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ABSTRACT

HEORETICAL equations which describe the

pressures caused by one-dimensional impact of water
onto soil surfaces were derived from basic mechanics.
The pressures of impact on the soil skeleton and in the
soil pores were shown to be functions of the densities and
volume fractions of the soil pores and skeleton, a
dynamic coupling coefficient, and the compressional
wave velocities in the two soil fractions. Theoretical or
empirical relationships between the dynamic parameters
and soil matric potential, porosity, and degree of
saturation were presented, and the total and effective
vertical stresses and pore water pressures caused by
impact were calculated as a function of those static soil
properties. The calculated total vertical stresses were of
the order of 0.05 to 0.16 the value for impact on rigid
surfaces, and were largely a function of soil matric
potential and porosity. The calculated pore water
pressures were primarily dependent upon the degree of
saturation. At high saturation levels and low matric
suctions, calculated pore water pressure exceeded
calculated effective vertical stress, indicating a liquified
and unstable state for that soil condition. The results will be
useful in providing input functions for numerical or
analytical studies of soil response to waterdrop impacts.

INTRODUCTION

The theory for the one-dimensional impact of
compressible liquids onto homogeneous solid surfaces is
well developed (Adler, 1979; Springer, 1976). The
vertical pressures of impact are a function of the relative
velocity and the dynamic impedences (the products of
material densities and compressional wave velocities) of
the two materials. Furthermore, it has been shown that
the actual pressure of liquid-solid impact for waterdrops
and waterjets are of the same order of magnitude as the
theoretical one-dimensional values (Adler, 1979). A
similar theory for one-dimensional water to soil impact
has not been developed. Such a theory would provide an
estimate of the order of magnitude of the stresses
imposed by waterdrop impact on soil surfaces which
initiate erosion and cause surface sealing. The theory
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would also provide for a method of making parametric
studies of soil properties and their effects on raindrop
impact stresses and hence their effects on the
detachability of soil particles by raindrops.

For a homogenous solid, the pressures generated by an
impacting liquid are a function of the densities and
compressional wave velocities of the two materials
(Springer, 1976; Adler, 1979):

P, = pyC ¥/[1 +p,, Clp,U,]

where C is the velocity of a compressional wave in water,
v is the relative velocity of the two materials at the time of
impact, p, is the density of the water, p, is the density of
the solid target, and U, is the velocity of a compressional
wave in the solid. Equation [1] was derived in detail by
Springer (1976). For low impact velocities, such as those
associated with natural rainfall on a stationary target,
the velocity, C, of the induced compressional wave in the
water is equal to the velocity of sound in water. In the
case of a rigid solid p,U, >> p,C and P, reduces to the
classical “water hammer”’ pressure, P,, (Adler, 1976)

Numerical computations and laboratory experiments of
waterdrops or jets on essentially rigid surfaces (i.e.,
where pU, >> p,C) have shown that the impact
pressures were of the order of magnitude as that
computed from equation [2] (Hwang and Hammitt,
1977; Johnson and Vickers, 1973; Rochester and
Brunton, 1974; Rosenblatt et al., 1977).

Soils are not homogenous, and with impact of a liquid
onto a soil two compressional waves are generated, a
frame wave and a fluid wave (Biot, 1956). The frame
wave is associated primarily with the soil skeleton and
the fluid wave is associated primarily with the pore fluid,
although coupled motion of the two phases may exist for
both waves. Both the frame and fluid waves must be
considered for a complete description of the one-
dimensional soil impact problem.

Pressures generated by waterdrop and waterjet impact
on rigid solid surfaces are of the order as those predicted
from the theory of one-dimensional fluid-solid impact.
Equations for the one-dimensional impact of water onto
soil surfaces have not been developed. The purpose of
this study was to develop those equations, evaluate
required parameters using the best available knowledge,
and calculate the theoretical one-dimensional impact
pressures of water on soil surfaces for a range of soil
conditions. The knowledge thereby developed will
provide a basis for input to numerical or analytical
schemes which analyze the response of various soils to
waterdrop impact loading.
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IMPACT EQUATIONS

The derivation of the equations for the one-
dimensional impact pressure of water onto a soil surface
can be made by considering the stress differences across
the compressional waves which propagate into the water
and soil. Upon impact three conpressional waves are
- generated; one in the impacting water, the frame wave in
the soil skeleton, and the fluid wave in the soil pores in
the soil. The equations for the pressure differences across
the compressional waves may be derived from jump
conditions of continuum mechanics (Eringin, 1967):

Py, =Py C (Y mtiy) «vevnvr e [3]
PP =PpUplp «ov e [4]
Pf—prfuf ........................... [5]

where P, is the pressure difference across the
compressional wave in the impacting water, P, is the
pressure difference across the fluid wave, P; is the
pressure difference across the frame wave, p, is the
density of the material displaced by the fluid wave, p, is
the density of the material displaced by the frame wave,
U, is the velocity of the fluid wave, U, is the velocity of
the frame wave, u, is the material velocity of the water,
u, is the material velocity of the pore fluid, u, is the
material velocity of the soil skeleton, and v is the velocity
of the impacting water immediately before impact (Fig.
1). The material displacement across the interface
between soil and water must be continuous, hence,

Uw = l.lp
where u is equal to the velocity of the interface.
Furthermore, the forces across the interface must be the
same. Thus if B, is the fraction of the soil in which the
frame wave is propagated and f, is the fraction of the soil
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Fig. 1—Compressional waves generated by 1-D water to soil impact.
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in which the fluid wave is propagated, then

After eliminating u,, u,, u,, P,, and P, and solving for
P,, the resultant equation is

Pe=p,Cv/ [Bs+By(ppUp/ofUs + (03, ClpUg)] - - - . [8]

The development of equation [8] is essentially analogous
to that of equation [1] wherein the non-homogeneity of
the soil material and the subsequent development of
multiple compressional waves are considered.

P, is the pressure of impact generated at the soil
surface primarily on the soil frame or skeleton. An
analogous equation may be similarly derived for the
pressures which are generated primarily in the soil pores
and are associated with the fluid wave. It is

Py =0 Cv/ [, +Be(peUglpyUp) + (0 ClogUp)] - - [9)

The deformation of strength of a soil mass may be
analyzed either as a function of the total stress on the soil
skeleton or as a function of the effective stress, which is
the total stress on the soil skeleton minus the pore water
pressure. In the case of water to soil impact P, is the total
stress on the soil skeleton and P, is the pore water
pressure. Thus for soil mechanical analyses it is useful to
define the vertical effective stress for the case of water to
soil impact, P,, as

By combining equations [3], {4], [5], [6], [7], and [10]
the effective stress P, may also be given as

P, = Py VI (B¢ + (0 Up 0, ) (peUgpp Up )] - - - - [11]

PARAMETERS

Equations [8], [9], and [11] provide a means for
calculating the vertical stesses induced on a soil surface
due to the one-dimensional impact of the water. The
parameters, C, v, and p,, are assumed to be known for
the system, hence the parameters p,, p;, [3P, Bes Up, U;
must be determined in order to calculate the pressures.
As will be shown, these parameters are known to be
functions of porosity, degree of saturation, and effective
confining pressure of the soil. The pressures of water
impact are therefore functions of these soil properties.

As will also be shown, a complete understanding of the
necessary parameters for all soil conditions is lacking. As
new knowledge relating soil properties to the dynamic
parameters listed above becomes available, the pressures
calculated from the impact equations will be more
accurate. The relationship used herein for the
parameters are based on best available knowledge.

In presenting relationships for calculating the
parameters for the equations, the range of saturation
values considered were restricted to $>0.85. This was
done for two reasons. For purposes of understanding
splash erosion phenomenon, relatively high values of
saturation are of primary interest. Also, by restricting
the range of saturation considered, less extrapolation of
existing experimental data as well as theoretical concepts
were necessary in evaluating the parameters. This is not
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to imply that the validity of equations [8], [9], and [11] is
restricted to high saturation levels.

The Density and Volume Fraction Parameters

Due to the coupled motion of the solid and pore phases
of the soil for both the frame and fluid wave, the
densities p, and p, must include a coupling coefficient
py,- Biot (1956) provided the theoretical basis for
defining the coupling coefficient. The defining equations
for the dynamic density parameters, with slight
modification to include the parameter S for a moderate
degree of desaturation, are

pf+2pfp+pp=p ...................... [12]
where p is the total mass density defined by

p=(1-f)og +S fp,
where p, is the solid mass density and p, is the density of

the pore water, f is the porosity, and S is the degree of
saturation of the soil pores. Furthermore,

Pe=(1-Dpg~pgy oo [14]
and
Py Sfpw-pfp ....................... [15]

Equations [14] and [15] come directly from Biot’s (1956)
definition of p;, and equation [13]. The coupling
coefficient, therefore, is a negative quantity, the
magnitude of which represents the mass of pore water
per unit total volume which is displaced by the frame
wave, and also the mass per unit total volume of solids
which is displaced by the fluid wave.

The value of the coupling coefficient for a saturated
soil was measured experimentally by Hardin and Richart
(1963). They determined a value of -p,, of approximately
0.4 p f. For dry soils, the coupling coefficient is zero,
and the coupling for partially saturated soils is not
known. For purposes of calculation herein and until
better information is available, a linear relationship
between p;, and S in the range 0.85<S<1 will be
assumed, hence,

—pfp =04 Py Sf

The dynamic density parameters may be calculated from
equations [14] and [15], using equations [16] to calculate
the dynamic coupling coefficient.

The parameters f3; and 3, are the volume fractions of
the material which is displaced due to the passing of the
compression waves. In the case of f3; for the frame wave,
the soil skeleton of volume (1-f) is displaced and a
portion of the pore water, — p, /p, is displaced. Hence,

Be=(1-f) - pgy /oy,

In the case of 3, the volume of solids displaced is -p;,/p,,
hence,

ﬁp = Sf— pfp/ps

The Wave Velocities
From the partial differential wave equation and
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elasticity theory it can be shown that
2 -
Up = Byl

where B, is the bulk compressibility of the material with
density p, in which the wave of velocity U, is
propogating. The density p, has been derived. The bulk
compressibility, Bp, can be calculated from the equation

total volume B total volume

- [volume solids displaced] 1, l:zolume voids] 1
B
s

where B, is the bulk compressibility of the solid phase
and B,, is the bulk compressibility of the combined air-
water phase. B, can be computed from the equation

1/B,,, = (1-S)/B, + S/B,,

where B, is the bulk compressibility of air and B, is the
bulk compressibility of water. The ratio of volume of
voids to total volume is f. The ratio of volume of solids
displaced by the fluid wave to total volume is a function
of the coupling coefficient and is equal to -p;/p,. Hence,
equation [20] may be rewritten as

1/B, = (-pgy/p) /By +£(1-S)/B, + £S/B, . .. .. .. [22]

The fluid wave velocity may be computed from equation
[19] using equation [22] to calculate B,. Equation [22] is
similar to the “Wood’’ equation which was presented by
Allen et al. (1980). The Wood equation, however,
assumes complete coupling between the solid and fluid
phases whereas equation [22] assumes a more realistic
function (i.e., equation [16]) for the coupling coefficient.
Also herein, the density parameter p, was calculated as a
function of S whereas in Allen et al. (1980) it was not. As
a result we do not place the restriction on the range of
validity of equation [19] as did Allen et al. (1980) on the
Wood equation (i.e., $>0.98), but assume it to be valid
for 0.85<S<1.

The frame wave velocity, U,, has been found
empirically to be a function of confining pressure, o, of
the form (Hardin & Richart, 1963)

For saturated sands they found that a = 66 and b =
0.37 when o is in kPa and U; is in m/s. For dry sands
they found a = 93.5 and b = 0.306. Moist material had
values between the extremes. For purposes of calculation
we assume here a linear relationship between a and S and
between b and S. Hence, the empirical relationship

Ug=[93.5-27.58] ¢l0.306 +0.0645] = [24]

was used to calculate the frame velocity U,.

o must be known in order to calculate U,. The effective
confining pressure, o, for nearly saturated soils in equal
to the soil matric suction (Towner, 1961). For partially
saturated soils the relationship is more complex (Towner
and Childs, 1972). For the calculations made here we are
interested in the near saturated state and it was assumed
that o and soil water suction are essentially equivalent.
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Fig. 2—Theoretical normalized impact pressures on the soil skeleton
as a function of degree of saturation for five porosities at -1 kPa matric
potential. :

This assumption is more restrictive for a sand than for a
clay. Towner and Childs (1972) showed for a beach sand
that effective stress and suction were equivalent to about
2 to 3 kPa, whereas Towner (1961) found effective stress
and suction to be equivalent to at least 400 kPa for a pure
kaolinite.

CALCULATIONS

P, P, and P, were calculated as functions of S, f, and
o for a range of values. The pressures were normalized to
the water hammer pressure, P, (P, for water impacting at
a velocity of 10 m/s is 15 MPa). The density of the solid
phase was assumed to be 2650 kg/m? and the density of
water was assigned a value of 1000 kg/m3. The bulk
compressibility of air, B,, was assigned a value of 789
kPa; the bulk compressibility of water, B,, was assigned
a value of 2.24 GPa; and the bulk compressibility of the
solid phase, B,, was assigned a value of of 36.9 GPa (for
quartz). :

Fig. 2, 3, and 4 show the relationship between P, P
and P, and S for five porosities, f, at a soil matric
potential of -1 kPa. The calculated values of P, did not
vary significantly as a function of f and hence were
plotted as a single line. Figs. 5, 6, and 7 show the
theoretical effects of soil matric potential (i.e., effective
confining pressure) on the calculated pressures at
£=0.40. The calculated values of P, did not vary
significantly as a function of S and hence were plotted
only for $=0.90. Pressure was not plotted at values of

0.2
-1 kPa
MATRIC
< POTENTIAL
Q.
\ 0.1
a
Q.

.90 0.85 1

S

Fig. 3—Theoretical normalized pore water pressures as a function of
degree of saturation at -1 kPa matric potential.
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Fig. 4—Theoyetical normalized vertical effective stresses as a function
of degree of saturation for five porosities at -1 kPa matric potential.

‘matric potential greater than -0.5 kPa. Computation of
the frame wave velocity at very low confining pressures is
a questionjable extrapolation of existing experimental
data. The limiting value of -0.5 kPa was chosen

" arbitrarily.

DISCUSSION
The calculated theoretical vertical stresses on the soil

skeleton, P,, ranged 0.05 to 0.16 P, over the range of soil
characteristics used in the calculations. This suggests
that the vettical pressures of impact of on soil surfaces
are likely to be much less than the pressures of impact on
rigid surfaces, which are of the order of P,. For a soil
with $=0.90 and matric potential, y, of -10 kPa, P; was
calculated to be 0.16 P,. Another soil at $=0.90 and
yw=-0.5 kPa would have P, equal to 0.05 P,. P, was lower
at low suctions (Fig. 5). P; also decreased as f increased
(Fig. 2), but the differences were not as great as for the
changes with y. P, was not sensitive to S (Fig. 2).

The calculated pore water pressures were highly
dependent upon the degree of saturation, S, as would be
intuitively expected, and P increased to very high value
as S approached 1 (Fig. 3). The effects of porosity and
matric potential (Fig. 6) on P, were negligible. At high
saturations and low matric suctions, P, was greater than
P; and hence the soil would liquify under those
conditions (Holtz and Kovacs, 1981), which is a
mechanically unstable soil condition. Liquification for
w=-1kPa would occur at $>0.875 for f{=0.6 and at
§20.953 for f=0.2. The liquifaction potential is greater,

o -2 -4 -6 -3 -10 .

MATRIC POTENTIARL (kPa)

Fig. 5—Theoretical normalized impact pressures on the soil skeleton
as a function of matric potential at 0.4 porosity.
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Fig. 6—Theoretical normalized pore water pressures as a function of
matric potential for three degrees of saturation at 0.4 porosity.

therefore, for soils with higher porosity. At f=0.4
liquifaction would occur for w > (-0.5 to -1.8) kPa for S
between 0.85 and 0.95. This suggests that for near
saturated soil conditions, when matric suction is low, the
soil surface is highly unstable under raindrop impact.

Soil matric potential, degree of saturation, and
porosity were treated as independently varying
parameters in the calculations of impact pressures.
Obviously they are interrelated under natural field
conditions. If the relationship between matric suction
and degree of saturation for a soil were given, for
instance, the impact pressures could be calculated as
functions of either variable using the theoretical
equations presented herein.

This study raises basic questions regarding the
definitions of terms related to soil erosion processes. The
mechanics approach to problem solving is to relate some
input function, often a stress function, to the observed
material response, often deformation or failure. The
function which relates the input to the material response
is called a constitutive relation, which is material
dependent and often restricted to a certain range of
conditions. In the case of detachment of soil particles
caused by raindrop impact, the mechanical input is
related to the erosivity term used in erosion literature.
The erodibility is the material dependent parameter
which predicts the soil response to the erosivity term. It is
essentially a constitutive relationship which is valid
under certain restricted environmental conditions.

The erosivity term is normally considered, in soil
erosion literature, to be exclusively rainfall dependent.

P, /P,

-2 -4 -6 -8
MATRIC POTENTIAL (kPa)
Fig. 7—Theoretical normalized vertical effective stresses as a function
of matric potential for three degrees of saturation at 0.4 porosity.
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However, from a fundamental perspective for the case of
drop impact on a soil surface, it is apparent from this
study that soil parameters may affect the loading
function for water to soil impact. If this effect was
incorporated into an erosion model it might be
convenient to place it into either an erodibility term or
into an erosivity term according to the stucture of the
model. However, from a fundamental mechanics
perspective it should be recognized that soil properties
may affect the magnitudes of impact loading as well as
the soil response to loading.

The data relating soil matric potential, porosity, and
saturation to the dynamic parameters are limited.
Nevertheless, the theory does provide some important
information regarding impact pressures on soil surfaces:

1. The theory presents the governing equations for
the pressures of impact, including those for total and
effective stresses and pore water pressures.

2. The theory provides order of magnitude values for
impact pressures. In the past, it has been assumed that
measurements on rigid surfaces relate to the case of soils.
The theory suggests that the actual pressures are an
order of magnitude less than for rigid surfaces.
Calculated vertical stresses were 0.05 to 0.16 the water
hammer pressure.

3. The theory provides a method for assessing the
relative effects of soil matric potential, porosity, and
saturation on impact pressures on soil surfaces. The
results indicated that the soil surface was subject to
liquifaction at high saturations and low suctions. At
w=-1 kPa, liquification may be expected to occur for S
> [0.87 to 0.95].
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