle: 23” 
Spatial resolution: 1 m 
Ku band: 14.85 GHz 
Polarization: VV 
Incidence angle: 55” 

Abbreviations: AGL, above ground level; MIR, (middl e infrared); TIR, (thermal infrared); CCRS, Canadian Centre for Remote Sensing. 

border-by-border estimates of crop height, V,, phenolo- 
gic stage, soil roughness, and soil moisture. In selected 
fields, detailed measurements were made of such crop 
properties as density, biomass, and GLAI. In a lo-day 
period in June 1994, we arranged to obtain SAR images 
in the Ku and C wavelengths concurrent with acquisi- 
tions of images of surface reflectance and temperature 
(Table 1). This subset of the MADMAC data is the sub- 
ject of the analysis presented here. The processing of the 
spectral and agronomic data is addressed in the follow- 
ing sections. 

Spectral Data 

The European remote sensing (ERS-1) satellite supports 
an imaging SAR sensor operating at C band (5.35 GHz), 
W polarization, and 23” incidence angle. A SAR image 
covering most of MAC was obtained on 15 June during 
an ascending pass at about 10:00 P.M. MST. The digital 
numbers (dns) were converted into a backscattering co- 
efficient expressed in decibels by using the SAR calibra- 
tion coefficient, X,=63.8, provided by the Canadian Cen- 
tre for Remote Sensing (CCRS, personal communica- 
tion). According to CCRS, X, is “approximate”; however, 
the accuracy of the calibration coefficient was not crucial 
to this work, because we did not use multidate images. 

Sandia National Laboratories (SNL) in Albuquerque, 
New Mexico, provided an airborne imaging SAR sensor 
operating at Ku band (14.85 GHz), W polarization, and 
55” incidence angle. A SAR image covering most of MAC 

was obtained on 24 June at 11:00 A.M. MST (Fig. 3). 
The SAR dn was expressed in decibels based on the cali- 
bration coefficient, X,=0.001526 (J. Bradley, SNL, per- 
sonal communication), with an estimated calibration er- 
ror of 1.2 dB. 

EG&G Energy Measurements, Inc., in Las Vegas, 
Nevada, provided an airborne Daedalus imaging system 
with six spectral bands ranging from the visible to ther- 
mal spectral region. This sensor was mounted in the 
same aircraft with the Sandia SAR instrument, passing 
over MAC on 24 June at 11:00 A.M. MST (Fig. 3). On 
the basis of calibration coefficients provided by EG&G 
(C. Golan&, personal communication), the dns were con- 
verted into radiance (W/m”). Using 25’X25’ calibration 
panels of 0.08 and 0.64 reflectance and on-site measure- 
ments of T, in selected fields, we converted the images 
of at-sensor radiance into images of surface reflectance 
and temperature. 

Scientists from Utah State University (USU) de- 
ployed a multispectral airborne video system with four 
spectral bands covering the visible to thermal spectral re- 
gion on 15 June at 11:00 A.M. Video frames were mosa- 
icked on a field-by-field basis to produce whole images 
of the farm. Similar to the processing of the Daedalus 
data, the USU images were converted from voltage into 
surface reflectance and temperature by using the correla- 
tion between voltage values, as well as known surface re- 
flectances and temperatures within the scene (on-site 
measurements and calibration panels). 



100 Moran et al. 

MAC SAR Backscatter, 24 June 1994 

32W 

-56 

MAC Surface Temperature, 24 June 1994 

WC 

IWAC NDVI, 24 June 1994 

Figure 3. Images of MAC acquired with the airborne multipod 
system (AMPS) on 24 June 1994, processed to SAR Ku back- 
scatter (dB), NDVI, and surface temperature (“C). 
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Table 2. MAC Field Conditions According to the Visual Field Survey Conducted on DOY 165 

Field 
no. Crop Type 

Soil Vegetation 
Roughness Height (mm) 

11 Cotton NS rows, raked 
13 Cotton NS rows, raked 

15 Alfalfa Smooth 

B1-3: 8 B1-3: 45 
B1-6: 8 Bl-2: 60 
B7-8: 6 B3-8: 50 
Bl-16: 5 Bl-16: 80 

17 Alfalfa Smooth Bl-16: 5 

19 cotton 

cotton 

NS rows, raked 

20 NS rows, raked 

23 cotton NS rows, smooth 

Bl: 7 
B24: 6 
B13: 5 
B4: 6 
B14: 8 

25 

31 
33 
34 

35 

36 

37 

38 

39 

Alfalfa Smooth Bl-16: 5 mm 

Cotton EW rows, raked 
Cotton EW rows, raked 
Cotton EW rows, raked 

cotton 

cotton 

cotton 

cotton 

Lesquerella (Bl-8, 
B13-16) 

Barren (B9-12) 

EW rows, raked 

EW rows, raked 

EW rows, raked 

EW rows, raked 

B1-8, B13-16: smooth; 
B9-12: cultivated 

Bl-8: 7 
B14: 5 
Bl: 6 
B24: 7 
Bl, B3, B5, B7: 6 
All others: 3 
B3: 4 
All others: 6 
Bl-3: 6 
B4: mix 
Bl, B4: 7 
B2, B3: 6 
Unknown 

Abbreviations: B, border; EW, east-west: NS, north-south. 

For each field border, values of T,, PNIR, and pRd 
from the EG&G and USU sensors and values of C-band 
o” and Ku-band 0” from the ERS-1 and SNL sensors 
were computed by averaging the values for all pixels lo- 
cated within the border. The number of pixels averaged 
varied with the size of the border. For the coarsest-reso- 
lution data, ERS-1 SAR (30-m pixels), the number of 
pixels averaged ranged from 14 pixels for the smallest 
border to nearly 100 pixels for the largest. For the finest 
resolution data, SNL SAR (l-m pixels), the number of 
pixels averaged for each border was well over 1000. 

Agronomic and Edaphic Measurements 

During each USU overpass, a survey of the farm was 
conducted to record border-by-border estimates of crop 
height, V,, soil roughness, and soil moisture. The survey 
results for 15 June [day of year (DOY) 1651 are included 
in Table 2 for the fields used for this study. In addition 
to the visual surveys, detailed vegetation measurements 
were made in selected cotton and alfalfa fields on a 
weekly basis during MADMAC. In the sample sites 

- 

Ranging from 80% in 
B16 to 30% in B2 

Bl: 40 
B24: 35 
B13: 25 
B4: 35 
Bl: 40 
B2: 20 
B3: 30 
B4: 50 
50% in B2; 7&80% in 

all other borders 

B1-8: 40 
B14: 35 
Bl: 25 
B24: 35 
Bl, B3, B5, B7: 30 
All others: 10 
B3: 15 
All others: 30 
Bl-3: 30 
B4: Mix 
Bl, B4: 35 
B2, B3: 25 
B1-8, B13-16: varied 

from 1090% 

Vegetation Soil 
Cover (%) Moisture 

Moist 
Bl: moist 
B-2-8: wet 
Bl: wet 
B2-16: water 
Bl-6: wet 
B7-10: moist 
Bll-16: damp 

*V 

Bl5: moist 
B&9: wet 
BlO-16: moist 

*rY 
Dry 
*rY 

Bl: water 
B2-B7: moist 
Bl-3: dry 
B4-7: moist 
Moist 

w 
Dly 

within the cotton fields, measurements were made of 
plant density, height, V,, and number of squares/bolls/ 
flowers. Five plants were weighed in each sample site, 
and the plant of median weight was taken to the labora- 
tory for measurement of wet and dry biomass and GLAI. 
The weight of the wet biomass was measured immedi- 
ately; dry biomass weight was measured after at least 
48 h in an oven at 68°C; and GLAI was measured by 
using a light-sensitive leaf area meter. In sample sites 
within the alfalfa fields, plant density, height, and per- 
centage of cover were measured. A 0.5-m” sample from 
each site was cut and taken to the laboratory for mea- 
surements of GLAI and wet and dry biomass. Such mea- 
surements in cotton and alfalfa fields were made daily 
for a 7-day period coinciding with the SAR and optical 
instrument overpasses. 

In the early morning after the nighttime ERS-1 SAR 
overpass, gravimetric soil moisture samples to 5-cm depth 
were made in selected fields. The bulk density of the soil 
was computed for each sample based on the volume of 
the soil sample container and averaged to produce a bulk 
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Figure 4. Fractional vegetation cover (V,.) and GLAI for (a) field 13 (cotton) and (b) field 17 (alfalfa) measured in 1994 
at-MAC. 

density estimate for the field. This was used to convert 
all gravimetric data into values of volumetric soil mois- 
ture. Several values were averaged to produce one esti- 
mate of soil moisture content for each of the selected 
borders. 

EMPIRICAL RESULTS 

Results of an empirical study of the MADMAC data are 
presented in two sections. First, analysis of the EG&G 
Daedalus and SNL SAR (Ku band) obtained on 24 June 
is presented in support of the hypotheses that Ku-band 
a” is (1) sensitive to soil roughness, (2) sensitive to vege- 
tation density, and (3) insensitive to soil moisture. The 
sensitivity of Ku-band a” and that of NDVI to vegetation 
properties are presented, and the limitations of each are 
discussed. Second, USU optical and ERS-1 SAR (C- 
band) data obtained on 15 June are presented in support 
of the hypotheses that C-band o” is (1) sensitive to soil 
moisture for low biomass levels and (2) sensitive to both 
soil moisture and vegetation density for high biomass lev- 
els. These data are also used to explore the strengths and 
weaknesses of the relation between C-band o” and Ts. 

The combined analysis of images acquired over a lo- 
day period is justifiable. From DOY 165 to 175, the cot- 
ton V, increased from approximately 30% to 50%, and 
the cotton GLAI increased from approximately 0.6 to 1.7 
(Fig. 4~). This increase maintained the partial-cover sta- 
tus of the cotton fields for the combined analysis. The 
V, of alfalfa borders was variable but, for most borders 
on DOY 165, V, was approximately 80% and GLAI esti- 
mates were approximately 1.7. By DOY 175, V, had 
increased to 90% and GLAI was as high as 2.4. These 
conditions allowed analysis of nearly full cover crop con- 
ditions on both dates (Fig. 4b). Furthermore, the multi- 
spectral analysis was segregated into two relatively dis- 
tinct parts: one associated with the correlation between 

NDVI and Ku-band d’ (both images acquired on DOY 
175) and another associated with the correlation between 
T, and C-band a” (both images acquired on DOY 165). 

Analysis of Ku-Band 0“ 

The Ku-band SAR is theoretically sensitive to variations 
in surface roughness. For detection of vegetation density 
for farm management applications, it is desirable to max- 
imize sensitivity to vegetation-related roughness varia- 
tions and minimize sensitivity to soil roughness. The sen- 
sitivity of Ku-band ti’ to soil roughness is illustrated in 
field 39. According to qualitative estimates made on 
DOY 165 (Table 2), the soil roughness within the field 
varied from “smooth” in borders 7-9 and 13-16 to “cul- 
tivated with medium clods” in borders lo-12 (Fig. 5). 
Although the NDVI in this field changed only slightly 

Figure 5. Sensitivity of Ku-band (T” to soil roughness in 
field 39. The soil roughness varied from “smooth” in hor- 
ders 7-9 and 13-16 to “cultivated with medium clods” in 
borders 10-12. 
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Cotton NS rows 

pb/- m Ts-Ta (C) m Ku Backscatter (dB) 

Figure 6. Sensitivity of Ku-band @’ to row-furrow orientation 
in fields 19 and 31. For these cotton fields, the NDVI was 
similar (0.51 and 0.58), the soil condition was dry, and the 
row directions were NS for field 31 and EW for field 19. 

(from 0.35 to 0.2), the Ku-band a” increased by nearly 
4 dB. The clod size in the rough section of field 39 was 
close to 2 cm (the wavelength of the Ku band), causing 
the signal to reach a near maximum. 

The characteristics of fields 19 and 31 allowed a test 
of the sensitivity of Ku-band 0” row-furrow orientation 
for partially vegetated fields (Fig. 6). For these cotton 
fields, the NDVI was similar (0.51 and 0.58), the soil 
condition was dry (Table 2), and the row directions were 
north-south (NS) for field 31 and east-west (EW) for 
field 19. Assuming that the effects of vegetation cover 
and soil moisture on Ku-band 0” were similar, the 5.7- 
dB difference in the signal could be attributed directly 
to the difference in row orientation. On the basis of this 

Figure 7. Sensitivity of Ku-band CT’ to variations in vegeta- 
tion cover (V,) in fields 23 and 35. For these cotton fields, 
the within-field soil roughness was constant and V, varied 
bv border from 20% to 50% in field 23 and from 10% 
t; 30% in field 35. 
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Figure 8. Insensitivity of Ku-band u0 to soil moisture in field 
11. For this cotton field, the vegetation was relatively uni- 
form (NDVI ranging from 0.57 to 0.61 in three borders), the 
V, was low (45%), and the soil moisture ranged from very 
wet (border 1) to very dry (borders 2 and 3). 

observation, cotton fields of similar row orientation were 
grouped for all further analyses. 

To test the sensitivity of Ku-band @ to variations in 
V,, two cotton fields of similar soil roughness and varying 
vegetation cover were selected (Fig. 7). In field 23, the 
row orientation was EW, the furrows were smooth, and 
V, varied from 20% to 50%. In field 35, the row orienta- 
tion was NS, furrows were raked, and 17, varied from 
10% to 30%. Thus, assuming that the soil roughness 
within the field was uniform, the correlation between 
NDVI and Ku-band 0” could be attributed to the sensi- 
tivity of both NDVI and Ku-band &’ to vegetation den- 
sity. The linear regression coefficients of the NDVI-Ku- 
band a” relations for fields 23 and 35 were 0.89 
(se,=0.027, se,=0.026) and 0.80 (se,=0.014, se,=0.028), 
respectively. 

Ku-band c? should be relatively insensitive to soil 
moisture owing to the lack of surface penetration charac- 
teristic of the Ku wavelength (Bouman and Hoekman, 
1993). In field 11, the vegetation was relatively uniform 
(NDVI ranging from 0.57 to 0.61 in three borders), the 
V, was low (45%), and the soil moisture ranged from 
very wet (border 1) to very dry (borders 2 and 3). This 
variation in soil moisture produced a near 7C” difference 
in the surface-air temperature (T,-I’,) but only a O.3- 
dB difference in Ku-band 0” (Fig. 8). Although the soil 
moisture difference between the borders was extreme, it 
elicited little response in the Ku-band 0” signal. 

Analysis of C-Band a” 

Although there are many field studies confirming the 
theoretical relation between C-band a” and soil moisture 
content for bare soil [e.g., Bertuzzi et al. (1992)], there 
are few that quantify this relation for vegetated targets. 
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Figure 9. Sensitivity of G-band d’ to soil moisture in field 
36. For this cotton field, borders 13 were dry and bor- 
ders 5-8 were recently irrigated; the vegetation cover 
(with the exception of border 3) was about 30% and the 
GLAI was about 0.7. 

The rate of decrease in the sensitivity of C-band a~ to 
soil moisture varies not only with the vegetation density, 
but also with plant and leaf architecture (Bouman and 
Kasteren, 1990a, 199Ob; Chuah and Tan, 1990; Paris, 
1986). Thus, quantifying a universal threshold of V, for 
which C-band 0” remains sensitive to soil moisture is 
nearly impossible, though thresholds of GLAIc2.0 have 
been suggested for common agricultural crops (Ulaby et 
al., 1984). In field 36, borders l-3 were dry and borders 
5-8 were were recently irrigated; the vegetation cover 
(with the exception of border 3) was estimated to be about 
30%. The irrigation in borders 5-8 elicited a drop in 
T,-T, of about 2OC” and a rise in C-band 0” of 7 dB from 
the signals for the dry borders (Fig. 9). On the basis of 
measurements of GLAI and NDVI in other cotton fields, 
the GLAI of field 36 was estimated to be about 0.7. 

The sensitivity of C-band a~ to soil moisture for 
higher GLAI al v ues was tested on the basis of the signal 
from alfalfa (field 17; GLAI m-1.5), in which the soil mois- 
ture increased from south to north, ranging from 0.09 to 
0.32 volumetric soil moisture (m3/m3). The C-band 0” in- 
creased with soil moisture despite the nearly 80% vegeta- 
tion cover (Fig. 10). 

Our results support the results of others who found 
that the relation between C-band a” and soil moisture 
was attenuated by increasing V,. This is also the case for 
T,-T,, which has been found to be sensitive to ET rate 
(a function of both soil moisture and V,). It follows that 
C-band a” and T,-T, may be related to each other and 
to ET rate. This hypothesis will be addressed further in 
the next section. 

THEORETICAL, JUSTIFICATION 

The empirical analysis in the preceding section indicated 
that multifrequency SAR data obtained for MAC were 
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Figure 10. Sensitivity of G-band CY to soil moisture in 
field 17. For this alfalfa field (GLAI -1.5), the soil mois- 
ture increased from south to north, (that is, from borders 
1 to 16 numbered in the figure) ranging from 0.09 to 0.32 
volumetric soil moisture (cm’km’). 

related to two of the most useful optical indices for ag- 
ricultural farm management. That is, high-frequency ra- 
dar backscatter was related to the optical NDVI, and 
low-frequency backscatter was related to T,-T,. In this 
section, we propose a physical foundation for these rela- 
tions based on further analysis of the data and published 
theories of radiative transfer. 

Relation between NDVI and Ku-Band Backscatter 

The relation between NDVI and Ku-band (7’ could be 
explained by physical theories linking both variables to 
GLAI. Although NDVI is an “ad hoc prescription” with 
no explicit physical relation to such vegetation measures 
as GLAI (Price, 1993), there are canopy radiative trans- 
fer models that can determine a reliable relation be- 
tween NDVI and GLAI [see, e.g., Asrar et al. (1992). 
Price (1992) used such a model to derive a semiempirical 
relation between a vegetation index (ranging from 0 to 
1) and GLAI. We refined this equation to fit the spectral 
vegetation index NDVI (for which the range depends on 
the vegetation type) by adding a constant (k), where 

NDVI=I_e-‘“““;l-“‘+~ (3) 

and m is a coefficient describing the attenuation of radia- 
tion as it passes through successive layers of leaves. Both 
m and k can be determined empirically or theoretically 
for the crop type of interest. On the basis of a season- 
long set of spectral and GLAI measurements made for 
cotton grown at MAC in 1994, Moran et al. (1996b) de- 
termined that NDVI = I _e[(cIAI+l) (iSRSi/--?. iZ’N)il, 

The Ku-band 0’ has also been related directly to 
GLAI based on a representation of Eq. (2) developed by 
Attema and Ulaby (1978). According to Eq. (2), the ra- 
dar signal backscattered by the whole canopy d’ is thr 
sum of the contribution of the vegetation a:’ and that of 
the underlying soil crf, where the latter is attenuated b\ 
the vegetation layer. Attema and Ulaby (1978) showe~l 
that 

ol’=AV~cos~( 1 - ?) (lll”/lll’), (41 
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#=C+Dh, (dB), (5) 

h, is volumetric soil moisture content (cm3/cm”), and V1 
is a descriptor of the canopy. t” is the two-way attenua- 
tion through the canopy, expressed as 

s”=exp( -2BV,lcosB) (unitless), (6) 

where V, is a second canopy descriptor. The canopy de- 
scriptors (V, and V2) in Eqs. (4) and (6) have been asso- 
ciated with GLAI (Prevot et al., 1993; Ulaby et al., 1984) 
so, for this application, we assumed VI=VZ=GLAI. Val- 
ues for A, B, C, and E can be determined by fixing D 
and minimizing the sum of squares of the differences be- 
tween modeled and measured a” based on Eqs. (4)-(6), 
where 

+ [exp( -BBV&os&$‘] (m2/m2). (7) 

and 0” is evaluated with Eq. (5) and converted from 
units of decibels into square meter per square meter. 

For the MADMAC data, Moran et al. (1996c) deter- 
mined the values of A-E for cotton crops with EW and 
NS row orientations, resulting in the mesh graph illus- 
trated in Figure 2. They found that, for the Ku-band 
backscatter (with large incidence angles, acquired at 
midday), the coefficient D=O, indicating that the back- 
scatter was independent of variations in soil moisture 
content. The Ku-band backscatter is then a function only 
of calibration coefficients A-G and E and GLAI. This find- 
ing was corroborated by the results illustrated in Figure 7. 

Thus, the relation found in the preceding section be- 
tween NDVI and Ku-band backscatter can be described 
by combining Eqs. (3) and (7) where, 

Ku-band a”= (AVfcos e(l- [exp( -2BV&osB)]}) 

+[exp( -2BVJcos0)C] (m”/m”), (8) 

where C is converted from units of decibels into square 
meter per square meter, and V,=VS=(-1/2m)[ln(l- 
NDVI-k] [from Eq. (3)]. It is notable, and unfortunate, 
that the sensitivities of both Ku-band 0” and NDVI de- 
crease exponentially with increasing GLAI. 

Using the calibration coefficients A-C and E (Moran 
et al., 1996c) and the m and k coefficients (Moran et al., 
1996b), we plotted the MADMAC data with the theoret- 
ical shape of the relation between NDVI and Ku-band 
0’ defined by Eq. (8) (Fig. 11). These results do not rep- 
resent an independent validation of this theory, because 
the coefficients in Eqs. (3) and (7) were obtained from 
empirical analysis of MADMAC data. However, it does 
present some support that the relation derived in Eq. (8) 
adequately portrays the trend of the NDVI-Ku-band a” 
relation. 

Relation between 2’,- T. and C-Band Rackscatter 

The relation between T,-T, and C-band o” is not as 
clear as that described for the NDVI and Ku-band 0”. 

In the following discussion, we will show that there is a 
direct link between T,-T, and C-band ti for bare soils 
due to a common sensitivity to soil moisture conditions. 
However, when vegetation is present, this link becomes 
more tenuous and complex. 

Jackson et al. (1981) wrote the energg balance equa- 
tion in terms of foliage-air temperature. 

(T,.-T,)=[r,(R,-G)/C,.]{y(l+~~/~~~)/[A+y(l+r,/~~,)]} 

-{v~~/[A+y(i+r~/~~)]}, (9) 

where T, is the crop foliage temperature (“C), T, the air 
temperature (“C), r, the aerodynamic resistance (s/m), R, 
the net radiant heat flux density (W/m”), G the soil heat 
flux density (W/m”), C, the volumetric heat capacity of 
air [J/(C’ m3)], r, the canopy resistance (s/m) to vapor 
transport, “J the psychrometric constant (kPaIC”), A the 
slope of the saturated vapor pressure-temperature rela- 
tion (kPa/C”), and VPD the vapor pressure deficit of the 
air (kPa). Equation (9) was derived from the Penman- 
Monteith equation (Allen, 1986), which is limited in ap- 
plication to uniform surfaces, such as full-cover vegeta- 
tion or bare soil. Moran et al. (1994) proposed that Eq. 
(9) could be used to determine the surface-air tempera 
tures of saturated bare soil [(T,-T,),,] and dry bare soil 
[ (T,--T,),,,], where subscripts “m” refers to the minimum 
temperature. Then, for an actual measurement of soil 
temperature (T,- T,), 

EIE,=[(T,-T,)-(Ts-TJX(T,-T,)m-(T,-T,),I, 
(10) 

where E is the actual soil surface evaporation rate, E, is 
the potential evaporation rate [defined by Allen (1986)], 
and values of (T,-T,), and (T,-T,), (subscript “x” refer- 
ring to maximum) could be computed from meteorologi- 
cal data based on Eq. (9). 

The C-band backscatter is a function of the coeffi- 
cients A-E and both h, and GLAI [Eq. (7)]. Unlike Ku- 
band backscatter, there is a great deal of evidence that 
D>>O for C-band measurements, and thus C-band 
backscatter is sensitive to soil moisture content [see, e.g., 
Prevot et al. (1993)]. When GLAI=O, C-band a” has 
been found to have a strong linear relation with soil 
moisture to depths of 5-7 cm. As GLAI increases, the 
C-band signal from the soil (0,) is attenuated, and the 
signal from the vegetation component (a,.) becomes dom- 
inant. For the MADMAC data set, Moran et al. (1996c) 
found that this resulted in the complex curvilinear shape 
of the near-vertical lines in Figure 2. 

Thus, for surfaces with substantial vegetation, it is 
not feasible to interchange T,-T;, and C-band @ without 
a priori kno we 1 d ge of GLAI. However, for bare fields or 
fields with low vegetation cover, the relation between 
T,-T, and C-band d is direct and robust. When GLAI 
is zero, Eq. (7) reduces to 

C-band o”=C+Dh,. (11) 
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According to Eqs. (10) and (ll), the link between mea- 
surements of T,-T, and C-band 0” must be based on the 

relation between E/E, and h,. 
The relation between E/E, and h, for bare soils can 

be derived from a surface-moisture calculation that is 
used in mesoscale atmospheric models (McMumber and 
Pielke, 1981; Tromback and Kessler, 1985). The water 
potential (Y) given by Clapp and Homberger (1978), 

‘I’=Yf[hti/h,]“, (12) 

is used in an expression for the water vapor mixing ratio 
at the ground surface (t-J given by Phillip (1957), yield- 

ing 

?“~=e@r’Rr’t-s( T, P), (13) 

where ‘I’ is the water potential (m), ‘Pf and h,f are values 
of moisture potential and volumetric soil moisture con- 
tent for a soil at saturation, b is a constant dependent on 
soil type, g is gravity (m/s’), R is the gas constant for wa- 
ter vapor [J/(kg K)], and r, is the saturation mixing ratio 
at temperature T and pressure P. They included values 
of the constants Yf, vf, and b for various soils, such as 
sand, sandy loam, and clay loam. Because the ratio t-c/ 
s(T, P) is approximately equal to E/E,, it follows that 

E/E ,,@‘/Rrl P (14) 
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Ku BacksEatter(& 
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Figure 11. The relation between measurements of Ku-band d 
and NDVI for alfalfa fields and cotton fields of similar row di- 
rection Note that field 23 was eliminated from the analysis of 
cotton fields with EW row orientations because the furrows in 
this field were smooth, whereas all other field furrows had been 
raked. The solid line represents the theoretical relation be- 
tween Ku-band a” and NDVI based on the solution of Eq. (8). 
The within-figure numbers correspond to the field numbering 
scheme in Table 2. 

The form of Eq. (14) was validated empirically for par- 
tially vegetated fields (Vidal et al., 1996) with MADMAC 
measurements of h, at 5cm depth, resulting in (1 -E/ 
Ep)=1.17eL-‘eg1h~31 (Fig. 12). 

Solving Eqs. (lo), (ll), and (14) enabled us to derive 

Figure 12. The theoretical relation between 
ET/ET, and volumetric soil moisture content 
for three soil types (sand, clay loam, and sandy 
loam) based on solution of Eq. (14) and the 
empirical results from MADMAC measnre- 
ments of partially vegetated fields derived by Vi- 
dal et al. (1996). 
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the shape of the relation between T,-T, and C-band 0” 
for bare soil at MAC (Fig. 13). This shape was plotted 
with the MADMAC data for fields of partial-cover cotton 
and alfalfa. Although we did not expect the measure- 
ments made of vegetated surfaces to coincide with the 
line derived for bare soil, it was apparent that the theo- 
retical form of the line matched the general trend of 
the measurements. 

CONCLUDING REMARKS 

Empirical analysis of the MADMAC data showed that 
dual-frequency SAR backscatter was related to two of 
the most useful optical indices for agricultural crop man- 
agement. That is, high-frequency radar backscatter was 
related to the optical NDVI, and low-frequency backscat- 
ter was related to T,-T,. Even though the physical 
mechanisms that caused the radar data to be related to 
NDVI and Ts-T, were found to be different from the 
physical mechanisms that caused NDVI to be related to 
vegetation density and T,-T, to be related to ET rate, it 
appeared that the optical and microwave data could be 
interchanged for important agricultural applications. 

A theoretical analysis of these optical-SAR relations 
indicated that there was potential for interchanging 
NDVI and Ku-band 0” for the estimation of crop GLAI. 
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This relation is strongest for crops with low GLAI, per- 
haps GLAIc3.0. Such information about crop GLAI 
would be useful to farm managers for monitoring crop 
growth and detecting catastrophic events such as insect 
infestations, crop disease, weed infestations, or water- 
related stress. Furthermore, GLAI has been found to be 
the key canopy parameter linking crop growth to multi- 
spectral reflectance and is the basis of most crop yield 
models (Bauer, 1985). 

We also presented theoretical support for inter- 
changing C-band a” and T,--T, for the determination of 
soil moisture conditions. This theory appears to hold for 
fields with no vegetation and for fields with very low fac- 
tional vegetation cover; that is, fields with GLAI ranging 
from 0 to 1.0 (Wdal et al., 1996). For many crops, it is 
necessary to apply a uniform preplanting irrigation and 
determine the optimum timing for the first postplanting 
irrigation. Information about soil moisture conditions for 
these bare soil and near-bare soil conditions could be ob- 
tained more frequently by interchanging available mea- 
surements of C-band CP and T,-Ta. This approach has 
a serious limitation related to the depth for which such 
measurements are correlated directly with soil moisture 
content. It has been reported that C-band r~’ is corre- 
lated with soil moisture content to depths of 5-7 cm; 
T,--T, may be sensitive to only the surface soil moisture. 
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Figure 13. The relation between measurements of C-band d 
and T,-T, for partially vegetated fields of alfalfa and cotton 
with similar row directions. The solid line represents the theo- 
retical relation between C-band a” and T,-T, for bare soil con- 
ditions. The within-figure numbers correspond to the field 
numbering scheme in Table 2. 
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Thus, the most likely applications would be for monitor- 
ing the uniformity of flood or sprinkler irrigations of bare 
soils or crops in early growth stages. 

A workable satellite-based system for agriculture 
management might simply use radar backscatter as a sur- 
rogate for NDVI and T,-T, in current applications. This 
would require a system in which sensors covering the vis- 
ible, NIR, thermal, and low- and high-frequency radar 
were available on a single platform. On clear days, the 
optical data could provide reliable estimates of field con- 
ditions, and the radar could be calibrated on a field-by- 
field basis with such indices as NDVI and T,-T‘,. On 
cloudy days, the radar data (having been previously cali- 
brated with the optical data) could be interchanged with 
the optical data to provide the daily information required 
for most farm management algorithms. This approach 
would improve both the accuracy of the radar informa- 
tion (through intercalibration) and the frequency of the 
image acquisition (based on radar cloud penetration). We 
could possibly achieve the frequency requirements for an 
ideal crop management system suggested by Jackson 
(1984); that is, continuous coverage would be optimal 
with once-a-day coverage as a minimum. 
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