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Abstract

Evaluation of various soil erosion models with large data sets have consistently shown that
these models tend to over-predict soil erosion for small measured values, and under-predict soil
erosion for larger measured values. This trend appears to be consistent regardless of whether the
soil erosion value of interest is for individual storms, annual totals, or average annual soil losses,
and regardless of whether the model is empirical or physically based. The hypothesis presented
herein is that this phenomenon is not necessarily associated with bias in model predictions as a
function of treatment, but rather with limitations in representing the random component of the
measured data within treatments (i.e., between replicates) with a deterministic model. A simple
example is presented, showing how even a ‘perfect’ deterministic soil erosion model exhibits bias
relative to small and large measured erosion rates. The concept is further tested and verified on a
set of 3007 measured soil erosion data pairs from storms on natural rainfall and run-off plots using
the best possible, unbiased, real-world model, i.e., the physical model represented by replicated
plots. The results of this study indicate that the commonly observed bias, in erosion prediction
models relative to over-prediction of small and under-prediction of large measured erosion rates
on individual data points, is normal and expected if the model is accurately predicting erosion
rates as a function of environmental conditions, i.e., treatments. © 1998 Elsevier Science B.V.
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1. Introduction

Soil erosion models tend to over-predict erosion for small measured values and
under-predict erosion for large measured values. Risse et al. (1993) applied the
empirically based USLE model (Wischmeier and Smith, 1978) to simulate erosion from
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208 natural run-off and erosion plots with a total of > 1700 plot years of soil loss data.
For both annual and average annual erosion data, the model tended to over-predict the
values on the lower end of the scale, and under-predict those on the upper end, although
the average erosion predicted for the entire data set was not greatly different from the
average measured values. The linear regression parameters for predicted vs. measured
erosion rates from Risse et al. (1993) were: (A) m=0.59, b=1.16 kg/m?, and
r? = 0.58 for the annual values, and (B) m = 0.77, b =0.42 kg/m?, and r* =0.75 for
the average annual values, where m is the regression slope, b is the y-intercept value,
and r? is the coefficient of determination. Rapp (1994) performed a study of the
Revised USLE (RUSLE) using the same data as that used by Risse et al. (1993) and
found similar results. In the case of RUSLE, the linear regression parameters for
predicted vs. measured erosion were: (A) m = 0.49, b = 1.44 kg/m?, and r* = 0.58 for
the annual values, and (B) m = 0.64, b =0.91 kg/m?, and r?>=0.75 for the average
annual values (Rapp, 1994).

Results from testing of physically based, computer simulation models of soil erosion
have produced similar results. Zhang et al. (1996) applied the Water Erosion Prediction
Project (WEPP) model to data from 65 natural run-off plots from eight locations in the
US. The data included 556 annual values and 4124 event values of erosion. Zhang et al.
(1996) found that small erosion values tended to be over-predicted, and large erosion
values tended to be under-predicted for event-by-event, annual totals, and annual
average soil loss. This trend was consistent with that observed by Ghidey et al. (1995),
as well as Kramer and Alberts (1995) in their applications of the WEPP model to other
data sets. Zhang et al. (1996) also found a similar trend for the case of predicted vs.
measured run off, with the exception of the calibrated annual average values of run off.
It is interesting that even for the calibrated case, where the baseline soil infiltration
parameter was adjusted to produce essentially matching total average annual run off, the
annual (year-to-year) and storm run- off values also exhibited over-prediction at low
measured values, and under-prediction at large measured run-off values.

Natural variation in soil loss data is large. Wendt et al. (1986) performed a study on
40 replicated, fallow, natural run-off plots near Kingdom City, MO and found that the
coefficient of variation (CV) in measured soil loss on individual storms ranged from 18
to 83% and was dependent on the level of erosion observed (CV decreased with
increasing mean soil loss). In that study, the authors could find no statistically
significant relationships between soil loss and plot characteristics. The minor variations
in soil type or slope were not correlated to soil loss, and run-off volume correlated to
soil loss only for the storms that produced low run off. No spatial trends were found
between plots, and no inherent plot differences relative to soil loss were observed. In
other words, these were, for all practical purposes, replicated plots that would be
modeled with identical model input parameters, and thus which would result in a single
prediction value for each storm for all the plots. The implication of the study of Wendt
et al. (1986) for erosion prediction is that, there is a limit to the accuracy of
deterministic models because of the variation in soil erosion rates, which may be
considered random from a practical standpoint. This is true irrespective of model type,
whether empirical or physically based. The nature of the observed variation is discussed
below.
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‘The hypothesis of this study is that the consistently observed bias for soil erosion
models to over-predict low measured rates and under-predict large measured rates is
due, at least in part, to the fact that the models are deterministic in nature, and the
measured data has a significant random component for which the models cannot account
within the deterministic framework. A simplified, synthetic example is presented to
illustrate in a general manner the basic nature of the concept. The objective of this study
was to test this hypothesis by using 6014 measured soil loss data points from storms on
replicated natural rainfall and run-off plots under both fallow and cropped conditions. In
this study, the first plot is treated as the ‘measured’ soil loss value, and the replicated
plot is treated as the unbiased physical model, i.e., predictor, of the measured plot data.

2. Conceptual considerations

Consider a ‘perfect’ deterministic soil erosion model. This model accurately predicts
soil erosion as a function of treatment, i.e., for any particular combination of soil, plot
size and shape, erosive inputs, plants, tillage, and other measurable factors, the model
predicts the mean value of soil erosion for a population of replicates. As an example, we
use the data from Wendt et al. (1986). They reported mean values and coefficients of
variation for the data from individual storms during a 1-yr period for the 40 replicated,
fallow plots in their study. They also reported that, except for the smaller events, the
samples were normally distributed for individual storms. Thus, for demonstrative
purposes, we consider here the 15 events with reported mean soil loss greater than 0.1
kg/m” (1 Mg/ha) and assume a normal distribution of replicates for each storm. We
further assume that our hypothetical, perfect, deterministic model predicts the correct
mean value of soil loss for each of the 15 storms as reported by Wendt et al. (1986), and
we choose 40 data points, evenly spaced relative to probability of occurrence, from a
normal distribution using the storm-by-storm means and variations as reported in the
paper. Note that we do not assume a normal distribution for the data set as a whole, but
only for within-storm replicates. The data for the series of storms as a whole was
skewed. Fig. 1 shows a graph of the results of our model in terms of predicted vs.
measured soil losses.

The average soil loss across plots for each storm is identical between our ‘perfect’
deterministic model and the measured data, and the total soil loss for the series of storms
is the same for the model and the data. The model under-predicted half and over-predic-
ted half of the total of 600 data points. Yet the regression line between predicted, P, vs.
measured, My, soil loss was

P, =0.903 X M, +0.0611 (r?=0.90). (1)

For the range of measured values of less than 0.15 kg/m?, 29% were under-predicted
and 78% (102/131) were over-predicted, and for the upper range of M, greater than
0.8 kg/m?, 67% (136 /202) were under-predicted and 33% were over-predicted. In the
mid-range, approximately half were under-predicted and half were over-predicted.
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Fig. 1. ‘Predicted’ vs. ‘measured’ soil loss for the hypothetical, perfect, deterministic erosion model as applied
to the data from Wendt et al. (1986). ‘Predicted’ values are the mean values of the 40 replicated erosion plots,
and the ‘measured’ values are evenly spaced relative to probability of occurrence assuming normal distribu-
tions using the storm-by-storm means and variations as reported in Wendt et al. (1986).

The observed result of model bias is simply due to the fact that the ‘model’ used is
deterministic, and the data contains random variation within treatments, rather than the
fact that the model is biased relative to the means of the treatments. In other words, the
phenomenon is mathematical in nature rather than a function of any bias inherent in the
model itself. In this example, the assumption of normal distribution was used. The
results would be slightly different quantitatively for different types of distributions, but
qualitatively similar regardless of the assumed distribution type.

3. Data from replicated plots

Perhaps the best possible model for predicting the erosion from an area of land is a
physical model of the area that has similar soil type, land use, size, shape, slope and
erosive inputs, i.e., a replicated measurement. To test our hypothesis concerning the bias
of deterministic erosion models for predicting erosion for individual plot measurements,
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we extracted information for pairs of replicated plots from the repository of soil loss
data located at the USDA-ARS National Soil Erosion Research Laboratory. A total of
3007 pairs of data for individual storms were chosen for analysis (Table 1). Two data
points were obtained from each pair of data. For the first data point, one value (A) of the
pair was chosen to serve as the ‘measured’ value of erosion and the other (B) was
considered to be the ‘predicted’ value from the physical model. For the second data
point value (B) was used as the ‘measured’ and value (A) as the ‘predicted’. The
resultant ‘model’ was unbiased in the sense that total erosion was the same for both
‘measured’ and ‘predicted’, and the same number were under-predicted as were
over-predicted.

The average soil loss rate per storm measurement was 0.222 kg / m?. The regression
line between predicted, P,, vs. measured, My, soil loss was (Fig. 2)

P, =0.876 X M, +0.0275 (r>=0.77). (2)

For the 2005 data points with the lowest ‘measured’ soil loss (M, < 0.007 kg/m?),
50.4% were over-predicted, 34.2% were under-predicted, and 15.4% were reported as
the same. For the 2005 values in the mid-range (0.007 kg/m? < M, < 0.083 kg/m?),
40.5% were over-predicted, 42.8% were under-predicted, and 16.6% of the pairs had
identical reported erosion rates. For the 2006 data points in the upper range of measured

Table 1
Site, copping and management, and data collection period for the replicated plot data used in this study
Site Cropping and management Years of record
Holly Springs, MS Fallow 1961-1968
Turn-plow corn 1961-1968
Meadow, corn rotation 1961-1968
Corn, soybeans rotation 1970-1980
No-till corn and soybeans 1970-1980
Conventional corn and soybeans 1970-1980
Madison, SD Fallow 1962-1970
Turn-plow corn 1962-1970
Conservation tilled corn 1962-1970
Conservation tilled oats 1962-1964
Morris, MN Fallow 1962-1971
Corn, oats, meadow rotation 1962-1971
Watkinsville, GA Fallow 1961-1967
Turn-plow corn 1961-1967
Turn-plow cotton 1961-1967
Corn, meadow rotation 1961-1967
Presque Isle, ME Fallow 1961-1965
Pendelton, OR Fallow 1980-1989

Tifton, GA Fallow 1960-1966
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Fig. 2. ‘Predicted’ vs. ‘measured’ soil loss for the physical model of soil erosion as represented by pairs of
replicated plots.

soil loss (M, > 0.083 kg/m?), 41.6% were over-predicted, 55.5% were under-predic-
ted, and 2.9% were reported as the same.

4. Discussion

The soil erosion model is a tool for identifying sources of soil erosional variances as
a function of measurable quantities of the system of interest. This study is predicated on
the premise that a practical limitation exists in defining an erosional system for the
purposes of prediction. The study of Wendt et al. (1986) certainly supports this premise.
There are sources of contributing variability that could theoretically be measured and
which could potentially further explain the measured variance in soil loss between the
replicates of the Wendt et al. study or other similar conditions. For example, local
variations in rainfall intensities from plot to plot may have played a role, although the 15
non-recording gauges in the plot area showed only minor differences. There are,
however, practical limitations to measurements. If one were to cover the plot with a rain
gauge to measure the instantaneous, spatially distributed rainfall characteristics over the
plot, the resultant run off and sediment generated would be affected. Another example is
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plot-to-plot variations in microtopography, and the way in which the microtopography
evolves as a result of rainfall, run off, and erosion.

On the other hand, there may exist basic considerations relative to the physics of the
erosion process that cause variations and which are essentially unaccountable. Lei et al.
(1997) recently developed a finite element model that mimics the spatial and temporal
evolution of rill development over time. The results of that numerical study indicate that
sediment concentration in a rill will oscillate spatially in an apparent random fashion
downstream in a rill even for conditions of constant flow discharge with time and
downstream distance. Rills in the laboratory exhibit these alternating regions of deposi-
tion and detachment for the steady-state, uniform initial slope case that were effected by
small-scale random variations in the initial conditions of the rill (Lei et al., 1997).
Depending upon where the rill were to be sampled for sediment, a given rill may exhibit
large variances in measured sediment discharge. Thus, the sediment discharge from a rill
cannot be predicted without variance. The situation would certainly be much more
complicated in the field with a variety of complex factors at work.

The results of this study indicate that the application of a deterministic model to data
which, by their nature, contain ‘natural variation’, i.e., variation that the model is not
capable of capturing, will effect a bias in the erosion predictions relative to values on the
higher end vs. those on the lower end of the range of measured values. The results of the
study do not suggest that this factor is necessarily the only one at work to cause this
bias, but it certainly is significant. In our simple example presented above for the data
from the Kingdom City plot data (Wendt et al., 1986), the variance values used may
actually be lower than that which might be found in some other erosion data because of
the fact that the plots were fallow. Cropped plots could be expected to have a greater
level of variance between replicates because of the opportunity for more variation in the
surface configuration associated with residue and canopy cover, although data to support
this is not existent. An increase in variance would cause an increase in the apparent
model bias.

An additional implication of this study is that there are practical limits on the level of
fit that should be expected between measured and predicted values of erosion. The
‘perfect’ deterministic model discussed above for the data from Wendt et al. (1986)
produced a r? value of 0.90, and the physical model represented by replicate plots for
the case of individual storm data produced a r* value of 0.76. It should not be expected
that an erosion model would give better overall results than those reported here.

There are advantages and disadvantages to various types of erosion models. Gener-
ally, empirical models such as the USLE tend to be easier to use because of the small
number of input values required, and have less potential for the introduction of
prediction errors because of uncertainty in the model input values relative to physically
based models. Physically based erosion simulation models have a much more sophisti-
cated model structure which, in theory, allows them to better describe the influence and
interactions of many and various factors that influence erosion. Physically based models
also often provide a different type of information than that given in empirical models.
For example, the WEPP model (Flanagan and Nearing, 1995) estimates the spatial and
temporal distributions of soil loss, sediment yield, sediment size characteristics, run-off
volumes, soil water balance, and a myriad of other types of system information that the
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USLE cannot provide. The USLE was designed only to predict long-term, average
annual soil loss. However, because of inherent limitations in prediction capabilities as
discussed in this study, as well as for other reasons associated with the trade-off between
model complexity and the definition of model input values, one should probably not
expect the physically based, deterministic models to predict more accurately the rates of
erosion from specific land areas.

On the other hand, it is suggested here that a limitation of current erosion models is
their deterministic nature, and the physically based models may have the greater
potential as compared to the empirical models in moving from the deterministic
framework to a probabilistic one (Singh et al., 1988; Wright and Webster, 1991). Monte
Carlo simulations with the WEPP model, for example, have shown promise (Tiscarino-
Lopez, 1994; Deer-Ascough, 1995).
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M.A. Nearing
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The author is happy to have received the attention of Dr. Kirby and Dr. Webster
regarding my recent article in Catena. Dr. Kirby and Dr. Webster are, in my opinion, to
be commended for bringing to fore the suggestion that when regression models are used
to develop erosion prediction models, there are alternatives to the traditional least-square
error approach to curve fitting. Unfortunately, they seem to be fundamentally confused
about the paper in question.

The first two sentences of the comment state that the models that I used are empirical
and ‘essentially regression’ based. This is simply not true. Neither of the two models
that I use in the paper (Figs. 1 and 2) is derived from regression. The first is simply a
hypothetical model that predicts the means of treatments. The second is the ‘model’ of
the replicate plot. The regression lines in the figures have nothing whatsoever to do with
the development of any model. I used regression only to show that there exists a
tendency for these models to under-predict at the high end and over-predict at the low
end. In fact, regression is irrelevant to the argument. The same point is made simply by
counting the number of over- and under- predictions within specified ranges, which I
also did in the paper.

Secondly, and more importantly, the comments in the letter by Dr. Kirby and Dr.
Webster are focussed primarily on the development of models, rather than the evaluation
of models. There is a fundamental difference between the two goals, particularly
concerning the issue of regression. They refer to the regression of a measured Y value
on a measured independent variable X, and the desire ‘to predict future erosion’. In
other words, they refer to model development. In that case, certainly the use of Y on X
regression may not be preferable, as is well described in the letter by Dr. Kirby and Dr.
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Webster. In the Catena paper, however, I discuss model evaluation, and in particular the
comparison of model predictions to measured data. In this case, it is important that the Y
value be evaluated relative to the X value, because the model evaluator is interested in
how the model prediction compares to a measured data point. Thus, when one uses a
model to predict a measured data point, the terminology and fundamental concept of
over- or under-prediction is made in reference to the measured value, not the predicted
one. If the model is ‘over-predicting’, it means that the value of the prediction is greater
than the value of the measured. The evaluation of the model only works in one direction,
i.e.; the measured value is not to be ‘evaluated’ relative to the predicted one. From that
perspective, regression of, and comparison of, the predicted value to the measured is the
appropriate perspective. One will find it important to know, for example, that for smaller
measured values (of soil loss in this case) the model will over-predict more often than
not.

We often conduct model evaluation studies using only a few data points. Recently,
Liu et al. (1997) made a comparison between WEPP (A physically- based model) and
data from 15 watersheds. For a watershed model evaluation, 15 is a large number. There
was the normal scatter in the data, but the paper drew a significant amount of criticism
(from the journal reviewers) because two of the watersheds in meadow, which had
extremely low measured erosion rates, were over-predicted by a large amount. Actually,
the authors (myself included) were quite happy with the results, because regardless of
the fact that the predicted values were ‘too high’, the predicted values were still low in
an overall sense with the other data. The other aspect of this, which is addressed only in
passing in the Catena paper discussed here, is that readers and reviewers often have an
inflated view of the levels of correlation they expect from a model. It is probably not
realistic to expect (for the uncalibrated case) that the r* can or should be better than that
of the replicated plot data (r? = 0.77) in the Catena paper, i.e., Fig. 2.

The letter to the editor also makes the claim that ‘From Nearing’s discussion it seems
that he and other erosion scientists want the 1:1 line for their predictions.’ It is not clear
to me that my discussion in the Catena paper indicates a ‘want’ for a 1:1 line for
predictions. Quite the contrary. The basic concept of the paper was to illustrate that
‘over-prediction of small and under-prediction of large measured erosion rates * (are)
normal and expected if the model is accurately predicting erosion rates as a function of
environmental conditions.’

My point in the Catena paper was that when one conducts an evaluation of a model
using measured erosion data, one should expect that there will be a tendency for the
model to produce more over-predictions on the low end of the scale and more
under-predictions on the upper end. This is true when a model is deterministic - in the
sense that the model attempts to predict a mean value for a treatment - rather than
probabilisitic - in the sense that the model attempts to predict a population of probable
or possible responses for a given treatment. It is really a very simple idea, and one
which is clearly expected, but it seems to have thrown many erosion modelers off when
they find this phenomenon to occur. It is clear that regression is not needed to make this
point in my paper.

Dr. Kirby and Dr. Webster suggest something quite different. They suggest using an
alternative method of regression to develop an erosion model if a regression-based
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approach to model development is used. The idea proposed is interesting and promising
for the case of model development, but irrelevant to the thesis of my Catena paper.
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