UNCERTAINTY ANALYSIS OF THE WEPP SoiL EROSION MODEL
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ABSTRACT

Predictions from hydrologic and erosion models contain
a large degree of uncertainty. The Modified Point Estimate
Method (Harr, 1989) used in conjunction with a response
surface exploration technique (Brooks, 1958) provides a
simple, computationally efficient, and powerful tool for
evaluating uncertainty of predictions by natural-resource
models. The method allows analysis of models with a large
number of input parameters which may be correlated and
for which the exact input parameter distribution is
unknown. The method was applied to the Water Erosion
Prediction Project single rainfall-event erosion model.
Sixty treatment combinations were selected to determine
WEPP output uncertainties for a wide range of soil, crop,
management, topographic, and storm conditions. The
levels of the treatment combinations were randomly
selected to span the entire factorial space of the 28 WEPP
inputs, but with a finite number of treatment combinations.
Five WEPP outputs were studied: peak runoff rate, average
soil loss, average deposition, sediment yield, and sediment
specific surface enrichment ratio. Maximum and average
output uncertainties, given by the coefficient of variation,
were determined for each output of the 60 treatments.
Maximum coefficients of variation for peak runoff rate,
soil loss, sediment yield, and sediment enrichment ratio
were 196, 267, 323, and 47%, respectively. Average
coefficients of variation for the same set of variables were
65, 99, 106, and 13%, respectively. Coefficient of variation
was less for larger runoff and erosion events, which
account for a large percentage of the total soil loss at a
location over extended time periods. Significant, positive
correlations existed between the coefficients of variation of
peak runoff average soil loss, and average soil loss and
sediment yield, indicating that the uncertainty in average
soil loss and in sediment yield may be directly related to
the uncertainty in peak runoff rate. KEYWORDS. Erosion,
Modeling, WEPFP.

INTRODUCTION
he determination of prediction uncertainty for
process-based natural resource models, such as the
WEPP model, is an important step in model
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prediction reliability analyses (Beck, 1983). In this study,
the Point Estimate Method (PEM) (Rosenblueth, 1975) as
modified by Harr (1989) was used. The Point Estimate
Method may be used on complex models with large
numbers of input parameters where minimal distribution
information is available. The PEM also accounts for
correlation between input parameters.

Coefficients of variation for model outputs may vary
greatly depending upon the input domain for individual
model runs. It would be desirable, therefore, to identify the
magnitudes and conditions under which the WEPP model
yields the highest uncertainties (worst-case scenarios), as
well as the average output uncertainty for a wide variety of
modeling conditions. Brooks (1958) presented a surface
exploration technique for identifying subregions
(e.g., maxima) on multi-dimensional response surfaces.
Using the Brooks surface exploration technique, one may
estimate the number of treatment levels necessary to
determine the desired proportion of the factor space where
the responses are maximized.

Nearing et al. (1990) performed a linear sensitivity
analysis of the WEPP erosion model. Traditional linear
sensitivity analysis has several limitations (McCuen and
Snyder, 1986), including: a) the linear analysis does not
fully characterize non-linear response, b) the linear
analysis is univariate, whereas sensitivity of the model to a
variable is dependent upon the magnitude of other
variables, and c) the traditional linear approach uses single-
valued inputs, whereas inputs are actually random
variables with distributions associated with them.

The objective of this study is to use the Modified Point
Estimate Method and the Brooks surface exploration
technique to evaluate prediction uncertainties for the
WEPP erosion model. The analysis examines only the
effects of random variation of input parameters and takes
into account neither errors associated with internal, fixed
model parameters nor the model’s structural errors.
Average and maximum uncertainties are reported for levels
of input parameters which characterize a wide range of
environmental conditions to which the model might be
applied under cropland agricultural situations. The
combination of methods introduced provides a powerful
tool for evaluating uncertainties of estimates from
complex, process-based natural resource models such as
the WEPP erosion model.

BACKGROUND
THeE WEPP MODEL

The WEPP model (Lane and Nearing, 1989) is the result
of a joint effort of several U.S. federal agencies and
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universities to develop process-based, computer-driven soil
erosion prediction technology. The WEPP model has been
presented in detail elsewhere (Lane and Nearing, 1989;
Nearing et al., 1989). An overview is given here.

The model conceptually has six components: climate
generation, hydrology and runoff hydraulics, plant growth
and residue decomposition, soils, erosion, and irrigation.
The model can be used in either a continuous simulation
mode or a single-event mode. This study dealt only with
the event version, which encompasses primarily the
hydrology and erosion components of WEPP. In the event
version of the model, inputs for soil, storm, plant residue
and canopy, and slope topography characterize conditions
relative to a single rainfall event. The model predicts soil
loss on the slope profile, sediment deposition on the
profile, sediment yield from the end of the slope, runoff,
and sediment enrichment ratio.

The hydrology component of the model (Hernandez
et al., 1989) uses the Green and Ampt equation to
calculate infiltration, and runoff routing is computed by the
kinematic wave equation. The erosion subcomponent of
the WEPP model is based on the steady-state mass balance
sediment equation (Nearing et al., 1989). The equation
incorporates source terms for the generation of sediment
from interrill and rill areas. The rill term may be either
positive or negative, depending upon whether net
detachment or net deposition is active in the rill. Parameter
estimation for the model is based on an extensive two-year
field study of 36 cropland and 11 rangeland experimental
sites across the continental United States. (Elliot et al.,
1989).

The WEPP model predicts off-site rates of erosion,
including sediment yield from the slope profile and
sediment enrichment ratio, as well as on-site erosion rates,
such as detachment and deposition rates. Enrichment ratio
refers to the degree of enrichment in fines due to the
preferential depositional process. The enrichment ratio is
given by (Foster et al., 1989):

ENRATO=SS_,/SS_, 1)
where
ENRATO = enrichment ratio (unitless),
SSged = specific surface area of the sediment
(m2 g-1), and
SSsoil = specific surface area of the in-situ soil.

MobEL OUTPUT UNCERTAINTY

Model output uncertainty comes from three sources:
structural uncertainty, input uncertainty, and parameter
uncertainty (Troutman, 1985; Vincens et al., 1975).
Structural uncertainty arises from the inadequacy and the
incompleteness of the model in representing the physical
system being studied. Input uncertainty refers to the spatial
and temporal variability of the input data, measurement
errors, etc. Parameter uncertainty refers to the uncertainty
associated with internal model parameters which are fixed
and not usually adjusted by the user. This study does not
address the issue of structural error or internal parameter
error.

Model input parameters are random variables because
of spatial and temporal variability and errors in
measurement. Model outputs are also random variables
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because any variable which is a function of a random
variable is itself a random variable (Haan, 1977).

The Point Estimate Method (Rosenblueth, 1975)
requires that two discrete points be assigned to represent
the variation about the mean of the input and output
variables. An advantage of the Point Estimate Method is
that exact descriptions of probability distributions are not
necessary. Only variance of distributions are required in
the analysis. A limitation of the Point Estimate Method is
that the method estimates output expected values and
variance, but not detailed information of the output
distributions.

A complete description of the Point Estimate Method
may be found elsewhere (Rosenblueth, 1975). A brief
overview of the procedure is given here. For two correlated
variables, the Msh moment of a dependent variable
y = y(x, Xp) is:

M M M M M
E (y )= P, Yy, *P, Y, *P,Y , *DP_Yy__ 2D

where
e =y (E[xJts[x ], E[x,]£s[x,]) @)
and
pr=p._=1+p/2" @
and

n
p,_=p_,=1-p/2 6)

In the above equations p is the weighting factor which is
a function of the correlation coefficient, p, between x; and
x». The exponent, n, in the denominator of equations 4 and
5 represents the number of input variables, which is two for
the bivariate case in the above example. The symbols E
and s represent expected values and standard deviations,
respectively.

For M = 1 in equation 2, the expected value E(y) (or
first moment) of the distribution of the dependent variable
is obtained. For M = 2, E(y2), or the second moment, is
attained, and the variance of y is simply:

s’ [(y)]=E [(yz)] ~(ELy) . ©)

Except for univariate cases, the above method does not
account for skewness, because the number of unknowns
would exceed the number of known relationships.
Therefore, in using Rosenblueth’s (1975) method one
implicitly assumes symmetrical distributions for
multivariate cases. Dissymmetry can be incorporated into
the Point Estimate Method using a third point to
characterize distributions (Bolle, 1988). That method,
however, requires the assumption that all input
distributions have the same skewness coefficient, which is
unlikely in most cases.

Since the number of factors required for the Point
Estimate method increases exponentially (2n) with the
number of input variables, n, the number of weighting
factors gets exceedingly high when n becomes large. With
30 correlated variables, for example, the number of factors,
and hence model executions, required is greater than 10 .

Recognizing that limitation, Harr (1989) proposed a
modification to Rosenblueth’s (1975) method, which
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consisted of transposing all correlated input distributions to
the eigen-space. In the transposed coordinate system, the
correlated input variables become mutually independent,
which reduces the number of factors in the analysis to 2n,
instead of 2m, as in the original Point Estimate Method.
Harr (1989) compared the two methods and showed that
the Modified Point Estimate Method closely approximated
Rosenblueth’s (1975) original procedure for both linear
and non-linear transfer functions. The reader is referred to
Harr (1989) for a full discussion of the Modified Point
Estimate Method.

The assumption of symmetry for input and output
distributions in the Point Estimate method will limit its
application if precise definition of the form of the output
distribution is desired and if precise definition of the input
distribution is available. In many, and perhaps most, cases
in natural resource modeling applications, the form of the
input parameter distribution is unknown or very poorly
defined. In those cases the use of a method such as Monte
Carlo, which uses that information, is not necessary.
Assumption of symmetry in those cases is standard
procedure, even when the Monte Carlo method is used.

METHODS

The single-storm version (Version 90.1, Lane and
Nearing, 1989) of the WEPP model was used in the study
to avoid non-stationary problems with the parameters such
as would occur with the continuous simulation version.
The WEPP outputs used in the study were selected
according to their relevance to prediction schemes. The
outputs are described in Table 1. Model inputs for the
single-event WEPP model are listed in Table 2. Because
the input variables KR, SHCRIT, ORGMAT, KI, and
DAYDIS do not enter in the computation of the output
PEAKRO, those inputs were not used in the uncertainty
analysis for PEAKRO. A separate analysis for PEAKRO
was conducted.

The input data used in the simulation experiment were
divided into four groups: soil data, crop-management data,
storm data, and topography data. The soil and crop-
management data corresponded to actual plot data, and the
measurement and spatial variability within the plots was
assumed to be the source of uncertainty in the soil and
crop-management inputs. The storm and topography data,
on the other hand, were synthetic, and the uncertainties

TABLE 1. WEPP output variables used in the uncertainty study

Output Description (Unit)

PEAKRO Peak runoff rate on the profile (mm h-!)

AVSLOS Average soil detachment rate on the portion of the
profile experiencing net soil loss (kg m-2)

AVDEP Average soil deposition on the portion of the
profile experiencing net deposition (kg m-2)

AVLOST Average sediment yield leaving the profile per
unit width of field boundary (kg m-2)

ENRATO Sediment specific surface area enrichment

ratio (unitless)
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TABLE 2. WEPP single-storm model input variable descriptions

Variable

# Name (Unit) Description

1 SAT (unitless) Initial soil saturation level

2 KR(sm-") Rill soil erodibility parameter

3 SHCRIT (Pa) Soil critical shear stress parameter

4 BD (gem-3) Soil bulk density

5 SSC (mmh-?) Soil hydraulic conductivity

6 THETDR (unitless) 15-bar soil moisture content

7 SAND (%) Sand content of soil

8 CLAY (%) Clay sontent of soil

9 ORGMAT (%) Organic matter content of soil
10 CEC(me100g-!)  Soil cation exchange capacity
11 RFG (%) Rock fragment content of soil
12 CANCOV (unitless)  Plant canopy cover
13 INRCOV (unitless)  Interrill ground residue cover

14  RILCOV (unitless)
15 KI(kgsm-4)

Rill ground residue cover
Interrill soil erodibility parameter

16 XDEL1 (m) Slope length of upslope segment

17 XSLP1 (unitless) Slope grade of upslope segment

18 XDEL2 (m) Slope length of middle slope segment
19  XSLP2 (unitless) Slope grade of middle slope segment
20 XDEL3 (m) Slope length of downslope segment
21 XSLP3 (unitless) Slope grade of downslope segment
22 RAIN (mm) Precipitation amount

23 STMDUR (h) Duration of precipitation

24  TIMERP (unitless) Ratio time to peak/duration of rainfall
25 IP (unitless) Ratio max. intensity/average rainfall intensity
26 RRINIT (m) Initial soil random roughness

27 RFCUM (mm) Cumulative rainfall since last tillage
28 DAYDIS (days) Days since last disturbance by tillage

associated with them were assumed to be only due to
measurement errors.

In order to evaluate output coefficients of variation for
typical but distinct situations, the data corresponding to
three soils, two plant types, three tillage practices, and
three crop stages were selected.

The soils chosen were: 1) Miami silt loam (fine-silty,
mixed, mesic, typic Hapludalf); 2) Cecil sandy-loam (fine-
loamy, mixed, mesic typic Kanhapludult); and 3) Heiden
clay (fine, montmorillonitic, thermic, udic Chromusturt).
These soils present distinct textural, chemical, and
mineralogical properties, and occur in three diverse regions
of the United States (Indiana, Georgia, and Texas,
respectively).

The soil data were subdivided into basic soil-property
and erodibility data. The basic soil-property data
corresponded to the textural, physical, and chemical data
collected and analyzed by the USDA-Soil Conservation
Service (19894, b, c). The erodibility data consisted of the
erodibility parameters, hydraulic conductivity, and bulk
density data, collected by Elliot et al. (1989). Although the
basic soil property and the erodibility data were collected
from the same field, they were not all gathered within the
same experimental unit, and therefore the correlation
between them was unobtainable. Only the data within each
unit could be analyzed for correlation.

The two plant types selected were corn (Zea mays), and
soybeans (Glycine max). These two crops were chosen
because of their wide distribution and because of their
distinctive crop canopies and residue biomass covers. The
tillage practices for the simulation experiment were
conventional tillage (CT), chisel plowing (CP), and no-till
(NT). These practices are commonly used in the United
States, and they result in differing amounts of residue left
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on the surface, surface random roughness, and state of soil
consolidation.

The plant-canopy and residue data used in the
simulation experiment were those of E. E. Alberts
(personal communication, 1989). These data consisted of
canopy and ground-cover data from corn and soybeans
plots at three different crop stages, namely, 30, 50, and 65
days after planting. Those stages corresponded to an
average of 5.4, 58.2, and 78.4% of canopy cover for com,
and an average of 9.7, 55.6, and 88.8% of canopy cover for
soybeans, respectively. The three crop stages are repre-
sentative of the canopy cover range found in the field.

The topographic data used in the experiment
corresponded to typical S-shaped slope profiles with four
levels of slope lengths (XDEL) and three levels of slope
grades (XSLP) for each slope segment. Because the data
for the precipitation and topographic inputs were synthetic,
and because their uncertainties were assumed to be due to
measurement errors only, those inputs were assumed to be
independent.

In order to obtain a finite number of treatment
combinations that would reasonably represent the wide
factor space, spanned by the 28 WEPP inputs (23 for
PEAKRO) and their levels, a surface exploration method
procedure, the Random Method (Brooks, 1958) was used.
In that method, the number of trials (treatment
combinations) required so that the experimenter has a
probability, S, of finding at least one treatment
combination which would fall in the optimum subregion, a,
of the factor space which maximizes the response is
(Brooks, 1958):

n=log(1-S)/log(l1-2a) Q)

For a probability S = 95%, and a proportion a = 5% of
the total factor space, equation 7 yields n = 60 treatment
combinations, which was the number used in this study.

Since Brook’s method is used to randomly select
treatment combinations that span the whole factor space,
the mean of the responses of the selected treatment
combinations is an unbiased estimator of the true response
surface mean. Therefore, the random method was used to
estimate the means as well as coefficients of variation of
the WEPP predictions for the modeling conditions studied.

The procedure for randomly selecting the treatment
combinations for the simulation experiment was as
follows. A random number generator (Press et al., 1988)
was used to randomly generate the levels of model inputs
(in the case of the synthetic data), and the levels of the
class variables (in the case of the soil and crop-
management data). If soil 1 (Miami) was selected, for
example, all basic soil property and erodibility data would
be nested with that soil. Similarly, if soybeans were chosen
as the crop type, conventional tillage was chosen as the
tillage practice, and 1 July was selected as the crop stage,
then all the crop-management data would be nested with
those crop and tillage types. In the case of the synthetic
data (topographic and storm data) the levels were selected
directly from the random sampling procedure.

Sixty trials were required by the Random method for the
specified probability levels, therefore, 60 randomly
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selected treatment combinations were generated and used
in the uncertainty analysis study.

UNCERTAINTY ANALYSIS

The Modified Point Estimate Method (Harr, 1989) was
coded in FORTRAN according to the input and output
specifications of the WEPP model. The discussion about
the generation of stochastic inputs for WEPP, and the
computation of the expected values and coefficients of
variation for the model outputs, was given in detail by
Chaves (1990). Because the Modified Point Estimate
Method required 2 X 28 point estimates (2 x 23 for the
output PEAKRO) for each treatment combination, and
because 60 treatment combinations were assigned by the
Random method for the specified probability levels, a total
of 3,360 simulations (2,760 for PEAKRO) were run, using
the WEPP model as the transfer function.

RESULTS AND DISCUSSION

The maximum coefficients of variation of the WEPP
outputs for the range of conditions studied are given in
Table 3. Although the results in Table 3 represent only
worst-case scenarios for the conditions studied, the
uncertainty propagation was severe for all model outputs,
except ENRATO, when compared to the overall average
uncertainty for the model inputs. The average coefficient of
variation for the 28 input parameters for all the conditions
considered was 21%.

Average indices of model output reliability were
calculated for all sixty treatment combinations (Table 4).
The average coefficients of variation in Table 4 are
arithmetic means of the coefficients of variation in all 60
simulations. The expected values in Table 4 are the
average of the expected values in the 60 trials.

The results of Table 4 indicate that the average output
uncertainty for all treatment combinations was about one
third of the maximum output uncertainties (Table 3). The
results in Table 4 also indicate that the error propagation
was significant for each of the model outputs except
ENRATO. The average uncertainty associated with the
output PEAKRO, for example, was three times higher than
the overall average coefficient of variation of the model
inputs (21%). The average coefficients of variation of the
outputs AVSLOS, AVDEP, and AVLOST were almost
five-fold the average input coefficient of variations. An
important point, which is discussed in more detail below, is

TABLE 3. Maximum coefficients of variation for the WEPP outputs with
the corresponding expected values (correlated case)

PEAKRO AVSLOS AVDEP AVLOST
(mmh-!) (kgm-2) (kgm-?) (kgm-!) ENRATO
El] 21.36 0.13 0.03 8.06 1.63
CV[]1(%) 196.05 267.08 320.37 32341 47.26

TABLE 4. Average coefficients of variation for the WEPP outputs with the
averages of the expected values (correlated case)

PEAKRO  AVSLOS AVDEP  AVLOST
(mmh-) (kgm-?) (kgm-2) (kgm-2) ENRATO
E[l 122.78 141 0.87 153.96 1.11
CVI (%) 64.58 98.91 105.66 106.60 12.87
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TABLE 5. Average coefficients of variation for the WEPP outputs with the
averages of the expected values (independent case)

PEAKRO  AVSLOS AVDEP  AVLOST
(mmh-1) (kgm-2) (kgm-2) (kgm-!) ENRATO
E[} 121.11 143 0.89 155.70 1.12
CV[1(%) 65.10 87.10 110.77 101.09 12.64

that the maximum coefficients of variation (Table 3) were
all (except ENRATO) associated with low expected values.

The results in Tables 3 and 4 indicate that the maximum
and average output uncertainties increased from the output
PEAKRO through the output AVLOST. Interestingly, that
is also the sequence of processes in the WEPP model,
namely, soil detachment (AVSLOS) is driven by runoff,
deposition (AVDEP) uses sediment load and runoff rate as
inputs, and sediment yield (AVLOST) depends on both soil
detachment and deposition rates. Therefore, the increase in
uncertainty from PEAKRO to AVLOST was possibly
caused by the interdependence between the WEPP outputs.

The effect of input correlation on the average output
uncertainty was examined by carrying the uncertainty
propagation analysis in the same 60 treatment combina-
tions assuming complete independence between the model
inputs, but keeping the same means and coefficients of
variation used in the correlated (actual) case. The average
coefficients of variation for the five model outputs, with
the average means, are given in Table 5 for the
independent case.

Neglecting correlation between inputs did not greatly
affect the means and the coefficients of variation of the
WEPP outputs for the conditions studied. In the absence of
input correlation, the average output uncertainty increased
by 0.8 and 4.8% for PEAKRO and AVDEP, and decreased
by 13.5, 5.5, and 1.9%, for the outputs AVSLOS,
AVLOST, and ENRATO, respectively. The above results
suggest that, on the average, no significant synergetic
(variance increase) or antithetic (variance reduction) effects
due to input correlation occurred for the conditions studied.
However, significant positive or negative correlations
between inputs on a particular treatment combination
might have caused the coefficient of variation to change
significantly in some particular runs.

In order to examine model output uncertainty over the
entire range of output means, the coefficients of variation
of the WEPP model outputs were plotted against their
respective expected values. The plots corresponding to the
outputs PEAKRO, AVSLOS, AVDEP, AVLOST, and
ENRATO are given by figures 1 through 5, respectively.

Coefficient of variation of PEAKRO increased
exponentially as the expected value in PEAKRO decreased
(fig. 1). There are, however, a few points in the lower-left
side of figure 1, indicating that some of the low-valued
means had low uncertainties. Similar trends were apparent
in figures 2, 3, and 4. Figures 1 through 5 were made
recognizing that plots of the coefficient of variation versus
the expected value can lead to spurious correlation
(Kenney, 1982) and therefore should not be used for
correlation purposes. However, figures 1-5 do show the
behavior of the output coefficient of variation, and hence
the relative prediction uncertainty in the entire range of the
expected values.

Coefficients of variation were least for simulated events
which had high mean values. A large percentage of erosion
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Figure 1-Coefficient of variation of peak runoff, PEAKRO, vs. che
expected value of PEAKRO.

occurs over a small percentage of higher magnitude rainfall
events (Wischmeier, 1962; Thomas and Snyder, 1986).
Thus, the result that coefficients of variations were lower
for the events of greater magnitude of erosion is favorable
in terms of calculating accurate erosion estimates based on
long-term simulations. The single-event WEPP model is
used as a basis for the continuous simulation version of
WEPP. Estimates of long-term averages of erosion will be
affected much more by the larger events, which have lower
prediction uncertainties, than by the smaller events, which
have the greater uncertainties. .

The points with high coefficients of variation
(CV > 100%) in figures 1-4 show common behaviors,
namely, their stochastic realizations (y;) systematicaily had
both zero and non-zero values for certain treatment
combinations with low-valued means. On the other hand,
the low-valued outputs that yielded low coefficients of
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Figure 2-Coefficient of variation of average soil loss on the portions
of the profile experiencing net soil loss, AVSLOS, vs. the expected
value of AVSLOS.
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Figure 3-Coefficient of variation of average deposition on the
portions of the profile experiencing deposition, AVDEP, vs. the
expected value of AVDEP.

variation, as given by the points in the lower-left corners of
figures 1-4, had non-zero stochastic realizations. If one of
the point estimates of an output y is zero, the output
variance will diverge with respect to the expected value.
Although those divergences were due to the fact that a
discrete, rather than a continuous uncertainty propagation
method was used, the generation of alternating zero and
non-zero values for some of the treatment combinations
were due to a combination of particular covariance
structures and the boolean (stepwise) nature of the WEPP
model. The WEPP model is boolean in that computation of
non-zero runoff, soil detachment, and deposition occur
only after certain threshold conditions are attained. Were it
not for those treatments which generated both zero and
non-zero point estimates and which produced very high
output uncertainty as a result, the average coefficients of
variation for the outputs PEAKRO, AVSLOS, AVDEP,
and AVLOST would have been significantly lower. It is
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Figure 4-Coefficient of variation of sediment yield, AVLOST, vs.
the expected value of AVLOST.

2442

60
= .
c
§4o- ° .
[}
Q.
L
~~ -4 e ® e
9_ o ﬂ'
& ®o
= = L ]
w2 2,800
= ®a
O o
- '5
nnﬂ
o
0 : ¥ : ,
1 2

E(ENRATO) (unitless)

Figure 5-Coefficient of variation of sediment enrichment ratio,
ENRATO, vs. the expected value of ENRATO.

likely that in those intervals of low expected values and
high coefficients of variation that an alternate method of
computing output variance could yield more accurate
coefficients of variation than does the Point Estimate
Method.

Trends found in figures 1 through 4 suggest that the
coefficients of variation of the outputs AVSLOS and
AVLOST depended on the uncertainty associated with
PEAKRO. In order to examine a possible relationship
between those output variables, graphs were plotted. Figure
6 is the plot of the coefficient or variation in the soil loss
estimate (AVSLOS) versus the coefficient of variation of
peak runoff rate (PEAKRO).

A significant, positive correlation (r = 0.86) was found
between CV(AVSLOS) and CV(PEAKRO) (fig. 6). A
high correlation (r = 0.97) was also found between
CV(AVLOST) and CV(AVSLOS) (fig. 7). The plot of
CV(AVLOST) versus CV(AVDEP), however, did not
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Figure 6-Coefficient of variation of average soil loss on the portions
of the profile experiencing net soil loss, AVSLOS, vs. the coefficient
of variation of peak runoff, PEAKRO.
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Figure 7-Coefficient of variation of sediment yield, AVLOST, vs.
the coefficient of variation of average soil loss on the portions of the
profile experiencing net soil loss, AVSLOS.
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Figure 8-Coefficient of variation of sediment yield, AVLOST, vs.

the coefficient of variation of average deposition on the portions of
the profile experiencing deposition, AVDEP. i

exhibit a strong correlation (fig. 8), although the trend was
positive. It seems that the uncertainty in sediment yield
(AVLOST) is related largely to the uncertainty in soil loss
(AVSLOS) rather than to average deposition rate
(AVDEP) for the range of conditions studied.

Trends found in figures 6-8 suggested that the
uncertainty in the outputs AVSLOS, AVLOST, and
perhaps AVDEP, were directly (in the case of AVSLOS) or
indirectly (in the case of AVLOST and AVDEP) controlled
by the uncertainty in PEAKRO. Since the peak runoff rate
is a driving mechanism for soil detachment, and since
amount of deposition and sediment yield are directly
dependent upon amount of detachment, the relations found
between the coefficients of variation of the outputs
PEAKRO and AVSLOS, AVSLOS and AVLOST, and
AVSLOS and AVDEP were not surprising.
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