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Variability in Soil Erosion Data from Replicated Plots

Mark A. Nearing,* Gerard Govers, and L. Darrell Norton

ABSTRACT ues of treatments and for comparison between experi-
mental treatments. The quantification of variance in soilUnderstanding and quantifying the large, unexplained variability
erosion data is critical to the advancement of erosionin soil erosion data are critical for advancing erosion science, evaluat-

ing soil erosion models, and designing erosion experiments. We hy- science.
pothesized that it is possible to quantify variability between replicated Unfortunately, however, knowledge of variability in
soil erosion field plots under natural rainfall, and thus determine the soil erosion data is quite limited. Only one erosion study
principal factor or factors which correlate to the magnitude of the has been conducted with a sufficient number of repli-
variability. Data from replicated plot pairs for 2061 storms, 797 annual cated erosion plots to allow an in-depth analysis of vari-
erosion measurements, and 53 multi-year erosion totals were used. ability. Wendt et al. (1986) measured soil erosion rates
Thirteen different soil types and site locations were represented in

on 40 cultivated, fallow, experimental plots located atthe data. The relative differences between replicated plot pair data
Kingdom City, MO, in 1981. All of the 40 plots weretended to be lesser for greater magnitudes of measured soil loss, thus
cultivated and in other ways treated identically. Theindicating that soil loss magnitude was a principal factor for explaining
coefficients of variation for the 25 storms ranged fromvariance in the soil loss data. Using this assumption, we estimated

the coefficient of variation of within-treatment, plot replicate values 18 to 91%, with 15 of the storms falling in the range of
of measured soil loss. Variances between replicates decreased as a less than 30%. The more erosive storms tended to show
power function (r 2 5 0.78) of measured soil loss, and were independent the lesser degree of variability. Of the 15 storms with
of whether the measurements were event-, annual-, or multi-year mean erosion rates of greater than 0.1 kg/m2 (1.0 Mg/
values. Coefficients of variation ranged on the order of 14% for a ha), 13 showed coefficients of variation of less than
measured soil loss of 20 kg/m2 to greater than 150% for a measured 30%. The results of the study indicated that “only minor
soil loss of less than 0.01 kg/m2 These results have important implica-

amounts of observed variability could be attributed totions for both experimental design and for using erosion data to
any of several measured plot properties, and plot differ-evaluate prediction capability for erosion models.
ences expressed by the 25 events did not persist in prior
or subsequent runoff and soil loss observations at the
site.” While the study of Wendt et al. (1986) is informa-Data from soil erosion plots contain a great
tive, it is also limited in scope to a single treatment foramount of unexplained variability, which is a criti-
a single year at a single site.cal consideration in using erosion data to evaluate the

Ruttimann et al. (1995) reported a statistical analysisperformance of soil erosion models and for experimen-
of data from four sites, each with five to six reportedtal design. This variability is due both to natural and
treatments. Each treatment had three replications. Re-measurement variability. When comparing measured
ported coefficients of variation of soil loss ranged fromrates of erosion to predicted values, it is to be expected
3.4 to 173.2%, with an average of 71%. The authorsthat a portion of any difference between the two will concluded by suggesting “as many replications as possi-be due to model error, but that a portion will also be ble” for erosion experiments.due to unexplained variance of the measured sample A part of the process of evaluating the performancevalue from the representative, mean value for a particu- of soil erosion models involves comparing model predic-lar treatment. Variability is also the essential criterion tions to data from measured plots or small watersheds.for estimating the number of experimental replicates Unless one has some knowledge of the level of variabil-necessary to establish confidence intervals on mean val- ity in erosion data, it is difficult to delineate that portion
of the observed error coming from the model predictionM.A. Nearing and L.D. Norton, National Soil Erosion Lab., USDA-
from that part of the error which is resulting from unex-ARS, West Lafayette, IN 47907-1196; G. Govers, Lab. for Experimen-

tal Geomorphology, Physical and Regional Geography, Katholieke plained variability in the measured value itself. As such,
Universiteit Leuven, Redingenstraat 16, 3000 Leuven, Belgium. Re- it is difficult to define quantitative criteria for model
ceived 5 Aug. 1998. *Corresponding author (nearing@ecn.purdue. acceptability when comparing model results to mea-
edu).

sured data. Risse et al. (1993) applied the Universal Soil
Loss Equation (USLE) to 1700 plot–years of data fromPublished in Soil Sci. Soc. Am. J. 63:1829–1835 (1999).
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gradient. A more detailed description of the plots used in this208 natural runoff plots. Annual values of measured
study may be found in Risse et al. (1993).soil loss averaged 3.51 kg/m2 with an average magnitude

of prediction error of 2.13 kg/m2, or approximately 60%
Relative Differences in Replicated Erosion Plot Dataof the mean. Zhang et al. (1996) applied the Water

Erosion Prediction Project (WEPP) computer simula- The first part of this research, as stated above, was intended
tion model to 290 annual values and obtained an average to quantify the differences between soil loss values from a

large number of replicated plots. Because of the great rangeof 2.18 kg/m2 for the measured soil loss, with an average
of the observed measured values of soil loss used in this study,magnitude of prediction error of 1.34 kg/m2, or approxi-
we chose to use a relative difference term, Rdiff (non-dimen-mately 61% of the mean. In both cases, the relative
sional), that we define aserrors tended to be greater for the lower soil loss values.

Given these results and others from similar types of Rdiff 5 (M2 2 M1)/(M2 1 M1) [1]
studies (Liu et al., 1997; Rapp, 1994; Govers, 1991),

where M1 and M2 are the paired values of soil loss from twothe question remains: are the predictions good enough replicate plots. The properties of Rdiff are such that its value
relative to measured data? What is an acceptable and may range from 21 to 11, and when M2 5 M1, then Rdiff 5
expected level of model prediction error? 0. For each pair of plots, A and B, two values of Rdiff were

As mentioned above, comprehensive data with a large computed. For the first Rdiff value, the measured soil loss from
number of replications for evaluating unexplained vari- Plot A is designated as M1 and that from Plot B is designated

as M2. For the second Rdiff value, the measured soil loss fromance in measured soil erosion data is lacking. However,
Plot B is designated as M1 and that from Plot A is designatedfrom a large collection of values of differences between
as M2.replicated plots it is possible to estimate the population

Values of Rdiff are plotted against M1 in Fig. 1, 2, and 3 forvariance of real-world, replicated, erosion plots. The
event, annual, and multi-year totals, respectively. Note thatobjective of this study was to quantify variability be-
although the Rdiff values for the pairs of plots are necessarilytween replicated soil erosion field plots under natural the same in absolute value, with one positive and the other

rainfall. The procedure was to evaluate the differences negative, the graphs are not, and cannot be, symmetrical. This
between soil loss values from a large number of repli- is because we plot the Rdiff values against the value of M1,
cated plot pairs, and to use that information to estimate which differs for each value of the pair. Also note that while

there exist several values of Rdiff 5 21, which indicates a valuepopulation variances for soil erosion plots in general.
of M2 equal to zero, there are no points plotted for Rdiff 5 1.Also, we make recommendations and discuss implica-
In the latter case, M1 is equal to zero (see Eq. [1]), and sincetions of the results for purposes of experimental design.
the graphs are logarithmic on the x-axis, no values of M1 5
0 can be plotted.

METHODS AND MATERIALS The most apparent trend observed in Fig. 1, 2, and 3 is that
the spread of the distribution of the Rdiff values about theSoil Erosion Plot Data Rdiff 5 0 line decreases with increasing measured soil loss, M1.
This means that for large values of measured soil losses, oneThe soil erosion plot data used for this study was taken

from the repository of the USDA-ARS National Soil Erosion
Table 2. Site, cropping and management, and data collection pe-Research Laboratory located at West Lafayette, IN. Event

riod for the replicated plot data for annual soil loss values.values of soil loss were from seven sites in the USA (Table
1), and there were a total of 2061 replicated storm events in Site Cropping and management Years of record
the data set. Annual values of soil loss were used from 13

Holly Springs, MS Fallow 1961–1968sites (Table 2), with a total of 797 replicated pairs of plots. Turn-plow corn 1961–1968
Multi-year totals of soil loss were taken as the sums of the Meadow, corn rotation 1961–1968
annual values. The plots ranged from 2 to 8 m in width, and Corn, soybeans rotation 1970–1980

No-till corn and soybeans 1970–1980most were 22 m in length. Slopes ranged from 3 to 16% in
Conventional corn and soybeans 1970–1980

Madison, SD Fallow 1962–1970
Moldboard plowed corn 1962–1970Table 1. Site, cropping and management, and data collection pe-
Conservation tilled corn 1962–1970riod for the replicated plot data for individual events. Corn, beans, oats, rotation 1962–1964

Morris, MN Fallow 1962–1971Site Cropping and management Years of record
Moldboard plowed corn 1962–1971
Corn, oats, meadow rotation 1962–1971Holly Springs, MS Fallow 1961–1968

Turn-plow corn 1961–1968 Watkinsville, GA Fallow 1961–1967
Turn-plow corn 1961–1967Meadow, corn rotation 1961–1968

Corn, soybeans rotation 1970–1980 Turn-plow cotton 1961–1967
Corn, meadow rotation 1961–1967No-till corn and soybeans 1970–1980

Conventional corn and soybeans 1970–1980 Presque Isle, ME Fallow 1961–1965
Potatoes 1961–1965Madison, SD Fallow 1962–1970

Moldboard plowed corn 1962–1970 Pendleton, OR Fallow 1980–1989
Tifton, GA Fallow 1960–1966Conservation tilled corn 1962–1970

Corn, beans, oats, rotation 1962–1964 Peanuts 1952–1958
Oats, peanuts, corn rotation 1952–1966Morris, MN Fallow 1962–1971

Watkinsville, GA Fallow 1961–1967 Bethany, MO Corn, meadow, wheat rotation 1937–1941
Castana, IA Fallow 1960–1969Turn-plow corn 1961–1967

Turn-plow cotton 1961–1967 Clemson, SC Fallow 1940–1942
Dixon Springs, IL Corn, meadow rotation 1940–1945Corn, meadow rotation 1961–1967

Presque Isle, ME Fallow 1961–1965 Hayes, KS Meadow 1933–1937
Lacrosse, WI Barley 1939–1945Pendleton, OR Fallow 1980–1989

Tifton, GA Fallow 1960–1966 Meadow, corn, oats, rotation 1939–1945
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Fig. 1. Relative differences in event data of soil loss between replicated plots, Rdiff, as computed by Eq. [1] vs. the measured soil loss value, M1

(kg/m2), for the data from Table 1.

the variance of differences in replicated plots when each ofcan expect that there will be a tendency for the differences
the two plots in the pair are from the same population butbetween the measured values from replicated plots to be less.
the pairs come from different populations. To address theIt follows logically, as we show mathematically in the next
problem, we are required to assume that the variances of thesection, that the coefficient of variation in measured soil loss
replicate populations are a function only of the magnitude offor replicates decreases with increasing soil loss values as well.
soil loss. This is not a comprehensive assumption because
variance in replicates undoubtedly is a function of other fac-Within-Treatment Variance
tors. However, no other information on the controls of varia-of the Replicated Plots tion is available. Also, results from this study suggest that the

Our goal was to compute the within-treatment variance of magnitude of soil loss does capture a significant degree of the
soil loss from pairs of replicated data. The essential problem variation in population variance (Fig. 1, 2, and 3). Thus, we

do not consider this assumption to be restrictive for our pur-is how to estimate the variance of the measured values from

Fig. 2. Relative differences in annual data of soil loss between replicated plots, Rdiff, as computed by Eq. [2] vs. the measured soil loss value,
M1 (kg/m2), for the data from Table 2.
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Fig. 3. Relative differences in multi-year data of soil loss between replicated plots, Rdiff, as computed by Eq. [2] vs. the measured soil loss value,
M1 (kg/m2), for the data from Table 2.

poses. The second assumption of the analyses is that the two Suppose we take a random pair of values, M1 and M2, from
a distribution of measured soil loss values (Fig. 4). In this case,replicate plots are members of the same population, which is

an implicit assumption in replicated experiments. Certainly in we can assume that the variance s2
M1, and s2

M2 are equivalent
and that the co-variance sM1,M2 is zero. Sincepractice, there are differences between replicates in any real-

world case. On the other hand, these differences are the same
s2

(M12M2) 5 s2
M1 1 s2

M2 2 2sM1 M2 [2]that the experimentalist must face in conducting fieldwork,
and similarly for the modeler in using the data to evaluate a (Walpole and Myers, 1993) we can estimate the variance of
model. Also, the study of Wendt et al. (1986) suggested that the population, s2

M, from s2
(M12M2) as

even when extensive plot properties are known, they are not
necessarily of significant value in explaining the observed vari-

s2
M 5

1
2

s2
(M12M2) [3]ance between the plots. Thus, we do not consider this second

assumption to be restrictive in terms of real-world application.
over small ranges of M within which s2

M changes minimally.
To estimate the variances, the data for the replicates were

ranked in increasing order of M1 and the coefficient of varia-
tion, CVM, was estimated by Eq. [3] sequentially for groups
of 90, 30, and 25 replicated pairs for the event, annual, and
multi-year data, respectively. The number of data points used
for each computation was a compromise between the desire
to have as many numbers as possible in each computation in
order to achieve the best estimate of CV from each group,
and the desire to maintain the least amount of spread in the
M1 values as possible for each group. Larger groups could be
used for the data sets with greater numbers of data points in
the series. The choice of the actual size of the groups for each
data set was ultimately a subjective decision.

The procedure for the computation of CVM was as follows.
After the data pairs were ranked in increasing order of M1,
the value of M2 2 M1 for each pair was computed. The sample
variance, s2

(M12M2), of values 1 through 90 (in the case of the
event data) of M2 2 M1 was computed, as well as the average
of M1 for that same group. The value of s2

M was then computed
from s2

(M12M2) by Eq. [3]. The computation

CVM 5 sM/M1 [4]

is straightforward. The second value of CVM is then computed
for the group of pairs 2 through 91, and so forth. In the graphFig. 4. Theoretical, schematic diagram of a probability density func-
(Fig. 5), CVM was plotted against M1 for the event, annual,tion for a population of soil losses, with points indicated for illustra-

tive purposes of two soil loss values M1 and M2. and multi-year data.
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Fig. 5. Estimated coefficients of variation, CVM (fraction), as computed by Eq. [3] and [4] from sequences of soil loss differences from replicated
plots as a function of the measured soil loss for event, annual, and multi-year data.

The analysis produced two important results: (i) the loga- year data. Thus, we were able to combine and sequentially
order the data from all three data sets, estimate CVM as beforerithm of CVM was linearly related to the logarithm of M1 for

all three sets of data (Fig. 5), and (ii) the log-linear (power) using Eq. [3] and [4] with groups of 90 sequentially paired
plot data, and graph CVM against M1. The resultant relation-relationship was not statistically (a 5 0.05) different (in terms

of both slopes and intercepts) for event, annual, and multi- ship was:

Fig. 6. Estimated coefficients of variation, CVM (fraction), as computed by Eq. [3] and [4] from sequences of soil loss differences from replicated
plots as a function of the measured soil loss for the data combined.
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design purposes, use of Eq. [6] and [7] can only belog10(CVM) 5 20.306 log10(M1) 2 0.442 [5]
considered a guide rather than an absolute. Nonetheless,

(r 2 5 0.78) the results do provide basic information which can be
helpful. For example, we now have quantitative evi-CVM 5 0.361 M20.306

1 [6]
dence that more plots are necessary to obtain the samewhere CVM is expressed as a fraction and M is in units of (kg/
level of confidence in erosion data when erosion ratesm2) (Fig. 6).
are low. For a certain number of available plots, theThe high coefficient of determination of the log-linear re-
experimentalist can estimate the level of differencesgression (Eq. [5]) lends support to the assumption made pre-

viously that the variance between replicates is largely a func- between treatments that one might expect to differenti-
tion of the magnitude of the soil loss. ate statistically.

One limitation of the analyses which were conducted
here is related to the group sizes for estimating theReplicate Variability and Numbers of Replicates
variance of (M1 2 M2). A different choice of groupfor Experiments
sizes would affect the level of fit between coefficient of

Recommended numbers of replications for experimental variation and soil loss magnitude (Fig. 6). Small group
design purposes can be estimated on the basis of the confi- sizes would result in a lower r2 value. Thus the reported
dence intervals about the mean (Walpole and Myers, 1993; level of fit for Fig. 5 and 6 should not be taken as anOtt, 1977). The estimation equation for nR for purposes of

absolute, but only as an estimate for the specific methoddetermining the mean value of soil loss, M, can be written as
used here. Also, there are some problems with the re-
gression since observations are not independent (thenR 5 3za/2s

hM 4
2

5 3za/2CVM

h 4
2

[7] first observation point for the event data is based on
data pairs 1–90, the second on 2–91, and so on). Also,

where za/2 is distance from each direction of the mean on the the first and last points are used only once, while pointsstandard normal curve for which the area under the curve has
in the middle of the range are used 90 times. The ex-an area of (1 2 a), and h is the desired degree of accuracy
treme pair values are not given the same weight in theexpressed as a fraction of the mean. For example, if the coeffi-
regression as are the mid-points. While these limitationscient of variation is expected to be 0.50, and we want to design
may compromise the accuracy (r2) of the relationshipsan experiment for which we can be 90% confident that the

population mean of soil loss is within plus or minus 40% of here derived between the coefficient of variation and
the measured mean, then za/2 5 z0.05 5 1.645, CVM 5 0.5, and soil loss magnitude, there is no doubt about the basic
h 5 0.40. Application of Eq. [7] results in a value of nR of results: i.e., the magnitudes and trend of the coefficients
4.2. Thus we would want to design an experiment with at of variation as shown in Fig. 6 are essentially correct
least five replications for this case, or, alternatively, lower for the data used in this study.
expectations regarding accuracy of the measured mean. One In the case where erosion rates are expected to bemight, for example, choose to use three plots and expect that

very low, the estimated variance will show that a precisethe population mean will be within plus or minus 47% of the
measure of soil loss is not practical. When, for example,measured value.
the coefficient of variation is of the order of 100% (Fig.It is important to note here that Eq. [7] is to be used for
6), one theoretically would be required to have 68 plotestimating mean experimental values for a treatment. If, on

the other hand, one wishes to compare means between treat- replicates in order to be 90% confident that the sample
ments, the number of replicates for each treatment must be mean falls within 20% of the population mean. In that
essentially two times that expressed by Eq. [7]. For our exam- case, one might choose to use five replicates to be 90%
ple above, if we wanted to be able to differentiate between confident that the sample mean falls within 74% of the
two treatments for which the means were 40% different, we population mean. What this implies in a practical sense
would want 9 (2 3 4.2 5 8.4) replications of each treatment. is that small differences in field conditions may not beNeither of these examples take into consideration testing for

measurable, and that one might limit experiments totype II errors, for which case the numbers of replications might
those which evaluate major differences. One can alsobe greatly increased (Walpole and Myers, 1993; Ott, 1977).
make the argument from the practical perspective thatEquations [6] and [7] may be used together to estimate
there may be little interest in differentiating small differ-recommended numbers of replicates for erosion studies. How-

ever, a problem in application immediately arises because Eq. ences in treatments when erosion rates are low in any
[6] requires prior knowledge of the value, which we are trying case.
to measure, which is soil loss, M. The number of replicates The experimentalist also now knows that time may
will vary greatly depending on the measured soil loss, because be used to his/her benefit when differentiation between
the coefficient of variation varies greatly with the magnitude treatments is desired. Since variance between replicates
of soil loss. The problem is unavoidable. A second unavoidable decreases with measured amount of soil loss regardlessproblem in application comes from the fact that Eq. [6] repre-

(apparently) of the time over which the data is collected,sents a mean response between measured values and variance.
one might choose to measure soil loss for a longer periodIndividual data sets may have a great deal more (or less)
of time to reduce variance between plots. Also, it mayvariance than estimated (Fig. 6).
be that not only does variance decrease as measured soil
loss increases, it appears from Fig. 6 that the variation inDISCUSSION the variance also decreases with increasing measured
soil loss (although we did not attempt here to quantifyGiven the limitations in the information presented

here on using our variability estimates for experimental this observation). If so, this result would indicate that
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one might be more assured that the relationship ex- treatment soil loss data which have not been available
heretofore. This study quantifies explicitly for the firstpressed by Eq. [6] will be reliable at greater soil losses.
time that the coefficient of variation in soil erosion dataThese results also have significant implications for
tends to be much greater when measured soil loss valuesevaluating erosion models. Very often scientists attempt
are relatively small. Though it yet remains a subjectiveto test a model by comparing model predictions against
task to design soil loss plot studies to meet desired levelsdata from erosion plots or similar data (Zhang et al.,
of measurement confidence, the information provided1996; Risse et al., 1993; Rapp, 1994; Liu et al., 1997). The
here gives important guidance for the experimental de-question in such cases inevitably arises as to whether the
signer. Also, for the first time we have informationpredictions are or are not satisfactory relative to the
which may help us to incorporate measurement variabil-data. This issue has not been adequately addressed,
ity into our analyses of the capability for soil erosionlargely because we rarely have information on the na-
models to predict measured erosion data. This is anture of erosion variability. Perhaps it is best illustrated
important subject which warrants further investigation.by example. Let us suppose that the model evaluator is

working with a measured value of soil loss of 1.37 kg/
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